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Preface

No one expects a guitarist to learn to play by going to concerts
in Central Park or by spending hours reading transcriptions of Jimi
Hendrix solos. Guitarists practice. Guitarists play the guitar until
their fingertips are calloused. Similarly, physicists solve problems. And
hopefully, physicists practice solving problems until doing so seems easy.
(Then they find harder problems.)

This book provides a collection of challenging problems for physics
students at a range of levels. Some problems, particularly those in the
first four chapters, require only an undergraduate physics background.
The later chapters cover material that is frequently not encountered
until graduate school. Don't be discouraged if some (or most!) of the
problems are, in fact, challenging. That’s the idea.

However, this is not only a problem book. We also provide complete
solutions for each problem. These solutions assume a certain amount
of familiarity with the topics, but are not written for experts. For
this book to be of maximum benefit, of course, the solutions should be
considered a last resort. Try to solve the problems before looking at the
solutions!

The problems presented here were culled from general examinations
written at Princeton University in the last ten years. All physics grad-
uate students at Princeton must pass the generals examination before
beginning their theses. The examination is split into two parts: “Pre-
lims,” usually taken in the first year of study, and “Generals,” typically
taken in the second year.

The preliminary examination (Prelims) covers the subjects usually
studied at the undergraduate level. It is a six hour exam, taken in two
days. Prelims has four sections: mechanics, electricity and magnetism,
nonrelativistic quantum mechanics, and thermodynamics and statis-
tical mechanics. The second examination (Generals) covers more ad-
vanced topics. The written part of this exam takes place in three three-
hour sessions and comprises five sections: condensed matter physics,
general relativity and astrophysics, nuclear physics, elementary particle
physics, and atomic and “general” physics. Many of the solutions given

Xv



xvi PREFACE

here are much more detailed and complete than would be expected dur-
ing the general examination. (The passing mark at Princeton is 50%,
and students are allowed to choose from several questions in each field.)

We have divided this book into the nine obvious sections suggested
by the format of the exams. There are ten problems in each of the
sections. We do not make any guarantees that we have provided a
random sampling of problems. The problems chosen are those that
we found interesting, informative, and well-posed. We have also tried
to avoid archetypal problems whose answers have been printed in nu-
merous other books. In several places we have noted useful references.
Although each solution has been checked and rechecked, occasional er-
rors may have slipped through. We welcome comments, criticism, and
corrections.

A group of five authors can run up an amazing list of debts in the
writing of a single book. Our first, and most obvious, is to the many
members of the Princeton University Physics Department who have
written original, interesting, and instructive problems for the prelimi-
nary and general examinations. Their work forms the foundation of this
book. We also thank those professors who read chapters of our draft
and made numerous useful suggestions: Paul Chaiken, Aksel Hallin,
Will Happer, Peter Meyers, Phuan Ong, Jim Peebles, Jeff Peterson,
Sam Treiman, and Neil Turok. Early encouragement from Jim Peebles
and Jeff Peterson was invaluable, as were the computer facilities of Joe
Taylor and Mark Dragovan and the support of Dave Wilkinson. Qur
most heartfelt thanks, however, goes to all of our fellow graduate stu-
dents, far too numerous to name, especially the members of our own
prelims and generals study groups, who made this book possible.

Nathan Newbury
Michael Newman
John Ruhl
Suzanne Staggs
Stephen Thorsett

Princeton, August 7, 1990



Part 1

Problems



Chapter 1

Mechanics

Problem 1.1. A Wham-O Super-Ball is a hard spherical ball of
radius a. The bounces of a Super-Ball on a surface with friction are
essentially elastic and non-slip at the point of contact. How should
you throw a Super-Ball if you want it to bounce back and forth as
shown in Figure 1.1? (Super-Ball is a registered trademark of Wham-
O Corporation, San Gabriel, California.)

Figure 1.1.

Problem 1.2. Suppose a spacecraft of mass mp and cross-sectional

3



4 CHAPTER 1. MECHANICS

area A is coasting with velocity vp when it encounters a stationary dust
cloud of density p. Solve for the subsequent motion of the spacecraft
assuming that the dust sticks to its surface and that A is constant over
time.

Problem 1.3.  The science fiction writer R. A. Heinlein describes
a “skyhook” satellite that consists of a long rope placed in orbit at
the equator, aligned along a radius from the center of the earth, and
moving so that the rope appears suspended in space above a fixed point
on the equator (Figure 1.2). The bottom of the rope hangs free just

Figure 1.2.

above the surface of the earth (radius R). Assuming that the rope has
uniform mass per unit length (and that the rope is strong enough to
resist breaking!), find the length of the rope.

Problem 1.4. Three identical objects of mass m are connected by
springs of spring constant k, as shown in Figure 1.3. The motion is
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Figure 1.3.

confined to one dimension. At ¢t = 0, the masses are at rest at their
equilibrium positions. Mass A is then subjected to an external driving
force,

F(t)= feoswt, for t>0. (1.1)

Calculate the motion of mass C.

Problem 1.5. A uniform density ball rolls without slipping and
without rolling friction on a turntable rotating in the horizontal plane
with angular velocity  (Figure 1.4). The ball movesin a circle of radius

Figure 1.4.

r centered on the pivot of the turntable. Find the angular velocity w



6 CHAPTER 1. MECHANICS

of motion of the ball around the pivot.

Problem 1.6. A blob of putty of mass m falls from height % onto
a massless platform which is supported by a spring of constant k. A
dashpot provides damping. The relaxation time of the putty is short
compared to that of putty-plus-platform: the putty instantaneously
hits and sticks.

a) Sketch the displacement of the platform as a function of time, un-
der the given initial conditions, when the platform with putty attached
is critically damped.

b) Determine the amount of damping such that, under the given
initial conditions, the platform settles to its final position the most
rapidly without overshoot.

Problem 1.7. A mass m slides on a horizontal frictionless track. It is
connected to a spring fastened to a wall. Initially, the amplitude of the
oscillations is A; and the spring constant is k;. The spring constant
then decreases adiabatically at a constant rate until the value k; is
reached. (For example, suppose the spring is being dissolved by nitric
acid.) What is the new amplitude?

Problem 1.8. A soap film is stretched between two coaxial circular
rings of equal radius R. The distance between the rings is d. You may
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ignore gravity. Find the shape of the soap film.

Problem 1.9. A bead of mass m slides without friction on a circular
loop of radius a. The loop lies in a vertical plane and rotates about a
vertical diameter with constant angular velocity w (Figure 1.5).

o

Figure 1.5.

a) For angular velocity w greater than some critical angular velocity
w,, the bead can undergo small oscillations about some stable equilib-
rium point 6. Find w, and fo(w).

b) Obtain the equations of motion for the small oscillations about
8y as a function of w and find the period of the oscillations.

Problem 1.10. If the solar system were immersed in a uniformly dense
spherical cloud of weakly-interacting massive particles (WIMPs), then
objects in the solar system would experience gravitational forces from
both the sun and the cloud of WIMPs such that

k
F=-—br (1.2)



8 CHAPTER 1. MECHANICS

Assume that the extra force due to the WIMPs is very small (i.e.,
b kfr?).

a) Find the frequency of radial oscillations for a nearly circular orbit
and the rate of precession of the perihelion of this orbit.

b) Describe the shapes of the orbits when r is large enough so that
F, =~ —br.



Chapter 2

Electricity & Magnetism

Problem 2.1. A conductor at potential VV = 0 has the shape of an
infinite plane except for a hemispherical bulge of radius a (Figure 2.1).
A charge g is placed above the center of the bulge, a distance p from

Figure 2.1.

the plane (or p — a from the top of the bulge). What is the force on
the charge?




10 CHAPTER 2. ELECTRICITY & MAGNETISM

Problem 2.2. A “tenuous plasma” consists of free electric charges of
mass m and charge e. There are n charges per unit volume. Assume
that the density is uniform and that interactions between the charges
may be neglected. Electromagnetic plane waves (frequency w, wave
number k) are incident on the plasma.

a) Find the conductivity o as a function of w.

b) Find the dispersion relation — i.e., find the relation between k
and w.

c) Find the index of refraction as a function of w. The plasma
frequency is defined by w? = 4wne’/m, if e is expressed in esu. What
happens if w < w,?

d) Now suppose there is an external magnetic field Bo. Consider
plane waves traveling parallel to Bo. Show that the index of refraction
is different for right- and left-circularly polarized waves. (Assume that
the magnetic field of the traveling wave is negligible compared to B,.)

Problem 2.3. A cylindrical resistor (Figure 2.2) has radius b, length
L, and conductivity o;. At the center of the resistor is a defect con-
sisting of a small sphere of radius a inside which the conductivity is 3.
The input and output currents are distributed uniformly across the flat
ends of the resistor.

a) What is the resistance of the resistor if oy = 05?

b) Estimate the relative change in the resistance to first order in
oy — 0 if 01 # 0. (Make any assumptions needed to simplify your
method of estimation.)

c) Suppose L — oo and b — oo, but a uniform current density jo
continues to flow across the ends of the resistor. Calculate the current
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Figure 2.2.

density inside the spherical defect.

Problem 2.4. A thin, straight, conducting wire is centered on the
origin, oriented along the Z-axis, and carries a current I = 2 coswyt
everywhere along its length l. Define Ag = 2wc/wo.

a) What is the electric dipole moment of the wire?

b) What are the scalar and vector potentials everywhere outside the
source region (at a distance r 3> I)? State your choice of gauge and
make no assumption about the size of Aq.

c) Consider the potentials in the regime r 2> [ 3> Xo. Qualitatively
describe the radiation pattern and compare it to the standard dipole
case, where > X > [.

Problem 2.5. As shown in Figure 2.3, a wheel consisting of a large
number of thin conducting spokes is free to rotate about an axle. A
brush always makes electrical contact with one spoke at a time at the
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p @ ®

— ©® s

Brush vV —

__—"" Switch

Figure 2.3.

bottom of the wheel. A battery with voltage V feeds current through
an inductor, into the axle, through a spoke, to the brush. A permanent
magnet provides a uniform magnetic field B into the plane of the paper.
At time t = 0 the switch is closed, allowing current to flow. The radius
and moment of inertia of the wheel are R and J repectively. The total
inductance of the current path is L, and the wheel is initially at rest.
Neglecting friction and resistivity, calculate the battery current and the
angular velocity of the wheel as functions of time.

Problem 2.6. A right-circular cylinder of radius R, length L, and
uniform mass density p has a uniform magnetization M parallel to
its axis. If it is placed below an infinitely-permeable flat surface, it is
found to stick for some lengths L 3> R. What is the maximum length
L such that the magnetic force prevents the cylinder from falling due
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to gravity?

Problem 2.7. Consider an infinitely long transmission line which
consists of lumped circuit elements as shown in Figure 2.4. Find the
dispersion relation (w versus ) for periodic waves traveling down this
line. What is the cut-off frequency?

see I —|—C —|—--.

Figure 2.4.

Problem 2.8. In 1890, O. Wiener carried out an experiment which
may be said to have photographed electromagnetic waves (Figure 2.5).

incident light
photographic

o mirror
B

Figure 2.5.
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a) A plane wave is normally incident on a perfectly reflecting mirror.
A glass photographic plate is placed on the mirror so that it makes a
small angle a to the mirror. The photographic emulsion is almost
transparent. But when it is later developed, a striped pattern is found
due to the action of the wave. Predict the position and spacing of the
black stripes which appear on the developed “negative” plate. Ignore
any attenuation or reflection due to the glass photographic plate itself.

b) The experiment is repeated for incident waves making angle 45°
to the normal to the mirror. Now what is the pattern of blackening on
the negative? Distinguish the cases of light polarized with E parallel
and perpendicular to the plane of incidence (i.e., the scattering plane).

Problem 2.9. An infinitely long, thin-walled circular cylinder of
radius b is split into two half cylinders. The upper half is fixed at
potential ¥V = +V; and the lower half at V = .

VR
v IM

Figure 2.6.

a) Find the potential inside and outside the cylinder.

b) Calculate the charge density as a function of ¢. (If your answer
is in the form of an infinite sum, calculate this sum.)

c) Find the capacitance per unit length of the device when the two
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half cylinders are a distance € apart at the rims (e < b).

Problem 2.10. An electron is released from rest at a large distance
ro from a nucleus of charge Ze and then “falls” toward the nucleus.
For what follows, assume that the electron’s velocity is such that v < ¢
and that the radiative reaction force on the electron is negligible.

a) What is the angular distribution of the emitted radiation?
b) How is the emitted radiation polarized?

c) What is the radiated power as a function of the separation be-
tween the electron and the nucleus?

d) What is the total energy radiated by the time the electron is a
distance r < ry from the nucleus?



Chapter 3

Quantum Mechanics

Problem 3.1. A particle of mass m interacts in three dimensions
with a spherically symmetric potential of the form

V(r) = —c8(|r| — a). (3.1)

In other words, the potential is a delta function that vanishes unless
the particle is precisely a distance a from the center of the potential.
Here c is a positive constant.

a) Find the minimum value of ¢ for which there is a bound state.

b) Consider a scattering experiment in which the particle is incident
on the potential with a low velocity. In the limit of small incident
velocity, what is the scattering cross-section? What is the angular
distribution?

Problem 3.2. A particle of mass M bounces elastically between two
infinite plane walls separated by a distance D. The particle is in its
lowest possible energy state.

a) What is the energy of this state?

16



3.3. CROSSED E AND B FIELDS 17

b) The separation between the walls is slowly (i.e., adiabatically)
increased to 2D.

i) How does the expectation value of the energy change?

ii) Compare this energy change with the result obtained
classically from the mean force exerted on a wall by the
bouncing ball.

c) Now assume that the separation between the walls is increased
rapidly, with one wall moving at a speed » /E/M. Classically there
is no change in the particle’s energy since the wall is moving faster
than the particle and cannot be struck by the particle while the wall is
moving.

i) What happens to the expectation value of the energy
quantum-mechanically?

ii) Compute the probability that the particle is left in
its lowest possible energy state.

Problem 3.3. Consider a particle of charge e and mass m in constant,
crossed E and B fields:

E=(0,0,E), B=(0,B,0), r=(z,y,2). (3.2)

a) Write the Schrédinger equation (in a convenient gauge).
b) Separate variables and reduce it to a one-dimensional problem.

c) Calculate the expectation value of the velocity in the z-direction
in any energy eigenstate (sometimes called the drift velocity).
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Problem 3.4. A particle of mass m and charge ¢ sits in a harmonic
oscillator potential V = k(z? + y* + 22)/2. At time t = —oo the
oscillator is in its ground state. It is then perturbed by a spatially
uniform time-dependent electric field

E(t) = Ae~ /73 (3.3)

where A and 7 are constants. Calculate in lowest-order perturba-
tion theory the probability that the oscillator is in an excited state at
it = oo.

Problem 3.5. Consider an elastic scattering experiment a + X —
a+ X with a and X having zero spin, and X much heavier than a. The
total cross-section oy as a function of momentum Ak behaves as shown
in Figure 3.1. A contribution to oy, from a resonance is observable at

Ctord
T AN
4.4 x 10-27cm

14
kR=101 Jem
Figure 3.1.

all angles except 90°, where the contribution vanishes. Far off resonance
0o 18 isotropic.

a) What is the angular momentum J of the resonance?
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b) Calculate the approximate value of the differential cross-section
at resonance at a scattering angle of 180°.

Problem 3.6. a) A spin 1/2 electron is in a uniform magnetic field
By = Bpz. At time ¢t = 0 the spin is pointing in the z-direction, i.e.,
(Sz(t = 0)) = &/2. Calculate the expectation value (S(t)) at time t.

b) An additional magnetic field B; = }B[cos(wt)X + sin(wt)y] is
now applied. If an electron in the combined field By + B, has spin
pointing along +% at time ¢t = 0, what is the probability that it will
have flipped to —% at time 7

Problem 3.7. Pion-nucleon scattering at low energies can be quali-
tatively described by an effective interaction potential of the form:

2 —ur
V= (41‘;) ("T) 2 (OO (3.4)

Here a and g are constants, r is the relative pion-nucleon coordinate,
and I and I(™) are the pion and nucleon isospin operators.

a) Calculate the ratio of the scattering cross-sections with total
isospin ] =3/2 and I = 1/2.

b) Calculate in the Born approximation the low-energy total cross-
sections for the reactions:

™ +p = 7t 4,
T +p — T +p

~+p — 70 +n.
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NB: If you are not familiar with isospin, you may consider the two
particles to have (ordinary) spin 1 and spin 1/2 with a spin-spin inter-
action and initial and final states which are eigenstates of S, for each
particle. The corresponding S, values are:

(3)-(2) = (2)-(8) oo

Problem 3.8. A particle of total energy E = fi%a?/2m moves in a
series of N contiguous one-dimensional regions. The potential in the
nth region is

Vo=—-(n*-1)E, wheren=1,2,...,N. (3-6)

All regions are of equal width w/a except for the first and the last,
which are of effectively infinite extent. Calculate the two transmission
coefficients for a particle incident from either end.

Problem 3.9. A neutron beam is polarized parallel to a uniform
magnetic field B. The beam is then split into two halves. One beam
continues through the uniform field; the other beam passes through a
field with the same fixed magnitude but which changes gradually in
direction. The two beams are recombined and the intensity is mea-
sured. The path lengths are equal so that the interference would be
constructive if B were uniform. Assume the neutrons in one beam ex-
perience, in their rest frame, a time-dependent magnetic field (sketched
in Figure 3.2), given by

B = B [sin 8 cos ¢(t)x + sin fsin §(t)y + cos 6], (3.7
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A Z

NT7TK

beam 1

neutron detector
so—mc*c< B \ \ \ '\ —_—
'\ _/
beam 2
Figure 3.2.

where the angle ¢(t) varies adiabatically from zero to 2r. Those in the
other beam experience a constant field:

B = B, [sin 0% + cos 6% (3.8)

a) Calculate the ground-state wavefunction, in a basis of S, eigen-
states, for a constant B-field pointing in an arbitrary direction labeled
as above by 8 and ¢.

b) Calculate, in the adiabatic approximation, the relative phase
change of the two neutron beams after they have passed through the
magnetic fields, and hence the intensity of the recombined beam as a
function of 8.

Problem 3.10.  An isolated hydrogen atom has a hyperfine inter-
action between the proton and electron spins (S; and S;, respectively)
of the form JS; - S;3. The two spins have magnetic moments aS, and
BS3, and the system is in a uniform static magnetic field B. Consider
only the orbital ground state.

a) Find the exact energy eigenvalues of this system and sketch the
hyperfine splitting spectrum as a function of magnetic field.

b) Calculate the eigenstates associated with each level.



Chapter 4

Thermodynamics &
Statistical Mechanics

Problem 4.1. Consider a system of N >> 1 non-interacting particles
in which the energy of each particle can assume two and only two
distinct values: 0 and E (E > 0). Denote by ng and n, the occupation
numbers of the energy levels 0 and E, respectively. The fixed total
energy of the system is U.

a) Find the entropy of the system.

b) Find the temperature as a function of U. For what range of
values of ng 1s T' < 07

c) In which direction does heat flow when a system of negative
temperature is brought into thermal contact with a system of positive
temperature? Why?

Problem 4.2. Consider a heteronuclear diatomic molecule with
moment of inertia I. In this problem, only the rotational motion of the
molecule should be considered.

22
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a) Using classical statistical mechanics, calculate the specific heat
C(T) of this system at temperature T'.

b) In quantum mechanics, this system has energy levels

K. .
E.‘!' = EJ(J'F 1) 1=0,1,2,... (41)

Each j level is (27 + 1)-fold degenerate. Using quantum statistical
mechanics, find expressions for the partition function Z and the average
energy {E) of this system, as a function of temperature. Do not attempt
to evaluate these expressions.

c) By simplifying your expressions in (b), derive an expression for
the specific heat C(T') that is valid at very low temperatures. In what
range of temperatures is your expression valid?

d) By simplifying your answer to (b), derive a high-temperature
approximation to the specific heat C(T). What is the range of validity
of your approximation?

Problem 4.3. A simplified model of diffusion consists of a one-
dimensional lattice, with lattice spacing a, in which an “impurity”
makes a random walk from one lattice site to an adjacent one, making
jumps at time intervals 7.

a) After N jumps have been made, find the probability that the
atom has moved a distance d from its starting point, in the limit of

large N.
b) The diffusion coefficient is defined by the differential equation
o’f _of
D—L ==L 4.2
dzz  at’ (4.2)

where f is the concentration of the impurity. Find an expression for D
in the model described above.
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Problem 4.4. The temperature of a long vertical column of a par-
ticular substance is T everywhere. Below a certain height h(T') the
substance is solid, whereas above A(T') it is in a liquid phase. Calcu-
late the density difference Ap = p, — p; between the solid and liquid
(|Ap] < p.), in terms of L (the latent heat of fusion per unit mass),
dh/dT, T, and g, the acceleration due to gravity.

Problem 4.5. The operation of a gasoline engine is (roughly) similar
to the Otto cycle (Figure 4.1):

A
sk © D
21 B A
1 | -
Vs YA
Figure 4.1.

A — B Gas compressed adiabatically
B — C Gas heated isochorically (constant volume; corresponds to
combustion of gasoline)

C — D Gas expanded adiabatically (power stroke)

D — A Gas cooled isochorically.

Compute the efficiency of the Otto cycle for an ideal gas (with
temperature-independent heat capacities) as a function of the com-
pression ratio V4 /Vp, and the heat capacity per particle Cy.
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Problem 4.6. Calculate the drag force on a disk of radius R moving
with constant velocity V (perpendicular to the plane of the disk) in a
rarefied gas of density n that is in thermal equilibrium at temperature
T. Assume that the gas molecules collide elastically with the disk,
that the speed of the disk is slow compared with the average molecular
speed, and that the disk is large compared to a molecule but small
compared to the mean free path of the molecules.

Problem 4.7. A wire of length [ and mass per unit length p is fixed at
both ends and tightened to a tension 7. What is the rms fluctuation, in
classical statistics, of the midpoint of the wire when it is in equilibrium
with a heat bath at temperature T'? A useful series is

,ﬂ.!

)B::;o (2m+1)? = T (4.3)

Problem 4.8. Consider a vapor (dilute gas) in equilibrium with a
submonolayer (i.e., less than one atomic layer) adsorbed film. Model
the binding of atoms to the surface with a potential energy (—eo).
Assume there are N possible sites for adsorption and find the vapor
pressure as a function of surface concentration, n/N.

Problem 4.9. Consider a type I superconducting material with a
parabolic coexistence curve separating the (uniform) superconducting
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c

Figure 4.2.

and normal phases (see Figure 4.2). H is the external magnetic field,
and T is the temperature. Ignore the tiny magnetization of the normal
phase. The critical field H, is given by

H. = Hy + aT + bT?. (4.4)

a) Why must the coefficient a be zero?

b) Calculate the latent heat per unit volume as a function of T along
the coexistence curve in terms of Hp and T, as shown in Figure 4.2.

c) Calculate the discontinuity in the specific heat per unit volume
at constant H along the coexistence curve.

Problem 4.10. A monatomic crystal consists of N = 10?* atoms
which may be situated in either of two types of potential wells: “nor-
mal” positions, labeled by “O,” and “interstitial” positions, labeled by
“X" (Figure 4.3). The O- and X-sites are arranged on interpenetrating
cubic lattices, and the energy of an atom in position X is greater than
that of an atom in position O by an amount .

a) Calculate the entropy for states with n atoms in the interstitial
sites when 1 € n < N, assuming any atom originally on an O-site will
hop only to one of the eight nearest interstitial sites.
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Figure 4.3.

b) Repeat the calculation of the entropy in (a), assuming that the
n unoccupied sites (“holes”) of the O-lattice are uncorrelated with the
n occupied interstitial sites.

c) Calculate the fraction of intersititial sites that are occupied at
low temperatures kgT < € for (a) and (b) above. Neglect interactions
between atoms on different sites.
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Condensed Matter Physics

Problem 5.1. The tunneling of quasiparticles across a thin oxide
barrier separating two metals (Figure 5.1) can be described by a tun-
neling amplitude M which is independent of the initial and final state

energies.
metal 1 metal 2 —e

- V=0 oxide

Figure 5.1.

a) Derive an expression for the conductance of the junction in the
low temperature (T < Ep) and low voltage (eV <« Ep) limits when
both metals are normal (i.e., not superconducting).

b) Now consider the case in which metal 1 is a superconductor with
energy gap A and metal 2 is normal. Calculate the T = 0 current as a
function of voltage.

c) In a Pb-oxide-Al junction, both metals are superconducting with
Apy > Agy. The I-V characteristic shows a maximum and minimum

28
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at ¥; = 11.8 x 10~* volts and V, = 15.2 x 10~* volts (see Figure 5.2).
Derive the values of the energy gaps Ap, and Ay from these data.

14

: i
i %

Figure 5.2.

<y

Problem 5.2. Type II superconductors undergo a second-order tran-
sition from the normal to superconducting phases in a uniform mag-
netic field. The phase diagram is sketched in Figure 5.3. Calculate the

HA

¥ H,(T) Normal

Super-
conducting

A\

Figure 5.3.

phase boundary line He,(T') assuming the Landau-Ginzburg equation
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for the superconducting order parameter ¥(x) is valid at all tempera-
tures T < T (i.e., the zero-field transition temperature). Recall that

(v- =—A) $+E+ Bl =0, (5.1)

where £(T') = &(1 — T/T.)~*/? is the coherence length, S is a constant,
and A(x) is the vector potential.

Problem 5.3. a) A model for the low-temperature properties of glass
proposes that in the random network of bonds there are many places
where atoms have two alternating local, metastable equilibrium con-
figurations, separated by an energy difference E, (Figure 5.4). These
“two-level” centers are assumed to be noninteracting and it is also as-

Aenergy

local configuration X
coordinate o

Figure 5.4.

sumed that the low-frequency linear vibrations around either configura-
tion are described by ordinary phonons. Find the leading contribution
to the low-temperature specific heat. Assume E, is a random variable
with a flat probability distribution P(E,).

b) In what other system is the temperature dependence of the spe-
cific heat similar to that found in (2)? Estimate the relative magnitudes
of the two results. Assume for part (a) that the density of levels for the
“two-level” centers is 1 state/(eV atom).
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c) In one form of crystalline carbon the low-temperature lattice
specific heat is found to be proportional to T?. What does this say
about the structure of this form of carbon? Explain your answer.

Problem 5.4. Barium titanate is an ionic crystal that exhibits a
ferroelectric transition at 7. = 381 K. Above the Curie temperature,
BaTiOs has cubic symmetry with a unit cell shown in Figure 5.5a.
Below T, BaTiO3 develops a spontaneous electric polarization P.

tetragonal distortion

Figure 5.5.

a) Construct the Landau free energy function for the ferroelectric
transition through fourth order in the order parameter P.

b) What are the allowed directions of P, relative to the crystal axes,
if the transition is second order?
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c) Sketch a plausible form for the phase diagram for BaTiO; in
the pressure-temperature plane based on the free energy function con-
structed in (a). Label the order of all transition lines.

d) The appearance of the electric polarization P for T < T must
be accompanied by displacements of the symmetric arrangement of the
ions. Thus, ferroelectricity is not simply described by a single order
parameter; the free energy function must also depend upon the strain.
Assuming that the distorted lattice has tetragonal symmetry (Fig-
ure 5.5b), show that the coupling of the electric polarization and the
strain leads to a first-order transition if the crystal is sufficiently “soft”
(i.e., the elastic constant is less than some critical value).

Problem 5.5. Give short answers for the following.

a) Explain how to construct a refrigerator from strips of Cu and Sn.

b) The heat capacity of crystalline EuO varies as Cy = aT3/2 + bT?
for 0 < T < 70 K. What state of matter is EuO most likely to be?

c) The B (magnetic induction) vs. H (magnetic field) curve for
superconducting V3Ga is shown in Figure 5.6. What is the distance
between flux lines for H = 2.3 x 103 gauss?

d) A long pipe filled with a powder from a simple cubic crystal
of lattice constant b is placed in the path of a neutron beam from a
reactor. The powder acts as a filler. What are the wavelengths A of
neutrons which are transmitted? Why?

e) A magnetic field, H = 100 kgauss, is perpendicular to a strip
of Cu as shown in Figure 5.7. A uniform current of I = 0.1 A flows
steadily through the strip, and the voltage across points A and B is
measured to be V = 8.1 x 10~® volts. Use this data to estimate the
density of charge carriers n in Cu.
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B [10° gauss]
A

»—B=H

02 23 3 H[TO3 gauss)
Figure 5.6.

Figure 5.7.

f) Sketch the energy-loss spectrum for electrons reflected from a Mg
film. The incident electron energy is 2 keV, and the electron density is
n = 8.6 x 10*? cm~3.

Problem 5.8. The energy-momentum relation for elementary exci-
tations in superfluid *He has the form shown in Figure 5.8. The long
wavelength excitations are phonons with fw, = cq, where cis the speed
of sound and ¢ = |q| is the magnitude of the wavevector. For shorter
wavelengths the excitation spectrum has a local minimum; the excita-
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tions near the minimum are known as rotons and their dispersion may
be approximated by fiwg = A + (g — g0)%.

A

L~ /

Figure 5.8.

a) Sketch the density of states p( E) for single excitations throughout
the energy range indicated in the dispersion relation above. Indicate
the nature of any singularities.

b) Light-scattering experiments have revealed that the lowest energy
state of a pair of rotons is less than 2A. Assume that rotons interact
with each other through an attractive contact interaction V(ry —r2) =
—g6®)(ry —r3), and calculate the dependence of the binding energy on
the coupling strength g for a pair of rotons in the limit of small positive
g. Is there a critical value of g for the appearance of a bound state?
Hint: Consider the Schrodinger equation in momentum space for the
wavefunction of two rotons; a cutoff may be needed.

Problem 5.7. Molecular liquids often undergo a phase transition
from an isotropic liquid state to a liquid state which exhibits uniax-
ial anisotropy in its dielectric, magnetic and flow properties (called
the nematic phase). The susceptibility tensor ¥ has the form xi; =
Xobij + Xaninj, where the unit vector fi defines the axis along which the
molecules are aligned (on average), and x, > 0. Although the molecules
exhibit no positional ordering in the nematic phase, there is an elastic
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energy associated with spatial curvature of the anisotropy axis fi given

N no _k an;\’
elastic = 5[‘“’% (6_3:.') ) (5.2)

with elastic constant k& > 0.

Consider a nematic liquid confined between two glass slides which
are prepared (brushed) so that molecules at the surface of the glass
orient themselves parallel to the surface along the z-direction (see Fig-
ure 5.9). A magnetic field H = Hy (where y is directed out of the
page) is applied, and it is observed by light scattering that a transition
from the uniform nematic phase, with fi = X everywhere, to a spatially
varying phase, with

fi(z) = cos 8(z)% + sin 8(2)¥, (5.3)

occurs for H > H,, where % is perpendicular to the slides.

Figure 5.9.

a) What characteristic length determines the scale for spatially vary-
ing states described by 6(z)?

b) Determine the critical field H, at which the distortion of fi first
appears from the differential equation for 6(z).

c) How does the maximum distortion of fi vary with magnetic field
H for H > H.7
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Problem 5.8. An electron of mass m in a classical deformable elastic
medium with bulk modulus B forms a self-trapped, or polaronic, state if
the elastic energy of a local lattice distortion is less than the quantum-
mechanical binding energy of the electron to such a distortion. For a
lattice distortion with a wavelength large compared to the interatomic
spacing a, the electron feels a potential energy of the form V(x) =
€V - U(x), where U(x) is the displacement field of the atoms from
equilibrium, and ¢j is some constant.

a) Consider a fluctuation of linear size L in d spatial dimensions.
For simplicity assume the potential felt by the electron is a square well.
Determine, to within a numerical constant of order unity, the lattice
distortion V - U(x) that minimizes the total energy of an electron in
the elastic field.

b) Compute the total energy E(L) as a function of L, the size of
the polaron. Sketch E(L) for d = 1 and d = 3 dimensions; pay careful
attention to the asymptotic behaviors for large and small L.

¢) The smallest dimension of a polaron is fixed by the spacing a
between ions in the lattice. Assuming that the elastic energy becomes
infinite for square-well distortions with L < a, determine the smallest
value of ¢ for which the polaron is the true ground state of the sys-
tem for d = 3 dimensions, in terms of m, B, a, and any fundamental
constants needed.

d) How does the answer to part (c) change when d = 17

Problem 5.9. Consider the interacting electron hamiltonian

1
H= kz;ek,c,t,ck, + 3 3 V(q]c{,‘ﬂ).c{k,_q]..cta,chf (5.4)

kk'\q,8,8'
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of a one-dimensional free electron gas in a “volume” L with one-electron
energies
h2E?
2m

. (5.5)

€ks =
Here s = +1/2 is the spin index.

a) For the noninteracting case V(g) = 0, evaluate the total kinetic
energy at zero temperature for:

i) a ferromagnetic state with all spins up, and

ii) a paramagnetic state with half of the spins up and half down.

Express your results in terms of the number density n = N/L where
N is the total number of electrons.

In the Hartree-Fock approximation the interaction term in the ham-
iltonian (5.4) is replaced by

1 1
Ver =% Y, V(0O)nwacl,c — 5 2 V(k- E)npacl,ers . (5.6)
kk! a8 k.k'.8

Note that the second term above is not summed over s'. Here n;, =
< Cl.‘#- > is the occupation of the orbital ks.

For the following, consider a short range repulsive potential V(r) =
Gé(r) with the Fourier transform V(q) = G.

b) What are the single particle energies €}, in this approximation?

c) Evaluate the ground-state energy Ef'F for the ferromagnetic and
paramagnetic states in this approximation. Plot

AE _ EHF(ferro) — EHF (para)
N N

as a function of n. Find the critical density n. at which a transition to
a ferromagnetic state will occur.

(5.7)

Problem 5.10. Electrons in the surface “inversion” layer of a crys-
tal of silicon covered with an oxide layer behave like a purely two-
dimensional electron gas with effective mass m*. Ignore electron-
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electron interactions and assume that the electron spin g-factor is small:
9, € m/m*.

a) Write down the eigenenergies in a perpendicular magnetic field
B, and the lowest energy eigenfunctions. What are the degeneracies of
the eigenvalues in a large system of area A? (Hint: work in the gauge
where the vector potential is A, = Bz, A, = 0. Consider the position
of the eigenfunctions.)

b) A counter-electrode on the other side of the oxide is positively
charged with an external voltage V = Q/C (with C the capacitance).
Sketch the Fermi level e in the inversion layer as a function of V at
zero temperature with appropriate scales shown on the axes. Sketch
how this result would be affected by a small amount of disorder, for
low temperature.

c) Sketch the Hall conductance, oy = j/Ey, (with j the two-

dimensional current density and Ey the Hall electric field) as a function
of €r, at low temperature, with appropriate scales on the axes.
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Relativity & Astrophysics

Problem 86.1. For each of the following, state the first non-trivial
approximation to the relativistic shift in the observed frequency or time
scale relative to the proper frequency or time:

a) the halflife of a muon created in flight with momentwin p 3> me,

b) the Mossbauer r frequency of nuclei of mass m as a
function of temperature T',

c) Mosst resonant freg i pared at the source and at
rest at altitude H above the source in the gravitational field g,

d) the age of a cosmonaut who spends several years in a low earth
orbit, and

e) the time between explosions in a galaxy observed at a redshift
z 1.

Problem 6.2. A rocket ship accelerates away from the earth at
constant acceleration g (in the rocket's frame).

a9
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a) Calculate the angular size of the earth as viewed from the rocket
as a function of proper time on the rocket.

b) The angular size in part (a) approaches a limit as proper time
gets large. What is it?

Problem 6.3. An experimentalist has an idea to test gravitational
magnetism. A very long cylinder of uniform density p and radius R is
spun clockwise rapidly on its axis with angular velocity w. Light travels
around the light pipe of radius ». Find an approximate formula, valid
to lowest order in w, for the time difference At = t., — tccw Where tq,
(fcew) is the proper time for an observer located at O for light to travel
clockwise (counterclockwise) around the cylinder. Assume r = R and
GpR? < 1. Give a numerical estimate of the ratio between this time

T g

Figure 6.1.

difference and the period of optical light, for an apparatus which could
fit in a room.
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Problem 6.4. The metric for an isotropic universe in comoving co-
ordinates is given by the Robertson-Walker form,

ds? = —dt? + RX(t) [Grrdr® + Good8® + Ggedd?] ,  (6.1)

where g,, = (1 — kr?)™?, §gg = v, and gy = r?sin?§ are the non-zero
components of the metric for a three-dimensional maximally symmetric
space. In this problem you may take k = 1 corresponding to a closed
universe. With this metric the non-zero components of the Ricci tensor
are

— Ry =3R/R and R;;=(RR+2R*+2k)§;, (6.2)
where dots denote time derivatives.

As a simple model of the early universe assume that the universe
contains only a thermal gas of photons at temperature T, with en-
ergy density p = aT*, and entropy density S = (4/3)aT?, where
a = 72k} /15¢*A3 is the black-body constant. Define the current age of
the universe to be #;.

a) Determine Tp = T(%o) and Ro = R(to) in terms of the Hubble con-
stant Ho = (R/R),, and the deceleration parameter go = —(RR/R?),,.

b) Determine i, in terms of go and Hp and find R(t) and T'(t) for
very early times.

c) Determine the radius L, of a region at time t; < to which will
evolve into a region of radius Ly = t; at time {,. How many causally-
connected regions were contained in a volume L3 at time ¢;? Give a nu-
merical estimate assuming Hy = 100km s~ Mpc™?, =2, and kgT'(%,)
is 10'® GeV. (Note: 1 pc=3.26 light years.)

d) In order to reconcile the answer to (c) with the observed ho-
mogeneity of the universe, A. Guth has proposed that the universe
underwent an “inflationary” phase at very early times resulting in a
departure from adiabaticity. By what factor must the resulting entropy
have increased in order to solve this “homogeneity problem”?
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Problem 6.5. Consider the Schwarzschild metric for a black hole of
mass M:

-1
ds* = — (1 - %) dt + (1 - %) dr? +72(d6% +sin? 6d¢?) . (6.3)

A particle of mass m is in a stable circular orbit of radius B > 2M.
The momentum four-vector is p*.

a) Show that p; and py are constants of the motion. Then establish
an “energy” conservation equation for radial motion in the equatorial
plane, and derive the relationship between py, M and R.

b) Compute the orbital period as indicated on a clock carried along
with the particle.

c) At the completion of each orbit the particle emits a photon. This
is eventually received by an observer O located very far away. What is
the period as perceived by O7

d) An observer O’ is fixed at radius R on the orbit, held there by a
rocket motor. What is the period of the particle as measured by O'?

Problem 6.6. Consider a rocket which is using its motor to hold itself
at rest at radius R (in Schwarzschild coordinates) away from a point
star of mass M.

a) Although it is at coordinate rest, it is accelerating with respect
to any local inertial frame. What is the invariant acceleration?

b) To maintain this acceleration the rocket has to burn fuel. Sup-
pose it gets this thrust by producing perfectly collimated downward-
moving photons. How does the rocket’s total mass depend on proper
time?

c) Answer part (a) for a rocket which is holding itself in a circular
orbit with proper angular frequency w: i.e., what is the magnitude of
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the invariant acceleration? Is there a choice of w for which the invariant
acceleration goes to zero?

Problem 6.7. A domain wall is a planar generalization of a cosmic
string: it has stresses and energy densities concentrated in a plane and
an energy-momentum tensor independent of boosts or translations in
that plane. The following metric is a solution to Einstein’s equations
for a domain wall lying in the z = 0 plane:

ds® = —(1 — k|2|)%dt? + dz? + (1 — k|z|)?e?*(de? + dy?) (6.4)

(the constant k is proportional to the energy per unit area).

a) Away from the wall the energy-momentum tensor, and therefore
R,., must vanish. Show that the component RZ,, of the Riemann
tensor vanishes for z # 0. Actually all components vanish for z # 0,
but we won’t ask you to show it.

b) Despite the fact that space is flat, particle geodesics have some
peculiar features. Show that a particle placed at rest a small distance to
one side of the domain wall accelerates away from the wall and calculate
the initial magnitude of the invariant acceleration.

Problem 6.8. The spin of a gyroscope is characterized by a classi-
cal spin four-vector satisfying S - U = 0 (where U* = dz*/dT is the
center-of-mass four-velocity of the gyroscope) and § - § = constant. If
the gyroscope moves along a geodesic orbit, the spin vector evolves by
parallel transport. Consider the case of a gyroscope moving in a stable
circular geodesic orbit of radius R in a Schwarzschild metric,

2M dr?

2_ _ (122 2, 4 2 5092
ds? = (1 r)dt+1_2M/r+rdﬂ. (6.5)
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a) Convert the parallel transport equation into an equation for the
evolution, as a function of azimuthal angle around the orbit, of the
spatial components of the spin.

b) Solve this equation to find the rate of precession of the spin vector
as seen by an observer fixed at a given point on the orbit.

Problem 6.9. Consider a dust particle in orbit around the sun. Ignore
the effects of the solar wind and magnetic field.

a) Estimate the minimum size that a dust particle may have to
avoid being blown out of the solar system.

b) Particles larger than the minimum size you estimated above will
spiral into the sun. What is the source of the drag? Estimate the
lifetime of such a particle in orbit at the distance of earth.

Useful numbers:

My = 2x10¥¢g
Rearth = 1.5x 10" cm
6.67 x 10~%ergs cm/g*
Lo = 4x10% ergs/s.

Q
Il

Problem 6.10. A model for the universe, first proposed by Kasner,
has the metric

ds? = —dt? + t*dz? + t%Pdy® + 1*7d2?,

where a, 3, and « are constants.
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a) Use the vacuum Einstein equations to find relations between o,
B, and «.

b) Find all the Killing vectors of this spacetime for general o, 3,
and 7.

c) Comment briefly on why you feel this cannot be made into a
realistic cosmological model.

d) In the case a = 1, f = 4 = 0, show that the spacetime is flat.
[You might find it useful to recall that the Riemann tensor is

Rg'u = Prﬂ - I‘:ﬂ-ﬁ + r:'rr:ﬂ - P?-Pfl-n

o

where I'g, is the Christoffel symbol.]
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Nuclear Physics

Problem 7.1. A proposed geologic solar neutrino detector utilizes
205T] as the target material (70% of natural thallium). Thallium-
bearing ore would be searched for ?**Pb (t,, = 14 million years),
created by neutrino captures.

a) The state structure in A = 205 is given in Figure 7.1. Explain
the states in terms of a simple shell model.

b) In order to determine the cross-section for neutrino capture to
the 1/2~ state of **Pb, one needs to look at the A = 206 system also
shown in Figure 7.1. Again, explain the observed states.

c) Assume that the ?®*T] ground state is known to have a 10%
admixture of the neutron configuration ( fs/2)™2(p1/2)*>. Then using
the information provided, calculate the equilibrium number of 2°*Pb
atoms due to solar neutrino capture to the 1/2 ~ state, in ore containing
a gram of 2®T]. Approximate the neutrino spectrum by a single energy
E, =E, = 0.26 MeV.

: lhyya 2d32 3312 (82) 1lhgpy 1i
Shell model: p: lhnp 2d32 331 /2 lirs
et n: 3pyz 2fs2 3pya (126) 29072 Ljasya.

Solar constant = 0.14 W/cm?.
4p —*He + 2et + 2v + 26.74 MeV.

46
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log ft=12.2 log ft=35.2
Figure 7.1.

Problem 7.2. a) Assuming the magnetic moment of an odd-A
nucleus gy = grpnI is determined by the odd nucleon, derive an ex-
pression for g; for I = j = | 4 1/2 (Schmidt limits).

b) What is the expected sequence of sheil model energy levels up to
28Nizg?

c) What does the Schmidt limit predict for the magnetic moment
of 1704, BNa,,, and §}Sc,,? Note: p, = 2.793uy and p, = —1.913py.

d) Calculate the electric quadrupole moments @ in the extreme
single particle model for ;N4 and '}B,. Express your answer in terms
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of (r?) and then make an estimate of ¢ using reasonable nuclear sizes.

Problem 7.3. The classic example of a superallowed pure Fermi
transition is the beta decay of %O to the 2.3 MeV level of N, as
illustrated in Figure 7.2.

a) What are the spin-parity J* and isospin assignments for the
initial and final states of this superallowed decay? Justify your answer.

b) What is the value of the Fermi matrix element for this decay?

c) Specify the spin-parity and isospin for the ground state of *N
and classify the beta decays from the ground states of **C and 0 to
this level. State how the matrix elements for the 8~ and 8* compare.

d) There are several other nuclear mass triads for which superal-
lowed pure Fermi decays occur (in particular for A = dn + 2, n =
2,3,4,--). Estimate the A dependence on the halflife for the superal-
lowed decays by first estimating the dependence of the halflife on the
beta end-point energy (neglect Coulomb effects on the outgoing g par-
ticle) and then the dependence of the end-point energy on the atomic
number Z of the daughter nucleus. Note that in these cases Z ~ A/2.
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e) The experimental halflife for the superallowed pure Fermi decay
57Co —3tFe+ A% +v is 0.19 s. Make an estimate on the basis of part (d)
and the halflife of 140 and compare.

Problem 7.4. Neutrino Sources:

Atomic mass excesses (in MeV):

in 807

H  7.289

IH 13136
iHe 2.425

28pp  21.759
BTy 35.447

Astronomy:
solar luminosity at the earth’s orbit = 1.4 kW/m?

Geology:
thermal gradient of the earth = 30 K/km
thermal conductivity of granite = 2.8 kcal/m hr K

A. Assume the sun derives its energy from converting hydrogen to he-
lium.

a) What is the neutrino flux at the earth’s surface due to the sun?
(A numerical result in particles/m?s is required.)

b) Derive the shape of the neutrino spectrum, i.e., the flux versus
neutrino energy.

c) What percentage of the sun’s energy production is dissipated by
neutrino emission?

B. The earth also produces energy from radioactive decay of heavy
elements and thus has a molten core.
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a) What type of neutrinos are produced?

b) Estimate the neutrino flux at the surface of the earth.
C. Consider a large fission power reactor.

a) What type of neutrinos are emitted?

b) Estimate the neutrino flux at 100 meters distance from the reac-
tor.

Problem 7.5. A. Consider the partial level schemes shown in Fig-
ure 7.3.

=J*T
Bchz?*S eV 495
12C+n
% Y
0.44+.05eV 0.45£.05 eV
Figure 7.3.

a) Predict the I',, width of the 15 MeV state in *3N.

b) The 1/2* states in the two nuclei appear at very different energies
relative to the ground states. Why?
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c) It is thus surprising that the two 1/2% states have the same I,
width. Why? What would a naive estimate of the ratio of the widths
be? What must be going on here?

B. Consider the partial level scheme shown in Figure 7.4.

5.67 MeV T
reduced - 92=0 17 - 1,0+1
width o /M_ I, 0+1

2
4.42 MeV 6,70.09
i“Nm
(1t 01+(0", 0] 1.04 MeV 01
0

185

Figure 7.4.

a) Assuming two-state mixing of the 1~ levels, estimate the Cou-
lomb mixing matrix element between them.

b) Estimate the ratio of the gamma-transition strengths of the two
states to the 1.04 level, and the ratio to the ground state.

Problem 7.6. a) Give the Z and A dependence of the bulk-binding,
surface, and Coulomb terms in the semi-empirical mass equation, in-
troducing the respective constants ay, as, and ag. Neglect the pairing
term throughout this question.

b) Estimate the value of a¢c (in MeV).

c¢) The asymmetry contribution may be taken as as(A — 2Z)*/A.
Very briefly justify the form of this term. By considering the fact that
naturally occurring '%Te is beta-stable, show as/ac ~ 30 from the
condition of minimum mass at A = 125.
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d) The nucleus }3§Fm spontaneously undergoes cold symmetric fis-
sion forming only two identical nuclei in their ground states. Assuming
spherical nuclei, find the contributions of the ay, as, a¢, and a4 terms
to the energy release. Does fission energy primarily manifest the strong
or the electromagnetic interaction? (Note: ay ~ ag ~ 17 MeV.)

Problem 7.7. The 2.15 MeV (J* = 1*) level in 1°B is populated via
the 1'B(3He,a)'°B reaction. It subsequently decays to the 0% level at
1.74 MeV via the emission of a photon with angular distribution about
the beam axis of 3 + cos? 6.

a) What is the multipolarity of the radiation?

b) The decay might also proceed via the emission of a particle of
spin and parity J* = 0~. Deduce the form of the angular distribution
of this particle with respect to the beam axis.

c) Suppose that the 2.15 MeV level is formed via the gamma decay
of a higher excited 0% state. What would the angular correlation be
between the two photons for the subsequent gamma decay to the 1.74
MeV level?

Problem 7.8. The lowest levels of the deformed nuclei dysprosium
164 and holmium 163 have been studied by reaction spectroscopy:

lggHo“ (d, sHe) lgDYas and 1S$H°95 (p, t) lg;Hose- (7.1)

The spin and inferred parity of stable holmium 165 is 7/2~. The ener-
gies, radiative lifetimes and magnetic moments observed are shown in
Figure 7.5.

a) Suggest spin-parity assignments for the states observed in each
nucleus. Briefly indicate your reasoning. Check using energy data.
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-12
E (keV) M (n.m.) tlr"Z (10 s)
844.2
6.8
E (keV)
531.8
501.3 30
366.6
2423 1.361+0.11 170 2222
739 0.71:0.02 100.0
0 0
164 163
66DYog 67H1%g
Figure 7.5.

b) Provide a vector-angular-momentum diagram for each nucleus
when it is in a state of total angular momentum J. Include the total
angular momentum J, its laboratory component M#, collective angular
momentum R, and the component K% of any angular momentum on
the nuclear symmetry axis.

c) Compare the values of the measured magnetic moments and ra-
tios of lifetimes with those expected from a simple collective model.

d) Develop a formula for the magnetic moment of the ground state of
an odd-A nucleus, in terms of the collective and nucleonic gyromagnetic
ratios gp and gg. (Hint: consider the vector diagram.) Then estimate
the magnetic moment of the ground state of holmium 163.
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Problem 7.9. a) Assume that a single nucleon occupies the shell
model state |Niwt,jm) where the first four quantum numbers indicate
the major oscillator level, orbital angular momentum, parity, and third
component of isospin. Write single nucleon operators corresponding to
the Fermi (V) and Gamow-Teller (A) beta decay processes, then show
how the respective selection rules for AN, Al, An, Aj, and Am follow.

b) The two valence nucleons of ®He and ®Li can be treated in the
L-S scheme where L = 0 for both ground states. The ground state of
®He (J™ = 0*) undergoes allowed beta decay (t,/, = 0.8 ms) to the
ground state of 6Li (J* = 1%). Explicitly write the four two-nucleon
spin-isospin wavefunctions that describe the ground states of these two
nuclei. Then evaluate the sum of all squared matrix elements governing
this beta-decay process.

c) The fr value for the beta decay of the neutron is approximately
1110 s while |G4/Gv|* = 1.50. Using the result of part (b) (or a
guesstimate thereof), predict the fr value for *He decay.

Problem 7.10. Thereisa J* = 0% excited state in *He (with energy=
20.1 MeV, width= 270 keV) which dominates the cross-section for
3He + n — t + p (see Figure 7.6).

a) Explain which helicity state of an unpolarized neutron beam will
be more strongly absorbed by a *He target, polarized with its spin along
the neutron beam axis.

b) For low energy neutrons, absorbed strongly by such a resonance,
the absorption cross-section varies as 1/(velocity of the neutron). Give
a simple explanation for this dependence.

c) Calculate the polarization of an initially unpelarized beam of 1 eV
neutrons after passing through a sample of 6 x 10?' atoms/cm? of *He,
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E (MeV) 1® E(MeV)
20.5 3He+n
20.1 ot
123 t+p
0 0"
He
Figure 7.6.

polarized with spin along the beam axis, with a polarization of 65%.
For an unpolarized beam, the absorption cross-section is & = 850 barns
at this energy and the scattering cross-section is much smaller.
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Elementary Particle Physics

Problem 8.1. This problem discusses K° decays. The quantum
numbers for some mesons are:

meson mass (MeV/c?) isospin I, spin parity

K° 497.7 1/2 -1/2 0 -1
nt 139.6 1 1 0 -1
w° 135.0 1 0 0 -1 .

Some Clebsch-Gordon coefficients, (j; j2 my ma | J M), are:

(111 —1]20) = ,/1/6, (1100]20) = /2/3,
(111 —1]10) = /1/2, (1100[10) = 0, (8.1)

(111 —1]00) = /1/3, (1100]00) = —/1/3 .

a) The short-lived neutral kaon decays quickly via K° — #+x~ and
K° — 7%% What values of isospin may the #*7~ and 7%x° final states
assume?

b) The K? — w*x~ decay occurs with roughly twice the probability
of the K? — #°° mode. Why?

¢) Neutral kaons also decay via K° — w+tr—#% and K° — x%%%x0,
but the three-pion decay rates are nearly three orders of magnitude
lower than the two-pion rates. What accounts for the difference?

56
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d) The CP eigenstates of the neutral K system are linear combi-
nations of the strangeness eigenstates | K°) and | K9). If CP| K°) =
| K©), what are the CP eigenstates?

e) Let | K,) and | K,) be the CP +1 and CP —1 eigenstates. The
K; component in a neutral K beam decays with rate I'; and the K,
component with rate I';. If an initially pure K° beam is produced,
what is the ratio of the number of K° to the number of K° found in
the beam as a function of proper time? (Assume the weak interaction
is CP-conserving.)

Problem 8.2. The scattering of high-energy muons from nucleons
can provide information about the internal structure of protons and
neutrons. A scattering event is described in terms of ¢?, the square of
the four-momentum transferred to the target, and v, the energy lost by
the muon in the collision. In the quark model, the interaction is viewed
as an elastic collision between a muon and a stationary quark, where
the quark carries a fraction z of the nucleon’s mass.

a) Calculate z in terms of ¢?, v, and the nucleon mass.

b) Using simple arguments, calculate the ratio of the cross-sections
for muon-proton scattering and muon-deuteron scattering, assuming

¢? = 100(GeV/c)2.

c) Recent experiments find a small difference in the p* N and p~N
cross-sections (where N is either a proton or neutron) which grows with
g®. Explain this. What sets the scale in g? for this effect?

d) Measurements of nucleon structure indicate that only about half
the momentum of a fast-moving nucleon is carried by objects which
will scatter muons. What carries the rest of a nucleon’s momentum,
and why is it transparent to muons?
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Problem 8.3. Scalar quarks o are hypothetical color triplet particles
with spin zero and charge ¢ = —e/3. Assume their mass is 5 GeV.

a) What are the JP¢ assignments for the low-lying o-& bound
states? ( is the antiparticle of g.) Which of these could be produced
in e* e~ annihilation?

b) Take the QCD potential to be a linear confining potential V(r) =
ar, with @ = (400 MeV)? and r the 0-G separation. Estimate the
ground-state energy, the splitting of the low-lying states, and the value
of the wavefunction squared at the origin, [1(0)[*.

c) Write down a gauge-invariant Lagrangian describing the inter-
action of photons with scalar quarks. Draw the lowest-order Feynman
diagrams which contribute to the decay of the o-7 ground state to two
photons and give a rough estimate of the width for this decay.

d) Give an argument against the existence of stable scalar quarks
with mass of order a few GeV.

Problem 8.4. The lightest charmed meson is the D°(1865) which is
thought to be in a ¢ii quark configuration. A prominent decay of this
meson is the semi-leptonic transition D — urX, where X consists of
hadrons.

a) Estimate the branching fraction for D° decays to uvX, and esti-
mate the lifetime of the D°.

b) The antiparticle of the D° is the D° (= &u), which is distinct,
but also neutral. This allows a possible “mixing” of these two states,
similar to that found in the K° — K° system. However, because of the
short lifetime found in (a), it is hard to demonstrate this mixing in the
laboratory. One method now being pursued is as follows: prepare an
initial state of pure D° (via a strong interaction). Then simply observe
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the probabilities of u* and y~ occuring in the semi-leptonic decay of
the D, integrated over all time. Calculate the ratio

Prob(u~)/Prob(u*)

in terms of relevant parameters of the decay eigenstates of the D° — D°
system. You may ignore CP violation. What feature of the D° — D°
system contrasts with the K® — K° case which makes it unlikely this
ratio will be of order 17

Problem 8.5. The SLC (Stanford Linear Collider) is designed
to produce the neutral vector boson (Z°) by colliding electrons and
positrons at an energy which can be adjusted to equal the Z® mass of
a2 90 GeV. The Z° will manifest itself by subsequent decays to lepton
or quark pairs. The vertices for the coupling of the Z° to all relevant
particles are

Lz = =22 {pyu(1 — ys)v + Enl(dsin® Ow — 1) — vle  (8.2)

4 cos Ow

8 . .4
+ (1 - 53"1’ Ow) + vs]u + dyl(3 sin® fw — 1) — ')’S]d} ,

where [v, €] and [u,d] are the usual lepton and quark members of a
generation. The coupling g is related to the Fermi constant Gr by
Gr = g*V2/(8M},), where My ~ 80 GeV.

a) Estimate the width I',; for Z° decay into a given species of neu-
trino. Given that sin? 8y = 0.23, that there are three generations, and
that the hadronic width is given adequately by the width for decay into
quarks, estimate the total width of the Z°. (In this, and the other parts
of this question, you may set all relevant fermion masses equal to zero.)

b) Estimate the total cross-section for ete~ — v (one species of
neutrino) via the obvious process (shown in Figure 8.1). Give the cross-
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. >—/\/\ZB\/V\/<V
et v
Figure 8.1.

section as a function of the square of the electron-positron center-of-
mass energy, s = E,,.

c) This cross-section diverges at s = M} as (s — M%)~2. This is un-
physical and is properly dealt with by the Breit-Wigner trick of displac-
ing the propagator pole off the real axis by (s — M?) — (s— M?+iMT),
where I' is the total decay width of the resonance. Use this insight to
improve the result of part (b) and estimate the maximum total cross-
section for ete™ — anything as a function of energy.

d) If the SLC reaches its design-goal luminosity of L = 10*®cm™2s71,
how many Z° events can it produce in a year of running?

Problem 8.6. The supernova 1987A is located about 170,000 light
years from earth. The interactions of 10 neutrinos from the supernova
were observed in a tank of 1000 tons of water within an interval of 1
second. The average neutrino energy was 10 MeV, and the energies
varied from 5 to 20 MeV. The experimental signature of each neutrino
interaction included recoil nucleons as well as a charged lepton.

a) What are the weak interactions most likely involved in the cre-
ation and subsequent detection of the neutrinos?

b) Estimate an upper limit on the neutrino mass from the observed
data.

c) Estimate the total energy in ergs that was liberated in the form
of neutrinos during the supernova.

d) Conceivably neutrinos of type a created in the supernova could
have transformed to another type b while in transit, if both types of
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neutrino have nonzero mass. Derive an expression for the probability
that neutrinos initially of type a will appear to be type a at the Earth
in terms of the mixing parameter

sinfd = (13|va),

where vy and v, are neutrino states of definite mass. Deduce a limit on
the mass difference between neutrinos of types 1 and 2, supposing the
corresponding “oscillation length” is greater than the distance to the
supernova.

Problem 8.7. The W is one of the intermediate vector bosons that
transmit the weak force. It was first observed at the CERN pp collider
in the process

pp — W+ + hadrons, Wt — e*v,. (8.3)

The mass of the W* is My = 82 GeV. In the quark model, the
fundamental production process is a collision between a u quark in the
proton and a d antiquark in the antiproton.

If 5§ is the square of the center-of-mass four-momentum of the u
and d, the cross-section for the entire process can be written in the
Breit-Wigner form

Nw Fugle

ud—+W—evf 2
= —_— . 4
o (8) = 167 N, G- M5y + MATL, (8.4)

Here Nw and N; are the multiplicity factors for the W+ and the initial
state, Ty is the width of the W+, and T, and I',; are the partial
widths for W — ev and W — ud.

a) What are the values of Nw and N;?

b) Give an estimate of T, in terms of Gr, the Fermi constant
measured in low-energy processes such as muon decay. (Do not worry
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about factors of, say, 6x.) What are Ty and Ty, in terms of I',,? List
your assumptions. What is the lifetime of the W+ in seconds?

If T'yoe € Mw, we can make the approximation
oW 5 Tt (3 = M) Mwb(3 — MZ,). (8.5)

(Use this even if your answer to part (b) doesn’t have I'yoy < Mw.) To
find the actual cross-section, we must relate the fundamental process
to one involving real protons and antiprotons. Assume that u(z,) =
6(1 — z,)? is the probability of a u quark carrying a fraction z, of
a proton’s momentum and that d(z;) = 3(1 — z;)? is the analogous
function for d antiquarks in an antiproton.

c) What is § in terms of z,, z4, and s, where s is the four-momentum
squared of the pp collision?

d) At CERN, this process was observed at /5 = 540 GeV. What is
Owt(pp — W+ — ety,) at this energy? The luminosity of the CERN
pp collider was L ~ 10%® cm~2?s~!. Assuming unit efficiency, how many
pp — W+ — ety, could be detected in one year of running?

Problem 8.8. In what follows assume there are six quarks with
masses Mg = m, =m, =m. =0, my = 5 GeV, and m; = 40 GeV.
Selected elements of the Kobayashi-Maskawa mixing matrix along with
various other experimental data are given below.

s = Vd V:, Vd, 3
v th V;o th b

Il

0.207 £0.024 0.66 to 0.98 V ]
Via Vie Vo b

m,, = 106 Me_V
7, = 2.20 x 1075

[ 0.973 £0.005 0.221 £0.003 Vs ] [ d }
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BR(B* — e*v + hadrons) = 0.12

I'(b — v)

7p+ = 1.4 x 1073

a) Estimate |V|.

b) Use your result from part (a) to estimate the largest allowable
value of |V

c) Estimate the top-quark lifetime.

Problem 8.9. Because of its role in giving mass to fermions, the
still-hypothetical Higgs scalar couples to each fermion with a strength
proportional to the fermion’s mass (Figure 8.2).

f

. m G2

Figure 8.2.

a) Calculate the decay width I'(H — ff), where ff is a fermion-
antifermion pair with my < mpy, my is the fermion mass and my is
the Higgs mass. What is the lifetime of a 50 MeV Higgs decaying to
an electron-positron pair?

b) Consider the reaction ete~ — H — ff. For a 50 GeV Higgs,
ff is predominantly bottom-antibottom (my = 5 GeV). What is the
cross-section for this reaction at resonance? How many events of this
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type would be produced at an electron-positron collider, running for a

year at the resonance, with a luminosity of 2 x 103! cm~2?sec~1?

Problem 8.10. A high-energy neutrino experiment scatters muon-
neutrinos off a fixed target of nuclei containing equal numbers of protons
and neutrons. The measured parameter is R,, the ratio of the neutral-
current to charged-current total cross-sections,

R, =INC — 03, (8.6)
9cc

From this result the value of the Weinberg angle which governs the
relation between the electromagnetic and weak neutral-current interac-
tions can be calculated.

(a) Draw the Feynman diagram(s) for the fundamental charged- and
neutral-current interactions in this experiment. Assume that nucleons
contain only up and down quarks.

The differential cross-sections for neutrino-quark scattering are

g GE: Q% target left-handed,

o

| @ (8.7)
:’(1 = y)’@? ) target right-handed,

where s is the square of the center of mass energy, y is the fraction of
the neutrino’s energy transferred to hadrons, G is the Fermi constant,
and Qw is the “weak charge” of the target quark. The bar over Q},
refers to the fact that this quantity must be averaged over the quarks
in the target. In the Weinberg-Salam electroweak theory, the weak
charges

Qw = Lec, Rec, Lnc, Ryc, (8.8)
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are given as follows:

| left-handed fermion  right-handed fermion
charged current Lec=1 Ree =0
neutral current | Lyc = Iz — Q.sin’ 8w Ryc = Iz — Q. sin’ Oy

where I is the third component of weak isospin, Q. is the electric
charge of the quark measured in units of the absolute value of the
electron charge, and fw is the Weinberg angle.

(b) Use this information and the measured value of R, given above
to calculate the Weinberg angle. Again assume only up and down
quarks and neglect possible differences in momentum distributions be-
tween the quarks.
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Atomic & General Physics

Problem 9.1. Positronium is a hydrogen-like bound state made up
of an electron and a positron.

a) Estimate the binding energy of the ground state (n = 1) and the
Lyman-alpha (2p — 1s) transition wavelength for positronium.

b) The lifetime for decay from 2p to 1s for the hydrogen atom is
1.6 ns. Estimate the lifetime for the same decay in positronium.

c) Estimate the strength of the magnetic field experienced by the
electron due to the positron’s magnetic moment for the n =1 state.

d) Estimate the singlet-triplet frequency splitting in the ground
state.

Figure 9.1.

66
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e) The singlet state decays into two 0.511 MeV « rays in a state of
definite parity. If the 4 rays are detected in coincidence after passing
through linear polarizers (as in Figure 9.1), at what relative angle ¢ is
a maximum coincidence rate expected?

Problem 9.2. Consider a lens of focal length f with a diameter

- b
‘——L—N—f—P

.
L

—_—
e
B U “T."“ R R
e

D
—_— = A _+_ B C

Figure 9.2.

D (Figure 9.2). A laser beam of wavelength X illuminates the entire
aperture of the lens. The laser beam is parallel to the axis of the lens.

a) Suppose a screen is placed at B. Approximately how wide is the
image at B?
b) Now place at A a transmission grating with line separation d.

Describe the pattern at B,

c) Suppose you wish to construct a microscope to photograph a
microbe, which is placed at A (in the plane of the grating). The film
is placed at C. How far is C from the lens?

d) Since many microbes are transparent, a “phase plate” greatly
improves the microscope. Light that goes through the circular phase



68 CHAPTER 9. ATOMIC & GENERAL PHYSICS

plate within z of the center suffers a 7/2 phase lag. The plate is put at
B, centered on the optical axis of the lens, with its surface normal to
the optical axis. Suppose the index of refraction of the microbe differs
slightly from that of the surrounding medium so that light which passes
through the microbe is slightly phase-shifted. Compare the image with
the addition of the phase plate to the image without the phase plate.
How large should z be? If the center of the phase plate is opaque, how
is the image changed?

Problem 9.3. a) A plane wave is incident on a lens of index of
refraction n with one flat side (as shown in Figure 9.3). The diameter
of the lens is D. If all incoming rays are to be focused at the point P
a distance f from the flat side, calculate the shape of the curved side.
(Do not assume the lens is thin.

)

f f !
Figure 9.3.

\ ]

]

b) Where is the focal point of two parallel thin lenses with focal
lengths f; and f; if their axes are slightly misaligned by a distance §7
Give both horizontal and vertical position. The lenses are separated by
a distance D where D < fi, f (see Figure 9.4).

Problem 9.4. A cloud of neutral hydrogen atoms in interstellar space
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Figure 9.4.

has density p and temperature T. Write an approximate expression
(drop factors of 2 but retain factors of the fine structure constant a, &,
T, etc.) for:

a) the frequency of the absorption line due to transitions from the
ground state to a 2p level. Ignore fine structure,

b) the natural width of this line,

c) the Doppler width,

d) the linewidth due to collisions,

e) the fine structure splitting of the 2p level, and
f) the hyperfine splitting of the 1s level.

Problem 9.5. The magnetic hyperfine hamiltonian is
Hpyp = ARL-J where A is a constant, I is the nuclear angular mo-
mentum, and J is the total electronic angular momentum. Consider
an atom with electronic ground state g and an excited state e. In the
presence of the hyperfine interaction each of these levels is split.
States g and e both have electronic angular momentum J = 1/2,
and the nucleus has spin I = 1/2. At time ¢t = 0, an infinitesimally short
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laser pulse excites atoms from the ground state g to the excited state
e. The light from the laser is circularly polarized and its linewidth is
much greater than the hyperfine splitting. Taking the laser-propagation
direction to be the quantization axis, the excited-state wavefunction
immediately after the laser pulse is given by

Je=pmr={|I=5m=-+|I=3m=]}.

(9.1)
The atoms then decay from the excited state to the ground state with
lifetime 7. Calculate the time dependence of the intensity of circularly
polarized fluorescence having the same handedness as the exciting laser
pulse.

¥O0)=

Problem 9.6. Estimate the following quantities, indicating how you
arrived at your estimate:

a) the frequency of radiation used in a microwave oven,
b) the energy yield of a fission bomb with a 30 kg uranium core,

c) the energy of impact of the earth with a meteorite 10 meters in
diameter,

d) the temperature of the sun,

e) the temperature of a 60-watt light bulb ﬁla.m:mt,

f) the speed of sound in helium gas at STP,

g) the total length of blood capillaries in the human bedy, and

h) the temperature at which the heat capacity for gaseous molecular
hydrogen changes from 3k/2 to 5k/2 per molecule.
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Problem 9.7. a) List the ground-state electronic configurations and
the L, S, and J quantum numbers for the following atoms:

Li(Z=3), B(Z=5), N(Z=1), Na(Z=11), K(Z=19).

b) The lowest frequency line in the absorption spectrum of Na is
a doublet. What mechanism splits the corresponding pair of energy
levels? The splitting between levels is proportional to (r") where r
is the distance of the valence electron from the nucleus. What is a
numerical value for n?

c) Consider the effect of a weak magnetic field B on the low-lying
states of potassium (Z = 19). Make a sketch indicating the allowed
transitions and give the energy splitting between states as a function
of B.

Problem 9.8. A spherical projectile of radius R and density u moves
through a fluid of density p and viscosity n at velocity v.

a) For very small velocities what is the frictional force (drag) on
the projectile? Throughout this problem, you may set pure numerical
factors equal to unity.

b) For high velocities, the drag is independent of the viscosity. Write
an expression for the drag in this regime. Interpret your result in terms
of the acceleration of the fluid. What is the characteristic crossover
velocity v, between the low and high velocity regimes?

c) If the initial velocity is vo > v., how far will the projectile travel
before stopping?
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Problem 9.9. Consider a tuned infrared coherent light source (A = 1
to 10 pm) which utilizes stimulated Raman scattering in strontium
atoms (atomic number 38). Here the atom absorbs 2 pump photon of

li> —_— li>
—— f> — O If>
A VAVA S AVAVA S
1
fiep —o—Ig> —_— > *
Before After
Figure 9.5.

energy fiw, (visible light) and undergoes a virtual transition from the
ground state |g) to a state |i) (Figure 9.5). This results in the emission
of a signal photon of energy fiw, and leaves the atom in the state |f).

a) Assume that the signal intensity I,(0) at the input end of an
atomic vapor cell of length ! is much less than the intensity of the
pump beam, I,(0). Let the pump beam be incident along the -+%-axis.
The growth of the original intensity I,(z) is given by

%I,(z) = gI(2)1.(z) , (9.2)

where I(z) is the pump intensity and g is the Raman gain. Find
an expression for I,(z) in terms of I,(0) and I,(0) and show that the
expression has the correct form in the small signal limit, i.e., in the case
where most of the atoms are still in the ground state after the pump
beam passes through.

b) Explain how the signal radiation is tunable.

c) What are the parities of the states |g), |i), and |f)? What are
the appropriate states for strontium?
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Problem 9.10. Hurricane Gilbert, when viewed from space, was an
enormous spiral of clouds surrounding a small, cloud-free “eye.” Use
basic physics and any other knowledge you have about hurricanes in
the northern hemisphere to answer the following questions.

a) What was the direction of rotation of the spiral and why?

b) The minimum atmospheric pressure at the eye of Gilbert was
only 86% of normal atmospheric pressure at sea level. Use this pressure
reduction to estimate the wind velocity near the eye of the hurricane.
You may approximate the air as incompressible and ignore any cooling
or heating of the air.

c) On a dry, sunny day in Princeton the air temperature is found
to drop with increasing altitude above ground level by about 10°C/km.
Show how to predict this temperature drop.

d) The air temperature near the eye of Hurricane Gilbert was ob-
served to drop with increasing altitude above sea level at a rate of only
4°C/km. Explain why this temperature gradient differs from that of
part (c).

Possibly useful information:
Atmospheric pressure at sea level: 108 dyne/cm?
Air density at sea level: 1.275 mg/cm?
Acceleration of gravity at sea level: 981 cm/sec?
Apparent molecular weight of air: 29 g
Specific heat of air at constant pressure: ¢, = 107 erg°C~'g~?
Latent heat of vaporization of water: L = 2.3 x 10" erg/g
Saturation vapor pressure of water at 20°C: 2 x 10* dyne/cm?
Boltzmann's constant: 1.38 x 10716 erg°C-?
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Chapter 10

Mechanics—Solutions

Solution 1.1. First we set up coordinates such that the ball moves
in the zy-plane with y directed upward and z out of the page. When
the ball bounces, it experiences a tangential force F, which changes its
momentum in the z-direction:

Ap. = f F, dt = m(v; —v), (10.1)

where v; and vy are the z-components of the velocity of the center of
mass of the ball before and after the bounce. The force also exerts a
torque on the ball. If a is the radius of the ball, then the change in its
angular momentum AL is

AL=a f Fodtz = I(wy — w;)3, (10.2)

where I = 2ma?/5 is the moment of inertia of the Super-Ball, and w;
and wy are its angular frequences before and after the bounce. Symme-
try requires that the ball spin about an axis parallel to Z. Elimination
of the unknown force integral between these equations leaves

(v — v5) = ?—;a(w; —w). (10.3)
For the ball to bounce in the prescribed manner, v; must equal —uv;.
From symmetry arguments, we must also have wy = —w;. Using these

77
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two conditions in the above equation yields the requirements on the
original throw:

2
v = Zawi. (10.4)
We may also derive the condition |wy| = |w;| from conservation of

energy. For completeness, this derivation follows. Because the collision
is elastic, energy is conserved. The magnitude of the momentum in
the y-direction is unchanged by the collision, so the energy balance
equation becomes

1 1

Emv‘-’ + Iw? = Emv} + Iw}. (10.5)
Since |v;| = |vy|, it must be that |w;| = |wy|. From equation (10.3) we
can see that v; = —vy requires w; = —wy.

Solution 1.2. Suppose the rocket is moving in the positive z-direction,
and the dust cloud starts at z = 0. Because the collisions between
the rocket and dust particles are inelastic, energy is not conserved.
However, we must conserve momentum at all times. If m(z) and v(z)
are the mass and velocity of the rocket at point z, then for all z

m(z)v(z) = movo. (10.6)
In particular, for a small displacement §z,
m(z)v(z) = m(z + éz)v(z + 8z). (10.7)

As the rocket travels from the edge of the cloud to a point z, it sweeps
the dust out of a region of volume Az, so its mass at position z is

m(z) = mo + Apz. (10.8)

Expanding equation (10.7) gives us

m(2)u(z) = (m(z) + Apbz) ('u(:z) + 20 0(&:2)) . (109)
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Neglecting terms of second and higher order in éz,

[Ap'u(z:) + m(:):—:] =0, (10.10)
or, using (10.8),
Ap dv
et =0 (10.11)

Integrating this equation and using the initial condition v(z = 0) = vy,
we find that

dz _ movo
dt  mo+ Apz
Integrating again and using the condition that z(t = 0) = 0, it is easy
to show that, for £t > 0,

v =

(10.12)

2mouot + md
Ap A2’

o(t) = —’;—': + (10.13)

Solution 1.3. In order for the “satellite” to remain in orbit, the
centripetal acceleration due to its orbital motion must exactly balance
the gravitational acceleration, so

R4 RH GM
2 = -
./R rwipdr = /R 2 pdr, (10.14)

where p is the density of the rope and [ is its length. Performing the
integration yields

2GM
w?

= R(R+ I)(2R +1). (10.15)

Solving this quadratic equation gives us the length of the rope

-3R +/9R? + 4(2GM/Rw? — 2R?)

. 2

. (10.16)
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To find a numerical value for [ we must recall certain physical constants.
The radius of the earth is R = 6.4 x 10° m. (One way to remember
this is to recall that the meter was first defined as one ten-thousandth
the distance from the North Pole to the equator.) The rate of rotation
of the earth is w = 27 rad/24 hours = 7.3 x 10~5rad/s. Noticing that
GM/R? = g = 9.8 m/s?, we avoid having to know the values of G and
M separately. Using these numbers, we calculate ! = 1.5 x 10®m (or
almost halfway to the moon!).

Solution 1.4. We will use the normal modes of the system to solve
this problem. First we find the motion of the normal-mode coordinates
subject to the applied force, and then transform from those coordinates
to the ordinary spatial coordinates of the blocks. With some physics
insight we could immediately write down the normal modes of the sys-
tem (10.27). However, it is instructive to solve methodically for the
normal modes, as we do below.

Let 7; be the displacement of block i from equilibrium. The poten-
tial energy of the system is

1 1
V= sk(m - )’ + 5 k(7 -m), (10.17)
and the kinetic energy is
T= %‘m(ﬂ'l’ +12% + 7). (10.18)
The Lagrangian is L = (T — V), which we can write as
1 3 3
L=33.3 (Tyisi; — Vimans), (10.19)
i=13=1
where
m 0 0 k -k 0
T=[0 m 0| and V=| -k 2t —k |.  (10.20)
0 00 m 0 -k &k
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For our simple problem it may seem that writing T as a matrix is
unnecessary and heavy-handed. However, it is useful to do this so
that we could easily generalize to the case in which the masses of the
particles are not equal.

Using Lagrange’s equation, we find the equations of motion:

Ti + Vn =0, (10.21)

where we have defined the vector = (71,72,73)7. The normal modes
are collective motions where all three blocks move with the same fre-
quency. Since there are three degrees of freedom there will be three
normal modes. For each one the solution is of the form

n(t) = aje™s, (10.22)

where the a; are time-independent. If we insert this form for 7(t) into
the equations of motion (10.21), we get a matrix equation for the vector
a;,

(V-wiT)a; =0. (10.23)
In order for a nontrivial solution to exist, we must have
det [V — w?T| = 0. (10.24)

This leads to a cubic equation in w?, with roots w? = 0, w} = k/m,
and w? = 3k/m. Substituting these frequencies into equation (10.23)
allows us to solve for the three normal modes, for which we choose the
normalization prescription

a’Ta; =1 (no summation on i). (10.25)

In fact it can be shown (see Goldstein, chapter 6) that the vectors a;
may be chosen to satisfy the “orthogonality” condition '

a’Ta, = &, (10.26)

and we will use this later on. Subject to this condition, our normal
modes are

1 (! 1 1 i 1 !
a = \/ﬁ i , 83 = —\/2_—; _? , and az = _\/Sﬁ —‘f .
(10.27)
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We can use these vectors as a basis set to write an arbitrary displace-
ment as

n(t) = &a; + {22z + §3as, (10.28)

where the {; are called normal coordinates.
Suppose we now apply a force F(t). Our equations of motion are

3 3
T (Efsae) +V (E&a«) = F(t). (10.29)
i=1 =1

We use the matrix equation for a normal mode vector, (10.23), to
rewrite Va; as w?T a;. If we now multiply on the left by s.? and use
the orthogonality condition (10.26), the normal modes decouple (which
is why they are called normal modes) and we obtain the equations of
motion for the normal coordinates:

& +wjts = fi(t), (10.30)
where we have defined
() = aTF (D). (10.31)
In our particular problem, the force is given by
feoswt
F= 0 . (10.32)
0
This gives us
f1 = ﬁf coswt, (1033)
fa = \/;;f coswi, (10.34)
| fs = flim_f cos wt. (10.35)

It is now straightforward to solve the equations of motion (10.30), sub-
ject to the initial conditions

&=0, &=0. (10.36)
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The solution is

{ = f — COS W 7
= —f coswi —
f: = ‘/__( )( t — cos wgt), (1038)

= # Ccos — COS W,
&= =] —wz)( wt — cos wat).

(This can be verified by substitution.) Next we substitute the normal
coordinates back into equation (10.28), to find the motion of mass C:

(10.39)

_f[2
N3 = - --3;5(1- coswt) — (coswt — coswyt)

1
2(w? — w?)

1
+ m(cos wt — cos w;;t)] . (10.40)

Solution 1.5. There are two solutions. The first is that the ball stays
in one place, rolling such that w = 0. We'll look for a more interesting
solution.

LrotT 5 T_, be

Ff

L

point P—
Figure 10.1.

The geometry of the probler is shown in Figure 10.1. In order for
the ball to roll such that w # 0, there must be a radial force that will
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cause the centripetal acceleration. This is supplied by the static friction
force Fy < uN. Note that this is the force that keeps the ball from
sliding radially outward, and is unrelated to the lack of rolling friction.
So '

Fj = —mw’rt, (10.41)

where m is the mass of the ball, and where we have chosen a cylindrical
coordinate system centered on the turntable pivot, with 4z pointing
out of the plane of the turntable.

The ball undergoes two motions: a spinning about its center of mass,
and a rotation about the turntable pivot. The spinning motion has an
angular momentum L, which points in the £ direction. The angular
momentum associated with the rotation, L, is in the % direction.
(The total angular momentum is Leot = Lrot + Ly, of course.)

In order for L, to remain radial as the ball rotates about the pivot,
L, must precess. That is, the vector L, rotates around the turntable
with the ball. There must be a torque:

dL,

T=—r = L,. (10.42)

The torque is provided by the same friction force responsible for the
centripetal acceleration:

T =ax F;=(—a2) x (—mw’rt) = amw?ré = L,, (10.43)

where a is the vector extending from the center of the ball to its instan-
taneous point of contact with the turntable. If the ball spins about its
center of mass with angular velocity w, then |L,| = Jw,, where I is the
moment of inertia of the ball about its center of mass. The precession

of L, is described by
L, = lw,t = Iw,wb. (10.44)

We have two cases to consider:

1) Q and w are in the same direction. Let us arbitrarily choose the
+z-direction for both, or a counterclockwise motion when viewed from
above. Because L, is in the 48-direction, L, must be in the +r-direction
if w is a counterclockwise motion. (Think this one through!) This
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implies that w < , because the ball must “roll backwards.” (That is,
the motion described by w — £ is directed opposite to the motion of the
turntable alone — which is described by £.)

The condition for the ball to roll without slipping is

aw, = r(Q — w). (10.45)

Let P be the point on the ball in instantaneous contact with the
turntable. The above condition comes from requiring P’s instanta-
neous speed due to the ball’s rotation about the turntable, which is
(€ — w), to equal the instantaneous speed due to the ball’s spinning,
which is aw,.

Since the moment of inertia of the ball is I = 2ma?/5, we can
combine the torque equations (10.43) and (10.44) to find

2aw,

w=2" (10.46)

Then, using the condition (10.45), we find

w= %Q. (10.47)

2) The second case is w and § in opposite directions. Our intu-

ition suggests that this will not happen. We can demonstrate that it

does not by observing that for w clockwise and § counterclockwise,

L, must be in the +r-direction. However, by equation (14.43), L, is

in the +#-direction, or counterclockwise, which is inconsistent with w
clockwise,

Solution 1.6. a) Suppose the platform is initially at z = 0, where z
is measured upwards. Assume the dashpot provides a damping force
given by Fyomp = —yZ (where v > 0). Then the equation of motien of
the platform is

mz + vz + kz +mg = 0. (10.48)
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If we make a change of coordinates to y = z+mg/k and write ¥y = 2ma,
this simplifies to

- .k
7+ 2ay + - =0. (10.49)
One can easily verify that the general solution to this equation is

y(t) = Ae“+* + Be*-t, (10.50)

where wy = —a %+ y/a? — k/m. Depending on the value of k/m, ws
may be complex.

Critical damping occurs when the expression in the radical vanishes,
when o = k/m. In this case the two values of w coincide and the
solution is of a different form:

y = (A + Bt)e . (10.51)

If we start measuring time from the moment the putty hits the platform,
then the initial conditions are

y(0)=A= % = %, (10.52)
and
3(0) = (B — ad) = —\/2gh. (10.53)

We eliminate the constants A and B to find
g g e
y(t) = [;,— + (; - ,fzgh) :] e, (10.54)

Note that the sign of B, the coeflicient of ¢ in equation (10.51), deter-
mines whether there will be overshoot. If B is positive (ie., k/m <
g/2h) then there is no overshoot; however, if B is negative then for
large ¢, y(t) will also be negative, so overshoot occurs (Figure 10.2).

b) Suppose now the system is overdamped, i.e. @®* > k/m , and

write
wy = —atfa? — kim. (10.55)

We note that |w_| > @ > |wy| and that wy are real and negative. The
general overdamped solution,

y(t) = Ae“t' + Be“~*, (10.56)
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y(®) A y(t)A

B>0 B<0

t \/- Tt

Figure 10.2.

is the sum of two decaying exponentials, where the w. term decays
more rapidly than (and the w; term more slowly than) the critical
damping solution. In general the initial conditions will be such that
both terms are present, in which case the w, term will dominate for
large ¢. It is for this reason that it is conventional to state in textbooks
that critical damping is the “best” solution in the sense of offering
the fastest approach to equilibrium. However we see that if we fine-
tune the initial conditions and the damping constant -y, we can arrange
for the wy term to be absent. If we do this, we have a solution that
decays faster than the critically-damped solution. Note also that since
our solution is a single decaying exponential, there is no possibility of
overshoot.

We feel obliged to point out that a solution of this type would seem
to be of little practical use: for a real system (such as a car suspension)
neither the initial conditions (the size of a pothole) nor the mass (of
the loaded car) are predictable quantities.

Now we will find the condition on the amount of damping (i.e., on
the size of ) in order for the w,; term to vanish. The initial conditions

are
mg

y(0)=A+B==% and (10.57)
§(0) = (Aw, + Bw_) = —\/2gh. (10.58)

We could invert these equations and find the condition for A to vanish,
or we could take a short-cut and set A to zero. After eliminating B we
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obtain k
wo=— 2gh;;§. (10.59)

Using the expression for w_ in terms of & (10.55), we can rearrange to
obtain

a? — k = k2R a. (10.60)
m my g
After squaring both sides and simplifying, we reach our final result:

= 2ma = my[ L 4 k|2
7= 2ma =m0 +k R (10.61)

Solution 1.7. (This argument is based on one by Landau and Lifshitz
in Mechanics, Chapter 7.) If p and g are the momentum and position
of the mass, the quantity

1= §2%, (10.62)

with the integral taken over a single oscillation, is an adiabatic invari-
ant. This means that I remains unchanged as the spring constant slowly
decreases. Stoke’s theorem allows us to rewrite this line integral as an
integral over the area in phase space enclosed by the path followed by
the mass over the course of one oscillation:

I= f j d;;r. (10.63)

For a simple harmonic oscillator,

1 o2 1 g3
5P +2mq =E, (10.64)

where E is the energy of the system and w = (/k/m. The path followed
by the mass is an ellipse in phase space, with area 2rE/w, so the
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adiabatic invariant is ] = E/w. (This important result is true for
any harmonic oscillator, and should be remembered.) The energy of a
simple harmonic oscillator is related to its amplitude by

%mw’A’ — E, (10.65)

so E;/w; = E;/w; implies that

mw? A? _ mw3 A3

o o (10.66)
or
k 1/4
Ay = A, (i) . (10.67)

In quantum mechanics, the condition that I = E/w is constant
arises naturally from the condition that the system remains in an en-
ergy eigenstate (with the same quantum numbers) during an adia-
batic change. For a simple harmonic oscillator, E = (n + })hw, so
Efw = (n+ })h is conserved.

Solution 1.8. When a film of soap is stretched across a frame, surface
tension forces the film to adjust itself so that its surface area is a min-
imum (Figure 10.3). Hence our problem can be formulated in terms of
the calculus of variations.

First we note that since the problem is axially symmetric about
the line AB, we can describe the surface by specifying its radius as a
function of distance along the symmetry axis, r = f(z). For a given
function f, the surface area is given by

S= f:o o frJdf? + dz? = /:211-)'1,/1 ¥ fdz, (10.68)

where f' = df [dz.
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Figure 10.3.

In any text on the calculus of variations (e.g., Boas), it is shown
that the function G(z, f, f') which extremizes the integral

I= f Gdz (10.69)

must satisfy the Euler-Lagrange equation:

d (6G ele)
2 (5?) -2 -0 (10.70)

In this problem G(z, f, f') = 27 /1 + f2.

At this point we could insert G into the Euler-Lagrange equation
and attempt to solve the resulting second-order differential equation.
However there is a short-cut which is worth using. We note that G has
no explicit dependence on the variable z:

oG

|, =0. (10.71)

,fi=const
It is a standard result that this condition implies the existence of a
“first integral”:

G- f’g—% = constant. (10.72)

(For a Lagrangian system where L does not depend on time this equa-
tion states that the hamiltonian is constant—i.e., energy is conserved!)
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When we substitute the G of this problem into equation (10.72), we

find:

——r ff

14 f2—~ ! = c’ 10.73
where C is a constant. This simplifies to f/C = /T + [, or

g =Js/07 -1. (10.74)

We can convert this into an indefinite integral:

_ df
Je=] Jaer-1'

which we can solve by substituting f/C = coshu:

(10.75)

2 szinhu_dn
—zp= | ——_—
\fcosh’u—l

where z is the constant of integration. Hence we find

= /Cdu = Cu, (10.76)

zZ—2p

T

Now we can use the boundary conditions to find z; and C. Since
the film is symmetric about d/2, zo = d/2. The other condition is

(10.77)

f(2) = Ccosh

£(0) = f(d) = R = C cosh %, (10.78)
a transcendental equation for C' which we can solve with graphical or
numerical methods. Note that if R/d is too small there is no solution,
and the soap film will separate into two sheets, one on each ring.

Solution 1.9. a) The potential energy of the bead is

V = —mgacosé. (10.79)
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The kinetic energy, which separates into a term due to the bead’s mo-
tion along the wire and a term due to the rotation of the bead with the
wire, is

T= %mazé’ + %mw’(a sin)?. (10.80)
The Lagrangian is L =T — V. Using Lagrange’s equation,
d (0L oL
% (5) -5 =0 (10.81)
we find that )
af + gsinf — aw® cosfsind = 0. (10.82)

At an equilibrium point § = 0, so g = aw?cos 8, or w? = g/acos 8. This
equation has a solution for w only if w? > g/a, so the critical angular

velocity is
_ 2
we =4/ (10.83)

8o = cos™ (ﬁ) . (10.84)

and the equilibrium angle is

b) If the mass makes small oscillations around the equilibrium point
8o, then we can describe the motion in terms of a small parameter
¢ = 8 — 6. The equation of motion (10.82) becomes

ad + gsin (8o + @) — aw? cos (6 + ¢)sin (6o + ¢) = 0.  (10.85)

Using standard trigonometric identities, the small angle approximations
sing ~ ¢ and cos¢ =~ 1, and our solution for 8, (10.84), it is easy to
show that

$+w? (1 _g ) é=0. (10.86)

alwt

This has the general solution

¢ = Acost + BsinQt, (10.87)
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Q=w1- %, (10.88)

and A and B are arbitrary constants. The period of oscillation is
27 /Q.

where

Solution 1.10. In plane-polar coordinates, the Lagrangian for a par-
ticle moving in a central potential V(r) is

L= gm( +7%7) - V(r), (10.89)

where m is the mass of the particle. The potential is given in the
question as

V(r) = —f:- + %w. (10.90)
The 8-component of Lagrange’s equation is
%—';l- = mr?§ = constant = [. (10.91)

The hamiltonian of our system is then

? 2 A
H=P 4~ Lv()= = 2o 1 vogr), (10.92)

2m  2mr?
with p, = mr and
e_ﬂ(r) = o——+V(r). (10.93)

The term [2/2mr? is referred to as an “angular momentum barrier.”
Solving the equations of motion for this hamiltonian is equivalent to
solving Lagrange’s equations for the Lagrangian:

= —mr = Vegl(r). (10.94)



94 CHAPTER 10. MECHANICS

This is a completely general result for the motion of a particle in a
central potential and could easily have been our starting point in this
problem (e.g., Goldstein, Chapter 3).

It may seem unnecessarily long-winded to go through this proce-
dure, but note that the sign of the angular momentum barrier in (10.94)
is opposite to what we would have gotten if we had naively replaced 8
with [/mr? in the Lagrangian (10.89). This is due to the fact that the
Lagrangian is a function of the time derivative of the position, and not
of the canonical momentum.

The equation of motion from (10.94) is

. d
mft = —— Eﬁ(f'). (10.95)

If the particle is in a circular orbit at r = ro we require that the force
on it at that radius should vanish,

Vg

= =0. (10.96)

Using our expression for Vel (10.93), we derive an expression relating
the angular momentum [ to the radius of the orbit ry:
2 k
———=—brp=0. (10.97)

mri 13

We are interested in perturbations about this circular orbit. Provided
the perturbation remains small, we can expand Veﬁ(r) about 7o,

Vor) = Vegro) +(r = ra)Vighro) + 5(r = o) Viglra) + -+ (10.98)

If we use this expansion in the Lagrangian (10.94) together with the
condition (10.96), we find ’

1, 1 ,
L= Emr' - E(r - ra)'Veﬂ(ro), (10.99)

where we have dropped a constant term. This is just the Lagrangian
for a simple harmonic oscillator, describing a particle undergoing radial
oscillations with frequency

1 {
w? = —V,g(ro). (10.100)
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Differentiating Veﬂ{r) twice gives us

3 2% ,

m—1_3—§+b—ﬂud. (10.101)
We can eliminate | between equations (10.101) and (10.97) to give the
frequency of radial oscillations:

1/2
o= (i + 9) . (10.102)

3
mryg m

To find the rate of precession of the perihelion, we need to know
the period of the orbit. From the definition of angular momentum I,
equation (10.91), we have an equation for the orbital angular velocity

o 1
Let us write r(t) = ro + €(t), where €(t) is sinusoidal with frequency w
and average value zero. We substitute r(t) into equation (10.103) and
expand in (t):

do l 2¢

T~ (1 -t O(e’)) . (10.104)
To zeroth order in the small quantities r3/k and €/rq, the period of the
orbit 7 is the same as the period of oscillations T = 27 fw. Therefore
we can average € over T; rather than T and still get zero, to within
terms of second order, which we are neglecting. The average angular

velocity is therefore

27 i k b
5y = e —— = — 4+ — 10.105
“ET Y e mr3 o ( )
where we have made use of (10.97).
Now consider one complete period of the radial oscillation. This
takes place in time T; = 27 /w. In this time the particle travels along
its orbit through an angle of

5 JEmr3 + b
6= 2x 0L _ gy VK/mr3 + b/m

w w;?k/mrg+4bjm
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~ o (1 - %’é) . (10.106)

In other words, the particle does not quite orbit through 27 before
the radial oscillation is completed. Each time around the perihelion
precesses backwards through an angle

3
560 = 3«%, (10.107)

and it gets around in time T3, so the precession rate is

_Tg_ k 2T

o 58 _ 3xbr3 yk/mrd + 4b/m

~ 28 (10.108)

b) When r is large enough that F, & —br, we see that the force is like
that of a linear spring. In this case the planar motion of the orbit can
be resolved into simple harmonic motion in each of its three cartesian
components. Thus the orbits will in general be ellipses; however, in
each case the sun will be at the center of the ellipse rather than at one
of the foci (as is the case for Newtonian gravity).
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Electricity &
Magnetism—Solutions

Solution 2.1. This problem combines two of the simplest geometries
which textbooks use to demonstrate the use of image charges to solve
boundary value problems, so we should not be surprised that image
charge methods work in this case as well. Let the line through the
charge ¢ and the center of the bulge be the z-axis, with the origin such
that the charge is at z = p (Figure 11.1).

-q z=-p

Figure 11.1.

We recall the rules of the image charge game: we want to replace the

a7
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conductor with a distribution of “virtual charges” in such a way that
the boundary conditions are satisfied. (See Jackson, Chapter 2.) If we
ignore the plane for a moment and concentrate on the hemispherical
bulge, it is easy to check that a second charge —¢', with ¢’ = ga/p, at
the point z = p' = a?/p leaves the surface of the bulge at a constant po-
tential V = 0. This is the standard solution to the problem of a charge
outside a spherical conductor. Now the trick is to introduce two more
image charges: one of charge —q at point z = —p, and one of charge
q' at point z = —p'. These two charges do not change the potential on
the hemispherical bulge, but now the potential also vanishes everwhere
on the infinite plane.

The beauty of image-charge techniques now becomes apparant. The
original charge feels the same force from a conducting infinite plane with
a hemispherical bulge as it would from a set of three charges with the
magnitudes and positions given above. So the force in the z-direction

is given by -
F= g ;2—', (11.1)
where the sum is over the set of image charges. Our final answer is
—q¢' qq’ q
F = + -
(- (e+p) (29

ap ap 1
- oy marte) 09

Solution 2.2. a) In order to make the assumption of noninteracting
free charges more plausible, we can imagine there being a background
of fixed charges ¢ = +e, so that the plasma is neutral overall. Such a
background could be provided by ions with mass m; 3> m; then their
contribution to the conductivity would be negligible.

We can write the incident plane wave in the form E = Eqei(**
The equation of motion for a single charge at position « is

mx = —eE, (11.3)

-ui)_
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which we integrate once to get
eE

MW

(11.4)

X =
The current density carried by the charges is j = —nex. The conduc-
tivity can be found from Ohm’s law, j = ¢E:

—ne?
tw

(11.5)

o=

b) For sources in a vacuum, Maxwell’s equations take the form:

V-E = —drne, (11.6)
V-B = 0, (11.7)
16B
VxE = —;E' (11.8)
10E 4xj
Taking the curl of equation (11.8), and using the identity
V x(VxE)=V(V-E)-VE, (11.10)

along with the assumption of constant density n we find
_vp=-12
V’E = ca:(V"B)‘ (11.11)

We may use (11.9) and Ohm’s law to write
1 8’E | 470 OE

g 202 AMIO0% .
VE=G%e T a o (11.12)
When we substitute in E = Egeil**~+#)_ this yields
2
2 _ W dmow
B=% i (11.13)

Using the result (11.5) for the conductivity gives

1
k= oyfw? -l (11.14)
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c) From this last result, it is easy to find the index of refraction:

2
n= “:J—k =y1- E-;l (11.15)

If w < wp the index of refraction is purely imaginary, and the wave
cannot propagate in the plasma.

d) In the presence of a magnetic field, the equation of motion is
mk = —eE — Sx x By, (11.16)

where in this problem By = Boz. We will investigate the propagation
of left- and right-circularly polarized waves (LHCP and RHCP, respec-
tively), traveling in the z-direction. For these two cases the electric
field is

; 1
E = Eoe't) | _(x £y
o€ [ﬁ(x:tly)]
Eqe'tk=-wtlg, | (11.17)

where &, (€_) is the polarization vector for LHCP (RHCP) waves. We
will use the basis (€4,€_,%), which has the useful relation é4 x 2 =
+iéy.

There are no forces on the charges in the z-direction, so we can
ignore that component in what follows. The position of the charge is
given by x = z+&, +z~&.. Assuming the time dependence of x is e*,
and substituting (11.17) into the equation of motion (11.16), we find

wt weBo

—muw?(zte, +27e ) = —eEoege ™t — (ztey —z7e), (11.18)

where the upper (lower) sign applies for LHCP (RHCP) incident waves.
This equation must be true for each component, so

E, .

+ el —— (11.19)

= mw(w + w,)
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provided that w # w.. where w, = eBo/mec is the cyclotron frequency.

Taking the time derivative of 2*, and using j = —nex, we find
2
* - _—ne'Bo 11.20
im(w+w,) (11.20)

Using this conductivity in the general dispersion relation (11.13) yields

w?
n=,[1— ——B— (11.21)

wlw+w)

Note that we chose to treat the plasma as consisting of noninter-
acting free charges in a vacuum, so that € = 0 and o # 0. The same
result for the index of refraction can be derived if we treat the plasma
as a dielectric, with a complex € # 0 and a conductivity ¢ = 0.

The difference between the indices of refraction of left- and right-
handed circularly polarized light leads to Faraday rotation, an effect
used to measure the density of electrons in a magnetic field.

Solution 2.3. a) For an object of length L, cross-sectional area A,
and conductance o, the resistance is

L __L
oA~ onb?

This result is easily derived by comparing Ohm’s law in the two forms
V = IR and J = ¢E. Thus, the resistance of the cylinder is L/oy7b?.

b) We will treat the physical resistor with the defect as a group of

R= (11.22)

ideal resistors. We make the following simplifying assumptions about
the geometry of the defect:

e it is a cylinder of radius a and length a,
e concentric with the cylinder of the physical resistor, and

e and centered lengthwise on the center of the physical resistor.



102 CHAPTER. 11. ELECTRICITY & MAGNETISM

Assume the defect can be viewed as an ideal resistor in parallel with the
portion of the physical resistor which surrounds it. (See Figure 11.2.)
We may then write

Figure 11.2.

1 1\

Reot = Ry + (m + R,) + Ry, (11.23)
where Ry is the resistance of the defect, R, is the resistance of each of
the two pieces of cylinder of length (L/2 — a/2) that are “unaffected”
by the presence of the defect, and R, is the resistance of the cylinder
of radius b missing a core cylinder of radius a. Using our formula for
the resistance (11.22) we may immediately write

_L/2—a/2 _a _ a
By = oywh? Ra= o,ra?’ and R, = oyx(b? — a?)’ (11.24)
If we assume b > @ and crunch through the algebra, we find
. L a3(og — 01)
Rioe ~ o2 x(oyb2)? (11.25)
and the change in the resistance to first order is evidently
(g, —
sR~ L= 1) (11.26)

w(ob2)?

c) To calculate the current in the defect, now considered spherical,
it is simplest to solve for the potential everywhere. We set up a system
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of spherical coordinates, with the center of the defect at the origin, and
measure # from the axis of the resistor. The azimuthal symmetry allow
us to expand the potential in the form:

3(r,0,¢) = &(r,8) = Y _(Ar' + Bir ") P(cos §), (11.27)
i

where the Pi(cos8) are Legendre pulynomials. (See Jackson, Chap-
ter 3.) Let E; be the electric field inside the defect and E,; the field
outside. We have the following boundary conditions:

1. Within the main portion of the resistor, very far from the defect,
the current distribution jp is uniform across the circular cross-
section and is parallel to the axis of the resistor, the z-axis. Thus,
J1 — joz as z — *oco. This means that the electric field must
satisfy the condition E; — joz/o1 as z — too (from the relation
j = oE), which gives us the following condition on the potential
outside the defect:

¢ — —aLjor cosf as z — too. (11.28)
1

2. The electric field E; inside the defect must be finite at the origin.

3. The tangential component of the electric field must be continuous
across the boundary at r = a, because the curl of E must vanish.

4. We may use the continuity equation V -j = —8p/8t to see that
V -j =0, since we have a steady current. Therefore, the normal
component of j is continuous across the boundary, resulting in a
discontinuity in the normal component of the electric field,

O.IEIJ' = O'zEzi at r = a. (11.29)

From this we see that there is a charge build-up at the surface of
the defect.

The first boundary condition leads to a big simplification. Because
J is proportional to cos# as z — oo, and Pi(cosd) = cosf, only
the [ <1 terms in the expansion of ¢ will survive. Thus, we use the
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symmetry of the problem to set By = 0 for [ > 1. Using (11.27), the
most general potential commensurate with the first boundary condition
is:

__Jo 9)
3, (r,8)= o (r + 3 ) cos 8, (11.30)
Bs(r,0) = (Dr + sz) cos 6. (11.31)

The second boundary condition implies that ®, may only have pos-
itive powers of r, so that F = 0. If we note that the tangential compo-
nent of E is By = —(1/7)(8%/98), the third boundary condition allows

us to write
E,;, = Dsinf = E,, = —--j—o(l + g—)sin g. (11.32)
] ] o1 a3
The final boundary condition, where E; = E. = —d®/0r, yields
6=o0 B =i 2C P
03Bz, = —aD cos8 = a1 Ey, = jo (1 - ;—5) cos.  (11.33)

Now we use the last two equations to solve for D:

3Jo
D= T iger (11.34)
Thus,
’ 3)’:; A
d,(r,0) = — (62 Taar) T Cost 11.35)

Finally, we write j; = 0:E; = —0,V @, and find the current inside the
defect in the resistor:

j:= (—3'?—0——) (Fcos 8 — Gsin6). (11.36)

14 20,/02
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Solution 2.4. a) In this simplified model of an antenna, the charge is
zero everywhere except at the ends of the wire, z = +1/2, where there
will be time-dependent charges +Q(¢), respectively. We can find @Q(t)
from the current in the wire

Ef-ga% = I(t) = Iy coswpt, (11.37)
which we integrate to give
Q(t) = —51n wot . (11.38)
The dipole moment p is Q(t) times the separation of the charges,
l Il . ;
p=20Q(t )5 = Esmwotz. (11.39)

(Note that in a more realistic antenna problem, the current would not
be a constant along the wire, and the charge density would be nonzero
everywhere along the antenna.)

b) Let us choose the Lorentz gauge, in which the potentials satisfy

104 _
VoA+oo =0 (11.40)

The current density J in the antenna is

| Iycoswoté(z)é(y)z —1/2 <z < 12,
Ix) = { 0 otherwise, (21.41)

and the vector potential A is

ik|x—x'|

A(x) = % ] I(x) . (11.42)

=]

If r » I, we may approximate |[x — x'| &® r — fi - X/, where 0 is the
unit vector along x and |x| = r. We substitute this approximation for
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|x — x'| into the exponent. For the denominator it is sufficient to let
|x — x| = r. We then obtain

"h -
Alx)~ S f I(x')e= kX P, (11.43)
cr
Integrating over 2’ and ¥’ and letting f - Z = cos § where # is the angle
between 1 and the Z-axis, we find
AG) m 3 [ Lot o8 cog gt da 11.44
(x) = i— o o€ cos wo (11.44)
(where wy = ck), which integrates to give:

. 2Ipe™* | (Kl
Ax) ~ C— (? cosﬂ) cos wot. (11.45)

(Note that for small kl, this reduces to the ordinary dipole far-field
approximation: A(x) a2 [Iole’™ cos wot]/cr.)
Next we find the scalar potential ¢, which is

eiklx-x
#(x) = f o) s (11.46)

As in part (a), the charge density is zero everywhere except at the ends
of the wire, where its integral is +@Q(t). Making the same approxima-
tions for [x — x'| as above, we find

#(x) ~ ———¢*"sin (g cos 6) sinwot . (11.47)

c) To obtain the radiation pattern, we need to examine the power
per unit solid angle dP/d§2, which is proportional to |B|?. For r > A,
we note

B =V x A ~ikix A. (11.48)

In spherical coordinates,

it = Zcosf + ¥ sinfsin ¢ + X sin f cos ¢, (11.49)
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which leads to
|B|? ~ k?|A,|* sin? 6. (11.50)
Therefore, the radiation pattern is given qualitatively by
dP . ,(kl 2
7 & & (2 cos 8) tan®4. (11.51)

This may be contrasted with the ordinary dipole pattern, which is
proportional to sin? 4.

Solution 2.5. We wish to find the angular velocity of the wheel w(t)
and the current in the circuit I(t). First we define the current to be
positive if it flows out of the positive terminal of the battery. Let the
origin of our coordinate system be at the hub of the wheel and Z be
parallel to B. Then if r gives the position along the current-carrying
spoke of the wheel, the force on an infinitesimal element of this arm is

dF = édr x B. (11.52)
The torque on the wheel is therefore
- RIB .
sz—frxdF_ ["Zrirs, (11.53)
which leads to IBR?
Jwz = % z. (11.54)

We now have one equation relating w(t) and I(t). To find a second
equation, we set the power delivered by the battery equal to the power
absorbed by the rest of the circuit:

v =1(2d)+ 3 (352), (11.55)

or

1(V-LI) = Juw. (11.56)
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Differentiating the torque equation (11.54) gives

: . [ 2

i=Jo(5)- (11.57)

Substituting this expression into equation (11.56) and using (11.54) to
cancel a common factor of I leads to a second order differential equation

for w(t):
. (R*B\* 1 R’B
@+ (T) 7Y = %L (11.58)

This equation has the general solution

2V
BR?’

where C and D are constants to be determined from the initial condi-
tions and

w(t) = Ccos Ut + DsinQt + (11.59)

0= R?B
2e/LJ '
To find the coefficient D we note that at ¢ = 0 there is no current.
Because I(0) = 0 and because w is proportional to I(t) from equa-
tion (11.54), we have w(0) = 0 and thus D = 0. To find C we note
that at £ = 0 the wheel is at rest, and thus w(0) = 0. Therefore
C = —2cV/BR?, and the final solution for w(t) is

(11.60)

2cV
w(t) = FE’-(I — COs Qt) (1161)
We then use equation (11.54) to find
I(t) = lsi::tﬂt (11.62)
= . .

This problem can also be solved by the application of Kirchoff’s law
instead of the conservation of energy equation (11.55). When setting
the sum of the voltage changes around the circuit equal to zero (Kir-
choff’s law), one must include the voltage induced by the changing flux
through the circuit.
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Solution 2.6. Since there are no currents in this problem, we may
consider the cylinder to have a magnetic surface charge density on each
end. It can be shown (see, for example, Jackson, Chapter 5) that the
effective magnetic surface charge density o is

o=h-M, (11.63)

where 11 is the unit vector directed out of the surface. Since L > R,
we may ignore the effective magnetic surface charge density on the end
of the cylinder farthest from the infinitely permeable ceiling. The mag-
netic surface charge density o at the end nearest the ceiling will induce
an image surface charge density —o. Let us displace the cylinder a
distance e from the infinitely permeable ceiling (Figure 11.3). The ge-
ometry is that of a parallel plate capacitor with a separation 2¢ between
the magnet’s surface and the image charge, which appears a distance €
into the ceiling.

Figure 11.3.

In analogy with a parallel plate capacitor, the electric field caused
by the image charge, evaluated at the position of the magnet’s surface,
is8 B = 4ro. Thus the upward force on the magnetic surface charge
density is 472 R%*c? = 4x? R M?.

We wish to find L such that this magnetic force just balances the
gravitational force:

mg = tR?Lpg = 4x’R*M?, (11.64)
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which leads to
M?
L=4r>—. (11.65)
gp

Solution 2.7. We have the circuit as shown in Figure 11.4. We need

Figure 11.4.

the differential equation giving the behavior of V(t,z = jI) = V(2).
First we note that Q; = C'V;, and Q; + I;41 = I, so that

1

V; = (I = Lin). (11.66)
Furthermore, we can use the definition of inductance to write
LL=V, -V, (11.67)

Taking the derivative of (11.66) and using equation (11.67) to eliminate
the current, we have

i = (Vi =2V + Vi) (1168)

Now we assume that V(1) is a periodic wave, or
Vj(t) = Voe'lith—wt) (11.69)
where k = 2x /). Equation (11.68) then reduces to the desired disper-

sion relation:
wilC
> .

cos kl = (1 (11.70)
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The cutoff frequency is given by the condition
w?LC

|1 - <1, (11.71)

which gives .
e = ———. 11.72
We = s (11.72)

Waves with frequencies greater than w, will not be transmitted by the
transmission line because k will have an imaginary component that will
attenuate the wave.

Solution 2.8. A black stripe on a negative means that there was a
maximum in the light intensity at that position. We want to find the
positions of those maxima along the photographic plate.

a) The maxima will occur when the incident and reflected plane
waves interfere constructively. Since there is a 180° phase shift upon
reflection from the mirror, the condition for constructive interference is

%(2r}+r =n(27), (11.73)

where h is the height of a point of maximum intensity on the plate
above the mirror and n is a positive integer. Solving for h gives

h= @,\. (11.74)

From Figure 11.5, h = dsin ¢, so

(2n—1) A (11.75)

d= 4 sina’

Thus, the black stripes are regularly spaced a distance A/(2sin a) apart,
and the first is at a distance A/(4sin @) from the point of contact of the
plate.
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A
Figure 11.5.

b) The plane of incidence is defined by the k-vector of the incoming
plane wave and the vector normal to the mirror’s surface (Figure 11.5).
Consider light polarized with E perpendicular to this plane. It will
undergo a 180° phase shift upon reflection. The path difference between
incident and reflected waves is a = /2 h, so

@(21) +7 = n(27). (11.76)
Using h = dsin e, we find the positions of the black stripes:
2n —1
d=—"——-—) 11.77
2\/2sina ( )

The next case is trickier. If the light is polarized in the plane of
incidence, E has components both parallel and perpendicular to the
plane of the mirror, so one component undergoes a 180° phase shift,
while the other does not. The incident E is at a 45° angle to the mirror,
so we describe the time-independent portion of the incident wave as

By
E; = —5(i+), (11.78)

and the reflected piece as

= B0 Fcon (22 1) s (222)]
E,—ﬁ[tcos( 5ot Hacos (-], (11.79)
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where i and j are unit vectors in the plane of incidence, tangent and
perpendicular to the mirror’s surface, respectively. Adding these con-
tributions together we find

= % {i [1 + cos (%T“ + ':r)] +3 [1 +cos (hTG)] } . (11.80)

We are interested in the intensity, which is proportional to |E[2. We
find

A
It is evident from the equation above that the intensity has a maximum
when 2ra/) = n7, or @ = n)/2. Solving for d we find that the stripes
are at positions given by

IE]? = E? [1+co (2")]. (11.81)

nA
d = ——el 11.82
2v/2sina ( )
Notice that all the black stripes present when the light was polarized
perpendicular to the plane of incidence appear, as well as new stripes
midway between the old ones.

Solution 2.9. 2) Since both the interior and exterior regions are free
of sources, the electrostatic potential will satisfy Laplace’s equation,

V26 =0 (11.83)

everywhere except at r = b. The specification of the potential on the
split cylinder and at infinity is sufficient to ensure the uniqueness of the
solution.

The geometry of the problem dictates that we work in cylindrical
coordinates (r, ¢,z), with the split at ¢ = 0 and at ¢ = x. Laplace's
equation (11.83) then has the form

13( a@) 18% a=<1>

Ve = - "o ) trag =0. (11.84)

ror
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Qur first step is to note that (by translational symmetry) our so-
lution will be independent of z. In this case, the general solution of
equation (11.84) is (see, for example, Jackson, Chapter 2)

B(r,¢)=ao+ bolnr + Z a,r"sin(ng + a,) + E bar ™ sin(ng + Bn).
" (11.85)
Consider the interior region with potential ®;,(r, ¢). We demand
that the potential be well-defined at » = 0. This immediately tells
us that b, = 0 for all n including n = 0. A further simplification
occurs if we note that with our choice of coordinates, the problem is
antisymmetric under ¢ — —¢. Hence we require that ag = 0 and
a, = 0 for all n. Then the potential inside the cylinder takes the
simpler form -
Pin(r,8) = Y_ anr"sinng. (11.86)
n=1

The boundary conditions are

(b, 4) = { s ‘; <t (11.87)

To solve for ®;, , we take the series expansion (11.86), set r = b,
multiply both sides by sinmg, and integrate over the range -7 < ¢ <
me

f' désinme &;,(b, ) = i a,b” f* d¢sinng sinme = ranb™.
I n=1 -

(11.88)
If we substitute the boundary conditions from (11.87) and do the inte-
gration, we get

-2V
ﬁb'“m

(-1~ - 1]={ v /E;nb"', e (1189)

This gives us the solution for the interior region:

A& (r)wl sin(2n + 1)¢
=2y (7)) el

in T n+1

(11.90)

n=0
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The procedure to find the exterior potential is entirely analogous,
except that we now demand that .., be well-behaved as r — oco. This
implies that by = 0 and a, = 0 for n > 1. The result is that

AV & (b " sin(2n +1)¢
Pert = TE (—) “ontl (11.91)

b) To find the surface charge density o(@) we use the standard result
(easily derived from Gauss’s law) that

(E; — Ey) - = 4r0, (11.92)

where E; and E; are the electric fields just inside and just outside the
cylinder, and i = t is the unit vector normal to the surface of the
cylinder.

Since E = —V® and E- i = — 8%/8r| _,, the left-hand side of
equation (11.92) is simply the discontinuity in 8% /0r across r = b, and
the surface charge density is given by

L aéut _ aQiu
dx | Br or |

(11.93)

o=-

If we substitute into this potentials (11.90) and (11.91), we find

2Vo &
= Z_zz sin(2n + 1)¢ (11.94)

To sum this infinite series we can use a trick which we will later justify.
First we write the sine as a sum of two exponentials and note that we
have two geometric progressions:

gsin(zn +1)¢ = 20,2}; (e(m-n)-'é _ e—(:nﬂ)#) . (11.95)

As they stand, the sums are not well defined, as the individual terms
do not go to zero. However, if we add a small imaginary constant 8
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to ¢ in the first series and subtract it in the second, we can do the
summation:

o~ ((anH1)(i#-8) _ g—(ant1)(i#4+8)) _
>

n=0

1 — e?id-26 | — g-2i6-26|°
(11.96)
Physically, adding a small constant 16 to ¢ is equivalent to summing
the series in equation (11.93) before taking the limit » — b, in which
case all the sums converge. We can now take the limit § — 0 to evaluate
the sum:

[ eid-6 e-ib—6

E sm(2ﬂ + 1)¢ - m (1197)
Therefore the charge dens1ty distribution is
_ W

c) So far we have ignored the finite separation e of the plates.
This separation becomes important if we integrate the charge distri-
bution (11.98) to get the total charge per unit length on each plate; the
integral is logarithmically divergent at ¢ = 0 and .

Since the plates are € apart, and the cylinder has radius b, we let ¢
run in the range

/26 < p <7 —€f2b (11.99)
for the top plate, and
—m+€ef2b < ¢ < —€f2b (11.100)

for the bottom plate. The capacitance per unit length is C = Q/V.
Here V is the voltage difference, 2V5, and @ is the charge per unit
length on each plate. We have
el W /n dp 2V (*/1 dg
Q= -/zf:b bdgo(¢) = w2 .[;'zb sm¢ 72 e/2b sm¢ (11.101)
We make the substitution u = cos ¢ to find

2V e du 2V w1 1 1 ]
Q T b l—u’-ar’/o dui 1+u+1—u
Vo, 14y
= —In 11.102
ﬂ_z ].*-tlo’ ( )
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where up = cos €/2b = 1—¢?/8b*. We may then solve for the capacitance
per unit length:

Q 1 ) 14+1—¢€/8% 1 1647

C=§i€“§§“*—}?fabz—”~§;;5n—éz—, (11.103)
which may be simplified to give
1 4b
Cm_ln—. (11.104)

Soiution 2.10. a) For nonrelativistic motion of an accelerating elec-
tron with velocity v = ¢, the electric component of the radiation field
is (see Jackson, Chapter 14)

E=__8[M] ‘ 11.105
¢ R ret ( )

at a distance R in the direction fi from the electron. The expression in
brackets is evaluated at the retarded time t' =t — R/c.

The magnetic radiation field is given by B = i x E, and the energy
flux by the Poynting vector:

- £ - S IE”%h
§= = (ExB)= ~|EPi (11.106)

The angular dependence in |E| comes from the cross-product i x 3.
Let @ be the angle betwen the line connecting the electron and the
nucleus, and the line connecting the electron and the observation point
(at time ¢'). Then fi x 3 is proportional to sin 4, and from (11.106) the
radiated power varies as sin? 4.

b) To find the polarization of the radiation, we observe that the
vector i X 3 defines the normal to the plane containing the electron,
the nucleus and the observer. From equation (11.105) we see that the
electric field is perpendicular to this normal — i.e., it is in the plane



118 CHAPTER 11. ELECTRICITY & MAGNETISM

— and also that it is perpendicular to the line between the charge
and the observer. This is sufficient to define its polarization. Al-
ternatively, we could write the (unnormalized) polarization vector as
€ = —ii x (fi X Z), where Z is a unit vector pointing from the electron
to the proton.

c) For v < ¢ we can ignore the complication of having to evaluate
the fields at retarded time. So

|E| ~ CM |Bsm9[ (11.107)
and therefore the Poynting vector is
e? 3
R R’ﬁ sin’ 8 f. (11.108)

We can integrate this over a sphere of radius R centered on the charge
to get the total power radiated:

fdQR’ n_fdn

::.-3 dé j d(cos 8) (1 — cos? ) =

mn2 )

P

2ea

il

(11.109)

(where a/c = B ), which is the well-known Larmor formula.

By assumption we are neglecting the force on the electron due to
radiation reaction, and so the acceleration of the electron is due simply
to the electrostatic force between it and the nucleus, F = Ze?/r?.
Hence our expression for the energy radiated per unit time when the
electron is at a distance r from the nucleus is

ze=) T 072

= o (11.110)

P(r)_-—-(

mr?

where m is the mass of the electron.

d) To evaluate the total power loss, we have to use the simplifying
assumption that the total energy radiated is small enough that we may
ignore its effect on the motion of the electron. (In fact this is no more



2.10. FALLING ELECTRON 119

than restating that we are ignoring radiation reaction.) Hence we can
use conservation of energy,

21 L 2o

To = Emv - T, (11.111)
to find the velocity squared:
2
v = 228 (1 - l) . (11.112)
m T To
The total energy radiated is
£= fa't‘P fd y |— P(r) (11.113)

where dt/dr = 1/v, which is less than zero because the particle is
falling inwards. Substituting for the speed of the particle from equa-
tion (11.112) gives us

m 272%e8
£= 2Ze? f (1/r — 1/,—0)1-“" 3m2c3rit’ (11.114)

We have to evaluate the integral

dr' 1

) N A 11.115
-/: (1) = 1fmp)" /2114 ( )

If we make the substitution 1/r' — 1/ry = w?, dr'/r'? = —2wdw and
define w? = 1/r — 1/ry, then this becomes

0 2wdw ( , 1 2
I = j (w +E) (11.116)

wy w

1 /71 1N\Y* 2 -1 3211 1n\¥2
=[G G G
e \r 1o 3rg To S\r mg

Thus the total radiated power is

3/2 5 1/2 2
g___(%) e_(‘"_ﬂ_l) g+ 3l
m 45c3r5/* \r r 2




Chapter 12

Quantum
Mechanics—Solutions

Solution 3.1. a) We assume the reader is familiar with the separation
of the wavefunction into angular and radial parts when the potential is
spherically symmetric. The result is the radial equation for a modified
radial wavefunction u(r) = rR(r), where ¥(r,8, ¢) = f(8, #)R(r) :

_hz z(:+ 1)&’

u(r) + {V( )+ u(r) = Eu(r). (12.1)

Naturally, the condition for the minimum value of ¢ will arise when
there is only one bound state, which will obviously be the ground state,
with I = 0. Since V — 0 as r — oo, the bound states have E < 0, so
we are left with (for r # a)

&%u(r) — k*u(r) =0, (12.2)

where k? = 2m|E|/h?.

Denote the regions r < a and r > a as regions I and II, respectively.
The wavefunction in region I is

ur(r) = Asinhkr, (12.3)

120
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because u(0) = 0, and in region II
urr(r) = Be ™™, (12.4)

so that u(r) vanishes as r — co. Since we require the wavefunction to
be continuous across the delta function at r = a,

Asinhka = Be™*e, (12.5)

The condition on the derivative of u(r) is found by integrating the
radial equation across the delta function:

—h2 jote g2 ate a+e
% u_: ﬁu(r)dr - c[u_': 8(r — a)u(r)dr = /a_‘ Eu(r)dr. (12.6)
The integrations give
w(a+€) —u'(a—€) = —du(a) — O(e), (12.71)

where A = 2mc/h?. Letting e — 0 gives
ui(a) — ui(a) = —Au(a). (12.8)

Taking the derivatives, using (12.5), and rearranging the terms leads
to a transcendental equation,

" coth ka = (:—Z - 1) . (12.9)

The curves in Figure 12.1 must cross in order for there to be a solution.
Consider the region z = ka — 0. For small z we can write

cothz = i [1+0@Y)], (12.10)

so that, instead of the transcendental equation (12.9) we need to solve

1 Ja

—=—-1 12.11

12, (1211)
or z = Aa—1. In order for there to be a solution with z > 0, we require

da—1>0,or c>h*/2ma.
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yh

V/\ y=coth(x)
IS | ST y =lafx o ‘J .............................

Figure 12.1.

b) In the limit of small incident velocity, we can consider a partial-
wave analysis where only the [ = 0 term is important. In this limit the
scattering will be isotropic.

To find the cross-section, we will need the following results from the
method of partial waves:

£6) = %i(zu1)3*‘l5in5,ﬁ(cosa), (12.12)
=0
a(8) = [f(8) (12.13)

Since we are ignoring all but the I = 0 term, we proceed to find the
[ = 0 phase shift. First we write down u(r) in regions I and II,

ul(r) = Asinkr, (12.14)
us(r) = B(sinkr + tanéocoskr), (12.15)

where the form for u(r) was chosen for its convenience and is equiv-
alent to the form sin(kr + &). Once again we match the wavefunction
and evaluate the discontinuity in the derivative at r = a using equation
(12.8), finding eventually

Asin? ka

k — Acos kasin ka’ (12.16)

tan&o =

In the limit of small k, sinka = ka and cos ka =~ 1. Taking this limit

we find
Aka?
tan §p =~ —

. (12.17)
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Using the expression

1 tan 50

_ 1 ido .t _ =
fo= g sindo = oo

(12.18)

and using the | = 0 term from the partial-wave cross-section, ¢ =
4| fo]?, we find that
4m )\t

o = 4xlfol’ = T s T 3ap (12.19)

Solution 3.2. a) In the space between the walls we have a free particle,
so we may separate variables and write the wavefunction as a sum of
plane waves,
¢ — ZAkeiik.zei-ik,ueiik,z. [1220)
k
This wavefunction is subject to the boundary conditions¢¥ = 0atz =0
and z = D. This leads to

¢ =Y Aygsin k,ze*hvetthes, (12.21)
k

where k. D = nw. The ground state has k. = v/D and k, = k, = 0,
and thus the energy of the ground state is

hix?

Ees = 33107

(12.22)

b) An adiabatic change means a change such that the particle re-
mains in an energy eigenstate with the same quantum numbers (here,
the ground state). This means we may replace D with 2D in our ex-
pression for Eg, in order to find the subsequent energy:

22
. hi*m

g8 - SM_I):. ) (12.23)



124 CHAPTER 12. QUANTUM MECHANICS

The change in energy is therefore

3/ a2\ 3
AE=3 (m) = 7B (12.24)

Now we will do the classical calculation. Suppose that at some
instant the walls are a distance s apart, and the ball is bouncing with
speed v between the walls. For simplicity we will consider one wall
fixed. If the other wall is moving slowly, the ball will hit it at a rate
2s/v, and the average force on the wall will be

ﬂf 2
F=2My =22
2s s

(12.25)

The energy lost by the ball during the expansion is £ = [ F'ds, and

this is equal to the change in its kinetic energy, £ = ;M (v3 — v?). We

differentiate to get F' = de/ds, so

Mv? d1 2 3 dv

P = ZEM(UO—TJ )— —M‘vz,

or dv/ds = —v/s. We solve this to find v(s) = voD/s. This shows us

that when the walls are a distance s = 2D apart, v = vo/2 and the
change in energy is

(12.26)

AE = %M (ug - %»g) -

%E,,, (12.27)

which is identical to the quantum-mechanical result.

c) In the case that one wall is moved rapidly, we can make use of the
“sudden approximation” (see, for example, Messiah, Vol. II). At the
moment that the change is made, the wavefunction will be unchanged
for z < D, and zero for z > D (See Figure 12.2):

If? i EE
= ﬁsmﬁ 0 <zr< D
(=) { 0 D<z<2D (12.28)

If we calculate the energy, i.e., if we take the expectation value of the
operator —k*V?/2M, it is clear that for z < D we get the same as in
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Y(x) rapidly

¢ ) ———-L— D —» oved
| wall
|

TN

Figure 12.2.

part (a) and for z > D we get zero. Hence the expectation value of the
energy is unchanged.

However, the particle is no longer in an energy eigenstate, but in a
superposition of eigenstates of a system with two walls that are sepa-
rated by 2D. The ground-state wavefunction for this separation is

1
v=7p

and the probability that the ball is in this state is given by the square
of the overlap a where

a=fDDd: (\gsin %) (\gsin%) = % (12.30)

Therefore the probability of the particle being left in the ground state
is P = 32/9x2.

sin — (12.29)

2D’

Solution 3.3. a) The general form of the Hamiltonian in the presence
of an electromagnetic field is

H= % (p - EA)2 ted, (12.31)
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where A and ¢ are the vector and scalar potentials. A convenient choice
of gauge which minimizes cross terms in (12.31) is

A =(Bz,0,0), ¢=-Ez, (12.32)
where we can check that B =V x A and E = —V¢. The Schrodinger
equation in this gauge is

Hy = [% {(p, - sz)z + 9 +p2} - eEz] v=Ep, (12.33)

with £ the energy.

b) To separate variables, we note that equation (12.33) has no terms
involving either z or y, which suggests a simple solution for these two
variables. It is easy to check that the solutions in the z- and y-directions
are plane waves, so we write

¥(z,y,2) = e=THVY(2), (12.34)

Substituting this into the Schrédinger equation gives

[% { (k. - EB::)1 +h2K2 +p3} - eEz] $=£9, (1235

which is a one-dimensional problem.

c) Rearranging terms and collecting the constants into £ gives us
the equation

B Ec\?
{pg + ("Tz — Rk, — "‘B ‘) } ¢=E9, (12.36)

which we recognize to be that of a simple harmonic oscillator (centered
around a point other than the origin). The expectation value of z in
this case is simply the position z where the potential is a minimum:

m’Ec) . (12.37)

() = 5 (ke + 5
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We want to find the expectation value of v,. Using the standard result

that ihv = 1hidz/dt = [z, H] and the commutation relation [z, p;] = ik

we find . B B
e ¢

(ve) = m ((Ps) - ‘E-(z)) = —— (12.38)

where we have used (p;) = fik,.
We recognize this as the classical result, found by requiring that the
total electromagnetic force on the particle in the z-direction vanish:

F,=e(E+%xB)-i=0. (12.39)

Solution 3.4. We can write the Hamiltonian as H = Hy + V', where

— P_2 i 2,2, .2
Hy, = om + 2k(z +y* +2%), and (12.40)
V' = qAe WV (12.41)

and where V'(t) is assumed to be small.

It is usually easier to solve problems involving a simple harmonic
oscillator potential using raising and lowering operators. We can write
the unperturbed hamiltonian Hy as

Ho = hw(ala, + ale, + ala, + %), (12.42)
where we have defined:
[k
“L = p,) , (12.44)

mw)‘-""( i
%) "7 mw

(
@z = (,;;:,)m (=.+ %p,), (12.45)
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with analogous definitions for a,, al, a., and a}. The operators a and
a! are the annihilation and creation operators from which we can form
the number operator,

a'aln) = nin), (12.46)
where n is some integer. The eigenstates of Hy are therefore
In) = |nz,ny,n,), (12.47)

where nz,n, and n, are integers. The energies are given by

3
Ho [ne,ny,ns) = hw(ng +ny, +n, + E) [Py Pyy s ). (12.48)

Using the eigenstates of Hy as a basis we can write an arbitrary
wavefunction as )
[p) =3 en(t) In)e™ /R, (12.49)
n

where the cq(t) are complex coefficients. If the initial state at £ = —co
is |s), then ¢,(—o0) = 1. According to time-dependent perturbation
theory at £ = 400, to first order in the perturbing potential V7,

1

+oo . ; 2
lea(+00)* = = f Vi (t)enst' dy!| | (12.50)

where V2, = (n|V'|s), and wps = (En — E,)/h. This result is not hard
to derive from Schrddinger’s equation if we write the wavefunction in
the form (12.49). In this problem, s labels the ground state: s =
(0,0,0). Therefore the probability that the system is in any excited
state at £ = 400 is given by the sum

P=7Y |ea(+o0)). (12.51)

n#s
To evaluate this sum, we need the matrix elements of V'(2), which are
(nz,ny,n, [V'(2)]0,0,0) = qu_{‘h),<“=1 ny,n.2]0,0,0).  (12.52)

Rewriting z in terms of the raising and lowering operators, we can see
that V' only connects states whose values of n, differ by one, so that

H
V!, = gAe~t/mP ( 2L ) bnet a0 By, (12.53)

mw
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and only one term in the sum is nonzero. The desired probability is

— 1 2 42 2
P= g A |I, (12.54)
with -
I= _[ e(t/) givtgy, (12.55)

This integral can be evaluated by substituting « = ¢/7, completing the
square in the exponent, and evaluating the resulting gaussian integral.
This yields

2422
P= %w%’le-w’f’ﬂ. (12.56)

Solution 3.5. We can analyze this problem using the method of
partial waves. A good reference is Cohen-Tanoudji, Volume 2.

a) A resonance is associated with a certain partial wave, and has
the angular momentum quantum number ! of that partial wave, whose
angular dependence is described by a Legendre polynomial, F;. The
question tells us that the contribution from the resonance is nonzero
everywhere except at § = x/2. The only Legendre polynomial satisfying
this condition is P, and so we deduce that the angular momentum of
the resonance is J = 1.

b) We need three results from the method of partial waves:

fuld) = %§(2I+1)e“‘sinﬁgﬂ(ms€), (12.57)
1=0

o(8) = |fu(8)7, (12.58)

ot = i—:hzo(2¢+l)sin’£;. (12.59)

Far off resonance, the cross-section is isotropic, so only the [ =
0 term is present in f(4). On resonance we also pick up the | = 1
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term. Thus we can simplify the expression for the total cross-section
at resonance (12.59):

op = i—:(sif 5o + 3), (12.60)

where we have used §; = w/2, which corresponds to the peak of the
resonance. We are given gy = or and k? = k} on resonance, so we
can solve for sin? &, there:

. ko 1
sin? 8 = ( ix“ - 3) ~ 3 (12.61)

We want to find the differential cross-section at # = x, so we write
out the two relevant terms of f(#) and square their sum (being careful
because f(8) is complex), and insert the above expression for sin? .
In the end, we find that

or(6) = é{s _ 5sin? 6] = 6.5 x 10-2%cm?. (12.62)

Solution 3.6. a) The Schrédinger equation for the two-component
wavefunction ¥ of an electron at rest in a uniform magnetic field is

9sH1B o QE
5 S-B-¥ =ik e (12.63)
In this equation, the Bohr magneton is pp = efi/2m.c, m,. is the elec-
tron mass, and g is the electron’s gyromagnetic ratio. The spin is
S = lio /2, where o is the vector of Pauli spin matrices, presented here

for ease of reference:

w=(10)m=(87)e=(0 5) coe

If we write B = Bypz then the eigenstates are

T4(t) = ( é ) e and ¥,(t) = ( E ) e, (12.65)
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where Q = pgBy/h.

Initially the electron has its spin pointing in the z-direction. This
means that at ¢ = 0 the wavefunction ¥(t) must be an eigenstate of
the o, matrix, namely

Y(t=0)= _1\/_5 ( . ) . (12.66)

Alternatively we can write this in terms of the eigenstates (12.65). Then
for arbitrary time the wavefunction is given by

W)= O+ =25 (Tar ). 26D

We can now calculate the probability of finding the spin in the z-
direction at time ¢ :

o - et o= (1) ()

= g cos 20t (12.68)

We can also find the other components of (S()):
{5,) = gsinﬂ]t and (S;)=0. (12.69)

So we see that the spin precesses around the magnetic field with an
angular precession frequency of 21).

b) When an additional time-dependent magnetic field B, is applied,
it is tempting to try to use perturbatior theory. However the question
makes no mention of B, being “weak.” Instead, we find an exact solu-
tion.

Our first step is to express the interaction term in a useful form:

_ Bo lBle""‘"
B o= ( %Ble"wt 3 —Bo ) . (12-70)

Now we substitute this into the Schrodinger equation (12.63) and look
for two solutions of the form

w0 = (5o )- (12.1)
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This form can be motivated as follows. We can see that the wave-
function cannot have a simple exponential time dependence, as the
Schrédinger equation couples the two components in a nontrivial, time-
dependent way. However the time dependence of the interaction is
simply that of an exponential, and we can hope to find a solution which
is some combination of exponentials of different frequencies. In fact
this turns out to be the case, as we will see. If we insert our would-be
wavefunction (12.71) into the Schrédinger equation (12.63), we obtain
the following linear equations in a and b:

. (Bue‘w-'a + %Ble"{‘““"}‘b) = —huwgea, (12.72)

. ( % B, eilweto)ty _ Beiwst b) = —hue™sth, (12.73)

QOur first condition is that within each equation, the time depen-
dence of all the terms should be the same, which requires

Wy — Wa = W. (12.74)

Before we derive the other conditions, we note that we can set a = 1
without loss of generality. Further, for sake of clarity let us define g8 =
upBy/2h After we cancel the common exponential time dependence,
our equations now reduce to the simple form

—wa = Q + Bb, (12.75)
Cw = -+ % (12.76)

If we combine these with equation (12.74), we obtain a quadratic equa-

tion for b: 1
m_wa=w=29+ﬁ(b—3), (12.17)

or equivalently,
20
B —b 3-—)_1=o. 12.78
( .-z (1278)

We can solve this to find the two possible values of b, and then, from
equations (12.75) and (12.76), obtain the frequencies of the compo-

nents: 2 A
=Y +2

bﬂ: T ﬁ:

(12.79)
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wE = —% FA, and (12.80)
wi = %:FA, (12.81)

where we have defined

A=ypr+ (‘5"—9)2. (12.82)

The unnormalized eigenvectors of the hamiltonian (12.63) with B =

By + B, are then
iwkt wit
e e'wa
( b, et ) and ( b eivit ) (12.83)

Initially we have (S,) = +A/2, or

U(t=0)= ( ; ) . (12.84)

At time ¢ this will have evolved into a linear superposition of the eigen-
vectors (12.83):

et ewat
¥(t)=p bt | T it )0 (12.85)

for some constants p and g. Our initial condition (12.84) gives us p+q =
1, and pby + gb_ = 0. (Note that since ¥ is normalized at ¢t = 0, it
remains normalized for all time.) These can be solved to give
__Bb. _ B,
P=—3 and ¢= A" (12.86)
After a time t, the probability that the electron is in a state with
{S:) = —h/2 is the modulus squared of the lower component of ¥(t),

Bbyb,
2A

2 2
]e‘m _ E—n‘.\t‘

P(t) |‘p b+em*+‘ +qb_ ei“’;'!n =

ﬁﬂ
= ZsinAr (12.87)
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If the oscillating magnetic field has an angular frequency w = 2 then it
is “at resonance” and P(t) = sin? At. This precession of the expectation
value of the spin with angular frequency 28 is called Rabi precession,
and 24 is called the Rabi flopping frequency.

Solution 3.7. a) The system wavefunction factors into spatial and
isospin wavefunctions. The spatial part contributes equally to the

= 3/2 and I = 1/2 cross-sections, so for calculating the ratio of
cross-sections we can concentrate entirely on the isospin part. The to-
tal isospin operator is I = I(*) 4 I™). Squaring this expression and
rearranging terms gives an expression for the isospin portion of the
matrix element:

() ) = 2 [H(7 4 1) = IO 1) - (I 11, (12.88)

where we have computed the expectation value in a state of definite
total I. The pion and nucleon have isospins 1 and 1/2, respectively,
so for the total isospin I = 3/2 case (I™ . I(™)) = 1/2, and for the
I =1/2 case {I™ - I™)) = —1. To first order in perturbation theory,
the cross-section depends on the square of the matrix element of the
potential. Thus the ratio of the J = 3/2 to the I = 1/2 cross-sections
is ,

Ir=3/2 _ (ﬂ) =1/4. (12.89)

O[=1/2 -1
b) In the Born approximation, the differential cross-section is given
by
=1, (12.90)

where

T O ()™ - 1), (12.91)

= 2nh?
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q = k; — ky is the momentum transfer, and U(q) is the Fourier trans-
form of the potential. We are interested in the potential

a? e+
U(r) = yya— (12.92)
which has the Fourier transform
_ a? eHr
2 & ar
Ulq) = 4ﬂ/dam e (12.93)

Writing q - r = gr cos 8 (where 8 is measured with respect to the direc-
tion of q), this becomes

. 2 |
U(q) = %fdrr’ d¢ d(cos §) e—f—e“"““
= ‘éa;" wd‘!" (e"(#"‘q) _ c""(ﬂ‘l*id‘))
q Jo
a!
AT (12.94)

We note now that I/ depends only on the magnitude of q. To find the
total cross-section, we integrate equation (12.90) over the unit sphere,
which gives a factor of 47. So

o= ;;?‘Frm)ﬂ(“" ™)’
= ’(1(')-1<">)|, (12.95)

where we have introduced a new constant k, as indicated.

In order to calculate (I(™)-I(N)) using equation (12.88), we must first
write the initial and final states in a basis of total isospin I eigenstates.
Written in such an |I Iz) basis, the relevant states are

e = 129), (12:96)
o - i o
on) = §|§_§:_ ﬁ%'fl) (12.98)
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where a table of Clebsch-Gordon coefficients has been consulted. For
the reaction 7t + p — 7% + p we evaluate equation (12.95) for the
wavefunction (12.96), using the results from part (a), to find the total
cross-section: -

1

ag= k E = Z. (12.99)
Similarly, for 7~ +p — 7~ + p the total cross-section is
11, 2 2k
o= k’§ ~2-+§-(--1)| =D (12.100)
and for 7~ + p — 7% + n the total cross-section is
V21l V2 Yk
c=k -é— E_T (—1) 5. (12101)

Solution 3.8. Within the n'® region the particle moves in a constant
potential, so we may write its wavefunction as a sum of exponentials:

Yn = Cpe*™* + Dpe =, (12.102)

The two terms represent the right- and left-moving components, re-
spectively. In the expression above, the wavevector k, is given by
h2k?

o = (B~ V), (12.103)

from the time-independent Schrédinger equation in the n'* region. We
solve for k, to find k, = na. The boundary conditions on (12.102)
follow from the requirement of continuity of the wavefunction and its
derivative throughout space:

ba(z =2n) = Pnsa(e = 2n),
a'lbn a'|bs'l+1 , (12.104)

Oz oz S

T=In
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where z, = (n — 1)7/c. If we use the form of the wavefunction given
in equation (12.102), we find the intermediate boundary conditions:
Co+D, = (Copr+ -Da-u)e'.(“’_l)' = (Cns1 + Dy )(—1)"1,
ﬂ(Cn - Dﬂ) = (ﬂ. -+ 1)(0,.,4.1 — Lnq1 )(—1)“+1. (12105)
We wish to relate the coefficients C; and D; to Cy and Dy. We can see
immediately from the equations above that the relation has the form:

Ci+D, = (Cy+Dxy)-1)",

Ci—D, = N(Cy- Dy)-1)", (12.106)
where m is an integer. In fact, m = ¥2=N n, but the important point
is not its value, but the fact tha.t m is the same in both of the equations

above. For a part.ic].e entering from the left, we set Dy = 0 and solve
for the transmission coefficient T7, givcn by the expression

C'N
C: k1

(Far a proof of this relation, see any introductory quantum mechanics
text.) We find

Ty, = (12.107)

4N
(N+1)*
Conversely, if the particle enters from the right, we set C; = 0 and
solve for

Ty, = (12.108)

D; k 4N
Dy (N +1)*
We have discovered that the tra.nsrmssmn coefficient is the same for
particles incident from either side of this potential, a special case of a
more general result.

Tr = (12.109)

Solution 3.9. a) The Schrédinger equation for a neutron at rest in a
uniform magnetic field B is

uB - o|u(t) = ind S 1%(0), (12.110)
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where o is the vector of Pauli spin matrices and |¥(2)) is a two-
component wavefunction. Here u is the magnetic dipole moment of the
neutron, and we do not need to know its value except that it is negative.
Suppose we write the magnetic field as B = Bori. We will look for states
of definite energy, which we can write as |¥(t)) = |¥)exp(—iEt/h).
Then puB - o|¥(t)} = E|¥(t)). We expect to find two eigenstates, one
with its spin aligned with the magnetic field and the other with its
spin anti-aligned. Unfortunately, since f is pointing in an arbitrary
direction, it is not simple to down these eigenstates. We must find the
eigenvectors of the matrix i « o, which we denote by two-component
column vectors. The eigenvalue equation is

ns3 ny —1ing a) _ a
(o ") (3) (). oy

For a given eigenvalue ), the energy is E = ApB,. For a nontrivial
solution we require that det [fi - & — AI] = 0, which we can rewrite as

— (m3 = X)(ma + X) = (n — ing)(ns +ing) = N =2 = 0. (12.112)

Therefore we find A = £1.
The energy eigenstates are the corresponding solutions of (12.111):

naFl n;—ing al _
(n1+in3 qzl-na)(b)_o' (12.113)

One possible solution is

( b ) = ( o ) : (12.114)

However, this choice is not unique, and in particular we can multiply
by an overall phase and still have a solution to (12.113). This will turn
out to be important, so for the moment we will explicitly include an
arbitrary phase e,

For a particular direction of B, we can write fi in terms of the angles
# and ¢: n, = sinfcos ¢, ny = sinfsin¢, and n3 = cosf. Therefore
the eigenstates are

|Ws) = NL* ( sin 9[;‘131‘5;:;“ ¢l ) e, (12.115)
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The prefactors N, are real normalization constants, which can be found
after a small amount of algebra and an application of the trigonometric
half-angle identities. We can write the normalized eigenstates as

e‘“’cos% ice

[Ty = ( sin% )e + (12.116)
e'“‘sing ioe

|qr_)_( Ceast )e . (12.117)

We now come to the subtle question of fixing the phases a.. Sup-
pose we were to take ay = 0. Then for § = 0 we would get

|%4) = ( “ ) (12.118)

which is not well-defined, as the angle ¢ can have any value. In partic-
ular, our wavefunction is not differentiable at # = 0. (For a discussion
of this point, see Jordan.) The important issue here is that in the limit
6 — 0, our eigenstates should not depend on ¢. We can achieve this
by taking o, = ¢, and a. = 0. We now have our final result for the
eigenstates:

|9,) = ( e;f;j . ) (12.119)
o) = ( e::i“; ) (12.120)

These two states correspond to neutrons with spins respectively aligned
and anti-aligned with the direction of the magnetic field, and with
energy FEq, for By = |pBo| . Because the neutron magnetic dipole
moment pu is negative, the state with lower energy will be the one for
which the spin is aligned with the magnetic field; i.e., our ground state
is |'I'+).

b) Suppose the neutron beams take a time T to pass through the
magnetic fields. In the adiabatic approximation, we consider the limit
T — oo, and we can use 1/T as the small parameter of a perturbation
expansion.
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Since the direction of the field varies slowly, the neutron will be very
nearly in the ground state |¥,) of the local magnetic field. However
|¥,) is a function of @, which is itself a function of ¢, and so | ¥ )e*Bot/A
no longer satisfies the time-dependent Schrédinger equation. Because
of this, we must expand the wavefunction |¥(¢)) in terms of the basis
|¥+) and |¥_), with coefficients that are functions of time:

|9(2)) = a(t)| L) + b(E)|2-). (12.121)

The great simplification that occurs for large T is that the coefficient
b(t) must be small, of order 1/T. If |¥(%)) is normalized to unity, it
follows that [a]> = 1 — [8]* = 1 — O(1/T?). From now on we will
drop terms that are smaller than 1/T. Therefore |a]? = 1, and we will
later write a(t) in the general form a(t) = (/% where ~(t) is a real
function.

We can now substitute the wavefunction (12.121) into the Schrd-
dinger equation (12.110):

n219(1)) = wB - o12(1)) = ~Boa(t)|24) + BaX(BIL-).  (12.122)
Consider the left-hand side:
d _da ] db d

If we multiply throughout by (¥, |, the only terms that contribute on
the right-hand side are the first two; the third term is clearly orthogonal
to (¥4|, and the fourth term is already O(1/T?), since

d¢ 8

)_bdtaqs

basl¥- 1w_) (12.124)

and d¢/dt = 2x/T.
Thus after multiplication by (¥.|, (12.122) reduces to

;ad_“ + a(t)(\I!+|:ﬁ--|‘I'+) = —Eoa(t). (12.125)
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Using the form a(t) = ¢(*)/% and canceling a common phase, we get

d
d—'t”-Eo = (\I'+|zﬁ 12,)
—igy 4% 0
= —h(cos 3,sin 3¢ ™) 7 (siu%e“)
= h(sm”)jf (12.126)

We can now integrate from ¢t = 0 to ¢ = T, during which time ¢ goes
from 0 to 2x:

hf dt (d" E.,) =

= -—sin -/ d¢ = —2x sin’ g

(¥(T) = 7(0) — EoT)  (12.127)

=

Now [y(T) — 4(0)]/% is the phase change of the beam that went
through the changing magnetic field, and E,T'/A is the phase change
of the other beam. Hence the difference A = —27sin? /2 is the phase
shift between the two beams, which is the quantity we are after. When
we recombine the beams, the total wavefunction is

[Ur) = (DI 1 GBT/R) |9 ) 4 3(2)[9),  (12.128)

up to an overall normalization. The intensity of the beam I is propor-
tional to

(V7| ¥z) = |l+e‘“|’+O(T2) (12.120)

We can normalize this expression so that when A =0, I = 1. Thus
we get our final result:

I = cos® 5 = cos? (a’ sin? ") (12.130)

This problem illustrates a simple example of Berry phases.
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Solution 3.10. First we choose units such that & = 1. In the orbital
ground state, the orbital angular momentum is zero, so the relevant
part of the Hamiltonian is

H = (aS, +S;)-B + JS; - Sa. (12.131)

Let us choose the z-axis to be parallel to the uniform magnetic field,
B = Bz. Then

H = (aSy; + BS2)B +J [sl,s,, + %(s;s; +575H)|,  (12.132)

where §* = S, +£15,. For two particles with spin, we usually describe
the spin part of the wavefunction in either the basis of states given by
|51, Sz, 51z, S2:), or |S, S;, 51,52}, where we define S =S; +S;. H is
not diagonal in either of these bases, for general a, 8, and J. However,
since the proton and electron are spin 1/2 particles, we have only a
small number of basis vectors and we can solve the problem by brute
force. Let us choose the first basis suggested above, writing the basis
vectors as

1) =111}, I¥2) = (1), Ks) =11}, Iba) =L}, (12133)

where the first arrow represents the S;,, and the second arrow repre-
sents the Sj;.

If we form the 4 x 4 matrix (1; | H| ;) then, by definition, its eigen-
values are the energy eigenvalues and its eigenvectors are the eigenstates
of the system. We find that the matrix elements are given by:

(atB)B 4 J 0 0 0
0 fa-$)B _ J { 0
0 T, el g 0 . (12.134)
2 2
0 0 0 —(ath)B 4 1

Let us denote the four eigenvectors of this matrix as ¢,, ¢s, 4. and @g.
Since H is in block-diagonal form, we can immediately write down two
eigenvectors and their corresponding eigenvalues:
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I¢a) = [1T) with E, = +§(a +B8)+ %, (12.135)
[¢s) = |1l) with By = —g(a +8)+ % (12.136)

To find the other two eigenenergies and eigenstates we need to di-
agonalize the submatrix

A= ( HG ‘f )1 _% ) . (12.137)

2 —%[a ﬂ)_%

The eigenvalues A of A are given by the quadratic equation
det [A — MI] = 0. Solving this equation for the two eigenvalues yields

J 1

E.= 1 + Ek, (12.138)
J 1
E; = -7 Ek, (12.139)

where for simplicity we have defined

k =/J? + B2(a - B):. (12.140)

We sketch the energy splittings as a function of B in Figure 12.3.

EA

J/

B'—"—
-3J/4
R

Figure 12.3.
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b) Two of the eigenvectors, ¢ = |1) and ¢ = |||)| are given
above. The other two are the normalized eigenvectors of the submatrix
A:

4) = e {t+FE-Be-pun}, 21
Ida) = —V,l-ﬁ—{-j[—k-i-ﬂ(a—ﬂ)]lTl)+IlT)}, (12.142)

where
N=1+ J,(k B(a—B)). (12.143)

We note that for B = 0, the eigenvectors of A reduce to the basis
|S, S:, 51, 52), and for J = 0 they reduce to the basis |S;, Sz, 513, S2:) -



Chapter 13

Thermodynamics &
Statistical
Mechanics—Solutions

Solution 4.1. a) We first write down the number of available states
using the binomial distribution:

N!

= 1
ng! ny!

(13.1)

and then use Stirling's approximation to express the entropy, given by
S=klng, as

S=kNInN -nylnn, —nglnng, (13.2)

where k is the Boltzmann constant. We know that ng and n, satisfy
the conditions

N=ng+n, and U=mkFE, (13.3)
Solving these for ng and n;, and substituting into our equation for
gives
v, u U U
= y _— _— —— —— 13.4
s k[}\. N - Zlnp (N E)ln (N E)] (13.4)

145
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b) For a constant number of particles, the temperature can be found

from ) .
Using the expression for entropy (13.4) gives us the temperature:
E
T = ___kln(EN/U— 0 (13.6)

To find the range of ng for which T' < 0, we switch variables from
U and N to no and n,, using equation (13.3). This gives

1 k '
?= E(]Ilﬂo—lnﬂj.)- (13.7)
We can see that ' < 0 when ng < n,, so that the temperature is
negative for 0 < no < N/2.

c) As the systems approach thermal equilibrium, ASiar must be
greater than zero. We know that in each system, AS = AQ/T. Suppose
system 1 has T' < 0 and system 2 has T' > 0. If heat flows to system 1
from system 2, then AQ, > 0 and AQ2 < 0, implying that AS < 0
in both subsystems. This cannot be true. Conversely, if heat flows
from system 1 to system 2, AS > 0 in both systems, which is allowed.
Thus heat must flow from the system with negative temperature to the
system with positive temperature. This makes sense, because most of
the energy is in the system with negative temperature.

Solution 4.2. a) In order to calculate the specific heat of a classical
system, it is necessary only to know the number of degrees of freedom
of the system. The specific heat then follows from an application of the
equipartition theorem.

For the case of a heteronuclear diatomic molecule, there are some
subtleties to do with quantum mechanics that we cannot ignore. Clas-
sically the angular momentum vector is free to point in any direction
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with respect to the orientation of the molecule, and since the rotational
energy is 1(iw} + Iw} + Izw}), one might naively expect there to be
three degrees of freedom. However, it is a consequence of quantum me-
chanics that a system cannot rotate about an axis of continuous sym-
metry, which in the case of a diatomic molecule means that there can
be no component of angular momentum along the axis joining the two
atoms (see Burcham). This microscopic constraint has a macroscopi-
cally observable effect, namely that the number of degrees of freedom
of rotation is reduced from three to two. (Often the same result is
“derived” classically, by arguing that the moment of inertia about the
symmetry axis is zero.)
The classical average internal energy is given by

(E) = (# degrees of freedom) x %kT = kT, (13.8)

where k is Boltzmann’s constant. Therefore the specific heat is given

by .
d4(E)

C= T = k. (13.9)

b) The partition function Z is defined to be the sum of the Boltz-
mann factor e~E/*T over all distinct quantum states of the system. For
a system with energy levels E; = (A*/21)j(j + 1), each having degen-
eracy (27 + 1), we find

o0

Z=3(27 +1)eP5, (13.10)

3=0

where B = 1/kT. The average energy (E) is defined as

2 EBi(2j + 1)e % 5
(B) = =% =552 (13.11)
(2 + 1)e=#5s

3=0

c)As T — 0 (8 — o0), the occupation numbers of the higher
excited states will be heavily suppressed by the Boltzmann factor, and
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for sufficiently low temperature we can replace the infinite sums in
equations (13.10) and (13.11) by finite sums over just the ground state
and the first excited state. We get

Z 1435, (13.12)

so that
InZ ~ 3e7PE1, (13.13)

where we have assumed that 3e #%: « 1 and used the small-z expan-
sion In(1 + z) & z. Therefore, at low temperatures,

(E) ~ _3%33_551 = 3E e B/, (13.14)

We can differentiate this to find the low-temperature specific heat,

d(E) _ 3B} _gpr

c=220 o oL

= (13.15)

We note that for small T, the exponential suppression dominates over
the 1/T? prefactor, and C — 0 as T' — 0.

Our derivation is valid provided that the occupation number of the
second level is far smaller than that of the first (5¢=#%2 <« 3e~#%1), and
that the occupation number of the first level is much smaller than unity
(3¢7PEt « 1). In fact both of these yield the same condition,

h!

KT < . (13.16)

d) In the limit T — oo {f — 0), many states will become heavily
populated and contribute to the sums in the partition function (13.10)
and the average energy (13.11). Under these circumstances it becomes
legitimate to approximate the discrete sum by an integral, with van-
ishingly small error for large enough T'. Therefore we can write

Zx f’ dj (27 + 1) exp (—%?; i+ 1)) . (13.17)
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We integrate to obtain

-21 Br? . ® oI
2% 2% fewp (<50 + 1))]0 - (13.18)
so that
In Z a2 —In B + constant. (13.19)
Thus we find for the average internal energy
By = -2z~ oy (13.20)
oB B ' .

which we recognize as the classical result. Therefore the specific heat
at high temperatures is simply
d(E)
= ——L =k 13.21

¢ dT (13.21)
This result is valid provided the Boltzmann factor is large up to values
of j much greater than unity, that is 8E; < 1, or kT > h?/I. There is,
of course, another limit to the validity of our expression, namely that
the temperature must not be so high that the molecule dissociates.

Solution 4.3. After N jumps the impurity will have made n, jumps
to the right, and n_ = N — n, jumps to the left. Consequently, the
impurity will have moved a distance

d=a(n, —n_.)=as. (13.22)

There is an equal probability that the impurity jumps right or left.
Therefore, the probability that the atom makes n; jumps to the right
out of a total of N jumps is

P(ny) = ( N ) - M (13.23)

Ny n+!n_!’
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or, using the definition of s given in equation (13.22),

NI
[+ )72 (N = /2"

This equation gives the unnormalized probability that the impurity
moves a distances d = as. In the limit of large N, we can express the
probability in a more useful form. We take the natural log of both sides
and apply Stirling’s approximation, InN!= NInN — N, to get

P(s) =

(13.24)

1 s, 1 s
InP(s)~ NIn2— E(N+.s)ln(l + ﬁ)— E(N_ s)In(1 - ﬁ) (13.25)

We know that P(s) will be sharply peaked at s = 0 for large N from
its definition, equation (13.24), and from common sense. Using the
expansion

ln(1+=)=:.:-%::’+---, (13.26)
we have
P(s)~ Nln2 ’—’+o(“) (13.27)
InP(s)=~ Nln oN Nk :
or
P(s) =2Ve " /2N, (13.28)
Changing variables from s to = = as gives
1 ajana
P(z) = —=—=e"% /?Na*, 13.29
(z) a\/me ( )

where we have normalized P(z) such that
+o0
1= f P(z)dz. (13.30)

As we expect for a random walk, the probability distribution is a gaus-
sian centered at £ = 0 with a standard deviation of v/ Na.

b) If we eliminate the number of jumps N by writing N = t/r, the
probability distribution becomes

T 2y a2
P(:c,t)z wme_’ /2 t. [1331)
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Next, we wish to establish the connection between P(z,t) and the
concentration of impurities in the lattice, f(z,t). Imagine M impurities
in the lattice at arbitrary initial positions z§, z3,...,z}!, at time ¢t = 0.

Then u
f(z: t) = E P(:l: - :tli]: t) (1332)

i=1
is the probability distribution for finding a particle at = at time ¢. For
large N, f(z) is the actual concentration of impurities. Since f(z,t) is
just a sum of probabilities of the form (13.29), to find D it is sufficient
to substitute expression (13.29) for P(x,t), rather than f(z,?), into
f _of
D% = o (13.33)
Doing this, we find that equation (13.33) is satisfied if D = a?/27.
Note that although P(z,t) was constructed without regard to the
differential equation (13.33), it nevertheless satisfies this equation. (An
arbitrary function g(z, t) would clearly not satisfy this equation for con-
stant D). We were not just lucky. Both the differential equation (13.33)
and P(z,t) were constructed under the assumptions of conserved par-
ticle number and random diffusion. In deriving P(z, t), the assumption
of random diffusion was implicit in equation (13.23), and particle num-
ber conservation was ensured by normalizing P(z,t). To show the role
of these assumptions in the construction of equation (13.33) for the
diffusivity D, we sketch its derivation below.
Impurity number conservation implies the existence of a continuity
equation,

of .

S TVi=o, (13.34)
where j is the flux of impurity atoms. If the flux of impurity atoms is
due solely to a gradient in the concentration (i.e., random diffusion),
then

j=—-DV f(z,1). (13.35)
(Normally one might add terms on the right-hand side from the effects
of other driving forces, e.g., an electric field). Inserting this expression
for j into the continuity equation gives equation (13.33).
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Solution 4.4. The Clapeyron equation, which describes the phase
coexistence curve, is

dP L
T = TA (13.36)
where P(T') gives the phase boundary in P-T space, and
v—v=Av= L _pmp_Br (13.37)

Pt P PLPs PiPa

is the difference in the volume per unit mass in the two phases. Note
that L = T(S§; — §,), the amount of heat required to melt a unit of
mass, is a positive quantity.

Let us consider the pressure to be a function of h, rather than
temperature. We write

dP _ dPdh
dT ~ dh dT’ (13.38)
so that the Clapeyron equation (13.36) becomes
Ap\dP L
(E) dh ~ T(dhjdT) (13.39)

Consider the derivative dP/dh. The differential dP is the change in
the pressure at the interface if the interface is raised a height dh. Since
the total mass in the column is conserved, if h increases by dh, there
will be Ap,dh less mass pushing down on the interface (where A is the
cross-sectional area of the column), so tha we may write

dP
E = —p.g. (13-40)

We use this with equation (13.39) to find

—Lpy

B0 = JT(an/aTy

(13.41)
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Solution 4.5. From the standard thermodynamic relation
dU =TdS — PdV, (13.42)
we note that the work done by the engine during one cycle is
Wir = Wap+Weop
- L_.BPdV+L_’DPdV, (13.43)

and the energy absorbed by the engine is

Qirl = QB—OC
f T dS. (13.44)
B—C

(The heat lost by the engine between D and A is wasted energy.) The
efficiency we wish to find is defined in terms of these quantities by

Wiot
Qin )

Using the two ideal gas relations PV = NkT and Cy dT = dU,
equation (13.42) can be recast as

(13.45)

daT dv

dS = Cv— + Nk=7, (13.46)

where k is the Boltzmann constant. We integrate this to find the en-

tropy:
S=CyInT + NklnV + constant. (13.47)

Solving this for the temperature, we find
T = aeS/cvy—Nk/Cv (13.48)

where a is a constant with the appropriate dimensions. We can now
find the work done by the system between A and B. Since we are
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compressing the gas, we are actually doing work on the system and
Wi p is negative:

Vs
Was = Pdv

Va
VaT
= —Nk Ve -p-’;dV

= —aNk [ Y4 g lovy-NkIG gy
Ve
= —a(VpO —ypNHOV) SICvey. (13.49)

We get a similar expression (with opposite sign) for We_p. Putting
these together, we find that the total work done in one cycle is

Wit = aCy (Vg ¥/ — VNHOV) (e5/6v — e5/%v) . (13.50)

The heat of combustion can be found similarly:

It

*rds
QB-c s,

S _
o [ VgMMOvesIovas

= aCyVg*ov (es“'c" - es”’c") . (13.51)

From equation (13.45) we can now find the efficiency of the engine,
—kjey

e=1-— (-—») , (13.52)

where we have written ¢y = Cy/N. We note that in the special case
of a monatomic ideal gas, for which cy = 3k/2, we have

e=1-— (K‘l) e . (13.53)
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Solution 4.6. First we will carefully derive a rigorous result; however,
at the end of the solution we also include a simple method for deriving
the leading force term to within a constant factor.

For a gas in thermal equilibrium at temperature T, the number of
molecules per unit volume with velocity v is given by the Maxwellian
distribution,

p(v) =n (—z—ﬁf)mm (—- ’;“k—‘;) : (13.54)

where n is the number of molecules per unit volume and m is the mass
of one molecule. Suppose the disk has velocity V = wpXk, with the
disk lying in the yz-plane. It is evident that we need consider only the
motions of the molecules in the z-direction. Therefore we do not need
the full distribution (13.54), but rather only the distribution of v,

poa) = [ [dvyduip(v) =n (%)Uzexp (-;"T‘;) . (13.55)

Consider a molecule with velocity vz in the region behind the disk.
It will catch up and collide with the disk if its velocity relative to
the disk, v, = vz — v, is positive. Because the collision is elastic,

the new relative velocity of the molecule will be 0,y = —v,q. If we
assume that the mass of the molecule is far less than that of the disk,
the molecule’s change in velocity will be Av = —=2v,q4 = —2(v; — vp).

(Note that after colliding with the disk, the molecules are no longer
in thermal equilibrium with the rest of the gas. For this reason our
eventual answer will depend on the assumption that the mean free
path of the molecules is much greater than the size of the disk, so that
the molecules hitting the disk had their last collision in a region that
was in thermal equilibrium.)

The impulse imparted to the disk in this collision is 2m(vz — vo).
The number of molecules with velocity v, that will collide with the area
xR? in unit time is

N(v:) = 7R?j(vz) (v — o). (13.56)
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Therefore the total impulse per unit time due to molecules colliding
with the back of the disk is

I = f " duy 2rmRp(vs)(vs — vo)?. (13.57)
L]

Now consider the area in front of the disk. A molecule in this region
will collide with the disk if it has velocity v, < vg, and the impulse it
imparts to the disk will be —2m(vo — vz). The total impulse per unit
time on the front of the disk is

va
I=— f dv 27m R j(vz)(vo — vs)?. (13.58)
—o0
Consequently the net impulse per unit time, i.e., the net force, will be
v
F=5L+I,=-2rmR? {f dvg p(vz)(vo — vz )2 —
-0

fm "~ dv. j(v:)(vo — u,)=} . (13.59)

It will simplify matters if we substitute u = —v, in the first integral
(and u = v, in the second), and note that p(u) = 5(—u). Then the first

integral becomes

i '1 dvg 3(vs)(vo — va)? = [ du p(u)(vo + u)?. (13.60)

—-vp

We can now rearrange (13.59) into a more manageable form:
F = -2mmR? {fﬁ du p(u)(vo + u)? +
—vg
j du p(u) [(vo +u)? = (vo — u)’] } . (13.61)
vy

To evaluate the first integral, we can use the assumption that the speed
vg of the disk is far smaller than the average molecular speed %. The
average speed of a gas molecule is given by the equipartition theorem
as m?? = kT. This allows us to approximate the Boltzmann factor in
p(u) by unity, because

ST ~exp (-8 &
exp ( sz) = exp( ﬁ?) ~ 1. (13.62)
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Hence we can set p(u) to p(0) = n(m/27kT)*/? within the range of

integration. The second integral can be evaluated explicitly, because
(vo 4+ u)? — (vo — u)? = 4vou. Therefore

_ 2 m ”2{ Yo 2
F= 21rmRn(21rkT) /_Wdu(vo-}-u)-f-
mu?
/ du4‘uauexp( 2kT)}

m \Y2(8 4kT my
= —2rmR’n (QIkT) {3 vy + " Voexp ( k;)} .(13.63)

Now, by previous assumption, mv2 < kT, so we can expand the expo-
nential and get our final result:

= —onmRtn (YR (o) L 8
F= ~ZrmRn (2«1:1") { m e\ ) e
’
— —(21kTm)1f24nR2vg {1 -+ w + - } (13.64)

As promised, we now describe a simple method of finding the leading
term in the force to within a numerical factor. We make the approxi-
mation that all molecules are traveling with velocity 4. After colliding
with the disk, the molecules on the front side have speed © + v, and
those on the back side have speed ¥ —vp. So the average molecule gains
in kinetic energy by an amount

1
AKE = sm (% (@ +vo)? + (5~ wo)?] - ﬁ“) = %mvé- (13.65)

Since vy < #, the disk collides with nw R*5t molecules in time ¢; in

this time it will lose a kinetic energy of %mvg x nm R?%t to the gas. This

is the work done by the drag force, so
Fugt = %mvg x nw Rot . (13.66)
If we substitute 42 = 3kT'/m, we find the drag is

= %JskTmnR’vu, (13.67)
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Solution 4.8. OQur approach will be to find expressions for the chem-
ical potentials of the gas py and of the adsorbed film on the surface
s, and equate them in order to solve for the vapor pressure P,. The
chemical potential p is defined in general by

_ OF(N,T)
where the free energy F is given by
F=—kgTInZ, (13.81)

with Z the partition function.
First, we find the partition function for one particle of the vapor:

1 Vv 2 3
Z= f P/t s = [ f e Pi/amkaT g |° (13 89)

This results in

|4 :
Zl = F(21rmkgT)=. (13.83)

The total partition function for the vapor is
Zy= —2;" (13.84)

where N, is the number of particles in the vapor. From equations
(13.80) and (13.81), and using Stirling’s approximation, we find

V, (mksT)?
pgz—kBTln{F:r (’;gz) } (13.85)

We then use the equation of state for an ideal gas, PV, = NykpT, to

write .
5 kgT (mkpT)\?
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Solution 4.9. a) In a system with molar entropy, volume, and internal
energy 3, v, and u, the first law of thermodynamics has the form dU/ =
Tds — Pdu. The Clapeyron equation gives the coexistence curve P.(T')
in terms of the changes As and Av between the two phases:

dP. _ As
daT ~ Av’

(13.94)

Similarly, a material in a magnetic field has du = T'ds 4+ Hdm, where
m is the magnetic moment per mole. Thus the Clapeyron equation
analogous to (13.94) for a type I superconductor is

dH,  s,—s, _ As

T = m—mn - BAm (13.95)

Since from the third law of thermodynamics s — 0 on both sides

of the phase boundary as T — 0, As must vanish as well. Thus,
from (13.95) we see

dH,
ch (13.96)
which implies that a = 0.
b) The Clapeyron equation can be written
dH, -1
T = TAm (12.97)

where | = T'As is the latent heat per mole. Previously, we considered [
and m to be molar quantities. We now redefine them to be quantities
per unit volume (without changing the equation). Taking the derivative
(and remembering that a = 0), we find that

1 = —26T%Am, (13.98)

where Am =m, — m,.

We have to find b. At T =T,

H. = H, + bT? =0, (13.99)
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a) The number of different ways of picking the n atoms which jump
to the interstitial sites is given by

N\ _ N!
( n ) = nl(N —n)’ (13.105)
Each one of these atoms could be in one of eight positions, yielding a
total degeneracy of
g=8" ( ‘:’ ) : (13.106)

Here we have assumed that since n < N, we never encounter two
atoms attempting to jump to the same intersitial site. The entropy is
therefore
S=k|nln8+1n [ (13.107)
I il Y7 ey ) | '
Using Stirling’s approximation for Inn!, and dropping terms of order
(n/N), we find:

S~ kn(l+1n8+1n g) ~ knln % (13.108)

b) Assume there is no correlation between the unoccupied O-sites
and the occupied X-sites. Then the total degeneracy of the system
is the product of the degeneracy of the O-lattice of holes with the
degeneracy of the X-lattice of occupied sites, each of which is given by
equation (13.105), so that

N 2
g= ( n ) . (13.109)
Following the same procedure as above we find
S ~ 2%n (l+ln§) ~ 2knln % (13.110)

¢) We will describe two approaches to this problem. In the thermo-
dynamic approach, we recall one definition of temperature:

s\ 1
(W)v -1 (13.111)
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is the electron energy (in either metal) measured with respect to the
chemical potential of metal 1. Consider an electron in metal 2 with
energy E. The rate of tunneling R(E) into metal 1 for this electron is
given by Fermi’s golden rule as

R(E) « |M|"p(E), (14.2)

where p(E) is the density of available final states (in metal 1) at energy
E, and M is the given tunneling amplitude. The value of p(E) is
the density of states multiplied by the probability that the states are
unoccupied,

(1 = f(e = p)Ina(e — ) = 1 — f(E)[n(E). (14.3)

Thus the rate of tunneling per electron in metal 2, as a function of the
electron’s energy E, is

R(E) o |MP[1 - f(E)}m(E). (14.4)

The total number of electrons at energy E in metal 2 that might
tunnel is na(E + eV) f(E + eV). Integrating over all possible energies
E, we find the current from 2 to 1:

L,= —erm |M?nz(E+eV)f(E+eV)n,(E)[1-f(E)]| dE, (14.5)
where K is a constant that depends on the geometry of the junction.
To find the net current, we also need the current I;_,; from metal 1 to
metal 2. Using the same arguments as above, we find

Iy =—eK f ¥ |MPry(E)f(E)na(E+eV)[1—f(E+eV)] dE. (14.6)
The net current between the two metals is [ = I;_,; — 1.3, 50

I=eK f * |MPny(E)na(E + eV)[f(E) - f(E +eV)]dE. (14.7)
Notice that this result is valid for general densities of states n(E).

Consider the factor [f(E) — f(E + eV)]. At low temperatures, this
has the limiting form shown in Figure 14.1. Because eV is much smaller
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f(E)-f(E+eV)
1

v

-V 0
Figure 14.1.

than Ep = p;, n; and ny do not change very much in the region in which
this factor (and thus the integrand) is nonzero. Therefore, we can eval-
uate each density-of-states function at the Fermi energy of the metal,
corresponding to € = p;, and bring them both outside the integral. We
may rewrite [f(E) — f(E + eV)] =~ —eV(df/dE). Recall that

f_:. (‘d%) dE = f(~00) = f(0) = 1, (14.8)

regardless of the temperature T, because of the form of f(E). (Note
that this can also be written down for T = 0 by inspection of Fig-
ure 14.1.) Thus we find I = K|M|?n;(0)n;(0)e?V, which gives the
conductance Gt

G = e*K|M[*ny(0)nz(0). (14.9)

b) We emphasize that we are using the semiconductor model, in
which at T = 0 the superconductor has a bandgap of 2A with no
occupied states above the bandgap, and a full sea of occupied states
below the bandgap. See, for example, Rose-Innes and Rhoderick for a
discussion of this model.

We will again use equation (14.7) for the net current, although with
a different density-of-states function to describe the superconductor.
As in part (a), we evaluate the density of states of the normal metal at
the Fermi energy and bring it outside the integral:

I = eK'|Mns(0) j_ : I(E)f(E) - f(E+eV)dE.  (14.10)

Here, g denotes the density of single-particle states of the supercon-
ductor, metal 1. We reserve n for densities of states of normal metals.
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Since we are considering this current at zero temperature, the form of
[f(E)— f(E +eV)] is exactly as pictured in Figure 14.1. Thus, we may
rewrite the current as

1= eK'|Mna(0) | : 9(E)dE. (14.11)

We must now borrow a result from BCS theory giving the relation-
ship between the density of states for quasiparticles in a superconductor
and the density of states for electrons in a normal metal:

|E| .
9(B) _ | tm—pmia HIEI>A, or (14.12)
m(0) 0 otherwise.
Thus we may rewrite the integral as
|E[dE .
0
/ 9(E)dE = “‘(O)f @ oy TV >Bs0r (1413
i otherwise,
which gives us the desired current:
1 = | eK'|M|*na(0)ny (0)(e?V? — A2 ifeV > A, or (14.14)
0 otherwise. ’

Note that unlike the conductivity for a metal-metal junction (14.9),
which only tells us about the factor K, the conductivity for a metal-
superconductor junction contains information about the superconduc-
tor, through its dependence on the energy gap A.

c) This part of the problem is most easily understood through pic-
tures (Figure 14.2). We assume that T is small but finite, so that both
metals are in their superconducting states and have a small number of
states occupied above their bandgaps. At V = 0 (see Figure 14.2a),
there is virtually no tunneling between the two metals because there
are very few quasiparticles above the bandgap (and, similarly, very few
quasiparticle holes below the bandgap). It is only quasiparticles above
(or holes below) the bandgap which can tunnel into unoccupied states
at the same energy in the neighboring superconductor. When the volt-
age reaches eV = Apy — A 4 (see Figure 14.2b) the edges of the bands
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Solution 5.2. At the onset of superconductivity, we expect that the
number of Cooper pairs n, = ¥*y will be small, so we will neglect the
last term in the Landau-Ginzburg equation, which is cubic in 4. The
magnetic field B in the sample will be dominated by the external mag-
netic field B,, so B & B,. Choose the gauge in which A = B(0,z,0).
Equation (5.1) then becomes

(aa; ::2),;,+ (a.y 2833) Y=—¢Pp,  (1417)

which is reminiscent of the Schrédinger equation for a free particle in
a magnetic field (see Problem 5.10).

In order to solve this equation, we make the substitution ¥(x) =
¢(z) exp(ikyy) exp(ik.z). After some algebra and the further definition
Z =z — hcky [2eB, we have

(o2 ) 0= (g -5E) 4, uan)

which is formally the equation of a simple harmonic oscillator of unit

Imnass: 2
( "2 iz %wzz’) $=Ep, (14.19)

where w = 2eB/c is the angular frequency. We know all about the
solutions of this equation. In particular the allowed energies are E, =
(n + 1/2)hw, so we can immediately equate

K? h’k’ 2heB

— = 1/2
For a given ¢, we see that there is a maximum allowed value of the
magnetic field, Bp,;, corresponding to n = 0 and k., = 0. For fields
greater than this maximum, the sample is no longer superconducting.
The value of the maximum field is

_ _(Be\1 _ he (0 T
tompe= ()=l D).

(14.20)
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Solution 5.4. a) Since the X, ¥ and Z crystal axes are interchangeable,
the expansion of the free energy will be symmetric with respect to the
components of the order parameter: P, P, and P,. In addition, there
is no reason to favor, for example, a polarization along the +x direction
as opposed to the —% direction. Thus, only even powers of the order
parameter components will appear in the free energy f. If we assume
there is no externally applied field, we can write (to fourth order)

f=A(P}+P}+P})+B(P!+P}+P)+C(PP}+ PP} + P’P]),

(14.31)
where A, B and C are (so far) arbitrary coefficients which depend on
pressure and temperature.

The physical value of P will be at the global minimum of the free
energy. In order for this minimum to occur at a finite value of P, we
require B > 0. By considering points along the line P, = P, = P, far
from the origin, we can also set the condition that C > —B .

If the polarization is zero, the free energy will likewise be zero. In
order for the free energy to have a minimum at a non-zero value of
P, we require A < 0 (below T.), so that at small values of P the free
energy is negative, and then at large values of P it turns and heads
toward infinity.

b) In order to find the possible polarization vectors, we need to find
the minima of f. The minima satisfy 8f/8P; = 0, which gives the
equation

2AP, +4BP} +2CP.(P} + P) =0, (14.32)

as well as two more equations with z + y and = < 2z, and we must
solve these three equations.

First, if all the components of P are nonzero, then they must all
be equal to satisfy simultaneously equation (14.32) and its permuta-
tions. Solving for P, = P, = P, and substituting into the free energy
equation (14.31) gives

3 A

(Casel) P,=P,=Px =>f=—zm .

(14.33)



5.4. FERROELECTRIC 175

Next, suppose one component is zero, say Pr. Then P, and P, must be
equal and we find

_A?
Finally, suppose two components are zero, say P, and P,:
—A?
(CB.SB 3) P.= Fo=0=f= 2B (1435)

Clearly, in cases (2) and (3), there is nothing special about the choice of
indices z, ¥ and z, and any permutation of them also gives a solution
with the corresponding free energy. In addition, we can change the
sign of any of the components (e.g., P — —P.) and we still have a
solution. In order for a polarization to appear, it must have a free
energy lower than that of any of the other possible polarization states.
With this requirement one can show that case (2) never appears. As
the coefficient A passes through zero to become negative, the resulting
spontaneous polarization will depend on the values of B and C. The
possible polarizations are:

(Casel) —-B<C<2B= P=PE+3+2), (14.36)
(Case 3) C>2B = P=Pi, (14.37)

Regardless of which polarization develops, the transition is second or-
der. Of course, the specific choice of the cube diagonal used in case
(1) or the principal axis in case (3) is arbitrary (in the absence of an
ordering field).

c) A second order phase transition is characterized by a continuous
symmetry change, like the slow growth of a polarization from zero to a
finite value. A first order transition has a finite change in the order pa-
rameter, for example, a direction change of the polarization. A possible
phase diagram is shown in Figure 14.3. To draw the real phase diagram
we would need to know the pressure and temperature dependence of
the coefficients A, B and C. In the figure we have (arbitrarily) cho-
sen C < 2B for large P and T. When B and C, which change slowly
with pressure and temperature, have evolved into the regime C > 2B,
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Pressure 4

2nd order

P
-

Figure 14.3: A plausible phase diagram. I and II designate different
polarizations, Py = Pz and Py; = P(X+¥y+%). There is no polarization
in region III.

the polarization will suddenly switch from the form in case (1) to that
in case (3), provided A < 0, and therefore there is a first-order phase
transition along the path C = 2B in P-T space.

f fa
R
P P
a) p= B
Figure 14 .4.

d) We must first deduce the contributions of the strain to the free
energy. To make things simple, consider only distortions in the z-
direction, as shown in Figure 5.5. The strain s is the fractional change
in length of the crystal; there must be an energy associated with this
stretching, which should look like that of a spring, or

fatrain = %ksz . (14.38)
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The problem suggests that there is a coupling term between the polar-
ization and the strain. The simplest possible coupling will be linear in
the strain and have two powers of the polarization, since the coupling
should not depend on the direction of the polarization. Thus the cou-
pling f. will have the form f, = DsP2, so that the terms due to the
strain add up to

1
fo= 5!4::32 + DsP? . (14.39)
To find the minimum of f,, we differentiate with respect to s, yielding

D*P#
fo= =" (14.40)

This term adds to those in the previous free energy expansion (14.31),
and if k is small enough (i.e., the crystal is “soft” enough), f, will over-
whelm the coefficients in front of the other P* terms in that expansion,
and make the effective coefficient of P* negative. In order to keep the
minimum of the free energy at a finite value of P, we have to add P®
terms (with positive coefficients). Note that a nonzero polarization can
now arise even if the coefficient A is greater than zero, in which case a
negative P* term causes the symmetry to change abruptly; the polar-
ization jumps from zero (Figure 14.4a) to a finite value (Figure 14.4b).
Thus the phase transition is first order. (Also see Huang, Chapter 17,
for more details.)

Solution 5.5. a) Of course, strips of copper and tin alone will not
go very far towards cooling anything. Add a voltage source as shown
in Figure 14.5, however, and we can make use of the Peltier effect to
transport heat from point A to point B, or vice versa. The Peltier
effect is the name given to the fact that an electric current j, in a
conductor gives rise to a thermal current jy, which is proportional to
je, With a constant of proportionality II, the Peltier coefficient, which
is characteristic of the conductor: ji = I1j, (see Ashcroft and Mermin,
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©

Figure 14.5.

Chapter 13). In the circuit shown, the electric current j, is constant
around the circuit, so the thermal current across the device is

Jn(B — A) = (5 — 3ir) = (Tew — sa)ie - (14.41)

b) EuO is probably a ferromagnet. We recognize the T term in the
heat capacity as the standard Debye result for the contribution from
phonons in a three-dimensional lattice at temperatures low compared to
the lattice Debye temperature. The 7%/2 term is the contribution from
magnons (i.e., spin waves), the elementary excitations of a ferromagnet.
To derive the T%/2 temperature dependence, recall that magnons are
bosons, with an energy-momentum dispersion relation E o k? (see
Ziman, Chapter 10), as opposed to E o k for phonons. Then it is
straightforward to show that C o< T3%/2 by proceeding as one would to
find, say, the phonon contribution to the specific heat.

c) VaGa is evidently a type II superconductor: an applied magnetic
field can penetrate it, with the lines of flux confined to a lattice of non-
superconducting fluxoids, up to a maximum value of the applied field
(which is shown in Figure 5.6 to be 3 kgauss) beyond which the metal
ceases to be a superconductor. Each fluxoid carries one quantum of flux,
which has the value &, = hc/2e = 2.1 x 10~"gauss cm?. According to
Figure 5.6, a field B = 2.3 x 10% gauss penetrates the superconductor.
Since this field is near the saturation value, we can guess that the
fluxoids will be arranged in a hexagonal close-packed pattern. The
surface area per fluxoid is A = v/3d?/2, where d is the distance between
fluxoids. Then B = $,/A gives d =~ 10~° cm.



5.6. ROTONS 179

d) Let 6 be the relative angle between the beam path and the sym-
metry axis of a single crystal. Then the Bragg scattering condition,
n) = 2bsin 0, where n is an integer, will determine which neutrons are
scattered out of the beam path into the walls of the pipe. In a pow-
der the angle 8 will vary randomly from 0 to 7/2, so all neutrons with
A < 2b will be scattered. Any neutron with A > 2b will be transmitted
through the pipe.

e) This is the standard geometry of a Hall effect experiment. Let
the average drift velocity of an electron in the direction opposite the
current be v. Then the current density is J = —nev in the direction
shown in Figure 5.7. (Note that the total current is I = Ja, where a is
the cross-sectional area of the slab.) The electrons will feel a Lorentz
force given by F = —ev x B (in SI units), and since no current flows
out of the sides of the strip, there must be an electric field induced
in the sample that exactly counterbalances this force. In terms of the
measured voltage, the magnitude of the induced field is V/(10 mm).
Setting the two forces equal yields

Y __p=12

10 mm

. 14.42
ane ( )

To use SI units we must convert B to tesla (1 T = 10 gauss), and use
units of meters for all lengths. This gives us n = 7.7 x 10?? cm~3,

f) The mechanism by which electrons incident on a thin film of
magnesium lose energy is the production of surface plasmons. The
existence of surface waves on a metal, with frequency w, = w,/v/2, can
be shown classically. Here, the plasma frequency w, is given by w: =
4rne?/m (see Ashcroft and Mermin, Chapter 1). After quantization,
these waves become boson excitations with energy Aw,. The incident
electron can excite an integral number of these plasmons, so the energy-
loss spectrum will have peaks at E = huw,, 2hw,,...(Figure 14.6).

Solution 5.8. a) The density of states is given by p( E) « ¢* |dg/dE|,
where the right-hand side is written as a function of energy E. To
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If we assume that the binding energy is small, since we are interested
in the limit of small g, then the argument of the arctangent above is
very large for any finite §. Since arctanco = /2, we arrive at the
approximate expression,

1 4 1

—_ 14.56

g  2x+/—2aFEg’ ( )

which is independent of the cutoff. Rearranging to solve for Eg, gives
2,4
9%

N - . 14.
Ep 870 <0 (14.57)

Therefore there is no critical value of g: a bound state always exists.

The reader may recall that for a particle in a three-dimensional
vacuum in the presence of a delta-function potential, there is a critical
value of g for the appearance of a bound state. This is not inconsistent
with the result above because the case of a single particle (in notation
corresponding to that used in this problem) has go = 0, which means
that the density of states is zero at k = 0, and (14.57) yields Eg = 0.
In one dimension, on the other hand, there is no critical value of g for
a single particle because the density of states at k = 0 does not vanish.

The binding of rotons is closely related to the phenomenon of Cooper
pairs, which are the bound pairs of electrons in a degenerate Fermi elec-
tron gas that are responsible for superconductivity (although rotons are
not responsible for superfluidity). :

Solution 5.7. a) The elastic forces are trying to keep the molecules
lined up in the z-direction, so for any interesting physics to occur,
it must be that the magnetic field is trying to line them up in the
y-direction (we will see this later). Take ! to be the characteristic
length in the z-direction over which 8 is changing rapidly (as shown
in Figure 14.8). For the system to be at a minimum of the total free
energy, the derivatives of the magnetic and elastic energies with respect
to ! must be equal and opposite.
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glass slides can be met). Combining the given expression for the elastic
energy (5.2) with the magnetic field energy density (14.58) gives the
total free energy density f:

On;

2
(3_:1:) - %(on: + XaH?*s5in? ) . (14.61)

1
f=zkY
2" 4
Using the given form for fi(z), equation (5.3), we find
an;\* _ (06’
%j (E) = (5) . (14.62)

Substituting this quantity into (14.61) gives an expression for the free
energy density, in terms of # and 8 = 88/3z :

ksa Xopyz Xapa.. 2
=—f ~-—H*- = 6. .
f 28 2H 2H sin (14.63)
Using Lagrange's equation we find
. 2
8+ Xa:f sinfcosd =0. (14.64)

Since we expect a small distortion, we use sinf =~ 8, and cosf = 1,
which leads to the solution

2
B:bcoa( x“f z) : (14.65)

with b some constant.

This expression for 8 is only correct if the boundary conditions that
6 = 0 at each slide (positioned at z = +d/2) can be met. This yields
the result that the first (small) deviation from @ = 0, at the center of
the liquid, will occur when

x(k\}
H, = i (Z) . (14.66)

The amplitude b of the distortion is not determined by the equations
in the small-f approximation. In order to find b we would have to solve
the non-linear differential equation (14.64).
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antipathy of a quantum-mechanical particle towards being confined in a
small region: the outcome, in the limit as L becomes small, will depend
on the dimension d. Clearly,for d < 2, E(L) — +c0 as L — 0, whereas
for d > 2 we get E(L) — —oo in the same limit. As L increases, there
will in both cases be a value Lg for which E(Lg) = 0, given by

d-2 _ meg
° dBhx2’

and eventually E(L) will tend to zero as L — oco. For d = 1 we see

(14.78)

o d=3

Eﬂ\ d=1
1 »L 0 : >

@) (b

Figure 14.9.

that there is a well-defined minimum of E(L), which will correspond to
a stable polaron of size L;, as shown in Figure 14.9a. For d = 3, the
energy can become arbitrarily negative as the polaron shrinks. In this
case, the energy has a maximum at L = L,, as shown in Figure 14.9b.

¢) We now take into account the discrete nature of the lattice, which
imposes a natural cut-off on the size of a polaron. We assume that the
elastic energy has the following form:

EB:{gmv-Uﬁﬂ L>a,

- Low (14.79)

The polaron will now be the true ground state if there exists a value
of L such that L > a and E(L) < 0. In the case of d = 3, we require
Ly > a, or
2.2
&> 3eBh*n .
(If this is not satisfied, then it is still possible to get metastable pola-
ronic states, with Ly = a, provided L; > a. However these states are

(14.80)
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unstable with respect to quantum-mechanical tunneling through the
potential barrier.)

d) In d = 1 there is always a polaron, since for any L > L, the
energy is negative; the only variable is its size. If L; > a then the
polaron will sit at the minimum of the potential and have size L;. If
L; < a the polaron will be as small as the lattice permits, namely of
order a.

Solution 5.9. a)i) At zero temperature the electrons fill every energy
state up to the Fermi energy ¢; = A? k} /2m. Since there is one state in
each interval of length (27 /L) in k-space, we can write the total kinetic
energy U as

U=— = = L 14.81
2r Jox,  2m 6rm 6m ( )
where n = N/L and we have used ks = Nw/L in the last equality.
ii) For a paramagnetic system, we gain a factor of 2 in front of the
sum for U from the spin degeneracy; however, k; is now half of its
previous value for the same reason, so that the new kinetic energy is

242,.3
“2:": L. (14.82)

L fk: L R’K3L  w2h’n?

U=

b) Substituting V(q) = G, into the expression for Vyr (5.6) and
summing over k' and s’ gives

Vir = %{E(N - N.)c},,c,..} , (14.83)
ks
where N, = ¥, ng, is the total number of electrons with spin s. The
single-particle energies are simply

_ Bk 1

b= 5+ 5G(N = N,). (14.84)
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c) In the ferromagnetic state, N = N, so that the single-particle
energies are the same as in part (a) and therefore the ground state
energy is also the same:
n2h?nd

6m
In the paramagnetic case, N, = N/2, so that

EfF(ferro) = L. (14.85)

3?‘3

EHF(para) = L+ G 212 (14.86)

The difference between these two ground state energies is then

3 2.2
QN?. = _{:n_“ - —GLn, (14.87)

which is plotted in Figure 14.10. The critical density is the density (for

AE/N /
n

n

c

Figure 14.10.

a fixed length) at which it is energetically more favorable for the gas to
be in a paramagnetic state than a ferromagnetic one. In other words,
the transition is at AE/N = 0, which occurs at the critical density,
ne. = 2GLm/w*h%.

Solution 5.10. (This problem sketches the physics behind the integer
quantum Hall effect.)
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a) The time-independent Schrodinger equation for an electron of
charge —e and effective mass m* in a magnetic field is

1
2 -

iRV + -A) ¥+ g“‘”a By = Ev. (14.88)

If we consider the term linear in A, it is simple to see that the assump-
tion g, < m/m* is just what we need in order to neglect the interaction
of the electron spin with the magnetic field, e.g.,

eh
2m*c

g.eh

-B
4mca

<

A- v| . (14.89)
If we use the gauge suggested, A = (0, Bz), equation (14.88) becomes

%(:Jr[p, eBa )¢ Ey, (14.90)

with p; = —ik(8/0z) and similarly for p,. First note that since y does
not appear in the hamiltonian, p, commutes with H and is therefore
conserved. This means we can write the wavefunction as

¥(z,y) = e¢(z), (14.91)

with hk, the wavevector in the y-direction. In terms of this wavefunc-
tion the Schrédinger equation is

eBz

(p., [k, + 2% )qb Es, (14.92)

2m*
which is just the equation of motion of a one-dimensional simple har-
monic oscillator with mass m* and angular frequency w = eB/m’,
oscillating about the point

hek,
Tg=— eB (1493)

The energies are E, = hw(n + 1/2). We can write down an explicit
wavefunction for the lowest energy states, which have n = 0. Recall
that the ground-state wavefunction for a simple harmonic oscillator
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takes the form of a Gaussian wave packet, ¢(z) = Aexp[—a(z — z0)?].
We substitute this ¢(z) into equation (14.92) to find a = eB/2hc. Thus
the complete wavefunction is given by

Hoy) = Aexp fiby — sz -2l (1494)

where A is a normalization constant. For each k,, we have a wavefunc-
tion centered on = = zo(ky), traveling in the y-direction.

For a large system, we can compute the degeneracy of each level
via the semiclassical rule that each state occupies an area 2 in phase
space, Ak,Ay = 2m. Since the position (of the center of the wavefunc-
tion) in the z-direction is determined in terms of the y-momentum by
equation (14.93), we may solve for the area of one state in configuration
space:
2rhe

B
We include a factor of 2 to account for the spin degeneracy of the
electron and find the number of states with energy E, in an area A is

_2A _ AeB
T AzAy ~ whe

AzAy =

(14.95)

) (14.96)

which is the degeneracy of each level.

b) If we apply an external voltage V, we will have a charge @ = CV
induced in the surface layer of the silicon, and consequently the number
of electrons in the two-dimensional gas will be N, = Q/e.

In part (a) we found energy levels (called Landaulevels) at energies
E, = hw(n+1/2), which can each hold N electrons, where N is defined
above. Therefore the number of filled levels is

N, Qwﬁc
P=N = AeB"
In general, p won’t be an integer, and the highest level will therefore

be only partially filled. We will use n* to denote the highest filled or
partially filled level. Then, the Fermi energy is

(14.97)

& = Bne = hao(n" + 3). (14.98)



Chapter 15

Relativity &
Astrophysics—Solutions

Solution 6.1. a) For a massive particle, E = ymc? and E? = m3c* +
p’c?. For the muon we are considering, p > mc, so that y = E/(mc?) =
p/(mc). A simple time dilation then gives the observed halflife as

by = YT & ﬁﬁ)‘z ) (15-1)

where Ty, is the halflife of the muon in its rest frame.

b) The average velocity of the nuclei will be given by the equiparti-
tion theorem, mv?/2 ~ 3kT/2. The time dilation associated with this
velocity will shift the observed resonance frequency vy of the nuclei
from its rest-frame value vy, such that

1
Vigh = —Vreast - (152)
v

Inserting the average velocity leads to a shift given by
3kT
Viab = Vrest (1 - m) v (153)

196



6.1. FREQUENCY SHIFTS 197

c) The easiest way to calculate this frequency shift is to consider
a thought experiment proposed by Einstein. Imagine that you have a
magic machine that can change the energy of a photon into a mass, and
the energy of a mass (plus its kinetic energy) into a photon. Then, put
one of these machines at points A and B in Figure 15.1. If we begin
by dropping a mass m from A to B, it gains energy mgH in falling
to B. The machine at B then converts all that energy into a2 photon
(with energy hvg). This photon travels up to A, where it then has
energy hv,. If hv, were greater than mc?, we could build a machine
that would create energy from nothing. If hv, were less than mc?, we
would only have to operate the machine in reverse to create energy
from nothing. Thus, me? = hv,, and

mc? hv,

mc +mgH  hug ' (154)
which gives us
gH

AT lﬂlﬁ_@mA
H

]

-
[m]+mgH 4 hvg

Figure 15.1.

d) We can think of the time difference between the cosmonaut’s
clock and the earthbound clock as being due to two separate effects.
The first effect is the simple special-relativistic time dilation due to the
differing velocities of the two clocks. According to Newtonian mechan-
ics, the velocity of the cosmonaut is v = /Kgg, where we approximate
the cosmonaut’s orbital radius as the radius of the earth Rg. (The
cosmonaut might be on the order of 100 miles above the earth’s sur-
face, while Rg =~ 4000 miles.) In comparison, the velocity of the earth
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observer’s clock is negligible, and the ratio of the two times is

Ate _ ‘I?_’ gRg
Mg 1[1 8-S (15.6)

where Atg is the time measured by the cosmonaut, and Atg is the time
measured on earth.

The second effect is identical to the gravitational redshift discussed
in part (c). Because the two clocks are at different heights, they will
run at different speeds. In fact, by (15.5) the ratio is

Atc —~ gH
A S 1~ = (15.7)
where H is the height of the cosmonaut above the earth. For a low
earth orbit, this effect is completely negligible compared to the time
dilation (15.6).

If we wished, we could have solved this problem in the Schwarzchild
metric, and automatically obtained both effects.

e) Define the time between explosions to be Atg as measured on
the earth and Aty as measured in the distant galaxy. The time between
explosions is the inverse of a frequency, which will redshift just like the
frequency of a photon. The redshift z is defined such that

2 =14z, (15.8)
vE
50 At
E —
A_to =1 +z. (15.9)

Solution 6.2. a) We will find z’, the distance from the rocket to the
earth’s center at proper time 7, as measured in the rocket’s frame. Then
the angle subtended by the earth can be found using tan(4'/2) = R./z’,
where R, is the earth’s radius.
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Let ¢ be the elapsed time and z the distance from the center of the
earth to the rocket, in the reference frame of an observer on the earth.
Then the four-velocity of the rocket in the earth’s frame is

U= (:"_T,%) =(1L,v), (15.10)

where v = vXk is the rocket’s velocity measured in the earth’s frame.
The four-acceleration is a = dU/dr, with

¢ a=— (g)z + (gf;‘:_‘)z . (15.11)

Now if we consider an inertial frame, with coordinates { and %, instan-
taneously comoving with the rocket, we have that

d&*t &’z  d’z
p =0 a.nd F = d_{ﬂ =g, (15.12)
so that in the comoving frame,
a-a=g°. (15.13)
Since this is an invariant quantity, it has this value in any frame.
Because U-U = —1, we can take a derivative to get U'-a = 0. Using
this and equation (15.10), we have
d* d’z

Combining equations (15.11), (15.13), and (15.14) gives

5 (22) 2 g 15.15
(1 -V ) d_'r_3 =9, ( : )
which we can rearrange to give d’z/dr? = yg. We can write

dz d adv
% (yv) =7 et (15.16)
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or d
& (1 —1?

o g(1 —2%). (15.17)

Integrating this equation and using the boundary condition that v =0

at 7 = 0 gives v = tanhgr, v = coshgr, and dz/dr = yv = sinhgr.

Then the distance to the rocket in the earth’s frame is

T, 1 1
z=/o sxnhg'."df_;mhgf—m(ﬁ)_;mshgr—&. (15.18)

The transformation to the rocket’s frame is a simple length contrac-
tion, so the distance z' that the rocket measures is
o= coshgr — gR.
4 gcoshgr
The radius of the earth perpendicular to the rocket’s direction of travel

is unaffected by the transformation to the rocket’s frame, so if &’ is the
angular size of the earth as seen by the rocket then

E _ & _ R.gcoshgr
2 z'  coshgr—gR.’

(15.19)

tan (15.20)

b) As 7 gets large, we have tan§'/2 — gR.. Aslong as gR, < 1
(which is true as long as g < 107 km/s?!), we can use the small angle
approximation and write 6’ = 2gR,.

Solution 6.3. We use geometrized units in this problem: G =c=1.
Since the cylinder mass is small (i.e., pR? < 1), we can use linearized
theory, in which the metric is written as gog = %ag + hag, where 7,5
is the metric for flat space in cylindrical coordinates and hog € 7ag.
Light travels along a null trajectory, so that ds? = g.gdz>dz? = 0.
Thus, in order to find At to lowest order we must find h.g (and thus
gap) to first order in the small quantities w and pR2.

The result that we need from linearized theory is

or? =B, = —16xT%, (15.21)
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where TP is the stress-energy tensor and
hef =7 %qﬂﬂ?;. (15.22)

(Equation (15.21) is true in the Lorentz gauge, 2", = 0. For an excel-
lent derivation, see Schutz.)

First, we find an expression for At in terms of h.g, and we will see
that we only need to compute one component of h,g. Note that we will
find h.g inside the cylinder, and since the metric must be continuous, it
will be legitimate to extend gog = 7ag+ hag to just outside the cylinder,
where the light travels. We set ds? = 0 along the path of interest, where
dr = dz = 0, and find an expression for dt? in terms of d¢?:

ds? = 0 = (=1 + hy)dt? + 2hygdtdd + (r? + heg)dd?, (1523

so that

i (2%(&:/;:{):# -+ h“) id. (15.24)

We take the square root and expand it, letting r =~ R:

Vat: R(1+hﬁﬁ+’i‘*) (1+ﬁ)d¢

R?d$ ' 2R? 2
- higdt  hgs e .
~ R(1+ matimt ) (15.25,

We will solve (15.25) iteratively. To zeroth order in Aag, light traveling
clockwise around the cylinder has dt/d¢ =~ R, and for a counterclock-
wise path, dt/d¢ ~ —R. (That is, the direction of travel determines
the sign of dt/d¢.) To first order, inserting (dt/d$) = £R on the right
hand side of (15.25), we see that the only term contributing to At is
the term proportional to dt/d¢, so we have

At=2 _[o " hesds. (15.26)

Now we solve for hyg. T8 is given by

TP = (p + p)UUP + pg®? . (15.27)
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Since the particles comprising the cylinder are very nonrelativistic,
p =~ 0. The rotation is also nonrelativistic, so that vy &~ 1, and U =~
(1,0,U%,0), where U¥ = w. Thus, the nonzero components of T%°
inside the cylinder are

T““.pl T“=szzo)

T — o T = . (15.28)

We are trying to find an answer to lowest order in w, so we drop O(w?).
Consider the differential equation for A28, (15.21). Because we are
considering a steady-state situation, the time derivative vanishes, and
if we assume that the cylinder’s length is much greater than R, the
derivatives with respect to z and ¢ also vanish. We are left with

27,08 = .]_'._6__ _3_ﬂﬂ _ af
VIR = o (rar ) = —167T*#. (15.29)

Since T°P is constant, we can integrate directly to find
P = —4nTPr? 4 AP (15.30)

(We have dropped a term singular at the origin.) Here, A% is a con-
stant, as yet undetermined.

Having found an expression for 7, we must now extract heg. Since
s already first-order, we may use the flat-space metric 7,5 to lower
its indices. Recall that in cylindrical coordinates, the nonzero compo-
nents of 7,4 are:

Tz, ot (1531

Then, using the definition of 7, equation (15.22), we have
hig = Nunesh® = ﬂ“f}#ﬁw = 4mpwr? . (15.32)

For the last equality, we have set the constant A, equal to zero be-
cause hy must equal zero for r = 0, since the line element must be
independent of ¢ at the origin. Using this h.y in the expression for At
found above, equation (15.26), we find

At = 2[4mpwR*|m = 8x%pwR*. (15.33)
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We must multiply by G/c* to get units of time, yielding

2
At = BZGpr‘ (15.34)

as the first-order time difference.

To estimate the magnitude of this At, we guess a density p of
10 g/cm?®, an angular velocity of w =~ 1 rad/s and R =~ 10 m (which
requires a rather cavernous room). These values yield At x2 1073 5, a
very small time interval indeed.

The wavelength of green light is 540 nm so that its period is T, =
Afe = 2x 1071 s. Thus, the ratio of At to the period of optical light is
approximately At/T, &= 10~'9, which makes this experiment extremely
impractical, albeit nifty.

Solution 6.4. a) The stress-energy tensor for a perfect fluid is

—-p
T% = s . | (15.35)
by

For a photon gas, which is a perfect fluid, the equation of state is
p = p/3, and the stress-energy tensor is traceless. Einstein’s equation
is

87Tag = Rag — %Q@R, (15.36)

where we have written the Ricci scalar as R®, = R to avoid confusion
with the expansion factor R. Taking the trace of Einstein’s equation
and using the fact that 7% = 0, we find that the Ricci scalar vanishes.
Then the ¢t component of Einstein’s equation gives the relation

R 8&r

— 4 —p= 15.

i3 +3p 0, (15.37)
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and the ii component gives

R 2R* 2% _8r

RTmtrET 3
where we have used the components of the Ricci tensor as given in
(6.2). Eliminating the density between equations (15.37) and (15.38)
and substituting k = 1 for a closed universe, we can write a differential
equation for the expansion factor R:

(15.38)

RR 1
—'R?+—}g§+1=0. (15.39)

If we evaluate the expression at time 2, and rewrite it in terms of the
deceleration parameter g and the Hubble constant Hp, both of which
are defined in the question, we find

1
Ro = ‘(G?:T)TS' (15.40)

Similarly, we can evaluate (15.37) at ¢, and use the relation po = T§
to find the temperature at time 5:

2y 1/4
%=(M) . (15.41)

87a

b) Multiplying equation (15.39) by R? and integrating once, we find
RR+t=5, (15.42)

and integrating again gives
R2+8[2=bt+d, (15.43)

where b and d are constants of integration. The boundary condition
that R = 0 at ¢t = 0 requires d = 0. Eliminating ¢ between the two
equations (15.42) and (15.43) then gives the constant b,

b= R(1+ R?)'?. (15.44)
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(Note that only the positive root can satisfy equation (15.42), since R,
R, and ¢ are all positive quantities at early times.) Evaluating (15.44)
at time £ and using our previous expression for Ry, (15.40), allows us
to find b = ,/go/[Ho(go — 1)]. So, solving equation (15.42) for ¢, gives

1

o= —/—~. 15.45
°= B(Vm ) (1548)
To find R(t) for small ¢, we drop the ¢? term in (15.43), which leaves
2\/%0 )lﬂ 1/2
Rt) = | ———— e, 15.46
) (Ho(qcn -1) ( )

To find T'(2), take equations (15.37) and (15.38) and eliminate the term
involving R. Substituting p = aT* gives :

R*4+1 8rna
—_—— =T 15.47
Multiplying through by R* and using equation (15.44) gives us that
3
RT) = — . 15.48
(ary = 22 (15.48)

In other words, for a radiation-dominated universe, RT is a constant
(which is true for any value of k).

For early times, we can use expression (15.46) to find the tempera-
ture:

70~ (3)" 15.49
()~ 327a ’ ( ' )

c) First we want to show that R(t) really is an “expansion factor.”
Consider a particle at coordinate rest, say at u = (u,0,0,0). Then the
equation of motion for the particle is

du”
dr
It is straightforward to calculate that I', = 0 in the Robertson-Walker
metric, so a particle at coordinate rest stays at coordinate rest. Since

= -} ubu” = —Tj(u')’. (15.50)



6.4. WHY INFLATE? 207

disconnected at t;, and we would not expect any correlation between
these different regions. i

The theory of inflation proposes that at some point in the early
history of the universe (again we choose a time of order ¢,), there was a
huge expansion in a very short period, so that the expansion factor R(t)
increased by many orders of magnitude, while the temperature before
and after inflation was almost the same. One possible mechanism for
this is that in the very early universe, the vacuum had a nonzero energy
density A due to some scalar field which played a symmetry-breaking
role similar to that of the electroweak Higgs field. Thus there was an
extra contribution to the stress-energy tensor (15.35), the Ricci scalar
R did not vanish, and the equations of motion (15.37) and (15.38) were
modified correspondingly. For early enough times, the photon energy
density dominated, but as R(t) increased the photons were red-shifted,
while A stayed constant, until the two contributions were comparable.
At this point the equation governing R(t) became R/R = constant,
which means that R grew exponentially in time. The remaining pho-
tons got red-shifted away, and the universe supercooled. However this
did not go on for ever, as the universe eventually underwent a phase
transition to the true vacuum, and inflation stopped. In the process,
the vacuum energy was converted to scalar particles, which then ther-
malized back into photons with energy density approximately A. Con-
sequently the temperature after inflation was nearly the same as that
before, while the scale factor had increased by a huge factor.

As a consequence of all this, a small, causally-connected, smooth
region of space could be inflated to a volume about 107 times greater,
so that different points in that region would lie outside the horizon, but
still be correlated. During the subsequent expansion of the universe,
more of this smooth region would come back within the horizon, and
the universe would appear homogeneous.

For a radiation-dominated universe, the entropy in a physical vol-
ume V is

S = de%aT3ucR3T3. (16.54)

We saw in part (b), equation (15.48), that the product RT is con-
stant, and so during the era of radiation domination, the expansion is
adiabatic.
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However, we argued that during inflation, R*® increased by a factor
of about 107°, while T stayed constant. Thus the relative increase
in entropy during this process is at least 10”. (For more details on
inflation, a good reference is Kolb and Turner.)

Solution 6.5. a) The particle travels along a path described by the
geodesic equation,

dpg _ 1 o

Since g, is independent of ¢ and ¢, we can immediately say that p,
and py are constants of the motion. Define the conserved quantities

= —p/m and L = py/m. If we take the motion to be in the § = x /2
plane, then by (15.55) ps = 0 and we can write

p-p=—m=gup'p’ + 94ep®2® + g0’ D" . (15.56)

We insert p" = m(dr/dr), p' = g"pe = pt/gu, and p? = g%%p, =
pé,/gw into expression (15.56), and then solve for (dr/d'r):

(:_:)’ E? - (1 - %) (1 + %:) (15.57)

EE _ V! ,
which is the desired “energy” conservation equation for radial motion.
To find the relationship between ps, M and R, we differentiate with
respect to proper time,

a‘(dr)z_ dr dr _ dV? _ drdV?

m

w\#) “Hai e T w e (15.58)
This relation holds for a general, non-circular orbit. We cancel dr/dr
on both sides, and then note that for a circular orbit d%r/d7? = 0, so
we have dV?/dr = 0. Taking this derivative leads to the condition that

a_ (Ps\? _ MR
I = (m) = (15.59)
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Substituting this into (15.63) gives

d¢ _ VMR
dt = R* °

(15.66)

and thus the distant observer measures a period

At = 2131/% . (15.67)

d) A stationary observer at radius R has a proper time interval
given by

dr? = (1 - %) i (15.68)
since dr = df = d¢ = 0. It follows that
dé dp dt _de ( 2M) 33
dr' ~ dtdr'  dt ! R ’ (15.69)

so that the oberver at fixed R measures an orbital period of

AT = 21rR1} % -2, (15.70)

Solution 6.6. a) The acceleration four-vector a* of a particle in a
curved spacetime is defined as the covariant convective derivative of the
velocity four-vector U,

a* = (USV,U)* = %’1 + T USUP. (15.71)

Thus, even if the particle is at coordinate rest, with U = (U*,0,0,0),
the Christoffel symbols can give rise to a nonzero acceleration.
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The magnitude of the invariant acceleration is thus

. (M _ oM
al= (_}P +(3M R)w) (1 b3 ) . (15.82)
Therefore o vanishes if
M
2
w? = R(R—_3M)’ (15.83)

This is the familiar result for a particle in a free orbit around a black
hole.

Solution 6.7. a) The component RZ

= . of the Riemann tensor is given
by

Ra = P:s,a P:z,z + I‘ I‘! - P I‘iz ) (1584)

where the Christoffel symbols are given in turn by

1
Tgs = 59°(9x8.6 + 9r68 — 962)- (15.85)

Let us consider each term on the right hand side of equation (15.84)
separately. Since the metric has no dependence on z or y, only deriva-
tives with respect to z or ¢ survive and the only nonzero terms of (15.84)
are:

1
r:x: = 5(9“9::,. ).: I (1586)

and

oL =) (15.87)
Therefore the equation for RZ,,, (15.84), reduces to

1 1
R::x = _E(gzzg::r.z),z - Z (gttg:z,x)z . (1588)
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To evaluate this expression, we will assume that we are in the z > 0
region of space so that

Gez = (1 — kz)%e?™, (15.89)
g = (L—kz)7%e™, (15.90)
Gezy = —2k(1 — kz)e®™. (15.91)

Using these values in the last equation for RZ_,, (15.88), yields the
desired result that RZ_, = 0. (Of course, we get zero for z < 0 as well.)

b) A particle follows a geodesic if its velocity four-vector U* obeys

B
UeUs = % + U*U*TE, = 0. (15.92)

We wish to find the acceleration a* = dU®/dr. Assume the particleis at
an infinitesimal distance € from the wall and is initially at rest, so that
U =(1,0,0,0). (We will assume that € > 0 without loss of generality.)
Under these initial conditions, the geodesic equation (15.92) becomes

dU®
== -I4. (15.93)

Now, it is easily seen that I'S, 0 only for 8 = z. Therefore

ot = ‘% = —T}, = k(1 — ke). (15.94)

We see that for € < 1/k, we have d*z/d7? > 0, and the particle accel-
erates away from the wall. The instantaneous acceleration four-vector
is a = (0,0,0, k(1 — ke)). The invariant acceleration is

Vata, = k(1 — ke) ~ k (15.95)

for e < 1/k.
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Solution 6.8. a) Since S evolves by parallel transport, its equation
of motion is given by U=D5, =0, or

dsk
dr

We make the natural choice of coordinates such that the motion is
confined to the equatorial plane, i.e., # = w/2. With this choice of
coordinates, a circular geodesic orbit in the Schwarzschild metric has
a four-velocity U whose components are U™ = U® =0, U; = —E, and
Uy = L where E and L are constants (see Problem 6.5). The equation
of motion (15.96) reduces to

dS8

- = ~U'TE,SY — U*rs,sv. (15.97)
Next we use the additional result from stable circular motion in a
Schwarzschild metric that

—U°r_ s~ " (15.96)

_d¢ U* M
to simplify the equation of motion even further. (Note that the result
(15.98) is easily remembered since it happens to be identical in form
to the corresponding Newtonian result.) We divide through by U* and

obtain
d.S'

Y =

Now we can find explicit differential equations for the evolution of

the spatial components of § with respect to the variable ¢. First let

us consider the f-component of (15.99). We calculate the Christoffel

symbols in the usual fashion from the metric (and remember that 8 =
7/2) to find T, =T%, =0, so that d5°/df = 0.

Next con51der B = q& in (15.99), in which case the only nonvanishing

relevant Christoffel symbol is I‘fd,. The differential equation governing
the behavior of 5¢ is

~T%,8% — wl8, 5. (15.99)

é
dS = T* 5 =_

1
e ‘ 7 (15.100)
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Finally if 8 = r, the relevant nonzero Christoffel symbols are I},
and I'y,, so that

% = —%I‘:,S‘ —TIg,5%. (15.101)
Now we use the fact that S - U = 0 and solve for S*:
St = —wtge . (15.102)
et

We can use this to eliminate §* from (15.101). Evaluating the compo-
nents of the metric and their derivatives along the orbit, we find

% = (R - 3M)S*. (15.103)

b) We can combine the coupled first-order differential equations
(15.100) and (15.103) into two second-order differential equations,

L‘;_f; - (1 - 3_}";_"') sa, (15.104)

where a = ¢ or r. These equations describe a spin precessing in ¢-r
space, rotating by an angle of \/1 — 3M/R A¢ radians in the ¢-r plane,
as the gyroscope moves by an angle A¢ around its circular orbit.
Suppose an observer at a fixed point on the orbit notes the direction
that the spin is pointing every time the gyroscope passes her. For one
orbit, ¢ changes by 27, and the spin rotates by an angle 27,/1 — 3M/R
in the ¢-r plane. Therefore the spin will have rotated by an angle
27(y/1 — 3M/R—1) from its initial direction. From the fixed observer’s
point of view, the gyroscope has an orbital period of (2x /w),/1 — 2M/R
(see Problem 6.5). Therefore, the observer sees the gyroscope precessing

at a rate
1-3M/R—-1)2 3
v [R-1)2 - (15.105)

(V1 -2M/R)(2r/w) 2

if M/R < 1. If the gyroscope is not in a geodesic orbit then the
equations of motion of the spin are not given by parallel transport
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where we have reinstated ¢ so that T has units of seconds. To find a
numerical estimate for T', let us take a dust grain near the stability limit
of part (a). For example, let Fr = Fg/2. Then b= k/2 = GMy/2, so
that T =~ 2.5 x 10° s ~ 1000 years.

Solution 6.10. a) In vacuum, Einstein’s equations are

Gag = Rap — %gqeR =0. (15.116)

Here, R,p is the Ricci tensor with trace R. In terms of the Riemann
tensor, the Rag is defined by Rap = Ry 4.

We multiply through equation (15.116) with ¢°° and find R = 0. In
turn, putting R = 0 in equation (15.116) gives us R,g = 0, and from
this will come conditions on «, 8, and +.

We must first calculate the Christoffel symbols from

1.
Tip = 597 (960t + G6p.a — Gass), (15.117)

which leads to the following nonzero terms:

I‘:ea- = aiza-l: F:q,- = ﬁtzﬂﬁls P:z = 'Tf'h_l:

Iz, =at?, Ty=pt" Ti=qt" (15.118)

We consider R;; = 0, use the definition of the Riemann tensor, and
find

ala+f+y—-1)=0. (15.119)
We find similar equations, with a + 8 or a < v from R, = 0 and
R;. = 0. Next we consider Ry = 0 to find the final condition:

(a+B+7)—(a®+p*+7") =0. (15.120)

b) A Killing vector is any four-vector field K that satisfies Killing's
equation:
Kop + Kpa = 0. (15.121)
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with similar equations for y and z (with B and + replacing « , of course).
Fore#t, 6§ =1, we find

K:Ig + Kg.: = Zat_lff,, (15.124)

again with similar equations for y and 2. Considering € # t, § # ¢,
€ # &, we have
K.y+ K,z =0, (15.125)

again with the other two cyclic permutations. Finally, welet e=6 =1¢
to find
Kyo = 0. (15.126)

We now set out to solve this set of ten coupled differential equations.
We integrate equation (15.123) to find

K,:at’“"[ Ki(z,y,2)dz + f(v,2,1)], (15.127)

where f is a constant of integration. Differentiating equation (15.127)
with respect to ¢ yields

Koo = 2a

:_ LK. + et fe, (15.128)

which we use in equation (15.124):

2a — 1
t

Ko+ at®™f 4+ K. = 27“1{,. (15.129)

We rearrange this and differentiate with respect to z, (noting that
fez = fze = 0) and then use equation (15.123) for K, ., arriving at

pee = at?®2K,. (15.130)

Equation (15.126) tells us that K, is independent of time, so K .. must
also be independent of time. Thus equation (15.130) implies K; = 0
unless a = 0 or @ = 1. By extending this argument to y and z, and
using the conditions (15.119) and (15.120), we see that we must have
K; = 0 unless &, B, and «y are all equal to zero (which is just the trivial
case of Minkowski space) or one of the three is equal to 1 while the
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other two vanish. We will treat the nontrivial special case separately,
after considering all the remaining, more general, cases where K, = 0.

Ki{=0

With K, = 0, we have from equation (15.123) that K, . = 0 (and
similarly for K, and K,,). Since K; = 0, K,z = 0. Thus equation
(15.124) simplifies to

K. 4(y,2,t) = 2at™ K. (y, 2, 1), (15.131)

which has the solution
K. =t*n(y,2), (15.132)

where %(y, z) is a function containing the y and z dependence of K.
Similarly we find

K, =t%u(z,z), K,=1t"p(z,y). (15.133)

Finally, we use the above in equation (15.125) to find the conditions

*°ny(y,2) + t*p.(e,2) = 0, (15.134)
t*°n.(y,2) + t*7p2(2,y) = 0, (15.135)
tPu,(z,2) +t¥py(z,y) = O. (15.136)

We must consider two cases:

1. a =B # v (That is, choose any two of a, 3, 7y to be equal to each
other but unequal to the third.)

Then, in order to satisfy equations (15.135) and (15.136) at all
times t, each term separately must equal zero. Thus, we must
have that p(z,y) is constant, n(y, z) = n(y), and p(z,2) = p(z).
From equation (15.134), 4(y) = —p.(z). This gives us the
solutions

m=hy+!l, p=—hz+n, p=p, (15.137)

where h, I, n, and p are constants.
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2.a# B, B#r aty

Again, in order to satisfy equations (15.134), (15.135), and
(15.136) at all times ¢, each function must be constant:

n=I, p=n, p=p, (15.138)
with [, n, and p constants.

Now that we have solved for 5, p, and g for all non-special cases,
we may write a general solution for the Killing vectors. Consider the
Killing one-form: K = (0,712, ut?#, pt*"), from (15.132) and (15.133).
Evidently the Killing vector has the form

0

. 15.139
u ( )

P

We wish to find a set of basis vectors for each of the two cases. These
sets follow directly from the 7, g, and p found in each case.

La=8#v

In this case, we have the three spatial translations, (15.122), and
the rotation in the z-y plane:

vl. (15.140)

2. a#B,B#ma#y

In this case we have only the three spatial translations, (15.122).

K:#0

Finally, let us consider the case where a = 1, 8 = = 0. By a
process similar to that above, we again solve the ten coupled differen-
tial equations given by equations (15.123) through (15.126). This is a
tedious process. The result is that we find ten Killing vectors (therefore
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space is flat!). Four of these are the three translations in z, y, and 2
and the rotation between y and z. The remaining six are given below:

—sinhe —coshz —ysinhz
t~!coshz t~lsinhe t~lycoshz
0 ’ 0 "l —tsinhz |’ (15.141)
0 0 ]
and
—ycoshz —zsinhz —zcoshz
t~'ysinhz t'zcoshz t~'zsinhz
-—tycoshz ! 0 ! 0 (15.142)
0 —tsinhz ~tcoshz

These six were not immediately apparent from the metric. However,
we could have made the substitution V' = tcoshz and U = tsinh z into
+be metric, resulting in

ds? = —dV? + dU? + dy?® + d2°. (15.143)

In this metric, we have the ten Minkowski Killing vectors, which we may
transform into our coordinates, duplicating the ten vectors we found
above, Notice that we have now answered part (d): this space is indeed
flat.

c) We assume that at least one of «, 8, and 7 is nonzero. The two
conditions (15.119) and (15.120) then tell us that a + 8+ = 1 and
a® + 3* + 9% = 1. These two requirements together mean that the
allowed set of &, 8, 7y corresponds to the intersection of the plane given
by a+8+v = 1 with the unit sphere. Thus, we either have one variable
equal to 1, with the other two equal to 0, or one of the variables must
be negative. A negative value for «, 3, or ¥ means that our spacetime
is shrinking along one direction. If this were so, Hubble’s law would not
be observed in all directions. Also, the cosmic microwave background
would appear blue-shifted in some spots, rather than uniformly red-
shifted, and this is not observed. If one variable is equal to 1 while the
others vanish, the microwave background would not be red-shifted at
all in some directions, which also does not jibe with observations.
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Nuclear Physics—Solutions

Solution 7.1. a) The ground state of 23Tl has proton and neutron
configuration 8] -

P 82 (331!‘3 -

n [126] (3py/2)"? (161)
where [ k] denotes a closed, inert core of k nucleons, and (- --)~? denotes
a “hole” in that core. There are two neutron holes, which will pair
so that their combined wavefunction has total spin zero and positive
parity. Thus the properties of the ground state are determined by the
lone proton hole, which has orbital angular momentum { = 0, parity
7 = (-1)' = +1, and spin 1/2, so that J* =1/2%.

The simplest possibility for the excited state is that the hole is
excited from the 3s,, to the 2d3/, shell (or equivalently, a proton is
excited from the 2dy), shell to the 3s,/,). This shell has [ = 2, so the
parity is again positive. Therefore J* = 3/2%.

For 2%Pb, the proton shell is closed, and we will assume it is inert.
The neutron structure is

n [126] (2fs/2) " (3pry2)~2 . (16.2)

Again, the 3p, ;2 holes pair to spin zero, and the properties of the ground
state arise from the lone neutron hole in the 2f5/; shell. Now I =3, so
the parity is negative. Therefore J* =5/2".

225
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There are many possibilities for excited states. One is to excite a
3p12 hole to the 25/, shell, giving

n'[126] (2f5,(2)_2 (3?1;2)_1 . (16.3)

Now it is the 2f5/, holes that will pair, and we get J* = 1/2~. Alter-
natively, we can excite the 2f5;; hole to the 3ps/, shell, giving

n [126] (3}73;2)*1 (3p1;g)—z R (16.4)
which has J* = 3/2-.

b) 23T has the structure

82] (351/2)""
ﬁ[[ué] E3p1,;3;'1 . (16.5)

The proton has [ = 0 and the neutron has [ = 1, so * = —1. The spin
is hard to predict with confidence, as odd-odd systems are notoriously
fickle, but it is certainly plausible that the two spin 1/2’s could couple
to total spin zero.

For *%Pb, again we have a filled, inert core of protons, and a neutron
structure of

n[126](3py/2)~2 . (16.6)

The holes will pair to give J*=0%.

If we imagine exciting one hole to the 2 f5/; shell, we have to couple
j =5/2to j =1/2, and the resulting total spin will be either J = 2 or
J = 3, both with positive parity. If we excite both 3p,;2 holes to the
2fs/a shell, the spins will pair to give J = 0. Thus all observed states
can be plausibly described within the shell model.

c) If there is unit density of neutrinos, the capture rate for the

reaction 2$iT1 +v — 23Pb +e~ is given by Fermi’s golden rule:

2
I = 5 |Hyl* o(E), (16.7)
where p(E) is the phase space available to the final state particles with

total energy E, and H;y is the matrix element of the interaction hamil-
tonian between the initial and final states, For a neutrino flux j,, the
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capture rate I'.,, per 2%5T1 atom is
. T 2x
Peap = juo =Jv; =JinHi!|zP(E)r (16.8)

with I as in equation (16.7) and o the cross-section for neutrino capture.
(Because the neutrino velocity is ¢, ¢ = I'/c.)

It is hard to calculate Hig, as it is the matrix element of some
complicated operator taken between the initial state of a single neutrino
and a nucleus of Tl, and a final state of Pb and an electron. We will
denote this by |His[* = |[M|[3, . Now we have to use the rest of the
data we are given.

Consider the decay 2%T] — 2%Pb +e~ + v. This is a standard
beta-decay reaction, and the halflife is given by the well-known formula
for the comparative halflife (for a derivation see, e.g., Cottingham and
Greenwood):

27 A" In2
Mgzt
Since we are given log ft,/, = 5.2, we can use the formula above to find
| M 306, which we will then use to calculate | M5,

The simplest and most important decay to consider is one in which a
single proton or neutron decays, emitting a beta particle and a neutrino,
and in the course of the decay is perhaps excited into a different nuclear
orbital. In other words, the interaction is mediated by a single particle
operator. However, if we compare the ground state configuration for
205T1, as given in part (a),

ftyz = (16.9)

p [82] (3sy/2)7!
n [126] (3puy)°7 | (16.10)

with that of the 1/2~ state in 295Pb,

p [82]
n [126](2fs/2)~* (3pyya) "

we see that in addition to a 2fs/, neutron capturing a neutrino and
being excited to a 3s,/; proton orbital, a second 2f5;; neutron needs to
be excited up to the 3p,/; shell. Because this is a two-particle process,

(16.11)
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the matrix element for this reaction will be very small, and hence the
reaction rate will be negligibly small.

Fortunately, the question tells us to assume that the ground state
of 25T} has a 10% admixture of the configuration

82] (3sy/2)7?
P o (16.12)

From this state a single neutron in the 3p,, shell can capture a neutrino
and end up as a proton in the 3s,/; shell. Thus the matrix element for
this capture will dominate the reaction rate.

We can now compare the capture, 2T] — 20°Pb* (where the as-
terisk refers to the excited state),

p [82] (3s1/2)7" — [82]

n[126] (2f/2)"2 — [126] (2fs/2)"2 (3pay2)™" (16.13)
with the decay 2%6T1 — 2%Pb,
p (82] (3s1/2)"! — [82] (16.14)

n[126](3ps/2)~ — [126)(3p1s2)~2 -

In both cases, a 3p,/, neutron decays to a 3s,/2 proton, and all other
nucleons are undisturbed. Thus we would expect the matrix elements
for these reactions to be approximately equal. Since the ?°T1 ground
state is only in the configuration (16.12) 10% of the time, the matrix
element for the 2%5T] ground state is only 10% of that of 2%6T],

[M3es 2 0.1 x | Mg (16.15)

We now need to evaluate the flux of neutrinos from the sun. We are
told that the energy flux is 0.14 W cm~? = 8.8 x 10"MeV cm™%1,
and that there is one neutrino for every 13.1 MeV. Thus the neutrino
flux 7, is

. (8.8 x 10""MeV cm™?)
¥ =TT 134 Mev)

=6.7 x 107*fm=25"", (16.16)

=6.7% 10%m~2s"?
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If we have n., atoms of ?*Pb and ny; atoms of 2°Tl, the number
decaying per second is Neg X [decay, and in equilibrium this is equal to
the production rate:

Teq X Tdecay = Ny X Teap - (16.22)

The number of atoms in one gram of thallium is Avogadro’s number
divided by the atomic weight, ny; = (6 x 1023/205) atoms. Therefore
the equilibrium number of atoms of 2%*Pb is n., & 2.5 atoms per gram
of 29Tl

Solution 7.2. a) We assume that we can approximate the nucleus
by an inert core of A — 1 nucleons, arranged in pairs of total spin zero,
orbited by a single nucleon of spin 1/2. The orbital angular momentum
is [, and total angular momentum is I = Il + ;. The magnetic moment
operator of the nucleus is the sum of the orbital and intrinsic magnetic
moments of the nucleon,

pr=pm+p, =5 (ol +9.s) - (16.23)

In these equations, uy = eh/2m, is the nuclear magneton and ¢, = 1
for the proton and 0 for the neutron. Similarly, g, = 5.6 and —3.8
respectively.

The expectation value of p; must be parallel to the total spin
I =1+ s since this is the only possible direction: (u;) = k(I). We
can use the Wigner-Eckart theorem to eliminate k and find the rela-

tionship ( )
py-1

= I

("‘I) I(I+ l)ﬁz( )

The magnetic moment is defined as the expectation value of the z-
component of g, in a state with I, = Ik,

(16.24)

pr = ((%i—l% : (16.25)
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For the case of }Nj, the total spin of the nucleus is I = 1/2, and we
see that Q = 0. For !1Bg the proton configuration is

[(131/2)? (1p3/2)*] (1p372) ", (16.38)
so we have a hole in a state of I = 3/2. Therefore the quadrupole
moment is _— .

= Py = 2y )

Q=-3pr1="5") (16.39)

Inserting a value of » & 3 x 10~*® cm, we find a quadrupole moment of

Q~-Tx107% cm?. (16.40)

Solution 7.3. a) Since '§Oq is an even-even nucleus, J* = 0*. The
nucleus has an excess of two protons so that the z-component of the
isospin T is one. The lowest energy state will have the lowest possible
isospin, which means that the isospin is T' = 1.

Superallowed Fermi transitions occur for AJ = Ax = AT = 0.
Therefore the 2.3 MeV state of !*N also has J* = 0% and T = 1.

b) In the shell model, the proton configuration for 0 is
(183/2)*(1p32)*(1p1/2)?. Since the S-decay is a superallowed Fermi de-
cay, the squared matrix element for the decay of a single proton is just
G%, where Gp is the Fermi constant. Either one of the protons in the
1py;3 shell can §-decay to a neutron to form *N, so the square of the
matrix element is

(M)|? = 2G% . (16.41)

c) The proton and neutron configurations for N are both (1py/2)*.
The parity of the state is given by the product of the parities of the
proton and neutron wavefunctions. Therefore the parity must be pos-
itive. The spin J could be zero or one. However since the 2.3 MeV
state has J = 0, the impossibility of a J = 0 — J = 0 «4-transition
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implies that J = 1 for the ground state. Finally, since there are equal
numbers of protons and neutrons, T, = 0, so the ground state will have
T = 0. The B decay from the ground state of '*O to the ground state
of 1N has AT = AJ = 1, Ax = 0. Therefore the decay is an allowed
Gamow-Teller transition. Since *C and %0 are mirror nuclei, not only
is the B decay from C to N also an allowed Gamow-Teller transition,
but the two £ decays have nearly the same matrix element.

d) The phase-space factor for § decay is proportional to E§, where
Ey is the end-point energy, provided Ey 3> m.. The end-point energy
is simply the total available kinetic energy from the decay, or

Eo= M(A,Z)— M(A,Z—1)—m,, (16.42)

where M(A, Z) is the mass of a nucleus of atomic number A and proton
number Z. The semi-empirical mass formula is

(N-2)? d z? §
A + A + ﬁ
(16.43)
Approximate values for the constants appearing in this expression are
(in MeV): a =16, b =18, ¢ = 24, d = 0.7, and § = —33 for even-even
nuclei, § = 0 for odd-even nuclei, and § = 433 for odd-odd nuclei (see
Burcham, Chapter 6). If we assume that Z = A/2, then for reasonably
large A, it is easily verified using the constants given above that the
Coulomb term (i.e., the term with the coefficient d) dominates the mass
difference between the nuclei. The difference in this term for a nucleus
with Z protons and for one with (Z — 1) protons is about 2dZ/A/3, so
that if Z is proportional to A then Eqg is proportional to A%?/3, Since
the rate of decay is proportional to Ej, the halflife ¢,/, is proportional

to A™10/3,

e) The question gives the halflife for *0O as 70 s. Using the results
from part (d), if A = 54 we would expect that t,; = 70(14/54)1%/% =
0.78 s. Our estimate is off by a factor of about four from the real decay
time.

M(A,Z2) = Zm,+ Nm, —aA +bA** 4 ¢
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Solution 7.4. A. a) We wish to find the number of neutrinos that
are produced in the sun for a given luminosity, and then use the sun’s
luminosity to calculate a neutrino flux. The solar pp cycle is:

p+p — d+et +u.+Q4, (16.44)
dip - etr+Qa (16.45)
3He+3He — 3He+2p+ Qs (16.46)

where d is a deuteron. For our purposes this cycle is equivalent to
4p — 3He + 2e* + 2v, + Qrotal- (16.47)
Using the atomic mass excesses we see that

Qtotal

1l

4[m(1H) — m(e7)] — [m(3He) — 2m(e7)] - 2m(e*)
~ 24.7T MeV. (16.48)

The positrons created will each annihilate with electrons, releasing an
additional 2 MeV of energy. Thus, one neutrino is produced for ap-
proximately each 13 MeV of luminosity.

The solar luminosity at the earth’s orbit is given as 1.4 kW/m?, so
we have a neutino flux f at the earth’s orbit given by

_ , 1 ) ( leV )
f =~ (14kW/m?) ( 3x108eV/\1.6 x10-19 ]
~ Tx10" m %7, (16.49)

b) There is a spectrum of neutrino energies because the neutrino
shares the energy of the decay with an electron. From Fermi’s golden
rule, the rate for a decay to a neutrino with energy between E, and

E,+dB, is
dr = |M| ( ) dE,, (16.50)

where M is the matrix element governing the decay (16.44) and p is
the final state’s phase-space factor. We assume that the matrix element
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is independent of the energy of the outgoing neutrino. Implicit in the
matrix element is conservation of momentum and energy. Since the
deuteron is much more massive than the other two decay products, it
will carry very little of the kinetic energy while effectively taking care
of momentum conservation. Therefore the E, dependence of (16.50)
reduces to

dT"  n,(Ey)ne(Eo — E,)dE,, (16.51)

where E; is equal to @, the energy of the decay, and n, and n, are the
densities of states of the neutrino and electron, respectively. We find
these densities of states by writing the total number of states for either
particle in a volume of k-space,

vV 4

— i X
N = Gy (16.52)

and differentiating with respect to k, giving

2

aN = o )341rk dk. (16.53)
To find n,(E) = dN/dE we use the dispersion relation for a massless
neutrino, E = hkec, to find dE = ficdk, which gives

v 2

n(E,) = W‘lw -

(16.54)

For the electron, we use the dispersion relation E? = m2c* + A%k?c?,
and again we calculate the differential dk in terms of dE and substitute
into the expression for n(k) to find

ne(Be) = ————4nE(E? — m3c)s, (16.55)

v
(2xhc)*
Substituting E. = E, — E, and using n, and n, in (16.51) gives us the
shape of the spectrum:

dr
dE,

— B,)[(Eo — E,)* — m2c*)3. (16.56)
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c) The energy available to the neutrino is found by using the atomic
mass excesses and the first reaction of the pp cycle, (16.44). This gives
Q1 = 0.42 MeV. If we estimate that the neutrino gets about half of
this, the percentage of the total energy of the cycle carried off by the
neutrino is

0.2
I = 1.5%. (16.57)

B. a) In the radioactive decay of heavy elements, the a decays make
the nuclei neutron-rich, so the nuclei convert neutrons to protons via
the reaction

n—pte 47, (16.58)
and antineutrinos are produced.

b) From the given values of the temperature gradient of the earth’s
crust and the thermal conductivity of granite ), we can find the heat
flux given by Jg = AdT'/dz. It follows that

Jo =2 x 10" MeV m~? hr™'. (16.59)

Now consider the source of energy suggested, the chain of decays
from 233Th to 233Pb. We need siz a’s and four 8’s to make this chain,
which means four 7.’s are released. Using the atomic mass excesses, we
find that about 10 MeV of energy is produced for each antineutrino.
Putting this together with Jg, (16.59), gives a flux of antineutrinos of

fo2X 10** MeV m~? hr!
- 10 MeV

=2x10" m™? hr!, (16.60)

C. 2) When a heavy nucleus fissions, the daughter nuclei are neutron-
rich, and again antineutrinos are produced.

b) A one gigawatt reactor running with a 10% conversion efficiency
produces a power of 10 GW = 6 x 10?2 MeV/s through nuclear reac-
tions. We will estimate that there are approximately ten antineutrinos
per fission and about 200 MeV released per fission. (See Cottingham
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and Greenwood for a more detailed discussion.) With these numbers,
100 meters from the reactor there will be a flux f of antineutrinos of

6 x 10 MeV/s 1
20 MeV 47(100 m)?

fr ~2x10®m 2571, (16.61)

Solution 7.5. a) The transition from the |J* = 3/2-,T = 3/2) state
at 15 MeV directly to the ground state with |J* = 1/2" T =1/2)
has AJ =1 and no parity change, which means this is an M1 or E2
transition. To find the decay width for this transition in N, we will
compare it to the analogous decay in 3C, since the nuclei are isobaric
analogs. In the extreme single particle model, the ground state proton
configuration of 3N is

(181/2)*(1p3s2)*(1p1/2)", (16.62)

which is identical to the ground state neutron configuration of *C. The
[3/2=, 3/2) state of »*N has a proton excited to the 1p;/; level so that
the proton configuration is

(18172)*(1pas2)*(1p1sa)?, (16.63)

which is of course identical to the neutron configuration for the excited
[3/2—, 3/2) state in 13C.

We see from these configurations that a proton is being promoted
from a level with j =1+ 1/2 to j =1 — 1/2. The selection rules tell us
that the M1 transition will dominate the decay, with a decay width

Ty, oc [(slmelei) *(AE), (16.64)

where AE is the energy of the transition, p is the magnetic dipole op-
erator, |1;) is the initial configuration of protons and neutrons and |1/}
is the final-state configuration. In the extreme single particle model,
the magnetic dipole operator is simply p = un(g.8 + gi1)/h, where the
angular momentum operator 1 and the spin operator s act only on the
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excited nucleon (i.e., the proton in the case of 3N and the neutron in
the case of 13C). For a proton, g, = 5.6 and g; = 1, while for a neutron,
g, ~ —3.8 and g; = 0. The matrix element appearing in (16.64) can
now be partially evaluated to yield

41122 (o + 205 + (02 = )5 — )|

|£2‘%(9- — a){¥sl(s - l)bes)r , (16.65)

where we have used {1;|jl¥;) = 0. The matrix element (yf|s — 1{1/:)
will be the same for the two decays; the only difference that arises is
from the values of g, and g;. Therefore, the ratio of the squared matrix
elements of 13N and 3C is (5.6 — 1)?/(3.8)% = 1.47. Let us denote the
partial widths of the transitions in nitrogen and carbon by 1".,"‘; and I".fn,
and the energy differences in each case as AEy and AE¢. Then,

(] elipi)

I

AEy

3
AEC) ~ 39 eV. (16.66)

¥ ~ rg(1.47)(

b) The ground state neutron configuration of **C (also the proton
configuration of 13N) is given by (16.62), while the 1/2% excited state
has neutron configuration

(181/2)*(1paa)*(281/2)* (16.67)

The explanation for the energy difference is fairly straightforward,
with one subtlety. In going from a 1p;;; to a 2s,; level, the charge
distribution of the proton in nitrogen becomes “spread out,” lowering
the Coulomb energy of the nucleus. For carbon, a neutron is moved,
leaving the electrostatic energy unchanged. This effect is always present
in analog nuclei, but in this case there is a considerable enhancement
due to the presence of the nearby unbound state of **C +p, which
distorts the nuclear wavefunction and increases the average distance of
the proton from the nucleus. (This is known as the Thomas-Ehrman
effect.)

For completeness, we should point out that the reason there is no
analogous energy difference between the 15 MeV excited states is that
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by definition, so that we may write

(+|Hl+) = E-H (_[’HH-) = 0:

(+HI-) =0, (~[H|-) = E. (16.70)
The mixing-matsix element M which we seek is
M= (T =0[H|T = 1). (16.71)
Upon inverting equations (16.69) we find
|T' = 0) = cos 8|+) + sinf|-),
|T' = 1) = sin8|+) — cos 8]—). (16.72)
It follows that the matrix element is
M = (E, — E_)cos8sinf = %(E,, — E_)sin26. (16.73)

Since isospin is conserved in alpha decay, only the |T' = 0) compo-
nent of |+) contributes to its partial width 62, = 0.09 for decay into
the isospin zero state N + «, and similarly for the |—) state. Thus
the partial widths are proportional to cos?# and sin? 8, respectively.
There are other factors, due to phase space and differences in the wave
functions, but we will ignore these. We find tan?§ = 0.09/0.17, so that
sin 26 ~ 0.95, which we use in equation (16.73) to find

M = 0.033 MeV. (16.74)

b) We note that each of the four transitions may proceed as E1, so
that the energy dependence of each is (AE)®. Next, there is a selection
rule for electric dipole transitions, requiring AT = %1 (see Hornyak),
so only the T = 0 term can decay to the 1.04 MeV state. Therefore,
the ratio of the partial width of the |+) state to that of the |—) state is

+ 3
(11:—1) ~ cot? § (AE*") ~ 20, (16.75)
v

AE_
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for the decay to the 1.04 MeV state. Similarly, only the T = 1 compo-
nent can decay to the ground state. Therefore, the ratio of the partial
widths for the decay to the ground state is

ry 29 (AE:\

Solution 7.6. a) The bulk-binding contribution to the nuclear binding
energy is proportional to the volume. The surface term, as the name
suggests, is proportional to the surface area of the nucleus, just as for
a drop of liquid the surface energy term will reduce the binding energy.
The Coulomb contribution is proportional to the square of the charge
on the nucleus and inversely proportional to its radius. In turn, the
volume, surface area, and radius of the nucleus are proportional to A,
A?/3 and A3, respectively. So the total binding energy Ejp is

Ep ~ayA—agA*® —acZ? (A, (16.77)

b) To find a value of a¢ we recall that the self-energy of a sphere of
charge Ze and radius 1.1AY3 fm is

3 Z’e’ 382 23
E=5iiamm - (5“5 fm) e (16.78)

for large Z. Using ke ~ 197 MeV-fm, we evaluate the term in paren-
thesis to find ac = 0.8 MeV. The observed value is a¢c = 0.7 MeV.

c) A rough justification of this term comes from the Pauli exclusion
principle, which suggests that the lowest energy nucleus for a given A
will be the one for which N = Z. Sowewant N -2 = A—-2Z = 0.
This term must come in quadratically, because its sign doesn’t matter
(excess neutrons and excess protons contribute similar energies). By
considering a very asymmetric nucleus (with Z & 0), we can see that
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where J; and Jy are the angular momenta of the initial and final states,
and L is the multipolarity of the radiation field. Since we are con-
sidering a case where J; = 1 and Jy = 0, it is evident that L = 1.

b) Consider the emission of a photon in a transition from an initial
state with J; to a final state with Jy, in an L-pole radiation field. The
angular distribution of this field is given by

w(6) o 3 p(ma)|(Jimi| Jymy LM)PIXE? (16.84)

where p(m;) is the fractional population in the initial state of the sub-
level with J, = m;h, and |{(Jim;|Jyms;LM)[* is the Clebsch-Gordon
coefficient that describes the angular momentum piece of the overlap
between the initial state and the final state of the nucleus plus radiation
field. The X}’s are vector spherical harmonics (see Jackson, Chap-
ter 16) that describe the angular distribution of photons emitted in a
radiation field which has total angular momentum L and z-component
M. From part (a) of the question, we know that only L =1 is allowed
in the transition we are considering, so (16.84) becomes

w(f) = a|X3? + X2, (16.85)
Since for L = J; = 1 and J; = 0, the Clebsch-Gordon coefficients are
simply 8arm,, (16.84) gives a = p(0) and b = p(+1) + p(—1). Since we

are given the 6 dependence of this distribution, we can use the L =1
vector spherical harmonics,

3.
xX3? = 8_,,'(8“139)’ (16.86)
X = %(1+cos’9), (16.87)

to find that b = 4a.

The angular distribution for the emission of a spin-zero particle
will be given by (16.84), with the replacement |X¥| — |YM|, where
the YM’s are spherical harmonics. Since the initial populations of the
different m levels will remain the same, the angular distribution for the
emission of a scalar particle will be

w(8) o< 4|V 2 + |Y°)? o 1 +sin? 4. (16.88)
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c) The series of decays we are interested in is
ot Iy 1t I, 0t (16.89)

To find the angular correlation, we define the z quantization axis to
be the direction of the first photon. Since |X?|* vanishes at # = 0,
the photon cannot be in a state with M = 0. Therefore it must have
M = %1, and by conservation of angular momentum the intermediate
boron nucleus must be in a state with m = F1. The subsequent decay
to the 0% state will give off photons with a distribution (or an angular
correlation, since #; = 0) described by |X§*{?, or

w(8) o< (1 + cos?8) . (16.90)

Solution 7.8. a) Dysprosium is an even-even nucleus, and the ground
state therefore almost certainly has all nucleons paired to give a state
of total spin zero and positive parity, J* = 0%. Such deformed nuclei
characteristically have a series of low-lying energy levels arising from
collective rotations, each with angular momentum an even multiple of
k. (The states with odd angular momentum are forbidden by requiring
total symmetry of the wavefunction.) The energies needed to excite
rotations are typically smaller than those needed to excite vibrations
or to excite nucleons to different shell model states.

Define the total angular momentum J = R + j, where R is the
rotational angular momentum of the nucleus, and j is its intrinsic spin.
The energy of a state with collective rotational angular momentum
R =2nis E = (R*)/2I = 2n(2n + 1)k?/2I, where I is the moment of
inertia of the nucleus. If we use the data given in the question, we can
check that E/2n(2n+1) is a constant for the levels shown, as expected.
All the states in the band will have the same parity.

For holmium, we do not have such a simple argument for finding
the ground state. However, we are told that !®Ho has J* = 7/2".
This isotope differs from ®*Ho by two neutrons. Provided these extra
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component of J as measured along the laboratory z-axis. We will label
states with J, K and M. The resulting vector-angular-momentum
diagram is shown in Figure 16.2.

Figure 16.2.

¢) To calculate the magnetic moments of the excited states of dys-

prosium, we approximate the nucleus as A identical nucleons, each

with mass m, and charge ¢ = eZ/A, orbiting at an average radius

r with speed v. The average current arising from this motion is I =

Aqu/(2xr), enclosing an area wr?. A standard result of electrodynamics

tells us that the magnetic moment g of the current loop is
Aqu . eZur

I
,u_;x(Area,)—mxm' =

(16.91)

We can rewrite Amyur as the rotational angular momentum Rh:

eZ Rh Z

where py = ehi/2myc is the nuclear magneton. For the particular case
of dysprosium, Z/A = 0.4 and so we expect the moments of the states
with J = R =2, 4 to be around 0.8uy and 1.6uy respectively. These
are reasonable estimates, compared with the measured values.

To calculate the radiative lifetimes, we note that the radiation is
between adjacent excited states, and so from part (a) the change in
angular momentum of the nucleus is AJ = 2. (Transitions with higher
AJ are heavily suppressed.) The dominant radiation will therefore be
quadrupole, i.e., E2 or M2 (because higher multipoles are supressed).
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have § = 1. For overall antisymmetry of the wavefunction, we require
L+ 8§+ T = odd, so the minimum possible isospin is T = 0. This
means that the three wavefunctions possible for 5Li are

|\I‘L[m5)) = [T = O,T, = U,S = l,ms = {0,:|:1}) (16106)

‘{ fii ]u ) = lpan)]
VE| a4ty [

I

The nucleon operator governing the beta decay of He to 6Li is the
Gamow-Teller operator (16.102), since AJ = —1 is Fermi-forbidden.
Thus, the sum over the squared matrix elements of all possible decays
is

2
DM =G 3 [Welms)l 3o ou|¥u)l*. (16.107)

mg=0,+1 k=1

We will first consider ¥ 77 0x|Tx). Recall that the components of &

are
01 0 —i 1 0
o: = (1 0), oy = (‘. 0') and o, = (0 _1) . (16.108)

Note that the up and down spin eigenvectors are T= (‘lj) and |= (?)

in this notation. We also have

o"‘:(g ‘{/]2_) anda-=(§§ ”), (16.109)

where 0% = (0, &+ i0,)/V/2 as in (a). Using these definitions, we find
the following:

ot 1} =0, ot 1) = 2| 1),
o1y =v2|l), and o~|])=0. (16.110)

(Notice that o* differ in their normalizations from the isospin operators,
which are defined so that 7*|n) = a|p), where a = 1 rather than a =
V/2.) We are now ready to evaluate 3y 75 x| ¥ x). Let us consider each
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component of o separately. First,

2
2 Toi|¥r) = -—\;ﬁ [ﬂ'ﬂ T1la) = of | l1Tz)] 71t [nana)
=t

+ % [U;-l T!ll) - 0’;' llT!)] f;lnlnz)

_ % [=] TaT2)|p1na) + | T1T2)Imapa)]

= —V2|§=1,ms=1,T =0,T, =0). (16.111)
Similarly, we find

2
S rtop|¥n) =V2|S=1,ms=-1,T=0,T,=0), (16.112)

k=1
and finally,

2

3ok ¥n) = V28§ =1,ms = 0,7 =0,T, = 0).  (16.113)

k=1
It is now simple to sum the squared matrix elements since each of
the components above corresponds to one of the three possible 6Li
wavefunctions given in equation (16.106):

3 IMi? = 3(v2)*G% = 6GA. (16.114)
c) The idea here is that
1
77 =K IMP, (16.115)
J

where K is a constant common to both neutron decay and the ®He
beta decay. We take the initial wavefunction of the neutron as | T n)
(arbitrarily choosing spin up). The neutron can decay to both the states
| T p) and | | p}. Thus neutron decay involves both a Fermi component
and a Gamow-Teller component. The sum of squared matrix elements

18
S IM?

GYI(T plr*[ T n)* +
Gal(1 plrtos| 1 n)* + GLI(L plr*o™| T n)?
= Gy +3G% = G4(G} /G4 +3). (16.116)
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target is given by

my = mge'z"““ y Mp = moe"“‘l‘, (16120)

where myg is half the incident flux on the target. The polarization of
the neutrons is

pomom exp(—2on;t) — exp(—2on4t)
T mi+my  exp(—20n,t) + exp(—20n4t)’

(16.121)

From the given information that (n{ 4+ n;)t = 6 x 10?! atoms/cm? and
(ny — ny)t = 0.65(n; + n,)t, we find that nst = 4.95 x 10! atoms/cm?
and n;t = 1.05 x 10?! atoms/cm?. Evaluating equation (16.121) yields
a value of 99.8% for the polarization of the emerging neutrons.



Chapter 17

Elementary Particle
Physics—Solutions

Solution 8.1.  a) The decays K° — x*7r~ and K° — 7%x° must
be weak decays, since the strangeness changes by one. Because the
pions are isospin 1 particles, they combine to form states with a total
isospin, I, of zero, one or two. We need to know the symmetries of
these states. We can quote the general result that when we add two
spins (or isospins) of value j, the total angular momentum can take all
integer values from 2j to zero: the states 2j, 27 — 2,...are symmetric
under particle interchange, while the states 2§ — 1, 25 — 3,.. . are anti-
symmetric. Applying these considerations to the present problem, we
see that the I = 2 and I = 0 states are symmetric and the I =1 state
is antisymmetric.

The “AI = 1/2" rule states that, for strangeness-changing decays,
processes in which the total isospin changes by 1/2 are favored. (Often
a fictitious isospin 1/2 particle called a spurion is invoked to apply this
rule.) Since the isospin of the kaon is 1/2, the total isospin of the two
pions is most likely 0 or 1. The kaon has zero total angular momentum
in its rest frame. The pions are spinless, so they must also have zero
orbital angular momentum, and therefore their spatial wavefunction
is symmetric. Since they are bosons, the total wavefunction must be

256
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symmetric. Therefore, the total isospin must be zero.

b) The probability of decay is proportional to a matrix element
whose isospin part is given by the Clebsch-Gordon coefficients
[(x%7°| I = 0 I, = 0)|* for K — #°7°, and |[(x*x~| I =0 I, = 0)|? for
K — mtr~. If we label states in terms of the isospin I(¥) of each
individual particle as | I(V) 1(2) I() I(3)) then

|7°% = [1100) and (17.1)
| wte-) %(m 1 -1)4[11 -1 +1)).  (17.2)

1l

where we have necessarily written the | #¥x~) as a symmetric com-
bination, since they are bosons and the rest of the wavefunction is
symmetric (see part (a)). The #%7° and 7+~ states differ only in their
isospin part, so
(K —mtx=)  3[(111 —1]00)+(11 —11]00)?
T(K — x%x9) [(1100]00)?
Somewhat hidden in the isospin formalism above is that the factor

of two is due to the fact that the neutral pions are identical particles,
and the x* and #~ are not.

=2. (17.3)

c) The mass of three pions is approximately 3x 140 MeV=420 MeV,
which is close to the mass of the kaon. Therefore the difference in decay
rates is largely due to differing phase-space factors between the two- and
three-pion decays.

d) The CP eigenstates are

1K) = 5 (1K)+1%),
1K) = 5 (1K -1%9) (17.4)

where it is clear that CP| K;) = | K,), and CP| K;) = — | K3).

e) The energy eigenstates of the neutral kaon are |K;) and |K;).
Therefore the wavefunction for an arbitrary superposition of neutral
kaons as a function of proper time is

| ®(2)) = ¢; | Ky)e " ™te T2 4 c; | Ky)eimate a2 (17.5)
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where m; and m, are the masses of K; and K;. The initial condition
that | 2(0)) = |K°) = (]| K1) + | K2))/+/2 demands that the constants
c; and c; have the values ¢; = ¢; = 1/\/5 The ratio at time ¢ of KO to
K°is )
l(‘p(t) i F)l2 Ie-im,ze-rle;: _ e_.‘m,:g-r,:;zl"
(2(t) | K°) = |e-imite-T1t/2 | g-imate-Tat/2[?
eT1t 4 T2t _ 2e-Tt cos Amit
e-Tit 4 e-Tat 4 2e-T¢ cos Amit’
where I' = (T'y + I';)/2 and Am = m; —m,.

(17.6)

Solution 8.2. a) The square of the four-momentum transfered to the
target is

0t = (ki — k)", (ar.7)
where k; is the initial four-momentum of the target quark, and k; is
its final four-momentum. In the initial rest frame of the quark, these
four-momenta are

myg me+ v
0
k=| o | andk= f]’ , (17.8)
0 0

where m, is the quark mass. We use these expressions in equation
(17.7) to find

¢ =v'-p"=v+m] - E], (17.9)
where E; = mg + v is the final energy of the quark, and we have used
the relation E? = p? + m2. Substituting for E; gives

¢® = —2mqv = —2zmyv, (17.10)

which we rearrange to find z in terms of the nucleon mass my:

= . 17.11
z 2myv ( )
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b) We expect incoherent scattering from the quarks, so that we
may sum the contributions to the cross-section from each type of quark
present in the target. Since the scattering will be dominated by photon
exchange, the scattering from a given quark flavor is proportional to
the squared charge of that quark. Therefore a proton, which comprises
two u quarks and one d quark, has a cross-section for scattering a muon

of
rer Q=@+ @2+ =2(2) + (F) =1, (ray)

where @Q; is the charge of a quark of type 2. On the other hand, the
deuteron consists of three u quarks and three d quarks, so that for
scattering from deuterons,

Oyma < 3Q2 +3Q% = %"1 (17.13)
We therefore expect the ratio of the cross-sections to be
Tup . 9
P (17.14)

c) Whenever two particles interact via exchange of a photon, there
is another change that can take place: exchange of a Z boson. The
amplitude for such a process is suppressed at low g, due to the large
mass of the Z which appears in the propagator, but current experiments
are sensitive enough to detect effects this small.

The correct procedure for calculating this contribution is to add
coherently the amplitudes for photon and Z exchange, before squaring
to find the probability. The leading correction to the purely electro-
magnetic process is the term arising from the interference of the two
amplitudes. The calculation is straightforward but tedious. For sake
of definiteness we may assume that the muon beams are polarized (p~
left-handed and pt right-handed), but this is not actually necessary.

The important result is that one of the terms arising from the inter-
ference has a sign that depends on whether the incoming lepton is a =
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or a pu*, and consequently the respective scattering cross-sections are
slightly different. The effect grows because it is suppressed by a factor
of 1/(M2 — q2), which gets bigger as g? increases, and clearly the scale
for the growth is set by M3.

d) The rest of the momentum is carried by gluons, which only inter-
act through the strong force. Muons are leptons, which do not interact
by the strong force. ’

Solution 8.3. a) Let us assume for now that the low-lying states
are nonrelativistic, which will allow us to factor the wavefunctions into
space and spin components. We will see in part (b) that this is justified.

Because the intrinsic spin of the scalar quarks is zero, the total spin
J of the bound state will be determined by the angular momentum
L. The scalar quarks are bosons, so a scalar quark o will have the
same intrinsic parity 7, as its antiparticle: 5,1, = +1. The parity of
the bound state will be P = (—1)¥n,ms = (—1)E. The C-parity (the
eigenvalue of the charge conjugation operator) is (—1)¢+5 = (=1)F as
well. Thus the first few states have JPC = g++, 1-—, 2++ etc.

To determine which of these states can be produced, we can use a
simple argument which is generally applicable to electromagnetic anni-
hilations. If we are only concerned with leading-order processes, then
the dominant reaction will be et e~ annihilation into a single photon,
which then converts into a scalar quark bound state. The quantum
numbers of this state must be the same as those of the intermediate
photon: JPC = 1--, The only way that other states can be produced
is by higher order processes, such as radiative decays of the 1=~ states.
Note that for reactions which proceed via the strong force, like those
in pp colliders, this argument does not apply.

b) We will now show that the assumption that the bound states
are nonrelativistic is self-consistent. We can write down a Schrodinger
equation for the wavefunction in center-of-mass coordinates (in units
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Thus the splitting is of order

1 az 1/3
AE =~ 5~ (—) 170 MeV. (17.17)
mery my

Actually, we see that the splitting between the levels is of the same
order as the ground state energy, and this is not surprising since we
are simply using the same dimensional constants to form a quantity
with the dimensions of energy. (In fact, in the case of a 1/r potential
the splitting between states with different angular momenta is exactly
equal to the splitting between states of different radial quantum num-
ber, leading to the degeneracy of the 2s and 2p states in hydrogen,
for example. NB: The principle quantum number n is not the radial
quantum number.)

To estimate [1(0)[?, we can make the simple approximation that the
bound state will be more or less uniformly distributed over a volume
of order r3. This gives us

1
[$(0)* =~ = N mea. (17.18)
o

In the case of the Schrédinger model of hydrogen, this answer is correct
up to a factor of =,

c) We will write down the gauge-invariant Lagrangian for this sys-
tem term by term. The quarks are charged scalar particles, and they
will be represented by a complex scalar wavefunction. The only choice
for the kinetic term is (D,¢)! (D*¢), where D, = 8, + igA, is the
covariant derivative. To this we add the mass term m2¢!'4$, and the

photon kinetic term —1/4F,, F* to get
L =(D,$)' (D*¢) +m$'¢ - %FWF“ — Vint (17.19)

where V},,; describes the color i:::tera.ctions between the scalar quarks. If
we expand the kinetic term, we find that there are two types of vertices
in this theory: —iq(¢A,.6%¢ — $8,9A*), shown in Figure 17.1a, and
q?A,A*¢t¢, shown in Figure 17.1b.

Conservation of energy and momentum forbid decay into a single
photon. There are two diagrams for the decay into two photons. The
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o
NN

Figure 17.2.

first is just Figure 17.1b. The second is obtained by using two vertices
of the type 17.1a, as shown in Figure 17.2. Both these diagrams are of
the same magnitude.

To estimate the decay width, we use an argument that closely par-
allels the treatment of the decay of positronium in Sakurai. First con-
sider the annihilation cross-section for a scalar quark incident on an
antiquark. At low energies this will be approximately R?/v, where R
is the “classical radius” of the scalar quark and v is the incident ve-
locity. By analogy with the classical radius of the electron, we can
write R = a/9m,, where the factor of 1/9 arises since the scalar quark
has charge e/3. (The 1/v dependence frequently arises for low-energy
exothermic reactions, e.g., see Problem 7.10.)

The annihilation rate will now be the cross-section multiplied by
the “flux,” which is just the velocity of one quark multiplied by the
density at the origin, or simply v |(0)°. Thus the decay rate is

2
I‘z%xux|¢(0)|’=

a’a

-5
STy 2 x 1077 MeV. (17.20)

This corresponds to a lifetime of around 3 x 1017 s,
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approximation that all the other particles are massless. Thus we find
1 /m,\5 _
™R (m—:) T, R2x107 s, (17.23)

This agrees well with the experimental value of 4 x 10~13s.

b) A feature of systems that mix is that the mass eigenstates are
not the same as the decay eigenstates. However, it is the D° and D°
states which decay. In particular, the D° can decay to a ut, and the
D°toa [T

We may write the wavefunctions for Dy and D, in terms of |D®)
and |D°):

—_ 1 1] o1 — 1 e] A
D) = 25 (1D°) +1Dv)), |Ds) = % (1% - 1D%)).  (17.24)
Let us drop the cumbersome ket notation and write the time depen-
dence of the wavefunction as
Di(t) = Dye~mst-Twt/2 =12 | (17.25)

where m;, is the mass of the particle and T is its decay rate.
Suppose we start off with a pure D° state. Then at £ = 0 we can
invert (17.24) and write the wavefunction 9 of the D as

1
Y(t=0)=D"= 75(D1+Da). (17.26)
At time t we will have
$) = 5 (Do) + Do)

= % [(Du +D° ) emimit-Tut/2 1 (D° - jjo) e—mat-T3 :,‘3]

—

- = [D° (e-.'m,:-r,e;: + e-im,t-r,qz) +
po (e-.'m:-m:/z _ e-—im,t-f‘,t{!)] . (17_27)

From this expression we can pick out the probabilities for the system
to be in a D° or a DO state at time ¢, namely the absolute squares of
the appropriate coefficients in the last equation.

o
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The probability that the meson decays to a u* is proportional to
the probability that the meson is a D®. Similarly, the probability that
the meson decays to a u~ is proportional to the probability that it is
a D9 The constant of proportionality is the same for both decays.
Therefore the ratio R = Prob{u~)/Prob(ut) is given by

[ Pp(t)dt
= f_PE(?SE’ (17.28)

where the probability of having a DO is

Pp(t) = [ It ety 9e (T2 cog(my —my)t|,  (17.29)
and the probability of having a DO is

Pp(t) = 41 [e-“* + e Tt 9~ (Tu4T)/2 g — m,)r.] . (17.30)

We integrate these probabilities from ¢ = 0 to ¢ = oo to get our final
answer for the ratio:

_ (Am)*+(AT)?

T 202 + (Am)? — (AT)?

Here we have written Am = m; — m,, AT = (I} — I';)/2 and
To=(I1 +T2)/2. We expect Am to be very small, as in the kaon
system, where Amg/mg ~ 10~'4. However, because the decay prod-
ucts of the D° and [° are similar, we expect I'; = I'y, so that AT < T.
Hence the ratio R will be very small. In the kaon system, the dominant
decay for Ks is Ks — 2w, which is CP-suppressed for Kz. Thus the
decay products of K5 and K are very different, and AT'/Ty = 1.

(17.31)

Solution 8.5. a) The Lagrangian is written in the form of a sum over
all the fermions,

£=iz—2 o {‘; Z"f*r,.%(c{r - chr)f } ) (17.32)
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where the cy’s and c4’s are the vector and axial coupling constants
for each fermion, and their values can be found by comparing the La-
grangian in the two forms (17.32) and (8.2).

Let us set A = ¢ = 1. The general formula for the decay of a particle
at rest into two decay products is given in equation (17.85). Using
this formula and noting that neutrinos are massless, we can write the
differential rate per unit solid angle for the decay of the Z° into a given
species of neutrino as

dlwp _ ML

dQ T 64m2Mz’
where | M|, is the matrix element for the decay and Mz is the mass
of the Z°.

In order to avoid the full-blown spinor calculation, we will write
down by inspection an approximate expression for |M|2,. In doing so,
we lose the angular dependence of the matrix element, but the width
we calculate will only be off by a small factor.

The Lagrangian (17.32) gives a squared vertex factor of (g/2 cos fw)?
[2(c} + c4)]. Aside from the cancellation of the cy X c4 term and the
factor of two, this factor comes directly from squaring the coefficient
of the appropriate spinors in the Lagrangian. The squared matrix el-
ement is approximately the product of the squared vertex factor and
E3}, where Ey = (Mz/2) is the fermion energy:

(17.33)

MEy = (5o25) ey + @8 (739

The factor of E} must be present so that the matrix element has the
correct units. Since we are ignoring any angular dependence in [M|2,,
the integration over solid angle gives 47, and the decay width is

~ gy __1 (.ﬁ&)’
Two =~ An (2cos$w) 64x2Mz \ 2 !

~ ——QSMS
2567 cos? B

(17.35)

(A more detailed calculation shows that our answer is a factor of 3/8
too small.) Substituting g? = (8GrMp)/V2 (where Gp = 1.2 x
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105 GeV~?) and M3, = M2 cos? i gives
_ GrM3
32V/2x

To find the width for decay into any other fermion, we substitute
the appropriate values for cy and cy4 into the squared matrix element
(17.34).

The total width is obtained by summing over all relevant fermions,
including the two other generations not explicitly included in the La-
grangian, except that we will exclude the top quark as being too heavy
to be a decay product of the Z°. We must also remember to include the
threefold multiplicity of quarks due to color. The sum of the contribu-
tions of all the fermions gives the total width, I' ~ 15 T, ~ 900 MeV.
The factor of 8/3 we were missing in our calculation of I',p obviously
affects our value for I' as well. The actual width is about 2500 MeV.

b) We begin with a formula for the differential cross-section,
do _ [M]?
dQ "~ 64w2s

(This is a formula well worth memorizing!) The Feynman diagram
for the process in Figure 8.1 looks like two decay vertices joined by a

propagator. In the same way, the matrix element is the product of two
decay matrix elements and a propagator:

|M|=|M|..w|.,,( L ) (17.38)

s— M2

The decay matrix elements are in turn related to the widths of their
respective channels by (17.33). Assuming that the angular integrations
give 4, this leads to

o(s) = 167 (

Tup

~ 60 MeV . (17.36)

(17.37)

M ) Lealuo (17.39)

s ) (s-MERT

c) Displacing the pole leads directly to an expression for the total
cross-section,

_ M3 Tl
oeat(s) = 167 ( p ) = Mip M (17.40)
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On resonance, the cross-section becomes

e‘r

Ugog(S = MZ) = 167 M.‘P: .

(17.41)

Since [(c5)2+(c5)?] = 0.5[(c4)?+(c%)?, Tes  0.5T,5. Also, T 15T,

50
16 1

30 ME
Inserting two powers of fic = 200 MeV fm to get the right units yields
a cross-section of

Oeot(s = M2) ~ (17.42)

Otot(s = M%) ~ 8 x 107 fm? = 8 x 10~ 4 barns . (17.43)

d) One year is about 3 x 107 seconds, so the SLC should see about
oLt =~ 10° Z° events.

Solution 8.6. a) The neutrinos are created via the process

e +p—on+tv., (17.44)
and through the similar process,

et +n—op+7.. (17.45)
They are detected through the reverse reactions:

Vetn—opte,
V.+p—on+tet. (17.46)

Note that the neutrinos are not detected from v.e — v.e scattering in
this experiment, since we are told that there are recoil nucleons.
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b) We can write the velocity of the neutrinos v as a function of
energy E and mass m, (letting ¢ = 1):

1 1/2 m? 1/2 and
ﬂ=(1—$) =(1_E;) %1—2—3;. (1747)

The spread in arrival times in terms of the spread in arrival energies is
therefore:

At = Dan(E;’ - E?). (17.48)

We use the given data, namely At < 15, D = 1.7 x 10° light years,
E; =5 MeV, and E; = 20 MeV to find a limit on the neutrino mass of
m, < 3eV.

c) To estimate the total energy, we need to estimate the total num-
ber N of neutrinos emitted in the supernova. We start by calculating
the integrated neutrino flux at the detector F, from the number of
neutrinos observed:

10 = F,o Ny, (17.49)

where o is the cross-section for the detection process and N, is the
number of target particles. To find an approximation for o, recall
that cross-sections for weak interactions at low energies are typically
proportional to G%s, where s is the square of the center-of-mass energy.
This leads to

o~ Grs~GLE x4 x 107 m?, (17.50)

We will assume the reactions are on the hydrogen nuclei in the water,
since their recoil is more easily observed than the recoil of the oxygen
nuclei. Then we have

N, ~ (10° g) (%) (mol/g)(Na/mol) = 7 x 10°*, (17.51)

where Ny = 6 x 10% is Avogadro’s number, 2 is the atomic mass of
hydrogen, and 18 is the atomic mass of water. From equation (17.49),
the integrated flux is
10 4 -2
F,=-~ﬁ-z3x10 m™*. (17.52)

aiVy
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The detector is a distance D from the supernova. We assume that the
flux was emitted isotropically, so that the total number of neutrinos
emitted from the supernovais N 2 F, (4w D?) a2 10%8. Since the average
neutrino energy was 10 MeV, this implies

Eiot 2 10%° MeV =~ 10%2 ergs. (17.53)

d) The mass eigenstates are the states that propagate with a simple
time dependence:

(2)) = [a)e™ Bty [ua(t)) = [va)e5t, (17.54)

where we have taken & = 1. We can expand the wavefunctions for v,
and v, as
[va)

[vs)

Let the wavefunction of the neutrino which travels from the supernova
to earth be |v(t)). The initial condition |»(0)) = |va) gives

cos f|v1) + sin f|va) ,
— sinf|ny) +cosflva).

(17.55)

il

[v(t)) = cos Blvy)e™*F* + sin B|vy)e ™ F2¢ . (17.56)
The probability P of finding v, at time ¢ is
[{val(t))?
sin? 8 + cos* 8 + 2sin? § cos® 6 cos(A Et)
(sin?  + cos? ) — 4sin? § cos? sin*(AEt/2)
1 — (sin? 28)(sin?*(AEt/2)), (17.57)

P(t)

il

1l

with AE = E, — E,.

Before we go further, we would like to point out two assumptions
that we make. As is conventional, we assume the neutrino wavefunction
is a superposition of mass eigenstates with the same momentum p but
different energies (see Bahcall). Secondly, since the different neutrino
types have different masses (but the same momentum), they will travel
with different velocities. If they start out in a localized wave packet, the
mass eigenstates will eventually separate and no longer overlap. The
distance over which this happens is known as the coherence length,
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In this frame we also have

. zpk + zpk \°
= ( m:k M n::k ) = (zp + 25)°k? — (2p — z5)°k* = zpzps. (17.65)

d) We need to evaluate the expression for the total cross-section
(8.5). First we evaluate the term ¢(3 = M},) using the Breit-Wigner
formula (8.4) and the results of part (a) and (b):

o(3 = M%) ~ (17.66)

™
36M3,
The total cross-section can be expressed as an integral over the quark
momentum probabilities:

e v e [} / " da, day u(z,)d(cp)6(5 — M) (17.67)
tot 3IMw Jo Jo p&Lp P 14 w/ .
To do the integral over zz, we rewrite the delta function:
2
§(5 — M3) = 6(zyzps — ML) = ——6 (z, - ﬁ) . (7.68)
Tp8 T8

Subsituting this into equation (17.67) and performing the integration
over z5, we find

_ 67l 1 2 MI?V 2_-1
CTtot = Mwa M3 /e dz,(l - Ip) (1 - z—ps} Ip . (1?-69)

The integration limits come from the conditions that z, = M3 /xss
and 0 < zg < 1. We could work out the integral exactly, or, in the
spirit of our approximations, note that it is a dimensionless integral of
order unity and drop it. The latter course gives us
6n T,
ws
If L and € are the collider luminosity and efficiency and ¢ is the duration
of the experiment, then the number of observed events is

N = Loet =(10cm™?s7!) x (2 x 107%cm?) x 1 x (1 year)
~ 6000, (17.71)

~ 2 x 1073cm? = 2 x 107 pbarns. (17.70)

Ot =
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Solution 8.8. a) Set A = ¢ = 1 in this problem. The decay of a
B* meson occurs when the b quark decays weakly to a i or & quark as
illustrated in Figure 17.5a. Note that since the mass of the top quark is

et
&
- w A
b uorc w v. =
+

B"‘{ v b O Vb H ¢ W

u u

@ (b)
Figure 17.5.

greater than that of the bottom quark, the decay b — £ is not allowed.
The u quark of the B meson is a spectator quark and plays no part in
the weak decay shown in Figure 17.5a, but subsequently the % and u
or ¢ and u will hadronize into a shower of particles. We assume this
does not effect the decay shown. Thus the partial width of the decay
Bt — etvy-thadrons is approximately equal to I'(b — cev) + I'(b —
uev). However, we are told that I'(b — u) < I'(b — ¢), so we can write

I(b— cev) =~ T(B* — e*v + hadrons) (17.72)
= iBR(Bi — e*v + hadrons) = 9 x 10" 577,
T8

using information given in the question.

Now we need to extract a value for the matrix element |Vz3|. We can
do this by comparing B decay to the very similar process of muon decay,
which is shown in Figure 17.5b. The muon decay width is proportional
to some vertex factor multiplied by the phase space, and the latter is
proportional to mi. We can write

1
I(pt tyem,) = — = km?,
(et - etv.,) - m,

(17.73)

for some constant k. Then, by analogy,
T(b— evc) = |Va|* km}, (17.74)
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Figure 17.6.

with four-momenta p; and p;. From the diagram, we can write down
the matrix element as

M,y = my(V2Gr)* 3 @ (pr)vl (p2), (17.78)

where we have used the vertex factor given in the question, and ignored
possible factors of ¢+ which vanish when we take the modulus. The
functions u(p) and v(p) are the usual four-component spinors associated
with the plane-wave solutions of the Dirac equation for electrons and
positrons respectively. The upper index on u and v is the spin index
indicating whether the spinor describes a fermion of helicity +1 or —1,
and the lower index labels the component of the spinor. If we are not
measuring the spins of the decay fermions, then we must sum |M|?
over the final spins so that

IMP= 3 M =V2GrY Y miul(p)va(p2)5s (p2)up(ps) -
all spins a' ap
(17.79)

This formula is often written in the compact notation
|M[* = V2Gpm}Tr [@(p1 Ju(p2)o(pa Ju(py)] - (17.80)

Using the completeness relations that ¥, u*(p)d’(p) = + m and
PN ‘U"(p)‘ﬁ'(p) =p—m, we find

|M|* = V2Gem}Tr{(# + mys)(#2 — my)] (17.81)

where the trace is now over only the spinor indices. Since my < my,
the components of $, will be much greater than m; and we can ap-
proximate my ~ 0. With this approximation,

|M[* = V2Gr m3Tr([# #a] = 4V2Grm} pr - pa, (17.82)
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where we have used the trace identity Tr(¢h p2) = 4p: - p2. The four-
momenta are
my my

= T(laﬁ) y P2 = T(la —fl), [1783)

where 1i is a unit vector. Taking the dot product of the momenta then
gives

IM|* = 2V2Grmim};. (17.84)

To connect the matrix element with the decay rate, we use the
formula for the decay from rest of a particle A to two particles labeled
as 1 and 2:

_ __PF / 2
MA—-1+2)= 3oty |M|* dS2. (17.85)
The variable pg is the magnitude of the final three-momentum of parti-
cle 1 or 2, and d2 is an infinitesimal element of solid angle. Substitution
of ms = my, pr = my/2, and |M|? from equation (17.84) yields

Fff = F(H —+ ff) = \/ngm}mH. (1786)

The width of the decay I'.+.- is then 7 x 10712 MeV (where we have
used the values Gg ~ 10~% GeV~? and m, = 0.5 MeV). The lifetime 7
from the decay to e*e™ is therefore

r=h/T(H — ete™) = 1071%. (17.87)

b) According to the relativistic Breit-Wigner formula, the cross-
section near resonance for the process ete~ — H — ff is given by

_ [4ms 2J 41 |
o= () (o) oo o 799

where T' is the total width, S, and S, are the spins of the incoming
particles, J is the spin of the resonance, s is the square of the center-of-
mass energy, and k is the magnitude of the fermion three-momentum.
Setting S, = Sy = 1/2, J = 0, and, since we are at resonance, s =

4k? = m?},, we find
= (;4_”_) Tere-Tyz. (17.89)

m¥ Ir2
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Since the width is dominated by decay to a bb pair, I' ~ 35, where
the factor of 3 comes from the fact that the bb can take any one of
three color-anticolor combinations. The cross-section for this reaction
is therefore

_4r [T\ 4x (m?2) 17 _a
o= T ( T ) = m—}; (3m§) =17x107"" MeV~23,  (17.90)

where we have taken my = 5 GeV and my = 50 GeV. Reinstating ¢
and £, we find o = (1.7 x 107" MeV~?)(197 MeV fm)? = 7 x 10~3°cm?.
The number of events in one year is ¢ x (1 year) X (luminosity) = 4
events.

Solution 8.10. a) We can think of the charged-current interaction
in terms of the incoming neutrino emitting a W+ boson and changing
into a negatively charged muon. The W+ can only be absorbed when
the target quark is a d, which is converted into a u, and so there is just
one Feynman diagram for this process (Figure 17.7a).

Figure 17.7.

The neutral-current interaction takes place via a Z° boson, and both
the incoming and target fermions retain their flavors. The neutrino
can scatter off both u and d quarks, and thus there are two equivalent
diagrams contributing to the process (Figure 17.7b).

b) Our first step is to integrate the expression given for do/dy over
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The total neutral-current cross-section is the average of the left- and
right-handed cross-sections,

1G%s

"Nc=§ -

i\ _ Gks ( 20 )
2 2 1 a2 U
(L c+ = RNG) vl £ sin® B + T sin fw ) .
(17.94)
To find sin? f we take the ratio of the cross-sections (17.92) and
(17.94), and equate it with the given value,

R =03= % — sin? by + %sm By . (17.95)

This is just a quadratic equation which we can solve (discarding the
unphysical root which is greater than unity) to find

sin? Oy = 0.24. (17.96)

This is a very good estimate of the current experimental value, which
is around 0.23.



Chapter 18

Atomic & General
Physics—Solutions

Solution 9.1. a) The Bohr theory of the hydrogen atom can be di-
rectly applied to positronium after noting that the reduced mass for
positronium has the value g = m,/2, rather than g =~ m, as for the
hydrogen atom. If we ignore fine structure, the energy levels for positro-
nium are given by

__1, =_1
E, = 5% uct (ﬂz) =-5 Ry, (18.1)

where a = 1/137 is the fine-structure constant, and a Rydberg is an
energy unit with 1 Ry= 13.6 eV, the ground state energy of hydrogen.
Thus, the ground state (n = 1) binding energy for positronium is half
that of hydrogen, or 6.8 eV. From equation (18.1), the 2p — 1s transi-
tion corresponds to an energy difference of 5.1 eV, or a wavelength of

2400 A.

b) The decay rate I' for electric dipole transitions between two states
is proportional to w?®|(r)|?, where hw is the energy difference between
the states, r is the relative coordinate between the positron and the
electron, and the constant of proportionality depends only on natural
constants and pure numbers. From part (a), we see that w is half as

283
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large for a given transition in positronium as in hydrogen. The effective
Bohr radius in positronium, a, = A%/ue?, is equal to twice the Bohr
radius in hydrogen. Since all lengths in the atom scale with the effective
Bohr radius, the matrix element of r between the 1s and 2p states of
positronium will be twice the matrix element of r between the same
states in hydrogen. Combining these factors of two, we find that the
lifetime, or 1/T, will be twice as large in positronium as in hydrogen,
or 3.2 ns.

c) and d) The magnetic field on the electron due to the positron’s
magnetic moment is analogous to the magnetic field on the electron
due to the proton in hydrogen . Therefore, part (d) is asking for an
estimate of the “hyperfine” splitting in positronium. A naive estimate
of the dipole magnetic field on the electron would be pug/a}, and the
corresponding energy splitting due to this field would be on the order of
#B(#s/a}). On dimensional grounds these must be the correct answers,
aside from numerical factors. Similarly, the splitting in the 1s state of
hydrogen must look like pp(pp/a3;) with the same number out front.
The magnetic moment of the proton is up = gppn/2, where gp = 5.6,
and gy is the nuclear magneton (just as the e~ has magnetic moment
2:p#8/2 with g, =~ 2). Recalling that the hyperfine splitting in the
ground state of hydrogen gives rise to the 21 cm line, important in
astronomy, we can estimate the hyperfine splitting in positronium as

AE ~ 22 (”—B) (ﬁ) = anhe (9‘“‘*") (5) =sx107ev,
(21 cm) \pp ) \ a3 (21 cm) \gpm./ \8
(18.2)
where mp = 1 GeV is the mass of the proton. While this estimate is a
good one, the actual cause of the hyperfine splitting in the 1s state is
somewhat subtle and is outlined below.

According to the general prescription for finding hamiltonians, we
write down the classical hamiltonian for the interacting magnetic di-
poles of the e~ and e* and then interpret the separation r and the
magnetic moments as quantum-mechanical operators. Classically the
magnetic field at a position r from the positron’s dipole moment u,, is

B =5 (Xl )+ B (s9)
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The interaction energy with the electron magnetic dipole g, is
[~#.- - B(r)). With the substitutions

o = +9‘:B S, and g, = -9':85,, (18.4)
where S5; and 5, are the spin of the positron and electron, respectively,
and r is reinterpreted as a vector operator, we have the following hy-
perfine hamiltonian:

R 3(r-S=)(r-S=)_51.s,]+%”(9"‘”) k(0)*S: - Sa,

h2r3 r?

(18.5)
where [4(0)|? is the probability that the electron and positron are at
the same position. Since the ls state is spherically symmetric, the
expectation value of the term in brackets is easily shown to vanish for
both the singlet and triplet states. The second term in the hamiltonian
is called the “Fermi contact interaction,” and does not vanish for s-
states. We rewrite the Fermi contact interaction as

o= T(E2) worE-si-s)  (s9)
= T IO S(S +1)+constant,  (187)

where S = S; + S,, and by definition, S = 0 for the singlet state and
S =1 for triplet state. The energy difference between the singlet and
triplet state is given by

AE =(S=1|H;|§=1)— (S =0]H;| S = 0). (18.8)

The splitting from the magnetic interaction is therefore

8r (1 22 _ 4 2, -4
AE 3 (“ag) gns 3a, 3 Ry=5x10""eV, (18.9)

where we use the result |1(0)|* = 1/wa3. This is just what we found by
dimensional arguments in equation (18.2). The magnetic field experi-

enced by the electron is therefore AE/up =~ 10° gauss (recalling that
pp/h = 1.4 MHz/gauss).
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There is a further contribution to the splitting in positronium due
to an “annhilation diagram,” with the value of a®?Ry/2, which we shall
not derive (see Sakurai). This annihilation term is of course not present
in hydrogen.

e) The question of correlation of photon polarizations forms the ba-
sis for the Einstein-Podolsky-Rosen paradox. There is a good discussion
of the answer to this part of the question, the EPR paradox, and its
resolution, in Sakurai, Chapter 4.

The parity of the singlet 'S state is —1(—1)X*+¥ = —1, where the
first factor of —1 is due to the opposite intrinsic parities of the electron
and positron. Since parity is conserved by electromagnetic interactions,
the two decay photons must also be in a state of negative parity. The
total angular momentum of the n = 1 singlet state is zero, so the
total angular momentum of the photons must be zero. The photons
are therefore in a symmetric state with zero angular momentum and
negative parity. Any correlation function must have these same prop-
erties, i.e., it must be a pseudoscalar. The only quantities available
from which we can form the correlation function are the polarization
vectors of each photon, and the relative momentum k. The only way
to combine three vectors into a pseudoscalar is to form a scalar triple
product: (€; X €3)-k, or permutations. This has a maximum when the
polarizations are at a relative angle of 90 degrees.

Solution 9.2. a) The lens serves two purposes. It defines an aperture
which diffracts the incoming plane wave, and it brings the far-field
diffraction pattern of this aperture into the focal plane (see Hecht and
Zajac, Chapter 10). The far-field pattern can be found by considering
the interference between infinitesimal area elements of the aperture.
The resulting intensity distribution (for a circular aperture) is called
an Airy pattern. This pattern has a main lobe centered on the optical
axis, and a first null at a radius of

fA

r=1227, (18.10)
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c) By tracing the two rays shown in Figure 18.2 (one passing un-
deflected through the center of the lens, the other passing through its
focal point), we can see from similar triangles that

r_¥ r__Y¥v_
5 =3 and FoR_F (18.11)
which leads to 1 1 1
=-=—-—4+- 18.12
F=nt;g (18.12)

which is the well known lensmaker’s formula.

Figure 18.2.

d) When looking at an image, the human eye detects differences
in the intensity (or the log of the intensity) of the electric field, not
phase differences. The transparent microbe, unfortunately, only phase-
modulates the field, rather than amplitude-modulating it. This section
of the problem describes the useful technique of using a phase plate to
change phase-modulated waves into amplitude-modulated waves, called
phase contrast microscopy.

This part of the problem can best be understood by using an impor-
tant result from diffraction theory, which is that the far-field diffraction
pattern is the Fourier transform of the aperture function (see Hecht
and Zajac, Chapter 11). The aperture function describes the ampli-
tude and phase of the wave which is diffracting through the aperture,
as a function of position in the aperture plane. As mentioned previ-
ously, the far-field pattern appears at the focal plane of the lens (at
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which is an amplitude-modulated, ¢-dependent intensity.

If the center of the phase plate is opaque, the uniform background
will be almost completely filtered out, and the image of the microbe
will be light on a dark background.

Solution 9.3. a) Let r be the radial distance from the axis of symme-
try of the lens and « be the thickness parallel to the axis of symmetry
measured from the flat side of the lens (Figure 18.3). Consider a source

>
vy
. P
T h
e X | |
f !
Figure 18.3.

placed a large distance to the left of the lens, so that rays incident on
the lens from the source can be treated as parallel. Then the focusing
condition is that the optical path length of all such rays from the source
to the focal point must be the same. Two rays are drawn in Figure 18.3.
The upper ray just grazes the top of the lens, while the lower ray exits
the lens at the point (r,z). Setting the path lengths of the two rays
equal gives

an+\fr? + (f —z)2 = \/f2 + D3/4. (18.17)

Rearranging to find r as a function of z, we have

r? = (\/f’ + D4 - m.)’ —(f - 2)P. (18.18)

It is straightforward (if tedious) to invert this to give z as a function
of r, if desired.
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b) We use the common trick for lens problems of finding the inter-
section of two rays with simple trajectories in order to find the focus
(see Figure 18.4). The first travels straight through the center of the

Figure 18.4.

first lens and is deflected by the second lens through the focal point f5.
Using coordinates with the origin at the center of the second lens, this
path (after the second lens) can be written

y=46- (i) z. (18.19)
f

The second ray is chosep to pass through the center of the second lens

and the focal point of the first, f;. Its path after the second lens is

Y= (flﬁD) T. (18.20)

The intersection of these two lines determines the focal point of the two
lens system. Some algebraic manipulation shows that the focal point

occurs at f (f D]
_ Jilh—
T = it oD (18.21)
fb__ (18.22)

y=f1+fz—D‘
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Solution 9.4. Note that the fine structure constant is a = €?/hic
and the Bohr radius is ag = h?/m.e*. In spite of the wording of the
question, we will include factors of two where they are obvious.

a) The energy of the n'® level is E, = —(a?m.c?)/(2n?). The tran-
sition of interest between the n = 1 and n = 2 levels has the energy
AE = hf, = 3m.c?a?, so that the frequency of the absorption line f,
is '

3 m.? ,
—_—

fo= o R (18.23)

b) The expression for the linewidth due to spontaneous emission of
electric dipole radiation is, in units of energy,

4 (w3,
AE =hAf=7 (E) ler]?, (18.24)
where |er| is the dipole operator matrix element between the initial
and final states, and w is the angular frequency of the transition. We
can approximate |er|? by e?al. Thus, with the expression for f, from
(18.23), we find that the linewidth is

9 me? o

Af = ——
f 256 h

(18.25)

c) The Doppler width is due to the thermal motion of the hydrogen
atoms at temperature T. We may use the equipartition theorem to
estimate their velocity: myv?/2 ~ 3kT/2, so that v ~ /3kT/my,
where mg is the mass of hydrogen. In order not to be ionized, the
cloud must be at a reasonably low temperature, so we can use the
non-relativistic Doppler formula to find the frequency shift: fo/f =~
1+v/c. Thus we may approximate the width of the observed frequency
by Af, = vf/c, to within a numerical factor of order unity. We use the
expression for f, from equation (18.23), and find

3 [3kT m.c ,
Afu ~ IE; HTQ . (18.26)
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a) A microwave oven has a typical dimension of about 35 cm. The
wavelength of the microwave radiation should be, say, a quarter of this
distance so that there will be a reasonable number of antinodes across
the oven and food will be heated relatively evenly. A wavelength of
9 cm corresponds to a frequency of about 3 GHz.

b) In a fission bomb there are about (30 kg)/(238 g) = 126 moles =
7.6x10% atoms of uranium. A typical energy release in a fission process
is 200 MeV. In an explosion, only a small portion of the uranium fissions
before the material is blown apart, say ten percent. Then

E 7.6 x 10 x (200 MeV) x 10% = 2 x 1077 MeV
= 2x104J. (18.39)

This is the equivalent of about 60 kilotons of TNT, which is about
three times the yield of the bomb dropped on Hiroshima during World
War II.

c) The energy depends on the relative velocity at impact. The
earth’s orbital velocity is about 30 km/s (since it traverses a circular
route of radius 8 light-minutes every year). Take this as a typical
relative velocity. We guess that the density of the meteorite is about
that of ice, 1 g/cm?, so

Lt~ L (4 (20)) (115 (50 10m)’
Es‘sgmv RS 2(3# 5 10 - 3(Z'>':1033
~ 2x10M]. (18.40)

This is the same as our answer to part (b)!

d) We recall that the sun’s energy flux at the earth’s surface (the
solar constant) is F, = 0.14 W cm™2. The earth’s orbit has radius
r = 8 light minutes, and the radius of the sun is R = 2 light seconds,
so the radiation flux at the surface of the sun is

2
Fr=F, (%) =8 x10° W em™2. (18.41)

The sun is very nearly a blackbody, so to find the temperature we use
the Stefan-Boltzmann law, F = opT*, where o5 ~ 6 x10~!? W/cm’K*.
Then T = 6000 K, which is about right.
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e) We assume the filament is radiating as a blackbody, and use
Wien’s displacement law, T' ez = 0.29 cm K. We need to estimate the
wavelength at which a light bulb spectrum peaks. Efficiency requires
that this should be at least near the optical band, to keep from wasting
a lot of power in the UV (if T is too high) or the infrared (if T' is too
low). So we will assume, somewhat arbitrarily, that the peak is on the
boundary between the optical and infrared bands, Anar = 1 micron
(recall that 1 micron = 10~%m). Then T = 2900 K. (The melting point
of tungsten is about 3700 K, which provides a useful upper limit.)

f) The speed of sound in a gas is

1/2
v= (1’;) , (18.42)

where P and p are the gas pressure and density, respectively, and v =
Cp/Cy. Using the known speed of sound in air, 330 m/s, and the fact
that air is largely molecular nitrogen, we can find the speed of sound
in He. We will neglect the differences in ¥ between the two gases. For
a given pressure, we have v ~ 1/,/m where m is the mass of a gas

molecule, so

v(He) ~ v(air) :Eg:; ~ (330 m/s) \/? ~870m/s. (18.43)

The experimental result is about 965 m/s.

g) We guess that the average human has about four liters of blood,
half of which is in the capillaries at any given time. Then the total
volume of capillaries is two liters, or V ~ 2 x 10~* m®. A blood cell
is about a micron across, and we recall from high school health films
that capillaries are not much wider than the cells they transport, so we
guess that a typical capillary is about d ~ 3 microns in diameter. Thus
the total length of capillaries is about

~ ;x 2x10%m. (18.44)

(This is half the distance to the moon....)
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1. maximize S,

2. maximize L (after maximizing S), and

3. for a shell labeled by n,
- minimize J if the shell is less than half full, or
- mazimize J if the shell is more than half full.

All of the elements listed except nitrogen have only one valence
electron, so S = 1/2. The valence electrons of Li, Na, and K are each
in s-states, so that L = 0 for each of these elements, and thus J =1/2.
For boron, we have one electron in a p-state, so L = 1. We minimize
J because the n = 2 shell has only three out of eight possible states
occupied, so J = 1/2.

Nitrogen has three valence electrons. We apply the first rule above
to find § = 3/2 for N. Because § = 3/2, we know that all three valence
electrons have the same spin quantum number m,. (That is, all three
spins are parallel to one another.) The electrons already have identical
s and ! quantum numbers, so their values of m; must all be distinct:
my, = +1, my, = 0, and my, = —1. Since the only possible state is the
one in which My, = 0, it must be that L = 0 and thus J = 3/2. To

summarize:

Element S L J
(Z=3) 1/2 0 12
B(Z=5 1/2 1 1/2
N(Z=7) 32 0 3/2 (18.48)
Na(Z=11) 1/2 0 1/2
K(Z=19) 1/2 0 1/2.

b) The lowest frequency line in the absorption spectrum corresponds
to an electron in the 3s level absorbing a photon and being excited to a
3p state. The 3p state consists of two substates, 3p,/; and 3ps/z, where
the subscript is the J quantum number. The J states are split by the
spin-orbit effect. The spin-orbit term of the hamiltonian arises because
the electron. sees a charged nucleus rotating around it, giving rise to
a magnetic field, B. The energy correction for this effect is given by
E,, ~ —pu,-B, where u, = —g,upS/h is the magnetic moment of the
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electron. The value of B is

o = 1(2e) =3 (3 (3)9
2m’ —(mv x), (18.49)

where the factor of 1/2 is from the Thomas effect, included here for
completeness (see Jackson). (Also note that in using E =~ (e/r?)i we
are assumning that the effective charge of the shielded nucleus is roughly
+e.) We recognize L = m(v x r), so we find that the spin-orbit energy
18

o~

_ 9s4BE QIPB
Eo= 5L S = 221 8. (18.50)

Thus the energy djﬁ'erence between the two 2p states is proportional to
{r=3), so that n = -3.

c) We want to find the L, S, J, and M; quantum numbers for the
low-lying states. We will use spectroscopic notation in which the states
are labeled as 25*1 ;. The ground state is 4s?, or 25y, in spectroscopic
notation. The lowest excited states have an electron in the 4p state,
outside a filled core. Any one-electron state has s = 1/2 so that § =
1/2, and similarly L = ! =1 so that J = 1/2 or 3/2. This means that
the low-lying states are 2Py, and 2Pyj;. The magnetic field breaks the
degeneracy with respect to M.

Electric dipole (E1) transitions must obey the following rules:

1. Al = =1 (provided that the transition is of a single electron),
. AS =0 (if L-S coupling is valid),

. AL=0,%1but L =0/ L =0 (if L-S coupling is valid),

. AJ=0,+1but J =04 J =0 (in general),

. AMy=0,%1, but M; =0 /A M; =0if AJ =0 (in general).

[ 0 L ]

These rules permit the transitions shown in Figure 18.5.

The energy change for a magnetic moment g in a field B is AE =
—{p - B), or simply AE = —B{(u,} if we take B to be in the +2-
direction. Here, pt = —(grpusL + gspupS). For an electron, gs =~ 2 and
gr=1. We may rewrite g as

N }% aplor +9s)(L+S) + ﬁ(gn —gs)(L—S). (1851
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Figure 18.5.

We next use the expression for {y,) from the projection theorem (which
is also used in calculating nuclear Schmidt limits, Problem 7.2),

(1) = T (18.2)

The projection theorem is just the Wigner-Eckart theorem for diagonal
matrix elements. With our e.xpression for u, equation (18.51), we find

J(.I+ 1)— L(L +1)+ %5(s+ )| M.

(18.53)
We may thus write AE = g;upM;B, where the Landé g-factor gy is
given by

(me) = J(J+ 12

3 L(L+1)-S(S+1)
=TT 2y

Thus, the splittings of the Zeeman levels in the ?Py/,, 2Py)5, and 2S5, ,
levels are governed by the Landé g-factors: g3» = 4/3, g1/ = 2/3, and
912 = 2, respectively. (Of course, the ?Py;, and the 2Py, levels are
split by the spin-orbit effect of part (b).)

(18.54)

Solution 9.8. a) For small velocities of the projectile, it is in the
regime of low Reynolds number, in which viscous drag forces will dom-
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inate. The drag on a sphere is consequently given by Stokes’s law,
F = 6w Rvn. We could just write this down, but it is more instructive
to derive it (to within a numerical factor) from the basic equation of
fluid mechanies, the Navier-Stokes equation:

p (%—l}+u-7u) = ~Vp+7V3u. (18.55)
In this equation, u is the velocity field of the fluid, and p is the pres-
sure. The two terms on the left-hand side together form the convective
derivative of the fluid flow, and represent the acceleration experienced
by a particle moving along with the fluid. On the right-hand side is a
term for the pressure gradients which drive the motion of the fluid, and
a term for the viscous damping of the flow. Mathematically, the effect
of the spherical projectile on the fluid is to define boundary conditions
on the fluid at the surface of the sphere, namely that the fluid must
have zero velocity relative to the projectile at its surface (which is a
standard condition when considering viscous fluids).

A lot of information can be extracted from the Navier-Stokes equa-
tion simply by using very crude approximations. First let us assume
that the two acceleration terms on the left-hand side of (18.55) have
the same magnitude. We can approximate |Vu| by Au/Az =~ v/R,
and in fact whenever we encounter a derivative V, we will replace it by
1/L, where L is the appropriate length scale. In this problem, there is
only one candidate for this length, the radius R of the projectile. Thus
we make the estimate

du pv?

In a similar fashion we can estimate the viscous damping term to be of
order

IR %. (18.57)

For arbitrarily small v, the acceleration terms will be negligible in com-
parison with the viscosity term. Therefore the viscosity term must
balance against the pressure term,

LAp v
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Figure 18.6.

where we have dropped numerical factors. We integrate once to get the
velocity as a function of time,

-1
t
v(t) = v (1 + T—;) , (18.64)
and once again to find the distance traveled,
uR ( pvot)
z(t)= —In|l1+—] . 18.65
()~ 2 1n (1422 (18.65)

Of course, this expression is only valid provided the projectile is still
traveling at velocity v(t) 3> v.. We use expression (18.64) for v(t) to
estimate the time ¢, during which this approximation is valid:

-1
i
v(te) = ve = v (1 + p:—"R) ) (18.66)
which we can solve to find t. = pR/pv.. We substitute into (18.65) to
find the distance traveled in this time:

Ve

oy %ln (1 + E) : (18.67)

The particle has not yet stopped completely, and we should now solve
the equation of motion to see how far it travels in the regime of low
velocities,

F~nRu=~ —,u.R"’%'- . (18.68)
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After integrating twice we find the projectile travels the further distance

As = "‘—f . (18.69)

However, since vp /v, > 1, this extra distance is negligible.

Solution 9.9. a) Each new signal photon requires the destruction of
a pump photon, so that the overall number of photons is conserved, or

IP(O) ~ I,(Z) + IP(Z) , (1870)
Wy W,y Wp
where we have used (on the LHS) the initial condition that I,(0) >

1,(0). Solving for I,(z) and substituting into the equation for the signal
growth (9.2), we find that

1 d Wy
—— L I(z) = 2 . :
TEE = [r,,(c) ) (z)] (18.71)
This can be integrated and solved for I,(z) using the method of partial
fractions. The result is
-1

I(z) = rT‘J,{O)I.(O)e"("}”‘ (%I,(O) - L,(0) + I.(o)e’r("h*)

(18.72)
Taking the small signal limit I,(z) < Ip(z) allows us to ignore the terms
in the denominator containing I,(0), yielding

I,(z) = 1,(0)e9%()= | (18.73)
which shows the expected exponential gain in the signal before satura-

tion is reached.

b) The state [z} is virtual; the atom only stays in it a “short” time
At. The uncertainty principle tells us that the energy of that state
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is not well-determined, i.e., it has a width given by AEA¢ = h. The
energy of the virtual state |¢) (and thus the energy of the outgoing
signal photon) depends on the energy of the incident pump photon.
The frequency of the transition from |z) to |f) thus depends on the
frequency of the incident (nearly monochromatic) pump photon. This
frequency is tunable.

c) We assume that the transitions are electric dipole. In that case,
state |z) must have parity opposite that of states |g} and |f}. In stron-
tium, the outer two electrons are in a (5s)? configuration, so the parity
of the ground state is positive. The state |¢) must therefore have neg-
ative parity, which could result from the configuration (5s)(5p). The
final state must have positive parity, and a lower energy than [i). A
suitable configuration is (5s)(4d).

Solution 9.10. a) A hurricane is a region of low pressure, with a
diameter on the order of one hundred kilometers, surrounded by cir-
culating winds. Although the pressure difference between the eye of
the hurricane and its outer edge is large (a sizable fraction of the to-
tal atmospheric pressure), the radius of the hurricane is so large that
the pressure gradient is very small. Therefore, we have to take into
account other small forces, in particular those arising from the rotation
of the earth. The surrounding air would like to flow radially inward to
equalize the pressure difference, but it is deflected by the Coriolis force
F = —2mw x v. We can see that this (pseudo-) force arises from sim-
ple considerations of angular momentum. Consider, for example, air
flowing in from the south. As it moves north, its angular momentum
about the earth’s axis has to be conserved, but its perpendicular dis-
tance from the earth’s axis of rotation is decreasing, which means that
its angular velocity must increase to compensate, and will be higher
than the local angular velocity. As a result, an observer on the ground
will see the air veer eastwards. Conversely, air from the north will veer
west. It is simple to calculate the exact forces involved, however we
just need to note that the net effect is to set up a counter-clockwise
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Now we can calculate the wind speed near the eye, say at a radius
of 10km. At this radius we can assume that the pressure gradient
is approximately the value calculated in equation (18.74). The corre-
sponding velocity is

va5x10°cm s~ &~ 110mph, (18.77)

which is a very reasonable number.

c) If we consider the pressure, temperature and density of air all
as functions of height above sea level, the situation would be quite
complicated. However, it is a good approximation to assume that the
pressure is a constant, as it varies with height much more slowly than
the other quantities.

Consider now a packet of air at height h, temperature Ty and mass
m, which rises adiabatically a distance Ah which is not necessarily
infinitesimal. In the process it gains an amount mg Ah in gravitational
potential energy, and this gain in potential must come at the expense
of its thermal energy, and consequently the gas must cool. Since we
are dealing with a fixed mass of air at constant pressure, we will use ¢,
rather than ¢, and write mg Ah = —mc, AT, or

AT _ =g _ o -1
AR o = ECkm (18.78)

This temperature gradient is known as the adiabatic lapse rate. Now
suppose that the temperature of the surrounding air at height A+ Ah is
higher than Ty — AT. The surrounding air will then be less dense than
the packet, and the packet will sink back down. If, however, the sur-
rounding air is cooler than Ty — AT, it will be denser and the packet will
experience buoyancy and want to continue rising even faster. In fact,
the temperature gradient found above is precisely the limiting condition
for stability against buoyancy. If the temperature drops more rapidly
than this, then the convection currents that arise will carry thermal
energy and reduce the gradient until it reaches its limiting value. We
would expect this to be the situation on a summer’s day, when the
air in the morning starts off cold, but is warmed through contact with
the ground which is heated by the sun. Often the conditions will be
right for “thermals,” long columns of warm air rising at rates of a few
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Hall effect, 32, 38
harmonic oscillator, 7, 94
damped, 6
forced, 4
overshoot, B
quantum mechanical, 18, 126, 171,
191
raising and lowering operators, 127
variable spring constant, 6
Hartree-Fock approximation, 37
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heat flow, 22
Heinlein, R. A, 4
Heisenberg uncertainty principle, 293,
296
helium, 33, 54, 70
Hendrix, J., xv
Higgs boson, 63
holmium, 52
Hubble's constant, 41, 224
Hund’s rules, 299
Hurricane Gilbert, 73, 307
hydrogen, 68, 261
Bohr model, 283
hyperfine splitting, 21, 284
hyperfine structure, 21, 69, 144, 284,
204

AT =1/2 rule, 256
ideal gas, 160
specific heat, 153
image charges, 9, 97, 109
impulse force, 77, 155
index of refraction, 10, 100
inflationary scenario for universe, 41
interference
electromagnetic, 14, 287
neutron beam, 20
isobaric analog states, 240
isospin, 19, 256

kaon, 56, 256

Kasner model, 44

Killing vector, 45, 219

Killing’s equation, 219

kinetic theory of gases, 25

Kirchoff’s law, 108
Kobayashi-Maskawa mixing matrix, 62

Lagrange's equation
for soap film, 90
bead on hoop, 92
for normal modes, 81
nematic liquid, 185
Lagrangian
charged scalar particle, 262
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first integral, 80

scalar quark, 58

standard model, 59
Landé g-factor, 302
Landau levels, 125, 192
Landau-Ginzburg theory, 30, 32
Laplace’s equation

in cylindrical coordinates, 113
Larmor formula, 118
latent heat, 24, 152

type I superconductor, 26
lattice

diffusion in, 23

distortion of, 36

entropy of, 26

strain, 32

two level system, 26

with disorder, 193

with impurities, 23
lead, 46
Legendre polynomials, 103, 122
length contraction, 200
lens

lensmaker’s formula, 288

thick, 68
light bulb, 70
linearized theory, 200
linewidths, atomic, 69
lithium, 54, 71
localized states, 193
Lorentz force, 127
Lorentz gauge, 105, 201
Lyman-alpha transition, 66

magnesium film, 33
magnetic dipole transition
nuclear, 238
magnetic field
atom in, 71
Cooper pairs in, 171
electrons in, 10, 19
hydrogen in, 21
nematic liquid in, 35
neutrons in, 20

INDEX

two-dimensional electron gas in,
18
magnetic free energy, 184
magnetic moment
nuclear, 21, 47, 53, 230, 247
of electron, 21, 284
of positron, 284
magnetic resonance, 19
magnetization, 12
type [ superconductor, 163
magnetostatics, 12, 109
magnons, 178
masses on springs, 4
Maxwell's equations, 99
Maxwellian distribution, 155
mean free path, 155
meteorite, 70
meter, 80
microbe, 67
microscope, 67
microwave background, cosmic, 224
microwave oven, 70
Minkowski space, 221
mixing
nuclear states, 51
of D meson, 58
in kaon system, 57, 58
of neutrinos, 61
of quark generations, 62
motor, 11
muon, 57
halflife, 39, 196, 265, 276

muon-nucleon scattering, 57

Navier-Stokes equation, 303
nematic liquid, 34
neutral current, 64, 280
neutrinos
from fission, 49
mass limit, 60
oscillations, 61
solar, 46, 235
supernova, 60
neutrons
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filter for, 32
polarized beam, 20, 54
nitrogen, 47, 48, 50, 71, 298
normal modes, 4, 80, 158
nuclear radius, 232
nucleus
antisymmetry of wavefunction, 250
collective motion, 52
rotational energy levels, 245

Ohm'’s law, 99, 101

orbit, perihelion precession, 8
oscillations, small, 7

Otto cycle, 24

oxygen, 47, 48

parallel transport, 43
parity, intrinsic, 260, 286
partition function
diatomic molecule, 23
holes in lattice, 165
ideal gas, 160
Pauli spin matrices, 130, 138, 250
Peltier effect, 177
perihelion, precession of, 8
permeability, magnetic, 12
perturbation theory
time dependent, 18
phase contrast microscopy, 67, 288
phase space, 88, 229, 257, 265
phase transition, 24
ferroelectric, 32
ferromagnetic, 37
superconductor, 29
photography, 13
pion, 56
pion exchange, 19
plasma, 10
plasma frequency, 10
plasmons, surface, 179
polarization, circular, 100
polarization, ferroelectric, 31
polaron, 36
population inversion, 22
positronium, 66, 263
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potassium, 71
potential
delta function, 16
harmonic oscillator, 18
infinite well, 16
QCD, 58
spherically symmetric, 120
square well, 36
staircase, 20
Yukawa, 19
Poynting vector, 117
Poynting-Robertson effect, 44
projection theorem, 302
proton-antiproton annihilation, 61

quantum beats, 69, 296
quantum Hall effect, 37, 195
quark

charm, 58

model, 57, 61

neutrino scattering, 64

scalar, 58

spectator, 265

top lifetime, 63

weak charge, 64
quasiparticle, 28

Rabi precession, 134
radiation
dipole antenna, 11
Larmor formula, 118
multipolarity of, 52
of accelerated electron, 15
radiation pressure, 44, 217
radiation reaction, 15, 119
rain, 310
Raman scattering, 72
random walk, 23
Rayleigh criterion, 287
redshift, 39, 198, 224
refrigerator, 32
resistance, 101
resistor with defect, 10
resonance
angular momentum of, 18, 54
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electron spin, 130
width of, 60
retarded time, 117
Reynold’s number, 303
Ricei scalar, 203
Ricci tensor, 219
Riemann tensor, 45, 213, 219
Robertson-Walker metric, 41
expansion factor, 204
rocket in dust cloud, 3
rotator, quantum mechanical, 22, 299
rotons, 34
Rydberg, 283

scandium, 47
scattering
delta function potential, 18
electron-positron, 269, 279
incoherent, 259
muon-nucleon, 57
neutrino-nucleon, 64
neutron, 32
partial waves, 16, 18, 122, 129
phase shift, 122
pion-nucleon, 19
transmission coefficients, 20
Schmidt limits, 47, 231
Schrodinger equation, see also poten-
tial
in central potential, 120, 181
in crossed E and B fields, 17
in magnetic field, 130, 171, 191
in momentum space, 181
Schwarzschild metric, 42, 43, 211
semi-empirical mass formula, 51, 234,
242
semiconductor model, for superconduc-
tor, 166
shell model, 46, 47, 54
magic numbers, 231
silicon, 37
simple harmonic motion, see harmonic
oscillator
skyhook, 4

INDEX

soap film, 6
sodium, 47, 71
solar
pp cycle, 235
luminosity, 235
temperature, 70
sound, speed of, 298
spatial filtering, 288
specific heat
diatomic molecule, 23, 70
ideal gas, 153
lattice, 31, 172
metal, 173
two-dimensional boson gas, 173
two-level center, 30
type [ superconductor, 26
spectroscopic notation, 301
spherical harmonics, 244
spin
in general relativity, 43
in magnetic field, 19-21, 137
multiplicity factor, 279
symmetry of wavefunction, 256
spin, multiplicity factor, 274
spin-orbit splitting, see fine structure
standard model, 59, 64
Stanford Linear Collider, 59
Stefan-Boltzmann law, 297
Stirling’s approximation, 145, 150
Stokes's law, 303
Stokes's theorem, 88
strain, 32
strangeness-changing decays, 256
stress-energy tensor, 201
for perfect fluid, 203
for photon gas, 203
string, equations of motion, 158
strontium, 72
sudden approximation, 124
Super-Ball, 3
superconductor, 25, 28, 29, 32
superfluid helium four, 33
supernova 1987A, 60
surface tension, 89
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susceptibility, nematic phase, 34 Wiener, O., 13
Wigner-Eckart theorem, 230, 248, 302
temperature, 164 WIMPs, T
inversion, 310
negative, 22 Z° boson, 59, 259, 280
tensor formalism, 80 Zeeman splitting, 71, 302

thallium, 46
thermal equilibrium, 155
thermal fluctuations, 25
thermals, 310
third law of thermodynamics, 162
Thomas effect, 301
Thomas-Ehrman effect, 239
time dilation, 39, 196
tin, 32
trace identity, gamma matrices, 279
transition
semi-leptonic, 58
transitions, see electromagnetic tran-
sition
transmission coefficient, 137
transmission grating, 67
transmission line, 13
tunnelicg, 28
two-level system, 22, 30

universe
entropy of, 207
expansion of, 41
inflation, 41
Kasner model, 44
radiation dominated, 207

vapor pressure, 25

vector spherical harmonics, 244
virtual transition, atomic, 72, 306
viscous fluid, 71, 303

W boson, 280
W boson, 61
weak decays, 265, see alse muon halflife
strangeness-changing, 258
vector and axial couplings, 268
weak isospin, 65
Weinberg angle, 64, 282
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