CHAPTER 4

QUANTUM MECHANICS IN
THREE DIMENSIONS

4.1 SCHRODINGER EQUATION IN SPHERICAL COORDINATES

The generalization to three dimensions is straightforward. Schrodinger’s equation
says
o

ih— = HVY; [4.1]
dt

the Hamiltonian operator! H is obtained from the classical energy

15 P S S
i+ V= petpy PV

by the standard prescription (applied now to y and z, as well as x):

h o h o ho
Px — Tox Py = 1—5, P: > T4 [4.2]

"Where confusion might otherwise occur I have been putting “hats” on operators, to distinguish
them from the corresponding classical observables. 1 don’t think there will be much occasion for
ambiguity in this chapter, and the hats get to be cumbersome, so I am going to leave them off from
now on.
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132 Chapter 4 Quantum Mechanics in Three Dimensions

or

p—> -V, [4.3]

for short. Thus

2
ih— = —— V32U 4+ vV, [4.4]

where
[4.5]

is the Laplacian, in cartesian coordinates.

The potential energy V and the wave function W are now functions of r =
(x,y,z) and t. The probability of finding the particle in the infinitesimal volume
dr =dx dydz is |¥(r, 1)|*> d’r, and the normalization condition reads

/|\JJ|2d3r =1, [4.6]

with the integral taken over all space. If the potential is independent of time, there
will be a complete set of stationary states,

W, (r, 1) = Yy (r)e Ent/R [4.7)

where the spatial wave function v, satisfies the time-independent Schrodinger
equation:

2
—h—vzw + V¢ = Evy. [4.8]
2m

The general solution to the (time-dependent) Schrodinger equation is

W, 1) =) cayn(r)e  En/h, [4.9]

with the constants ¢, determined by the initial wave function, W(r, 0), in the
usual way. (If the potential admits continuum states, then the sum in Equation 4.9
becomes an integral.)
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*Problem 4.1

(a) Work out all of the canonical commutation relations for components of the
operators r and p: [x, y], [x, pyl, [x, px], [Py, p;), and so on. Answer:

[ri, pjl = —Ipi,rjl =ihd;;, [ri,rj1=1I[pi,p;j1=0, [4.10]
where the indices stand for x, y,or z, and r, = x,ry = y,and r; = z.

(b) Confirm Ehrenfest’s theorem for 3-dimensions:

d 1 d

—(r) = —{(p), d —(p)=(-VV). 4.11

= (p), an r (p) = ( ) (4.11]
(Each of these, of course, stands for three equations—one for each compo-

nent.) Hins: First check that Equation 3.71 is valid in three dimensions.

(c) Formulate Heisenberg’s uncertainty principle in three dimensions. Answer:
0x0p, > h/2, 0y0p, > h/2, o.0p, > h/2, [4.12]

but there is no restriction on, say, 6x0p,.

4.1.1 Separation of Variables

Typically, the potential is a function only of the distance from the origin. In that
case it is natural to adopt spherical coordinates, (7, 6, ¢) (see Figure 4.1). In
spherical coordinates the Laplacian takes the form?

19 3 1 9 9 1 9%
vie —_ 2 (2% ——  —~ |sing—= — 1 — ). 4.13
2 or (r ar> T 256 90 (Sm ae) T e (3¢2) 14131

In spherical coordinates, then, the time-independent Schrodinger equation reads

2138 (,8¢ 1 9 oy 1 %y
| == - — {sing = - (==
m [r2 ar (r or ) t 25ing 30 (Sm 20 ) T e (a¢2)]

L VY =Ey.  [4.14]

We begin by looking for solutions that are separable into products:

Y(r,8,¢9) =R@)Y (6, ¢). [4.15]

2In principle, this can be obtained by change of variables from the cartesian expression
(Equation 4.5). However, there are much more efficient ways of getting it; see, for instance, M. Boas,
Mathematical Methods in the Physical Sciences, 2nd ed., (Wiley, New York, 1983), Chapter 10,
Section 9.
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FIGURE 4.1: Spherical coordinates: radius 7, polar angle #, and azimuthal angle ¢.

Putting this into Equation 4.14, we have
W [Y d [ ,dR L _R 9 (no), _R 3’y
—— |5 |r"— ———— | smf— —
2m | r2dr dr r2sin@ 96 360 r2 sin? 6 9¢?
+VRY = ERY.

Dividing by RY and multiplying by —2mr?/h*:

{1 d <2dR> 2mr? }
——\\r"—=]- [V(r) — E]

R dr dr K2
N 9 (oY), ! 3’y 0
—{——|sinf— — =
Y |sin@ 96 a6 sinZ @ 3(252
The term in the first curly bracket depends only on r, whereas the remainder

depends only on ¢ and ¢; accordingly, each must be a constant. For reasons that
will appear in due course,? I will write this “separation constant” in the form /(/+1):

1d [ ,dR\ 2mr?

Rdr(rdr) V) —El=10+1D [4.16]
L[ 1 9 s'n@aY + KR I+ [4.17]
_—y — 1 —_ —_——— = — . .
Y |sin6 96 36 sin? @ 9¢?

3Note that there is no loss of generality here—at this stage / could be any complex number.
Later on we’ll discover that I must in fact be an infeger, and it is in anticipation of that result that I
express the separation constant in a way that looks peculiar now.
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*xProblem 4.2 Use separation of variables in cartesian coordinates to solve the
infinite cubical well (or “particle in a box”):

0, if x,y, z are all between 0 and a;
00, otherwise.

Vix,y,2) = {

(a) Find the stationary states, and the corresponding energies.

(b) Call the distinct energies Ei, Ez, E3, ..., in order of increasing energy.
Find E|, E3, E3, Ea4, Es, and Eg. Determine their degeneracies (that is, the
number of different states that share the same energy). Comment: In one
dimension degenerate bound states do not occur (see Problem 2.45), but in
three dimensions they are very common.

(c) What is the degeneracy of E|4, and why is this case interesting?

4.1.2 The Angular Equation

Equation 4.17 determines the dependence of v/ on 6 and ¢; multiplying by Y sin” 6,
it becomes:

Y 3%y
sinf — <sin9—) + 957 = —I(l + 1) sin® 6Y. [4.18]

You might recognize this equation—it occurs in the solution to Laplace’s equation
in classical electrodynamics. As always, we try separation of variables:

Y(0,¢) =00)P(9). (4.19]
Plugging this in, and dividing by ©®, we find:

1 d de 1 d%®
— |sin@— { sinf— Id+ Dsin?0t+ ——— =0
[®|:s1n 70 (sm d9>]+ (I+ Dsin }—I—(qu52

The first term is a function only of 6, and the second is a function only of ¢, so
each must be a constant. This time* I'll call the separation constant m?:

17. d (. de - 5

— el - = m*: 4.20

@[sm()de (sm@de)}—i-l(l—i—l)sm 6 =m*~, [ ]
1 2
lde 2 [4.21]
d do?

4Again, there is no loss of generality here, since at this stage m could be any complex number;
in a moment, though, we will discover that m must in fact be an integer. Beware: The letter m is
now doing double duty, as mass and as a separation constant. There is no graceful way to avoid this
confusion, since both uses are standard. Some authors now switch to M or y for mass, but I hate to
change notation in mid-stream, and I don’t think confusion will arise, as long as you are aware of the
problem.
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The ¢ equation is easy:

o _ 20 = d(p) =™ 4.22
7452 =—-m = D) =¢€"7. [4.22]
[Actually, there are two solutions: exp(im¢) and exp(—ime), but we’ll cover the
latter by allowing m to run negative. There could also be a constant factor in
front, but we might as well absorb that into ®. Incidentally, in electrodynamics we
would write the azimuthal function (®) in terms of sines and cosines, instead of
exponentials, because electric potentials must be real. In quantum mechanics there
is no such constraint, and the exponentials are a lot easier to work with.] Now,
when ¢ advances by 27, we return to the same point in space (see Figure 4.1), so
it is natural to require that?

O($ +27) = D(¢). [4.23]

In other words, explim(¢ + 2m)] = exp(im¢), or exp(2wim) = 1. From this it
follows that m must be an integer:

m=0,1t1,+2,.... [4.24]
The 6 equation,
d de
siné’ﬁ (sin0%> +[I( 4 Dsin*6 —m?]® =0, [4.25]

1s not so simple. The solution is
O(9) = AP"(cosb), [4.26]

where P/" is the associated Legendre function, defined by®

[m]
PI"(x) = (1 —x}HmI2 (%) Pi(x), [4.27]

and P;(x) is the /th Legendre polynomial, defined by the Rodrigues formula:

— 1 d : 2 !
P =z () &= [4.28]

S5This is more slippery than it looks. After all, the probability density (1P is single-valued
regardless of m. In Section 4.3 we’ll obtain the condition on m by an entirely different—and more
compelling—argument.

SNotice that Pl_'” = le' Some authors adopt a different sign convention for negative values
of m; see Boas (footnote 2), p. 505.
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TABLE 4.1: The first few Legendre polynomials, P;(x): (a) functional form,
(b) graphs.

Py=1
Pi=x

Py=1(3x2-1)

Py= %(Sx3 -3x)

P,= %(35x4 —30x2+3)

Pg= £(63x - 70x + 15x)

(@) (b)

For example,

d
Pix)=1, Pi(x)= a(x2 —1) =x,

1
2

1 /d\? 1
P = — (E) -1 = 5(3x2 -1,

and so on. The first few Legendre polynomials are listed in Table 4.1. As the name
suggests, P;(x) is a polynomial (of degree /) in x, and is even or odd according to
the parity of /. But P (x) is not, in general, a polynomial—if m is odd it carries

a factor of v/1 — x2:

PY(x) = %(3);2 -1, Plx)=(Q1- xz)l/Z% [%(3x2 - 1)} =3xv/1 -2,

2 2 d ? 1 2 2
Pi(x)=(1~-x )<E) [5(316 —l)i| =3(1 —x°),

etc. (On the other hand, what we need is P;"(cos6), and v/ 1 — cos2§ = sind, so
P/"(cos®) is always a polynomial in cosf, multiplied—if m is odd—by sin@.
Some associated Legendre functions of cosé are listed in Table 4.2.)

Notice that / must be a nonnegative integer, for the Rodrigues formula to
make any sense; moreover, if |m| > [, then Equation 4.27 says P" = 0. For any
given [, then, there are (2] + 1) possible values of m:

1=0,1,2,...; m=—-I, -l+1, ..., -1,0, 1, ..., =1, 1. [429]

But wait! Equation 4.25 is a second-order differential equation: It should have two
linearly independent solutions, for any old values of ! and m. Where are all the
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TABLE 4.2: Some associated Legendre functions, P{" (cos §): (a) functional form,
(b) graphs of » = P/" (cos 6) (in these plots r tells you the magnitude of the function in
the direction 0; each figure should be rotated about the z-axis).

z

0_ o_ 1 29
Pl=1 P2—2(3cos 6-1) EB PY6) Pl®

Pl =sin6 P3 =15 sin 6(1 — cos’ ) \

Z Z
P)=cos 6 P2=15sin%6 cos 6 P®) % P3(0)
P2=3sin?0 Py =2sin6(5 cos?0- 1) . Az
P}=3sin6 cosf PY=1(5cos’6-3cosh) 48F Pe O PO

(a) (b)

other solutions? Answer: They exist, of course, as mathematical solutions to the
equation, but they are physically unacceptable, because they blow up at 6 = 0
and/or 8 = 7 (see Problem 4.4).

Now, the volume element in spherical coordinates’ is

d’r = r?sin0drdo do, [4.30]
so the normalization condition (Equation 4.6) becomes
/ [¥ 2% sinf dr df dp = / [R|%r? dr/ 1Y|?sin@ do dg = 1.

It is convenient to normalize R and Y separately:

00 2t pm
/ IRPr?dr=1 and / /|Y|2sin0d0d¢=1~ [4.31]
0 0o Jo

7See, for instance, Boas (footnote 2), Chapter 5, Section 4.
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TABLE 4.3:  The first few spherical harmonics, ¥ (6, ¢).

Y(? = (% )]/2 Yzi2 = (%)]/2 sin? Ge2i0

YI0 = (ﬁ )1/2 cos 8 Yy = (Tg;t—)llz (5 cos3 -3 cos 6)

v =% (o )" sin ge*i 731 =7 (ZL)"sin 0.5 cos? 6 - e
9= (%)” (3 costh-1) Y= (%)” ? 5in2 6 cos Be22i?
Yfl=% (;_2)1/2 sin 6 cos Geti® YP=% %)1/2 sin? Ge 3¢

The normalized angular wave functions® are called spherical harmonics:

wo o QD A= 1D s o
Y] (9,¢)__e\/ i (l+|m|)!e P/"(cos ), [4.32]

where € = (—1)" for m > 0 and ¢ = 1 for m < 0. As we shall prove later on,
they are automatically orthogonal, so

2r T
fo /0 (¥ 0, HIYT 6, $)Isinf df dp = Sypdpmr.  [433]

In Table 4.3 I have listed the first few spherical harmonics. For historical reasons, /
is called the azimuthal quantum number, and m the magnetic quantum number.

*Problem 4.3 Use Equations 4.27, 4.28, and 4.32, to construct Yg and Y21. Check
that they are normalized and orthogonal.

Problem 4.4 Show that
®(0) = Aln[tan(6/2)]

8The normalization factor is derived in Problem 4.54; € (which is always 1 or —1) is chosen
for consistency with the notation we will be using in the theory of angular momentum; it is reasonably
standard, though some older books use other conventions. Notice that

N
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satisfies the 6 equation (Equation 4.25), for I = m = 0. This is the unacceptable
“second solution”—what’s wrong with it?

*Problem 4.5 Use Equation 4.32 to construct YZ 6, ¢)and Y. 2(0 ¢). (You can take
P2 from Table 4.2, but you’ll have to work out Pl from Equations 4.27 and 4.28.)
Check that they satisfy the angular equation (Equation 4.18), for the appropriate
values of [ and m.

* xProblem 4.6 Starting from the Rodrigues formula, derive the orthonormality con-
dition for Legendre polynomials:

1 2
/, 1 P(x)Py(x)dx = (m> L [4.34]

Hint: Use integration by parts.

4.1.3 The Radial Equation

Notice that the angular part of the wave function, Y (6, ¢), is the same for all spher-
ically symmetric potentials; the actual shape of the potential, V(r), affects only
the radial part of the wave function, R(r), which is determined by Equation 4.16:

a (rzd_R) 2’”’ [V(r) — EIR =I(I + DR. [4.35)
dr dr

This equation simplifies if we change variables: Let

u(r)y =rR(r), (4.36]
so that R = u/r, dR/dr = [r(du/dr) — ul/r?, (d/dr)[r*(dR/dr)] = rd®u/dr?,
and hence

h* d*u REII+ 1)
_%ﬁ+|:v+% " u=Eu. [4.37]

This is called the radial equation;’ it is identical in form to the one-dimensional
Schrodinger equation (Equation 2.5), except that the effective potential,

REI0+1)

Vet =V + —
eff +2m r?

[4.38]

9Those m’s are masses, of course—the separation constant m does not appear in the radial
equation.
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contains an extra piece, the so-called centrifugal term, (h? /2m)[I(l + 1)/ r2. It
tends to throw the particle outward (away from the origin), just like the centrifu-
gal (pseudo-)force in classical mechanics. Meanwhile, the normalization condition
(Equation 4.31) becomes

X0
f lul*dr = 1. [4.39]
0

That’s as far as we can go until a specific potential V(r) is provided.

Example 4.1 Consider the infinite spherical well,

V(r):{o, ifr < a: 4,401

oo, ifr>a.

Find the wave functions and the allowed energies.

Solution: Outside the well, the wave function is zero; inside the well, the radial
equation says

du  TIA+1)
Tr2=[ * —k]u, [4.41]
where
2mE
k= ;l” , (4.42]

as usual. Our problem is to solve this equation, subject to the boundary condition
u(a) = 0. The case [ = 0 is easy:

2
ZTZ = —k*u = u(r) = Asin(kr) + B cos(kr).
But remember, the actual radial wave function is R(r) = u(r)/r, and [cos(kr)]/r
blows up as r — 0. So!® we must choose B = 0. The boundary condition then
requires sin(ka) = 0, and hence ka = n, for some integer n. The allowed energies
are evidently

n?m2h?

W, (n:l,2,3,...), [443]

nd =

10Aclually, all we require is that the wave function be normalizable, not that it be finite: R(r) ~

1/r at the origin is normalizable (because of the r?in Equation 4.31). For a more compelling proof
that B = 0, see R. Shankar, Principles of Quantum Mechanics (Plenum, New York, 1980), p. 351.
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the same as for the one-dimensional infinite square well (Equation 2.27). Normal-
izing u(r) yields A = /2/a; tacking on the angular part (trivial, in this instance,
since Y38, ¢) = 1/+/4m), we conclude that

1 sin(nmr/a) [4.44]

Yoo =
2ra r

[Notice that the stationary states are labeled by three quantum numbers, #, [, and
m: Yum(r, 0, @). The energy, however, depends only on n and I: E,;.]
The general solution to Equation 4.41 (for an arbitrary integer [) is not so
familiar:
u(ry = Arjj(kr) + Brnj(kr), [4.45]

where j;(x) is the spherical Bessel function of order /, and n;(x) is the spherical
Neumann function of order /. They are defined as follows:

o afld\ sinx _ . ufld\ cosx
Ji(x) = (—x) Pt ni(x) = —(—x) . [4.46]

x dx x dx X

For example,

. sin x cos x
Jo(x) = ——1 nox) = — ;
x x
. 1d (sinx sinx cosx
) = (=x) - — =— - ;
xdx X X x
. (1 d 2 sinx 5 (1 d\ xcosx —sinx
p0 =0t (=) o= o ) /5
x dx x xdx X

3sinx — 3xcosx — x2sinx

— s

x3

and so on. The first few spherical Bessel and Neumann functions are listed in

Table 4.4. For small x (where sinx ~ x — x3/3! + x%/5! — ... and cosx =~
1—x2/24x%/41 =),

. 1 X x?

Jo(x) =1y mo(x) ® ——; )~z )= —;

x 3 15

etc. Notice that Bessel functions are finite at the origin, but Neumann functions
blow up at the origin. Accordingly, we must have B; = 0, and hence

R(r) = Aji(kr). [4.47]



Section 4.1: Schrédinger Equation in Spherical Coordinates

TABLE 4.4: The first few spherical Bessel and Neumann functions,

Jn(x) and ny(x); asymptotic forms for small x.

143

. _sinx _ cosx
Jo=—% lo=——
. _sinx cosx ny = S08Xx _sinx
1= 2 X 1= 2 X
J -(3 1)sinx— 3 Cos X ny= (3 1)cosx—isinx
2 3 x x2 2 x3 X x2
, 2, @) 1
- =5 np—o -2 _ - forx<<].
e EE ! 201 i+l

|

There remains the boundary condition, R(a) = 0. Evidently k must be chosen

such that
Jitka) = 0;

[4.48]

that is, (ka) is a zero of the Ith-order spherical Bessel function. Now, the Bessel
functions are oscillatory (see Figure 4.2); each one has an infinite number of ZEros.

i

FIGURE 4.2:  Graphs of the first four spherical Bessel functions.
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But (unfortunately for us) they are not located at nice sensible points (such as n,
or nm, or something); they have to be computed numerically.!! At any rate, the
boundary condition requires that

1
k= —PBu, [4.49]
a

where S, is the nth zero of the th spherical Bessel function. The allowed energies,
then, are given by

B,
En = Z—mﬁﬁ"l’ (4.50]
and the wave functions are
Vnim (1, 0, @) = Ant i (Bur [@)Y]" (6, §), [4.51]

with the constant A,; to be determined by normalization. Each energy level is
(21 + 1)-fold degenerate, since there are (21 + 1) different values of m for each
value of [ (see Equation 4.29).

Problem 4.7

(a) From the definition (Equation 4.46), construct ny(x) and n2(x).

(b) Expand the sines and cosines to obtain approximate formulas for n (x) and
na(x), valid when x < 1. Confirm that they blow up at the origin.

Problem 4.8

(a) Check that Arjj(kr) satisfies the radial equation with V(r) =0 and [ = L.

(b) Determine graphically the allowed energies for the infinite spherical well,
when ! = 1. Show that for large n, E,1 = (h2n2/2ma2)(n + 1/2)2. Hint:
First show that ji(x) =0 = x = tanx. Plot x and tanx on the same graph,
and locate the points of intersection.

11 Abramowitz and Stegun, eds., Handbook of Mathematical Functions, (Dover, New York, 1965),
Chapter 10, provides an extensive listing.



