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PREFACE

This supplement contains solutions to most of the
more-involved problems in the QUANTUM PHYSICS text;
with one exception, solutions to problems in the
Appendices are not included,

The supplement is directed toward instructors, and
this has influenced the presentation. Not every
algebraic step is exhibited. The units have not been
displayed explicity in every equation. (SI units are
adopted in the supplement, mainly because they are
briefer than the text notation.) Rules with regard
to significant figures have not been strictly
observed, although there should be no outlandish
violations. Use of symbols and choice of notation

is generally cbvious and therefore not exhaustively
defined for each problem.

It is a pleasure to thank Prof, Richard Shurtleff
(Wentworth Institute of Technology) for preparing
the solutions to the problems in Chapter 18,

Preparation of the supplement, including choice of
problems, was left to the undersigned, who was also
his own typist and illustrator. He would appreciate
a note, of up to moderate asperity, from those who
detect an error and/or mistake.

December 24, 1984 Edward Derringh

41 Montgomery Drive
Plymouth, MA 02360
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CHAPTER ONE

12

The radiant energy contained in
volume dV that is moving toward
A at any time, in the frequency
interval v, vHdv is

= a2
dET(u]du = pT(v}dv in av,

where  is the solid angle
subtended at dv by A. With

@ = Acose/r?
and

av = rzsinedrdedxh,
the energy becomes

dEL(Vdv = 2= p(v)dv Asingcosedrdeds.

The energy in this frequency interval that crosses A in time t
from the entire upper hemisphere is

n/2r2n pct
E;z.(uldu = pT(v}dv :;-\E g zg r sin@cospdedgdr
8=0J¢=0)r=0

Ep(Wdv = 3 pr(v)dy Act.

Hence the energy that passes through a unit area in unit time
from the upper hemisphere is

Rp(v)dv = Ep(v)dv/At = 3 pp(v)dv.
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2 2
P=R R.I.(v)du = ¥Ac pT(v)dv o Mca.l.(uw}m.
1 Yy
8
v, = c/a, =228 X0 _ 5 4500 x 201 iz,
5.50 % 107
v, =/, = 28X 0. _ 5 4410 x 10M .
2 5.51 x 10
e 1
Vay = k{vl +v,) =5.46 x 107" Hz;
v = v, = vy = 9.9 x 10 Bz,
Since
PplVg) = (Sﬂhugvlcal (Vay/*T - 17,
numerically;
gnhv3 /c® = 1.006 x 10713,
hv, /KT = 4.37,
Var/¥T - 1 = 78.04,

ppvy,) = (1.006 x 10713) (78.00) ™" = 1.289 x 107,

The area of the hole is

A=qr?=1(5x% 10_3)2 = 7.854 x 107> m?.

Hence, finally,

P = ¥(7.854 x 107°) (2.998 x 10%) (1.289 x 1072%) (9.9 x 101},

P = 7.51 W.

1-5
(@  L=4r%r? = an(7 x 108)2(5.67 x 1078) (5700)¢,
L = 3.685 x 10%° w.
= -g;tmczl =c? -gng.
dn _ L _ 3.685 x 10%® 9
i :5 = W = 4.094 x 10” kg/s.
(b) The mass lost in one year is
=t = (4.094 x 10°) (3.156 x 107) = 1.292 x 107 kg.
The desired fraction is, then,
£ =%=ﬁ"—-¥g~?= 6.5 x 10714-

1-10

(a) The solar constant S is defined by

Lszm

s=-22,

4nx’

r = Earth-sun distance, I'sm = rate of energy output of the

sun. Let R = radius of the earth; the rate P at which energy
impinges on the earth is

L

sunm2=m28'

anr?

P =

The average rate, per rnz, of arrival of energy at the earth's
surface is

p =_P__1m®’s
2 2

= s,
¥ R 4R

338 W/m® 2 §(1353 w/m2) = 338 W/m2.



) 338 = o1 = (5.67 x 107914,
T = 280 K.
1-19
= 5
P i
0 =$p.00 =
Ry 4 Pr W3 X -1

withx=m/m.atl-l +, X = 4.965, by Problem 18. Thus,

RO ) = 42.4031 (em)°/micd.
Now find x such that B.I.{l) = O.ZRT()\ 2 )z

211)(5'1'5 x5

h‘i'v::3 -1

5
x" = 4.2403,
e -1

X = 1.882, X, = 10.136.

Numerically,

r

= (0.2)42.403n %5155'
h'c

(6.626 x 10>%) (2.998 x 10°%) 1
r

,ohel_
kT x (1.38 x 10723) (3)

A =4.798 x 1073/x ,

A= 4.798 x 10—3/ 1.882 = 2,55 mm,

A2

1-20
If x = ln/m, then, by Problem 18,

= 4.798 x 1073/10.136 = 0.473 mm.

Hence,
BnkT

o.r(xm() =A:ux(5-x).

= R S kT)4
X = 4.965; —r— = (4.965 £3)°.

Amax

Upon substitution, these give

5
O ) = 170 I
Pr Aax (he) 3

1-21
By Problem 20,
5
o) = 170n BEIL
P Amax (hc)4

so that the wavelengths sought must satisfy

5

Brnhc 1 (kT)
—_— = k-170m .
;\5 em?m -1 (hc}"'

Again let
x = he/AkT.

In terms of x, the preceding equation becames
_®__1mn
&-1 16

Solutions are



Since, ﬁorkm,

CHAPTER TWO
x = 4.965,
these solutions give 1-5
- The photoelectric equation is
A = 1815, pho equa
A, = 0.614\__ . -
2 Amax hc = eVoh + wk.
WithV0=l.85vforA=3OU nm, andvo=0.82\-"for}\ = 400 nm,
1-24
he = 8.891 x 10728 + 3 x 107,
Let A\' = 200 nm, A" = 400 mm; then, ) a0
he = 5.255 x 1072% + 4 x 107wy,
1 1 1 1
=z T = (3.82) 5 The/akT Hence,
o5 BO/AKT _ | o5 Bo/AKT _ "
8.891 x 1072° + 3 x 107w = 5.255 x 10726 4 4 10'7w0,
he/A"KT -
ﬁ/-—l =3. sz(L (b) w = 3.636 x 10727 J = 2.27 ev.
RS/AKT _ | 0
Therefore,
Mumerically, 26 -19
6,626 x 10 (2,598 x 10° he = 8.891 x 10726 + (3 x 1077) (3.636 x 10719,
! X l ! ! X ! = K
% = (4 x 1077) (1.38 x 1072) 35987 % he = 19.799 x 10‘25 J-m,
so that
(a) . -26 -
S35987/T _ " h= 2200 %10 -6 604 x 107 g-s.
T (3.82) () = 0.1194. 2.998 x 10
e -
(c) W, = hC/.l r
Let x = &39987/T, o () 0
3.636 x 107 = 19.799 x 1072/A,
x = = 1 -
e U Ao = 5-445 x 107 m = 544.5 rm.
x = 7.375;
2-8
35987/T _
€ 7.375, In a magnetic field
r = mv/eB.
T = 33987 - 18,000 K.

= 1n7.375 ’ 7



Also,

Hence,

(a)

-4

p=mv =erB = (1.602 x 10 %) (1.88 x 1074,

p = 3.012 x 10”23 kg-n/s,

o = £3.012 x 107%) (2.998 x 10%) _ 0.05637 mev
A7 eV,

c(1.602 x 10°13)
B =gl + B,
E? = (0.05637)2 + (0.511),
E = 0.5141 MeV.

K=E - E.,‘:| = 0.5141 - 0.5110 = 0.0031 MeV.

(b) The photon energy is

2=

_ 1240 _ 1240 .
Eph(em 3 (rm) 0.071 = 0.0175 MeV;

wD=Eph-K=1T.5-3.1=l4.4ke’\F.

(a) Assuming the process can

operate,

mass-energy and of momentum: amanr @

hv +ED

apply conservation of

+ hv=K; w !‘ lll

%'ﬁﬁ:p.

=1{1-E‘J

These equations taken together imply that

P =K/e.

But, for an electron,

2 = pZc? +E§,
(‘K+ED}2 = p2c? +E§,

*

9
p = /K + 25 K) /c. (%)

(*) and (**) can be satisfied together only if EO # 0, which is
not true for an electron.

(b) In the Compton effect, a photon is present after the
collision; this allows the conservation laws to hold without
contradiction.

2-14

Let n = number of photons per unit volume. In time t, all
photons initially a distance < ct will cross area A normal to
the beam direction. Thus,

2

- Energy _ n(hv)a(ct) _ - bhc™
I= It AL nhcv 3

mrtmbeaﬂsofwavelmqthsklalﬁkzwim11=lz,

-{]—‘ =1= nl/ll -+ i = i:-l'-
- - r
1, nhy Ty A

and therefore

The energy density is p = nhv = nhc/A. Since this differs from I
only by the factor c (which is the same for both beams), then if
Py = Pyr the equation abowve holds again.

2-26
Set K, = 20 kev, Kf = 0; K}. = electron kinetic energy after the
first deceleration; then

he . _ .. he
Pt Koy

= A, + A,

1

with AA = 0.13 rm. Since
hc = 1.2400 keV-rm,



10
these equations become

4%{*‘1‘1= 20 - K3 '%=Kl: X, = +0.13.
Solving yields,
(a) Kl = 5.720 keV;
®) A, = 0.0868 rm; A, = 0.2168 rm.

2-28

Apply the laws of conservation of total energy and of momentum.
Center of Mass Frame

:'H_ o e
* 1 nl!®
©

E' 'l‘mz-hocz’
E'
F =-mv = 0.

nw+nu:-3nuc,

m(l + B) -hﬂ'

m

u—_ogs;{l*-ﬁ) = 3m,,
B = 4/s.

Hence, m = 5m /3 and B' = = &n_c?/3.
umagug::o/ mc?g 4n,c?/3. By the Doppler shift,

E' = E((1 - 8)/(1 + 8)) = E/3,

E= 3E' = 3(1;"‘0'—‘21 = c_nocz.

11
Laboratory Frame

xt rest ®—
A @-——-”

©—
E+m°c2 = 3m0c2 + 3K,

E/c = 3{!(2 + Znocleli/c.

Therefore,
ame? + 3k = 37 + amyc) ¥,
L2, 2
K = §myc”,
80 that
E=2muc2+3K=4mocz.
2-29
(a) E+ Mucz = Mocz + Znocz +K,
E = 2(0.511) + 1 = 2.022 MeV.
®)

p = Bfc = 2.022 MeV/c; P, = 0;
p.=2 0 + acB0® =L (12 + 200.500 () = 1.422 Mev/c.

P = (2.022 - 1.422) = 0.600 MeV/c;

_ 0.600 _
% transferred = --—2.022&00) = 29.7%.
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2-31
Use the Doppler shift to convert the given wavelengths to CHAPTER THREE
wavelengths as seen in the rest frame of the pair:
=4
A=Ay A Dmy _Te Ve
) h/mv. m v '
c=-wvk_.c+vk e ee X X
2At—c+vl —-JL{C_‘),
=31
-4 _ 9.109 x 10 kg, 1l
1-8%_,1+8k%k 1.813 x 10 " = ),
2“1*'8) 1(1_3) ' m 3
Jl-B_1+8 m, = 1.675 x 1072/ kg;
1+8 1-p8'

382 —108+3=0, wvidently, the particle is a neutron.

=1 =<
B_3l' v—a- -;?-
22 . 2_ 22
2-33 (a) Ez—pc +E§, {K+ED} = p“c +E§,
The number of particles stopped/scattered between distances x 1.2 y Y (2KE ) K .k
and x+dx is dI(x) = oI (x)pdx. Hence, for a very thick slab that p=E(K + ZKEDJ =—°~E-Q—{1 +~2~!:-} .
ultimately stops/scatters all the incident particles, the 0

average distance a particle travels is
2

But K = eV and E, = m.c”, so that

xIdx _ [xe 9% ax _ 1 0= "o

X = = === f 2
av  fdl opST -apx ap ’ zmo 2(eV) (moc )
Je ax 1 = { \g = I k =
E\/(ZKEU) ( cz 15 = cz 1= /(a'ﬂoﬂv];
the limits on all x integrals being x =0 to x = =, and
K/2Ey = ewz%cz.
Therefore,
h h eV
A== {1l + T .
P /{Zmoev) Zlnucz
(b) Nonrelativistic limit: eV <<mc’; set 1 + eV/2n,c® = 1 to
get

A = b/ (mge) = h/(:arbx)"‘ =
13

b
m¥
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3-8
s b _ha-v¥AY  rea - VA% _he 0 - 83"
m myV mocz) w/c) Eo B
Numerically,
he = 16:626 x 10734 5-5) (2.998 x 10° n/s)
13 = '
(1.602 x 10713 J/Mev) (10™° m/rm)
hc = 1.2400 x 107> MeV-nm;
hence,
1.2400 x 10~ Mev-rm (1 - 82)%
Almm) === E. (MeV) B .
0
3-19

(a)

h _ 6.626 x 107>% J-s _ (2.998 x 10® m/s)  _ 0.12400 Mev
P=y="""""T0 ==

@ me  (1.602 x 1075 g/mev)

£ = p’c? + E2,
E? = (0.1240)2 + (0.511)2 + E = 0.5258 MeV;

K =E - E; = 0.5258 - 0.5110 = 0.0148 MeV = 14.8 keV.
(b)
p=L 2‘2““9”“?;& > By =124 kev.
These are gamma-rays, or hard x-rays.
(c) The electron microscope is preferable: the gamma-rays are
difficult to focus, and shielding would be required.
3-28

(a) Set ax = 20710 m,

-34
h 6.626 x 10 J=8

p -4 ap = -
4nx a0 0 m

15

%5 ka-m/s _2.998 x 10° m/s _ _ 0.9868 kev

1.602 x 10710 g/kev ¢

_ 5.2728 x 10~
p= o

E= (p’c? + F:;‘;)’j = {(0.9868)2 + (511)2}¥ = 511.00095 keV;

K=E_E0

Atomic binding energies are on the order of a few electron volts
no that this result is consistent with finding electrons inside
atoms.

-14

(b) Ax = 10 m; hence, p = 9.868 MeV/c, from (a).

= 511.00095 - 511 = 0.95 eV.

E= (p?c? + Eﬁ)” = (9.8682 + 0.511%)% = 9.8812 Mev;

K=E-~- EO = 9,8812 - 0.5110 = 9.37 MeV.

This is approximately the average binding energy per nucleon,
80 electrons will tend to escape from nuclei.

(c) For a neutron or proton, p = 9.868 MeV/c, from (b). Using
938 MeV as a rest energy,

E= (022 + EDY = (9.868% + 938%)% = 938.052 Mev;
K = E - Eg = 938.052 - 938 = 0.052 MeV.

This last result is much less than the average binding energy
per nucleon; thus the uncertainty principle is consistent with
finding these particles confined inside nuclei.
3-32
(a) since p, > &p, and x > Ax, for the smallest E use p, = &p,
and x = Ax to obtain

- Lp)? 2

E = mepx) + 5C(ax)".

With h

dp Ax = KH = o

the minimum energy becomes



16

h2

2
} + &C(Ax)“ =
32112m(md2

E=-*(

e + 5o,

(b) Set the derivative equal to zero:

& 1 2

——— o ———— + Ctbx) =0 =+ = h .
adx)  Jendm (ax)3 =T

Substituting this into the expression for E above gives

B = Y

3-34

(a) Let the crack be of zero width and Ax aiming
error (i.e., drop point not exactly ahove crack). This implies
an initial horizontal speed vy given by

j
E

= = B2
vx Avx mAx

As a result of this, the ball lands a horizontal distance x from
the release point, given by

x=v, (-—)” —1‘-—(2“)

Hence, the total horizontal distance X from crack to impact
point is

X = + -!——zﬂk_l..
ax x-ax+2m{g) =

Xogn = (&N« BYEY,

() T£ H=10m, H/g =1, m=0.001 kg, then X , = (10"%10%)*

=3 x 10-16 m, approximately.

335 ™

Put an electron behind each
slit and observe any recoil A Q= -

due to its collision with a ’
photon emerging from the

slit. To determine which

electron recoiled, its cbhserved
displacement Ay must satisfy ..

Ay << %d,

at least, or even

d
Ay << -4-;.
Due to the collision, the photon's maomentum changes. In order
not to destroy the interference pattemn,
—Y g _mh mh
» da pd pxd
mh _h
bpy D I

m the order of the fringe. By conservation of momentum, this is
also the uncertainty in the electron's momentum. Hence, for the
electron, it is required that, in order not to destroy the
pattern,

(8y) (8R) << (%} (a‘l) = .



CHAPTER FOUR

41

Consider an electron oscillating along a diameter. When at a
distance r from the center of the atam, the force on the electron

is
= (=1 An3 2
F= t‘“‘o) 3 ple/x",

where p = e/(47R3/3) > 0 since the net charge on atam-electron
is +e. Therefore,
2

1 et
aneg o3 r.

This force is attractive: i.e., directed toward the center of the
atom. Hence,

F =

F =ma,
2 2
l e 2 1 e
™ R3r=mr+w-4 -3

If the electron revolves in a circular orbit of radius R,

2 2 T 2
£ am = m B - R? ? -k S
eggZ "ROUOR T T ey

The two frequencies are seen to be equal. The equality applies
also to oscillations of amplitude less than R and circular
orbits of radius less than R, since the charge exterior to the
amplitude or radius exerts zero force on the electron for
spherically symmetric charge distributions.

4-4

(a) Momentum conservation:

My = MucosB + mwcosd,
Musing = mwsing.

19

Kinetic energy conservation:
R T
The momentum equations give:

mwcos¢ = M(v - ucos@)
mwsing = Musing.

Hence,
mzwz = M2(v2 - 2uvcosd + uz}.

The energy equation yields
n2w? = M(v? - ud).

Equating the two expressicns for m2w2=
MZ(v2 - 2uvcosf + uz} = l\'l'rl(w2 - u2).
= X1-0 0 m,
cosh = Z-(1 =3 +5(1+3).

(Since m < M, cos® # 0, 6 # 90°.) For maximum 6, set dcosf/du=0
and lock for minima:

guma =0 + 1.1=\H::$}Lj (u>0).

Thit gives dzcoselduz > 0, a minimm for cosf, a maximm for 6.

Substitute this value of u into the equation for cosf to get
2
Mk
eosam (1 M2) .

Since m << M, this implies that



=mn__1 .
Omax = M = 7400 10~ rad.
(b)
2r Llﬂ
@‘-*—-'—‘—3--—- ° Ap
= L

The maximm force felt by the alpha-particle in passage through
the atom occurs at the atom's surface:

F =—1_ (2Ze) (2e)

m 41150 l:12

For maximum deflection, suppose this force imparts momentum Ap
perpendicular to the original direction of motion:

2R
Ap = [Fdt = Fm(ﬂt} a PmTf
2

1  4Ze
w=4ne0 RV °

Then, anticipating a small deflection 6,

22&2 Uwr.f.

o1l 2 gt

™ 4Ty g () o
mrgold,z=?9:supposexu=sm,-then
~-19,2

o = (8.988 x 10))—2L{3 2x10 ) - 4.55x 107 rad.
(10°77) (5) (1.602 x 10 ™)

Hence, the deflection due both to the positive and negative

charge in a Thomson atom each are about 0.0801 rad, so that the

overall deflection is about 0.0001 rad also. Only if all the
deflections due to the electrons are in the same direction
could a larger deflection, about 0.01 rad, be cbtained.

-0
hy Bge.4-8,9,
2
1,2 zZe )2, 1

a = io? (e 2m — L —
ameg sin? (6/2)

an?
''e solid angle of the detector is

do = an/r? = 1.0/(10)2 = 1072

strad.
Almo,
n = (# nuclei per ma) (thickness),

(107%) = 5.898 x 102!

- 19.3
(197) (1.661 x 1024

llence, by direct numerical substitution,

5 1 =1

aN = 6.7920 x 10 ) s .
sin”(6/2)

The number of counts per hour is

# = (3600)N = 0.2445 —¢—.
sin’e/2
This gives: 0 = 10°: # = 4237;
0=45° #=11.4.
13
L=nj-= _l'z_“ih_'
7.382 x 104 = £-(6.626 x 10734

n=7.

=2
m .

21
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4-18 ;
-2
The periods of revolution of electron and proton are equal: 1240
= hc, === = 26.6 &V
zﬂe 2ar (a) Eph,Z /"2 46.6 6.6 ev;
v. v '
e P K = 26.6 - 10.2 = 16.4 eV.
I 1
v = (;E)ve. ") _ _
e Eph,l = 13.6 + 16.4 = 30.0 eV,
The motion is about the center of mass of the electron-proton
system, so that -3
roemr 5_,_'["2 (n) By momentum conservation,
' ee I, M, %\,' - M.
Therefore,
m, n,o. tumbining this with energy conservation gives
= Ve = ) ) o2 2
BE = hvy = h + 8% = hy + MEHZ = py + B
Mc
8
1 3x10 3
Ve = 1.2 ¥ 107 m/s.
p 1836 137 (hv) (hv,)
huy = hy + ——5 0 = hy + LUB),
2Mc’ M
4-22 .
= v(l + —AE
(a) Frequency of the first line: v, = cl:\l = cﬂa{—% - -;5}' Yo vl 2Mc2)'
m (m+1)
v= vot.l - —ﬂg'z-).
M0
Frequency of the series limit: v_=c/A_= r.ﬂH{—J'z- - 0}.
m
Therefore, d‘ﬁ (b) Since v = c/fA, Vo = c/lo,
=y =-v = .
w ~ V1 m A=10(1+—3§—2}.
(b) 2 Mc
m le/[].‘f-l] _ 1 1, _
=— =9, AE = (13.6) (5 - ) = 12.089 ev.
Mpe e/ (54) 1 3
Neglecting recoil:
Ay = =240 - 102.6 mm.

0 12.089



2
With recoil:

Mo 85 (2.089) (1.602x107) 0 1079,
Ao o (2) (1673 x 10727) (2.998 x 10%)2

A\ = 661 am.

4-34
The kinetic energy of the electron is

K = (0.511 MeV) (=7 - 1.

With 7
B = 1.2 x 10

g = 0.0400,
2.998 x 10

this gives K = 409.3 eV. For helium, the second ionization
potential from the ground state is

2 2
g, =33:6% _(3.600(2 _ g4 4ev.

ion n? 12
Hence,
= 54,4 + 409.3 = 463.7 eV,
1240 _
A= 263.7 = 2.674 mm.
4-38

(a) Hydrogen Ha: Ay = “H{z—lz - ;'%}.

-1 1 1. _ -1
Helium, Z = 2: Ay~ = mﬂ{gg - ;f} = Rn{_f%{n 2) 2 (ni?zi’}‘

IfAH=:\ , then
He
2=nf/2 »> nf=4,

3=n1/2 + n1=6.

25

(h) Now take into accuunt the reduced mass u:

2.4 24
1 2 k7 1,2 "ef® e e
= { ) i = ( ) =—(4R,) .
= e, RS Fre = e, e T
m_m m m_(4m_) m
=—LB .pn1-9; ~ —£ =m (1l - —2.
¥y meﬂnp e “b Ve (4:np)+rne e %
‘'herefore,

Hhe > Hyr
Mo that

1 1 1 1 1
== 5z - a2t > Rz - 70
Aﬁe l:"He ng ny ng nj

llence, compared to the hydrogen Ha line, the helium 6+4 line
wavelength is a little shorter.

(b) Since A = u ! (the factor z° is combined with 1/n§ - un?
to give equal values for H and He), *

a Ve Hye
&=1-1'_M}3_=§TE_.19;21_1_4084 10'4
Ay I-m/am ~am, ~ 493837 " x '

M\ = (4.084 x 10™%) (656.3 rm) = 0.268 rm.

4-42

The momentum associated with the angle 6 is L = Iw. The total
energy E is

2

Z K = ATy? = L
E =K = Iy = >~

L is independent of 6 for a freely rotating cbject. Hence, by
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the Wilson-Sammerfeld rule,
$ Lde = nh,
1L¢ 80 = L(2m) = /(2IE) (2n) = nh,

\v,(ZIE) =n“l'
g - DK
2T *

CHAPTER FIVE

MRS
{n) The time-dependent part of the wavefunction is
Mt/(C/m) _ -iBt/H _ -i2mot
‘Mwrefore,
s =om » v=LEON
(b) Since E = hv = 21}y,
E=wSk

(1) The limiting x can be found from

24
According to Example 5-6, the normalizing integral is
1
(2E/C) E
(2E/C)
2m% dx 2my . =1 x
1= 2B°(7) -——-——'1;=213(r-nlsm |
C )0 - %% ¢ 2E/0) 0

1= an(%")!“ + B = (C/m‘rrzlb.

=3
Problem 5-3(c) provides the limits on x; the wavefunction is

@ ® ~iomx?/2h it

¥ =
(/4

27
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Hence, the desired probability is given by Putting these into Schrodinger's equation gives
Y =k 2 2 2
(Cm) B4y - iEy _py peop o 2K
x[ ( ) ( ¥) = ikl ¥) =E¥; E=E, = .
Prob, = 20 tt /@XMy, a2 ] 17 a2
Nl 2,2 2
Inthegrotmdstate,ExED=nH/Zna, sothatEl=4Eu.
3
4Cm
1t u="E X (c)’t‘hespaoepartsoftrewavegw
K functions are v ¥
1
2 = Acos
Prob. = 2| & 123 = 2(0.42) = 0.84. Yo (mx/a), /
o Yy, = Asin(2mx/a). 0 " > T ]
! b %
The last integral is the normal probability integral. vjoscillates more rapidly, since
. with E; > Eg, ¥),0 < A, -A
2 2m 2 2 2m
(@) Since |- a®y /e =Be | > |- dyprax®| = BBy,
- 1 2'71%1 2 o'’
y = {g)a’cos]gs e iEt/K’ K 0 K 0
2 /2 for most x.
2| .2 2 ey =L -3 =
Prcb. = ;Fs (mx/a)dx = 7loos udu 3 4 0.1955, 0
a/6 /6 xlo

t of E {a) To nommalize the wavefunction, evaluate
independent of E.

/2
(b) Classically, L F e,
=3,

/2

(¥ = 0 cutside this region). With ¥ = Asin(2mx/a)e ‘E/%, this
hecame:

5-9 s
(a),(b) Let V = 0 in the region in which the particle is 2a/22 ) , ,
confined, so that Schrodinger's equation beccmes 1 = 2a2|sin {2nxla}dx=%n sinudu:%a %'
-ﬁgﬁ=mﬂ 0 0
.2 at’
? A=v/3
with 9.

¥ = asin(2mx/a)e E,

(b) This equals the value of A for the ground state wavefunction
and, in fact, the normalization constant of all the excited



30 31

states equals this also. Since all of the space wave functions
are simple sines or cosines, this equality is understandable. (a) Problems 5-11 and 5-12 yield
- 2_11__1,. =h
5-11 &x = na, n” = Z(3 2“2). tp =7,
The wavefunction is. B ,
Y% -iEt,
¥ = (5) *sin(2mx/a)e . Axdp = (na) (%) = 4m(§) - (%"2 PR SRS
and therefore 2 2
- ol 22 (b) In the grcund state,
x=zxsint211x/a)dx=-[}. Axﬁp=(nlaa}(£)—1l35
-a/2 : 2a’ T e
hs for x2 =+a/? i In the first excited state the uncertainties in position and
- 22'2 a2( 2 11 1.2 momentum both increase over the ground state values, due to the
X = 2| sin (21-rx/a)dx=—3u sinzum=T(-3--—-§)a R higher energy of the particle.
—a/2 27 o 2n
— 3-14
x2 = D.U?Oﬁ?az. The normalized wavefunction is
1/8 2
5-12 y = o/ (Cx*/2h ~iEE/H
3 (mh)
linear momentum operator is =il ™ and therefore
+a/2 . with E = ¥#/(C/m).
_ (a) Since the kinetic is p?
p= %SsinzTﬂ (-1 L (e1n?) jox = - ﬂaﬁsm cosu du = 0. operator is energy is p/2m the corresponding
-af2 0 2 .2
T=- % 3_2_.
Similarly, x
+a/2
— 2 Therefore,
- gﬁsm%iznz o, e
X -
-a/2 T = K o~/ (@ x"/2% 3~/ (Qux"/ My,
T (mh) e ax’
p2 = -—81112 t-u] sinzudn = 4112{1!)2 = (ﬂ) 2. 2
2 2 @ T=rSHa - eV a=LEY-
0 ™m - 4(m = E.
0
5713
2

3 -3 Similarly for the potential energy U = &Cx":
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s 2 ) 2
7 = {ou gg e CX" My, _ K(—%}”Euze'“ au,

U = K

(b) This same relation, U =T = &E, is cbeyed by the classical
oscillator also.

5-15
Use the notation
+<0 +eo
3y axy
@)y = -mwa;,;dx. (xp) , = = jr . O
— —ct
Clearly
+ao
k4 - -
), = —mgwx T ex = (o)) - 1K,

implying that (xp), and (xp)2 cannot both be real. Also, by
integrating by "

4o 4o 4o
(), = ~Lh{xv*y| -gw %‘de} = iﬁS‘Px %Ixi ax.

Thus
' o), = G4

If (xp)1 is real, this last relation says that (:lp)2 is real
also, which contradicts the first finding above. Hence txp]l is
complex and therefore so is (xp)z. Now try

]
== - 3,2
xp = tuﬂ‘lﬂ&c ax+ax"”°"“

—c0

% = 0@ + )} = ko)) + @),

33
E = Re(xp) 1’
so that this new;ﬁ is real, as desired.

5-21

With Vv = 0, the energy of the photon is
E = pc.
Replacing the energy E and momentum p by their operators gives

Y _ iy ¥
¥ 5t = ~lhe 5
Now set ¥(x,t) = Y(x)T(t) and divide the equation by ¥ to get
LoT _ _jpoldd_
Yrg=Hyx=%

where K is independent of x and t. Write K = kjic and the two
equations directly above become
ar ikct

3t = ~tkeT +» Te=e '

g(kwlkjp - waem.

Hence, for the photon,

Y eik(x-ctl .

5-22

(a), (b) The curvature of ¥ is proportiocral to |V - E|: where

|v - E|l is large the function oscillates rapidly in x, and
where |V - E| is small it oscillates less rapidly (hence, nodes
are close together in the former case, farther apart in the
latter). In the first state, |V - E| is just large encugh to
turn § over: no nodes. The 10th state will have 10-1 = 9 nodes,
leading to an odd function since V is symmetrical about the
origin. The wavefunction decays exponentially wherever V>E, the
classically forbidden region. For further discussion, see
Example 5-12, which treats the similar simple harmonic
oscillator potential.
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(c) Classically, the probability density function P is given by
P= lev,

82 the normalization constant. Energy conservation gives vi

E = v * Cx,
the upper sign for »x>0. Using this,

P= 32(%11‘{5: o078,
To determine B, use the nommalization condition
+E/C
2 75;@.&7 Eom.@sa;} -1,

gince the turning points (and therefore limits) are given by
v =0 or E = V = ¥Cx. Evaluating the integrals gives

P=-5 1
4WEJ/E 3 0 °
Particular values are:
P(0) = C/4E; P(E/C) = P(-E/C) = w; T-(x=0) = *c?/gE%.
(d) The graph of the classical density function resembles that
for the simple hammonic oscillator, the lack of a horizontal

tangent at the origin being the main difference on a rough
sketch.

P

———————
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5-24
See Problem 5-25.

5-25

With nc bump, the wavefunction will be sinusoidal inside the
classical region of motion and a decaying exponential outside,
The lowest energy wavefunction will contain no nodes.

In the present situation, in the region of the bump the
curvature of the wavefunction will be less than outside the
bump, since the curvature-is proportional to E - V. This will
upset the good behavior of the wavefunction at large x
associated with the value El corresponding to the first bound
state without the bump. To “campensate for this reduced
curvature in the region of the bump, a larger curvature (as
compared with the no-bump case) is needed outside the bump.
Here V = 0 so that the curvature is proportional to E. Hence,
a larger E is required: that is, the first eigenvalue with bump
is greater than the first eigenvalue without the bump.

5-25
By assumption,
Eb—E1+NWb‘f'dx,
vb=l:u-rppotent1a1 energy, ¥ = wavefunction with no burp in
potential.ﬂeintegraliatheaxeamxhracumofwb'!vsx

Now Vv, =0 except where it is equal tovallo. Clearly the area

will be larger if the bump is located where Y*¥ is relatively
large (i.e., in the cerrterforwl) than if the bump is placed

where ¥*¥ is small, i.e., at the edge in this case. Evidently
then, Eb is larger for the centered bump.

vy T ¥y
|
|
—-l e T
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5-27

Schrodinger's equation is

2

+ Z{E-V)“!:O.

& |%
=

Intheregiminq.testim,v=v0=mnstant,ﬂ<v,sothat

2m
=2y -5 >o0.
2o
m,
¢=M + Be »

is the_general solution. However, J(x==) = 0, requiring B = 0,

as the wavefunction.

5-28
Since { is real, the probability density P is
P = w = *2 = nze-qu'

Recalling that x is measured from the center of the binding
region, the suggested criterion for D gives

aZe~2a(hat) _ ~1,2.-2q(ka)
e~ 20D _ g -1

20wy - )0

X

=31
Use the scheme suggested in Problem 5-26:
E = E, + /¥*Vyax,

in which E, and ¥ are eigenvalue and eigenfunction of the lowest
energy state of the infinite, flat, square well potential. From
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Example 5-9,10 the time-independent part of ¥ is clc?. + CZCE = 1.
v = & cos (mx/a) .
Hence, 5-33
4v 2 )
_2 2 = 0 3 (a) The total energy is E = p“/2m + V. But V = 0 in the region
Syrwax = £|cos” (mx/a)Vcos (mx/a) ax = —F|cos™ (mx/a)ax, of motion, so that
-ka 2,2
E=p%/m=- B
AR &, m o2
Firpax = —=fcos™udn = 3. Hence,
o+ 2
Thus, 2 & E = - on| (c]¥] + ci¥5)—5(c ¥, + cp¥plax.
E= lli + _0 =ka ax
mz 3n°
But
2 __m2, . .2 2 _ _2m2
532 o2y, /ox° = -@%); o%y,/ax’ = -ED%,.
The wavefunctions in question are Also, by Problem 5-32, f¥}¥,0x = /¥4¥ dx = 0 and therefore

v, = Gloosme/are By, < @ Ysin(2my/a) e 52N, : 2
=_ l 2
with E, = 4E;. The linear combination is E = %—“—{(a} c ey ¥y ax + () Tvay,ax},

_ 2,2 2.2
¥ = oY) + oty E=cot TE 4 ccx .,
171 2 272 2

2ma ma

Normalizing this last gives

1 = fy*yax, E = c,cfE) + c,%8,-
CyCY Y ax + C,chI¥EY,ax + cle, Vit dx + ciey MYRYdx = 1. (b) Since c,c} + c,c4 = 1,
Since ¥, and ¥, already are nommalized, == . - -
1 2 E= (1 czc‘z')El + CZC’ZEZ =E + :.:2-::§(E‘.2 Ell .
Jyx = fyAy dx = 1.
T = 14 With 0 < c,c3 < 1, this means that

'merealpartsoff\rivzdxandﬂi'l‘ldxead\m E1<E(E2'

+ha Hence, if the particl be found either in 1 2

-\ _ ’ cle can e r level 1 or £,
Scos(wx/a}sin[mda}dx x cosu sin2udu = 0. making transitions between them, its average energy, as would be
-ka ke expected, lies between the energies of the two levels.

Therefore, in order that ¥ be nommalized, it is required that
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5-34

(a). The probability density ¥*¥ has a time dependence of
e“i(Ez - El}t/)i
r

and therefore the frequency is

v = (E:2 - El)/h.

But,
2 -
SE (6.626 x 107342 _
e’ gma’  8(1.67 x 10°2)) (2014 2(1.602 x 10- 1)
El = 2.051 MeV; Ez = 4E1 = 8,204 MeV.
Hence,
v=8:204=2.08L ) 45 x 107 g,
4.136 x 10

(b) The frequency of the photon is the same as in (a). The
photon's energy is

hv = 8.204 - 2,051 = 6.153 MeV.
(c) Photons with this energy lie in the gamma-ray region of the
spectrum

CHAPTER SIX

|

Aumume that

Yy, = Ce_iklxr ct_i&la'
1

0
M-ikzx

ik

'92 = + Be 2)('
whwre A = amplitude of incident
wave, B = amplitude of reflected WgumT o
wave, C = amplitude of the )
l1anemitted wave. There is no wave moving in the +x-direction

In region I. Also, ¥ (2n(E -V )},s
= A2mE) © - _0
k=" K="y
tuntinuity of wavefunction and derivative at x = 0 imply

R+B=C, -kp+kB=-kC.

These equations may be solved to give the reflection and the
| ransmission amplitudes in terms of the incident amplitude, the
results being:
B=—-—:2 :_:1 L Z:Zk A.
2 1 2 1

Te reflection coefficient R and transmission coefficient T now

These expressions for R and T are the same as those obtained if
the incident wave came from the left.

41
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6=5
- energy 7
E - - - I -
region 1 region 2 region 3
- —— ->
= x
(a) Assuming a wave incident from the left:
region 1: § = aelkix Be-ik‘x, k, = (ZmE)}‘/}i:
region 2: 1§ = Fe ¥2¥ 4 gef2X, k, = {2n(v, - E) 4 /M;

region 3: w:ceik’x+De_n“x, but D = 0 since there exists
. only a wave moving to the

right in this region.
Continuity of the wavefunction at x = 0 and x = a require that:

A+B=F+G6G, (1)

Pe'-kza + Gekga = Ce:l.kla' tii)

Continuity of dj/dx at these same points yields

13(1& - 1kln = —kzF + kzs' (111)

kFe K22 4 g ceked < ik ce'k12,

(iv)

{b) From (i), A+B-G=F;

-kza k

From (ii), (A + B - Gle K23 4 gKea _ g lkia

Ae'kza kza +G (ekza - e—kza

+ Be 2 iha

) =Ce . (iia)

From (111),  Aik) - Bik; = =k, (A + B - G) + k.G,

h(ikl + kz) + B(k2 - .‘lkl) = 29:2. (iiia)
From (iv),

—kze_k’am +B=0G) + szek'*‘a = mlceikla,

43
-—i’tkze-kz'a - sze_kza + sz(ekza‘ + e—k,a) = Cikleikla. (iva)

Now work with (iia), (iiia), (iva). From (iiia),
=L -
G = Zkzm(kz + ikll + B{k2 ikli}.

Substituting this into (iia) gives

Al + .Lkl/Zkz]ekza (% - u(l/zkzye‘kz“}

(1ib)
+B{(% - ﬂcl/ﬁcz)ek’a + (% 4+ ikllzkzle'k’a} = cetkhr2,
and (iva) becomes
ALy + 1k, /2k,)€52% = (4 = 1k /2 )e™*2%) (ivb)

X
+ B{(y - ik /2k,)e 2% =y + ik /2)e 723 = ic k—; ekia

Solve for B in (iib) and substitute into (ivb); if q, g* are
defined by

q=1+ik1/k2F q*=]-_ikl/k21
the result may be written

ekza. - —kza ceik]a

q.ekza + *-kza.

k
+ %(cpkza _ q.e—kgﬂl = ic l_‘%eiklﬂ-
2

~kaa

- Biaef?® + qreTR2Y))

Now solve for C/A, using the definitions of g, g*, such as

2 2
q -q* = 41—“1/)‘-20

etc., to cbtain
—ikl&
c. 41(kl/k2Je

AT kA 2 K
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HBence, the transmission coefficient is

- j'kla ik;a
v1C*C _ 41 (k]_/kz)e 4i{klfk2)e

T= = . —
vlh*i\ q.*Ze-kza _ q2ek2a _q.2ekza 2 =kza

+ g‘e

T = 160k i) P2 (@22 - X2 L (o - DY,

_ 2 2,22, ka -ksa, 2 2,~1
T = 16k, /ky) “{(1 + k/k5) “(e°2% = €72 % + 160k /k) 7Y,
2,22
(1 + kJ/k5) - -
T= (1 2 KR o a2yl
lﬁ(‘kl/kz)
Finally,
k. v
1,2 E 2,2 0
=" = —=i 1+ k /K =%,
k2 VD E 172 VCI E
so that
V2 2
/(v - E)
= g g kza - —kza 2,-1
T {1+16E/(V0-E)(e e )%y 4,
ka _ _-k,a,2 _
T={1+ Eﬁ]—} L
16 ‘—r-—(l -5
0 0
6-6
» - B
If k,a > 1, then ek’a >> e ka2 and the transmission coefficien
becomes, under these circumstances,
Zkza -
Te s —g—
16 v—[l - V—)
0 1]

Nwo-cEfvc-:lmdthemfom
E E
16-——{1-'—")£4,
Yoo Y

the upper limit occuring at z/vo = 1/2. Hence, if ka2

> 4,

ezkzﬂ

—
16 5-(1 - 32
0 0

Since, in fact, it is assumed that k2a >»> 1,

eZkga
—E. &
16 ==(1 - =)
Yoo Yo

>»> 1,

and therefore, under these conditions,

E E, -2a
T=16 (1 - e .
Y%
62
PUREDY 4~
. E
Uy
region 1 region 2 region 3
—————— -
—1
Region 1: v = aetK1X 4 pemikix
region 2: V= pelkeX | gomikax
reqion 3: v = celki1X,

In these equations,
k) = (nE) /M, ky = {2m(E - V) }i/K.
(a) Continuity of the wavefunction at x = 0 and x = a gives

A+B=F+G,

pelksd 4 gemiksa _ podkia

Contimuity of dj/dx at x = 0 and x = a gives
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ik A - ik;B = ikF - ik G,

F ikaeikgﬂ - ikaGe-ik

2 = gk cet¥12,

(b) These are the same as the corresponding expressions in
Problem 6-5, if in the latter k; is replaced with -iks;. Making
this alteration in the expression for T in Problem 6-5 yields
for the new transmission coefficimt,

-0 - ___'fﬂ oiksa _ giksa 21

16(k /](3

Usingﬂrem:ressionsﬁorkl,kzgivmabmmmmsto

-ikgsa, 2
T:[l--L—-—-—l—-
lﬁ—lv -1

69

2
(a)mmwofamnierispmmmmoazm and

therefore the lower mass particle (proton) has the higher
probability of getting through. 14

(b) With V., = 10 MeV, E = 3 MeV, a = 10

0 m, it follows that

E E
16 =(1 - -2 = 3.36.
Yoo Yo

=27 .
The required masses are = 1.673 x 10 kg, md-ﬁrb. For
the proton kza = 5.803 and, using the approximate fonmla,
T, = 3.36e2(5-803) _ 3 06 x 107°.
Since mdsz'rb, as noted above, k,a = ¥2(5.803) = 8.207. Hence,
for the deuteron,

T, = 3.36e72 8.201) _ 55 x 1077

47

6-10
@  v.o=-lo R (g 109 61116 x 1077)?
0 dme € r' 2 x 10-15
=13
vy = 6.912 "_ig J_ = 4.32 mev.
1.6 x 10 J/MeV
(b) E = 10kT = (10) (1.38 x 10723) (107) = 1.38 x 1072° 7 =
B.625 x 107> MeV = 0.002V,.
(c) Numerically, a = 2r' - r' = 2 x 10"1° m; also,
E E /{211'.(\?0-,51}
16 V_Du - %} = 0.032; kza = —-—-——ﬂv—h-«-— a = 0.91.
- (2. 484 - 0.403)°
T={1+ 0,032 ] = 0.0073.
(d) The actual barrier can be \Y)
vonsidered as a series of
barriers, each of constant
height but the heights decreasing
with r; hence V,-E diminishes Vo - "N
with r and the probability of [ T
penetration is greater than for El— o -
an equal width barrier of o v >
constant height vo.
6-15 A
- E] - _— —
|
iw | ion 3
_ml _tem L,
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(a) Assuming a wave incident from the left, the wavefunction in
the indicated regions will be

ik -1k
region 1: ¥ = et ¥ 4 eI,
region 2: V= pe K2X Geﬂ’x,
region 3: v = cetkiX,

The expressions for the k's are
k) = Y{2m(E - Ve MWk, = v (2mE) /.

The equations for the wavefunction are identical with those in
Pmblané—Sifinthelatterkzisreplaeedwithikz (note the

different ions for the k's in the two problems, however)
Using Ttkl,kz) from Problem 6=5 and making the change gives
2,22
(1-k ] o -1
117 otkaa _ tkaa 2y

T={1- 5
16 tklsz)

But,

(klsz)z = € - vy /e etk - gk

sin’k;a 1
4;%(;} -1

Alternatively, apply the continuity of the wavefunction and of
its derivative at x = 0 and then at x = a to get

=21 a!.nﬂr.zn),_
and therefore,

T= {1+

o

A+B=F+G,

kA = kB = F + kG,

m“ikga + mﬂ(za = ceik;a.

-iksa iks;a ik,a
“k,Fe . + kGe 2 = k,Ce =,
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These are four equations for the five amplitudes A,B,F,G,C.
Solving relative to C gives

k)

ik,a kz
A/C =e T} {coskza - ki tg + k—ll sinkza},

k k
= _2 _ 1 dka
B/C = ki {kl kz}e sinkza,

J.(k1+k¢)a

ky
F/C = ke 1=,
2

Xy

i(k,=ks)a X,
1+ k2).

G/C = ke

The transmission coefficient is T = C*C/A*A. Substitution of
the appropriate amplitudes given yields the same expression for
T as cbtained above. 2

(b) In order that T = 1 it is required that sin
in tum requires

k2a= 0 which

k2a=nn, n=1,2, 3, «ses

In terms of the particle energy E, this is

-_"_(_Lﬁfﬁa=m,'
n’n?p?

E= i
2ma’

(c) In the region of the well, that is, in region 2, the
probability density is

¢5‘1J2 - (F_eikgx + G*e—ik?x) tpe—.i.kzx + Geikzx),
2 2
K K
aY, = CRC( + (1 - L cos?, @ - 0},
ky )

evaluated by using the F,G amplitudes found in (a). The
oscillatory part of this probability density has a maximm at
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X = a. Ifk2a=n1r, it alsoc has a maxdmum at x = 0. This

implies that an integral mumber of half-wavelengths fit above
the well; i.e., that

a=n 12/2;
but this is equivalent to

kza = nm,

as obtained in (b).
(d) One example of an optical analogue is thin film
as in the optical coating of lenses.

6-17

Numerically a = 2(4 x 107% m) and K = 0.7 ev. E = K +,
2 5 (6626 x 107342
z2=n 31, .

Bma 8(9.11 x 10

where

) (8 x 10719)2(1.6 x 1079)"

E = n®(0.588 eV).
Set n = 1; then

E, = 0.588 eV < K,

1
which is not possible. Using n = 2 gives

E, = 2%E = 2.352 ev,

V°=B-K=1.65éi.?.

The electron is too energetic for only half its wavelength to
fit into the well; this may be verified by calculating the

deBroglie wavelength of an electron with a kinetic energy over
the well of 2.35 eV.

6-18
Wi, = (zmro)"s ¥k, = {2m(9V) 15 Wy = {Zn(wa}}“r

These relations can be summarized as

) mws: ) ) ;

3V,
SN — — — — —
region 1 region 2 region 3
—_——— —_——_——— — e
[+] a
kl'k’ k2=3k, k3—2k.
Therefore,
'1"1 - Aeikx - Be-ikx,
v, = Fe-ikx | Ge3'1‘kx,
V. = CEZikx.
3
Matching § and dj/dx at x = 0 gives
A+B=F+0G,
A-B=3(G-F).
At x = a the same conditions yield
m—3ﬂca + Ge3ika = CEZ.Lka’
-:me':"”*" + 3“,;e:ij.ka - erika_
Writing z = eika

these last equations become

F2 3 4 Gz° = ¢2?,

3 3 2

-3Fz "~ + 3Gz~ = 2Cz°,

51
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In terms of C, the transmitted wave amplitude, the solutions are

1

6-23
6
A,,_LQ._S:E.Z._C' (a) The energy in question is
6 E = 2 P2
p=22_-5,. L, = 0" g,
6z 2ma’
F-lzsc and therefore the enerqy of the adjacent level is
=1 2%,
2
=21c En+1=tn+1)2—5‘—“ e
G=%zC 2ma
The desired transmission probability is 80 that
VO (R)eke By B "B _man?-n?_2ns1
r=3 - 3 _,C¢C E -7 E 2 ==
v, A"A ~ Tk )A"A © © A n n n
6z* 6 (b) In the classical limit n + =; but
CrC = (g A%) (—E— A) = 35”'” A%A. .,
10 - z* 10 - 10 - z* -
¢ a0 - =+ 0 - 25 Lim¥ Lim 231 = o,
Irco I n
Nows -ika ika

z*z = e -1
° ! maxmﬂ:attheenexgylevelsqetsoclosetoqeuﬁrasbobe

indistinquishable. Hence, guantum effects are not apparent.
(10 - 2#8) (10 - 2% = 100 - 10761k 4 61k , o S '
6-24
(10 - 2*%) (10 - 2% = 101 - 20c0s6ka. ==
Hence, The eigenfunctions for odd n are
R S = B_cos (nmx/a) .
T = 101 = Z0coséxa" ¥n = P
6-20 For normalization,
b=20 nn/2
(a) In the lowest energy state n = 1, Y has no mdes Hence '4;1 ‘1= f‘l!ﬁdx = B:F?:sz(mx/a)dx = mi(a/nn}[mezu du,
mstoormsporxihon—z,wnbon-3 si.noeBncn ardEI— -ka 0
4 ev, 2
1= ZB (a/nm) (nn/4) = -
B/t = /2 By ev. -
(b) By the same analysis, By = '%'
EOIEI = ]_2/223 ECI =1 ev. for all odd n and, therefore, for n = 3.

A
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625 This increases sharply with n since E « n%, E« p?, the particle
moving faster at higher energies.
By virtue of Problem 6-24, the nommalized eigenfunctions are

b, = é'cos(nm:/a) . 626

(a) {a) Using the results of the previous problem,

- ! | _q2__a . __6 %

X = i x msztnﬂxja}dx =0. | Ax = /x° = 7zt _nznz) .

~ka _
(b) R J—
dnm a
p= f cos (nmx/a) {—in 27008 (nmx/a) }ax = ‘*(ﬂllgmsu sinu du = 0 ‘ Hence, for n = 3,
- ~knm
mip = A1 - 29ty = 2,627

These results are expected fram the symmetry of the potential, V12 312 a -
and fram the fact that the function being averaged takes on

both the positive and negative values.

© (b) The other results are
c

— dnm n=1, AxAp = 0.57K,
X = % x% cos? (nmx/a)dx = (a/ml!gu cosu du, n=2, - 1.67H.
-ka 0
The increase with n is due mainly to the uncertainty in p: see
2 = 4a° (n3,.,3 Jmmy _2d 1 Problem 6-25.
1_,13,“3 48 8 6 n2"2 ' (c) From (a), the limits as n + « are
2 .. + @,
% (n=3) = 0.0777a’. bx > 7753 4P+ .
This changes little with n since the size of the box is fixed, 6-27
(d) =2l
- (e 2 +o +a xa ,
p° = Z)oos (nme/a) (1542 Ls00s (nme/a) Jax, ['1‘1‘1‘3 ggcos{—)cos(——ldx «K{ws(““") cos (<2%) Jax,
_‘%a ax - —%a -ka
— inm o L]
p? = % K (nn/a}gcoszu & = (E}Z 22, S‘Pl% = '2'14 (cos2u - cosu)du = 0,
-%nm - -

pz (n=3) = 88.83 (E}Z_ the integrand being an even function of u.
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6-28

The Schrodinger equation in three rectangular coordinates is

2 2 2
29,29, 20,2E _yy=o.
X ay2 2z s

Inside the cubical region where V = 0,

2 2
TN O LTI S

axz ay2 322 }lz
Assume that
Yix,¥,2) = X(X)¥Y(y)2(z).

Then, if ' denotes the derivative of a function with respect to
its independent variable,

b 2 _
x+Y+z+2ﬂk‘-‘fﬁ—D- *)
This gives
- -ki: X = Asin(kx) + Boos(k.X),
kx = real constant., Similarly
Y =Csin(kyy) +DDOBIKYY)= Z = Bsin(k,z) + Foos(k,z).
Also, from (*),
K 412+ 1 = amenfl.
Since V = = cutside the cubical region, { = 0 at the boundary:
0=X(0) =Y(0) =2(0) » B=D=F=0;
0 =X(a) =Y(a) =2(a) =+ kxa =nm, kya = nyﬂ, kza =n,m

with nx'ny’nz =1,2,3, ... . Hence

Y= (m)mtnxm/a)sin%wy/a)m(nzn/a) .
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2
_Kn2 .2, .2
E'zn(kx+

<
+
ko
L)
~
]
g =
L8]
PN
o
+
Frn
+
=]
N b
.

6-29
(a) Let M = mass of wing. The zero-point energy is
Ey = (0 + %)} = khv = h/2T,

T = period of oscillation. The actual energy of oscillation is
E = ¥kp2 = A2 = 2r0val/1?,

Thus, the value of M at which E = E, is

BT (6.626 x 10°%) (1) 33
237"

= 1.68 x 10"
4n°A 4112(10 11

M= kg.

This is less than the mass of an electron. Hener»EDa.nd
the cbserved vibration is not the zero-point motion.

(b) Clearly then, n >> 1 and therefore
E = nhy = 2rMA2/T° + n = 2r2MAZ/HT.

As an example, take M = 2000 kg:

2 -1,2 :
n = 2150200001077 _ o 1035

(6.626 x 10-3%) (1)

6-30

The zero-point energy is
Ey = Mo = ¥H(C/m) .

Therefore, 3
E, = 5(1.055 x 107 22— ¥ .6 x 107197,
4.1 x 10
E = 0.051 eV.

0
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6=-31 CHAPTER SEVEN
(2) Using E, = 0.051 eV, the level ‘spacing will be 7e1
ﬁE=Mn+15)m=)iu-0.102eV=ZEﬂ. The ti 3 3ent tion is
(b) The energy E of the photon = AE = 0.102 V. 2 2 2? 2
(c) For the photon, _L(M+L+3V}+W=mﬂ‘
2 ay2 ;z‘ at
£ =mph' Let
But Y(x,¥,2,t) = ¥ix,y,2)T(t).
£ = AE = W,
Putting this into the first equation gives
Uph = W 2 2 2 2
“E @+ 284 4 vy, v T = iR S,
where u = classical oscillation frequency. Thus, H ax®  ay° oz
v=E_010206x%x207) o a3 assuming that V does not depend on t explicitly. Dividing the
h (6.626 x 10-34) above by the wave function yields
2
(d) Photons of this frequency are in the infrared spectrum, D i _ 1ldr _ _
A = 12,000 rm. 2uw?w+V-iHTdt-omstant-E.
6-32 There are two equations:
(a) w=v=/28 =313 raqss, v+ BE-vy=o,
K
\:t%"ﬂ.ﬂsﬂz. for the space dependent part of the wave function, and
) FE=-m T-fae=--Fa 1=
E=!;1<A2-=!,-’-'EAZ + E=0.049 J.
for the time dependent part.
(c) Since n >> 1,
13
neX . 0.0490 - 1.5 x 1032 ‘
hv (6.626 x 10-34) (0.498) The ground state energy of a hydrogen like atom is
() Since An =1, AE = hv = 3.3 x 10~ g, S S 3
(e) A polynomial of degree n has n nodes; hence, the distance (41Tsol22‘ri2

between "bumps" = distance between adjacent nodes = 2A/n =
20.1)/(1.5 x 10°%) = 1.3 x 1073 p, 5



60

The reduced mass is

since each nucleus to be considered is surrcunded by one
electron. The charges and masses of the nuclei are

Mg =M My =AM Mg = Am; Zy = Zp =1 Zg, =2,
rrb=proton mass. The mass relations are approximate. Since

1
1836"

o o?

it follows that
2 1 2 _ .
Ey = uH{l) = me{l - 1836} (1) = 0.9995m_;
2 1 2 .
By = uD(IJ = me[l - 2(1335}}(].] = 0.9997m;

EHE « “'Hetz’z = me{l - :ﬁ'l%'i'g)—} (2)2 = 3.999&ne.

These give the ratios:
ED/EH = 1.0002; EHe/EH = 4.0015.

7-7

(a) Since R,, = m-rlza“, P(r) = (r2e7T/20)r2 | p has a maximum

where dP/dr = 0:

% = (4 - r/ao}r3e-r/a° + r=da,
r =0 and r = = yielding minima.
(b) Direct application of Eq.7-29 with 2 =1, n= 2, £ = 1 gives

Hi
n

5a0.

(c) There is a lower_limit (zero) to r, but no upper limit: thus

itise:q:eetedthartr:&au.

-8
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(a) The potential energy and the ground state wave function are:

=-e? = —%.-3/2_-r/a,
v e ldﬂear. Yigg = T e .
Therefore,
2 T 21
V= %(— ----4$E }r {B (e_r/ Ao t%le_r/a"rzsinaﬁrdadq;:
™y 0 Jr=0)o=0}¢=0

2 2

o e -x e
V== —Sme ax = - .
411:06.0 0 4119030

(b) In the ground state,
E = e’/ (ane ) 2212,

_ 2, 2
Since a, = dme,#"/ue”,
— 4 —
v=..z—l£§——-2-=zg; E = &V,
t4m:0) 21
{c) As for the kinetic energy,

E=K+V; E=K+V; W=K+V; K=-%.

I3
(a) For the state with m, =0,
1 =3/2 -
V10 = W0 |- (e/age ™/ Pocosg,
so that

- &2

VZlD = - (ralagle'r/a%aszesinedrdedm
32na0(4nea)
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_ 2 g
Vo0 =~ 3e 2lx3e_xdx' (*)
242 (417:03 0

For the limits on r,6,¢ see Problem 7-8. Now,

Fae_xdx =6,
0

= - e 1 e‘1

-— - 2E
(411#:012!&222

2
Fbrthestate.swithm!=

- - +.
Vo) = 5 20 2(x/agie ™/ Poging ™,

and therefore
o ez r —r/a
Vph = -3 9sin>6drdeds,
641130(41190} ao
Varty =~ &, (4“ "3" ax.

This is the same as (*) above. Hence, regardless of the value of

Moe

Vo = &

2
(b) In the case of L = 0,

1 _-3/2 -r/2a
Y200 = T %0 2~ ¥/age T,

giving

2

Er R § e 1., _ 2 -rfay 2

Voo = 30 T |2 - £/ e r“sin6drdods,
32m may 0
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2 2

- e 2 -x e
Vo = = (2 - X)"xe "dx = = =—————(2) = 2E..
20 Bac (heo} L 8a, (411&03 2

(c) These results are expected since, with V = r_l, the average

potential energy seen by the electron is the same for all n = 2
states, regardless of L. Thus, the expectation value of an
energy will be the same for these states.

1-10
R(r) must satisfy Eq.7-17:
R, 2@, 2 R
—_—t == (E-VIR=1L(L + 1).
drz r dr Kz 1_2
IfR = ¥,
R = ot dz“ =20 - D22

Substituting these into the radial equation gives

2+ D2, ig{m«" —v* 2o+ M2

Now E is a constant independent of r, and V = k/r; thus the two
terms in {} are proportional to r‘l, 21 oasr approaches zero,
225 ri‘, L hence, {} + 0, and the equation is satisfied.

7-11

(a) To avoid infinities, integrate radially to a finite limit R:

P= 2nr sinBdrdd = %(1 - cose),
g’ /3 4R /3_|

P(23.5%) = 4.147%.

(b} For this state:
-5/2, ~x/2a,
Y10 = t2n} icosd-
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Since this is already normalized,
 pala, _ 20 =5 2 -rfag 2
P—I\PGV—WDYFG cosarzainadxﬂa.
0Jo

P=5%(- aos3&).
P(23.5%) = 11.44%.

=12

(a) See sketch, following page.
(®) P« (3o0s%0-1)%; hence B, = 0 at cose = }1//3, giving
8 = 54.7°, 125.3°.

(c)

Pax =4 (8=0%,

¥P =1,

(3cos?6-1)2 = 1,

3c08%0 -1 = 11,

0 = 35.3°, 90°, 144.7°.
1-14

Let (3,2,-1) represent tp(n-=3,£=2,my’=-1); (2,0,0)* represent
til*(n=2,P.=0,m£=0} etc. Then it is required to show that

¢§¢3 = é“{(3,0,0}'(3,0,0) + (3,1,00*(3,1,0) + (3,1,-1)%(3,1,-1)
+ (3,1,1)*(3,1,1) + (3,2,0)%(3,2,0) + (3,2,1)*(3,2,1)
+ (3,2,-1)*(3,2,-1) + (3,2,2)*(3,2,2) + (3,2,-2)*(3,2,-2)}
is independent of 6,¢. Now
(3,2,-2)*(3,2,-2) = (3,2,2)*(3,2,2),

(3,2,~1)*(3,2,-1) = (3,2,1)*(3,2,1),
(3,1,-1)*(3,1,-1) = (3,1,1)*(3,1,1),
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and therefore

@ =%{3,0,0)*{3,0.0) + (3,1,0)%(3,1,0) + 2(3,1,1)*(3,1,1)
+ (3,2,00%(3,2,0) + 2(3,2,1)*(3,2,1) + 2(3,2,2)*(3,2,2)}.

Now substitute the specific expressions for the various
wavefunctions appearing in the above.

2 = 2 terms:

2{(3,2,1)*(3,2,1) + (3,2,2)*(3,2,2)} =

—«-——‘1“-2—7 lex/320 g stza - 300546}:
281 %ra)
(3,2,0%(3,2,0) = —L— r8e /320 (3006% - 1)2.
6(81)ray

Hence, the sum of these tems is

22 - r4e—2r/3a.,'
3(81) na,
independent of 6,4.
£ =1 terms:
2(3,1,1)*(3,1,1) + (3,1,0)*(3,1,0) =
2 (6 - L 2, r 25—2:.'/330,

e =) =)
(81) znag % 3

independent of 6,4. The £ = 0 terms depend on r only. Thus, all
tems in Y&y, have been accounted for and their sum found to be
independent of direction, so that ¢§1p3 is spherically

symmetric since it depends on r only.

7-16

= a_ a_
(a) Lx,op = ifi(sing 29 + cotBcosd 3@"

1 -5/2m-r/2ag sinae_i¢.

¥21-1 = 4%

Therefore,

141 W11
FERRE PSR s

% - W

Lx,op“’Zl—l = W(icotBsing + coteoosﬁt)wzl_l,

in(-P*

B _ i
21-1 = Hootd(cosd + ising)yy, , = Hootde %21-1‘

(b) This result cannot be put into the form

7-17

But

Ly,op¥21-1 = Y2117

with C independent of r,8,¢.

The operator is question is given by

2
2 2, 1 3 3 1 3
L = - {5 =z(sin6 =) + —}.
op sind 3@ a6 sin26 3¢2

By Eq.7-13 this may be written

2 _ ,2:.22 3
2, = #u - La? ).

W) - o0f? = eotae + DR - igts - Vre),

a_ ay _ _ 2 _ 2
(2 W =0+ Dy ;"2*(2 vy,

by Fg.7-17.- Schrodinger's equation is

vy = i-';tv - B)y.
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Substituting these last two results into the expression for Lgp

gives

Lgpw =208 + DRy,
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7-18
(a) Since
Pop=‘mg_x! “»':'eikxa
ik
_ iy 2€ = ikx _
Popl = -1 3= = (~i) (ik)e K,

and thus the eigenvalue'is Kk.

(b) Using ¢ = e ¥, replace k in (a) with -k to get the
eigenvalue =jk.

(c) These results indicate that measurements of momentum will
yield ik precisely.

(d) ¢ = sinkx, coskx are not eigenfunctions since 3/3x converts
sine to cosine and cosine to sine.

(e) These states, not being eigenfunctions of the momentum
operator, will not yield precise-values of the mamentum upon
measurement.

7=20
(a) With R a constant and V = 0, the total energy E is
E=K+V=K,

But the kinetic energy K is simply

K = 1w’ = §1(L/D? = 1?21,
where I = rotational inertia about the z-axis. Hence

E=K= LZIZI.
®) 2 2 a2 2 32
- = e L- = - — -
Lop Lz,l:'p i® 99’ Lop (-16) a¢2 K “2
= —i¥ O—
E_ = -i} 3t

Also, ¥ = ¥(r,0,4,t); but r = R = constant, 6 = /2 = constant,
so that ¥ = ¥(¢,t). Substituting the operators into (a) gives,

r
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2 .2
2, _ B2t . 3¥et
L/ =E + =577 T

3

7=21
Let Y, t) = ¢($)T(L).

Substitute this into the enerqy equation of Problem 7-20(b) and
divide by ¥ to obtain

2 2
@ -E 2 g,
ap
and
ar ar _E . __iE
(b) if g = ET: dt'i)iT' HT'
7-22

(a) From the preceding problem,

O __iEq, & LBy, 7= EM
dat
The nomalization constant will be incorporated into ¢.

(b) The soluticn above represents an oscillation of frequency
w given by

E = Jw.

But this is the de Broglie-Einstein relation. Hence E is the
total energy.

7-23
The equation for ¢ is, from Problem 7-21(a):
2
L4 Zy=0.

a’ ¥
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This is analogous to the classical simple harmonic oscillator
equation:
2
9-*’-2‘ + f.|.l2)( = 0.
dt

The complex forms of the solution will therefore be
b = cel™ c*e‘w, m = /' (2IE) /).

7-24

(a) The particular solution being considered is

b =e = cos(mp) + isin(mé).
Single-valuedness requires that

2(0) = ¢(2n) + 1 = cos(2mm) + isin(2m).
Hence,

sin(2m) = 0; cos(2m) = 1; m =0, %1, %2, ...
(b) By Problem 7-23

2
mzﬂ%{—gl; E=%, m=0, ¥, 2, ...
(c) Solving the problem via the old quantum theory gives

2 2 2
L
el g,

Evidently the new version, in contrast to the old theory,
introduces an m = 0 (E = 0) state; also, the excited levels are
now two-fold degenerate.

(d) Apparently there is no room for zero-point energy since R
is assumed constant. In actuality, the masses, on a microscopic
scale, would be atoms which oscillate slightly, so that R
cannot be assumed to be fixed.

7-25

The complete wave function is, from the preceding problems,

71
Y= NemeiEtm.
The wavefunction must be normalized at any time t: thus,

Jo*0dp = 1,

m
1= (N*e_i'"“’) (Nem)dq; = N*N(27),

o
1
N*N = ?!'1?

7-23

Use o= (2m %™, L =-ik %;.

(a) 2% 2 on
_ i
O

0 o
L = mi.
(b)

Also, from (a) )
i? - mz}i .

=2
Since 2. L°, measurements of Lz will yield m{i exactly.



CHAPTER EIGHT
8-2
(a) Let the area of the ellipse be A; then,
W =1a=32a,

T the pericd of revolution. The angular momentum is L = mrzde/dt;
also, dA = krzda, so that

aa

em @B A
L=amE=2n3

since dA/dt equals a constant in classical mechanics if the
force is central. Therefore,

elr e M _

= =1

= i
W=T:hm ™" T "

(b) This result is identical to Bq.8-5, derived assuming a
circular orbit.

8-4

The first apparatus produces two beams, one with spin parallel
(in quantum mechanical temms) to the direction of the field (+z),
the other with spin antiparallel. This latter beam is blocked by
the first diaphragm. Hence, a "polarized" beam of atoms enter
the second apparatus, field direction +z'. This second magnet
produces a new space quantization along z'. In analogy with the
passing of polarized light through polaroid (except that the
angle for no transmission is 90° in the optical case, 180° in
the atomic), the second magnet allows only the projection of the
entering spins along +z' (not -z') to pass. Thus, if I' is the
intensity of the beam entering the second apparatus and I, the
intensity of the unpolarized beam entering the first, 0

I=%I'"(1 + cosa) = kID{l + cosa) .
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The deflectina force is
F = udez/dZ.

where
Uy = GghyNgr

since & = 0. If D is the deflection and F is constant,
2 2
D = at® = 5(F/m) (L/v) ",

L=1enqthofmaqnetandv=5peedoftheatms.mus,

D = X (g uymg/m) (@B, /d2) W/v)2;

For atoms emitted from the oven, w2=2k'1'with'r=1233l<.
Hence,

%, _ D _ 8.3 107%3) (1233) ©.0005) - 29 /.
dz .27 x 107 ()
g un,  0.572 .27 x 1070 (5
8-6

(a) The orbit and spin energies are {gzume}B and {gsubms}ﬂ.
Hence, with respect to B = 0,

= = = + 2m_)u, B.
E= gﬂ."hml.a + qs”bmsa (qi.mi, * qsmslg.an (mﬁ. s'Mb

(b) For n = 2, & = 0,1 giving the result:

L m‘% ms

+ +1
o | o = S

AE (units of u.hB)

=1 _%

1 0 =

L%

o+l |+ =2

+1 =~

73
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Thus the energy level diagram appears as follows:

0 +5
‘—-\1 } +1  two-fold deg.

L= — dd’} 0 tw-fold
= - 1 .
B=0 \1 1 - deg
_~0 0 =k
= =1 two-fold deg.
L o0 } 3
—_— 1 -1 -k =2

(c) The maximum separation is

ﬂEm = 4u,B = 10.2 eV,

4(9.27 x 107248 = (10.2) (1.6 x 10719),

B=4.4x104T.

88
Since 2,j > 0 and s = & the relation

3G+ DY > @+ D) - /s(s + D},

JG+D 220+ D +3 - /3w + ).

(1) & = 0. In this case (A) reduces to
jG+1) > 3/4.

But for = 0, j = % (the only possibility), so that the
relation in question is satisfied.

75
(ii) 2 # 0. (a) j = & + 4. Putting this into (A) gives
L > ~/{32(8 + 1)},
which clgarly is satisfied for all & > 0.
) =% -%, n=1, 3, 5 ... Putting this into (a) yields
-nt + k(n? - 2n - 3) > YV{3LQ + D). ®)
n=1 (B) becomes
0< (22 -1(+1),

which is satisfied for & > % (i.e., j > 0), so the relation is
cbeyed here also.
n = 3 In this event, (B) gives

0<30(-20 +1).

Evidently this is not satisfied for £ > %, £ < 0, but is for
<R < % But then j =2 - 3/2 < 0, which is impossible.

n =5 (B) now reduces to

o

0<-220% + 33 - 9.

This is satisfied for some £, e.g. L =1, but then j = 4 - 5/2
< 0. In fact, put L = j + 5/2 to get

0 < -225% - 775 - 64,

which does not hold for j > 0.

Results similar to the last apply ton =7, 9, ... etc. Hence,
since j > 0 the inequality is restricted to the values of j
given in the problem.

8-10

!
]
I
w O

(a) Largest j = 4 + ¥ = 9/2;
largest m, = j = 9/2. The
magmimdzg of the vectors are:
J=/{33 + LI = /(99) /2,
L = /{2 + DK = /(20)K,
s = /{s(s + )} = /3K/2.
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Apply the law of cosines to the L,S,J triangle:

J° =L +32—2I8mst180’-81.

2 =20 +3 + 2/{20() }oose,

6 = cos ™ () = 58.91°.

(b) Since E!‘ is antiparallel to L. and 'Es is antiparallel to §,
the angle between ;t';s = 58.91°.
(c)

J 1
cos¢=-j§=7%§; ¢ = 25.24°. 1|
8-12
Define the relativistic energy as
E =K + V.

rel

2 2 2 1
K=m" - mc° =mc"{———5—
"o "o /a - g%

B = v/c. The relativistic momentum p is

= 1}!

p=m=mes(l-gH7%
To express K in terms of p note that

Pl = -8 - 7% a-gh =140

so that
K =m0+ D% - 1} =mcPa + 2 - 4 0 -1,
K = mpcp'? - o' = 2 ——%15.
z'“I.'J &noc
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Hence,
0
E =K +V= - +V,
rel ZmD Bmgcz
and therefore 2
AE =E - —{.ﬁ_-ﬂi..,.;v)-(h*_v)
rel rel cl 21\0 Bmgcz a'no

Ifps= Pgyr then
AE ) = -p"/&ngcz.
Now using classical expressions, in the spirit of the
approximation,
%ni*«h B p'=anl(E - V)2,

£ - v

With E = constant and V = —ezld.m;o, the above yields the final
quoted result directly.

8-15
(a) The integrals to examine are
S (e vdr; Sy} (D, dr.

Since both V; /¥ are single electron eigenfunctions, each has
the form ']’n!:ng = (n,!.,ml). Hence each integral may be written

ef (n,2,my)*(¥) (n,8,m)dr.

Now the parity of T is odd: P(¥) = -¥; the parity of (n,2,m,)
is (-1)* so that the parity of (n,2,m)*(n,2,m) is (-1)% and

therefore is even regardless of whether £ is odd or even. Thus

the parity of the integrand above is odd, and the integral over
all space vanishes,

(b) Electric dipole moments constant in time do not exist,
since the governing integral above is zero. Only integrals



78

preceded by ei-‘t (Ei_Ef)t/n, depending on time, may be non-zero.
8-16

mrn=2:!.=0,m2.=0:l.=l,ml=1,0,—l.l'mmthe
integrals to be considered are

(1) £(1,0,0,)%(eD) (2,1,41)dr; (i4) f(1,0,0)*(eD) (2,1,0)ét;
(iii) £(1,0,0)*(eD) (2,0,0)dr,
where .= (n.l-.mll- Also,
-
T = (rsindsing)l + (rsinbcos¢)} + roosek.

Substituting the explicit expressions for the wavefunctions
gives the following for the integrals above.

(1)
eje_r/a"' fea) e—r/Zaueiid;rZ in6drdods.

Insert the expression for r given above. The integrals over r,
0, and ¢ that appear are

F—Srfzan Har 0

0
Fm%da =% F:mzeooseds = 0;
0 0
21 21

sinp *i¢.. _ |sing
[g‘me ab [gow(cosd;-l-isirmdntfo.

Hence f(1,0,0)*(e?) (2,1,})dt # 0 and a transition is permitted;
in this case Af = -1, in accord with the selection rule.

(i1) The integral here becames
efe”F/20 ) re /220,253 ngcogdrdeds.
%nﬂ:ez,'ftems, the integrals fsin¢dp = Scosddd = 0. In the
terms remaining '

» however,
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2T U
{d‘g #0; F‘e"r/hl’dr #0; Izoszesmeds =240
0 0

Thus here also f(1,0,0)*(er) (2,1,0)d7 # 0 and a transition is

allowed, again in accord with the selection rule since here
A = 1.

(iii) Finally, this integral gives
efe 20 (2 - r/aaie-r/ 220,255 n0drasds.

The 1,3 terms vanish for same reason as in (ii). But this
time the 6 integral in the k temm is

Fsinﬁmsﬂdﬂ =0
0

This time, then, f(1,0,0)*(e¥)(2,0,0)dt = 0 and the transition
is forbidden. The selection rule is cbeyed since Al = 2 between
the two states and the selection rule is A% = *1.

8-17

It is desired to check the selection rule an = 11 by evaluating

o0

Ie e‘w;;fwnim « gw,,fuw,,im.

since {Y(u) is real and u « x.
(1) n; =3, ng = 0. In this case,

e 2,2 2
Ie S(au - ad)e Mg, . 2E 2 - ah)e W ay,

I« 2(30mY - 2%} = o.

But An = 3, so the selection rule is not violated.
(ii) n, = 2, ng = 0:




2
I-F-zuz)e'“umuo,

since the integrand is of odd parity; An = 2 in this instance.
(iii) ni=1,nf=0.

2
I [uze_u du = Z(hl‘) #0,

—o

and An = 1.
'Hmstheselecttmmle:m-ilisobqedintheeethmcues.

8-18

(a) From Bq. 8-43, the transition rate R is

1633 [ )
R -—s'l—-“3| Vgexy, x|,
3s°hc o

v= %tc/mj*.

The integral inﬂ:ealpmssimﬁorkia,withu=(mw.

2 2 2
P= Zenunlgg'*“ xoe M ax = zeaunj_;,g§5{:=e~u.aa.
0

¥= Wl“"&(’,"

Themmalizattmmtmtsau-mdklmdetenm:m&m:
1.33E}12¢(,A§1m§
(am ¥
o, "
2 -u 2 (#m)
1= u’e dx= .
Aﬂ l‘m]'(cml'
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Solving these last for AD' Al' the expression for P becomes

¥
p =i A
)

Putting this and the expression for v into R gives finally, for
m= lﬂmp,
R = eZC/%(hEo)Camz,
-19,2 9 3 _
Rzgl.ﬁxw )7(9 x 107) (107) =2Usl.

1.5(3 x 10%)3(1.67 x 107262

(b) The lifetime is
t=81=0.05s.

8-19

The infinite square well eigenfunctions, apart from the not-
needed normalization constant, are

q;ntx) = sin(nmx/a), n even; wn(x) = cos(nmx/a), n odd.

It is required to evaluate
+ka
P= ‘w; (ex);dx « [wfwidx.
-4a
In the following, u = nmx/a; also, n,m denote the two levels.
(i) Transitions between even-n levels:
-+
P = |usin(nu)sin(m)du = 0
—kn
since the integrand is odd.
(ii) Transitions between odd-n levels:

+m
P Eums{m)coslm)du =0
1
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again since the integrand is odd.
(1ii) Transitions between an odd and an even-n level:

P« ‘.usin(nu)cns(nu)du = 2|usin(m)cos (mu)du,
1 0

1
p,i{%@+%@}_{{%m+%m},

evaluating the final integral. Clearly the above is not zero
for n even, m odd. Hence, transitions are permitted only between
levels such that one is of odd n, the other even n; i.e., the
selection rule is

an=1, 43,15, ... .
8-20

The eigenfunctions are

8@ =73=e™, n=0,1,2, ...

2n

>

P, = Iiog(u-)oidﬂ .
0

But Rcosp = s Rsing = ry. Dropping the absolute value signs,

21
1, = S (cosg) elMibay = %P"“i'“‘f”mw.
0

21
er|, 1
=5 {e (amtl)¢ ei(ﬂn—l)tm m=m - mg,

cosp = k(el® + e719),

B3

2m 2n 21
Kei"aae - gcos (ne)do + 1[sj.n{n8)de - %tsinzm - icos2m + 1).
0 Y]

Hence, if n=1, 2, 3, ...

2n
Semede = 0.

0
On the other hand, if n = 0, then
2n 2n
&einadﬁ = Edﬁ = 2m.
0 0

m,lx#(]onlyifeither (1) dm + 1 =0, or (ii) &m -1 = 0;
that is, only if Am = 1.
Since

sing = Z—Ji{eid’ - it ’

4l 2m

_ ER| i&m¢ _ er\ . i(aml)¢ _ _i(sn-1)¢

IY o singdd h—i&e e 1ds.
0

The integrand is similar to the one for Ix. Therefore, the

selection rule is am = 1.

g-21
By Eq. 8-43, R 3.2
PRV V]
R 32"
01 "cupgz

mtpfidemﬂsmlymm:sj:nem=m1—mf=+lforboth
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3
Bio_Vip_ B -E3
Ror 3, By
01
since v = Z-(AE/K) . But,
e
==|.'|'|
Em 2L’
and therefore
Me_ 2-23_
S .
Ror 0% -1

CHAPTER NINE

9-3
The probability densities are

I II
1 + .
'ldgils - ‘i{lll;(l)wE(Z]wa(llllla (2) = @;[1]¢§(2)$8 (l)!lla(Z}
AR
III

v
* ¢§ (l}d;;[Zld.'u(l)wB(Z) + watl}d;;(Z)wB{l)wa(Z}}.

Making the switch interchanging 1 and 2, temms I and IV
interchange, as do II and III. Thus,

1 -
¢§¢S=%{It11t111+m+5{1vt111tn+1}—¢§¢S.
AR AR
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From Example 9-2:

¥y = AT (DY 204 (3) + 4o (DY (29, (3) + ¥ (DY )4 (3)
= 4, WY @V, 3) = Y (DY, ¥, (3) = ¥ 4, (24 )]
As an example, interchange particles 1 and 3 to get
W = 73700, (DU D, () + 4, (DY, 245 (3) + 4 (4, 24, )
= 4, DY@V, 3) = ¥ (D4, 203) = ¥ (DY, 2y, D),
TR

The same result is achieved if, instead, particles 1 and 2, or
2 and 3 are interchanged.

85
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=6
The antisymmetric function for three particles is
Yy = 7;'—,{\14‘:(1)4!8 (ZN‘YB) + WB{IW.‘,RWGB) + q;Y{l)vu(Z)bB(S)
- wY(l)lhB (2)1:ut3) - ¢8{1)$GI2)¢Y{3) - ﬁatljwytzl%ﬂ)}.
Upon forming .ﬂli‘lAdT there appears the following terms:

(1) Sixtem,eachtmﬂm_mofunsea‘bwe: for example,

DV )42 (319, (g (20, (31d dr g
= U (19, () dv; HIY (24 (1, I (B0, (e},

= {1{1H1} =1,

assuming that each wave function is nommalized. Hence, these
terms add to 6.

(ii) Cross temms; for example,
N;{l)ilE(Z)11;(3)¢Y(1)¢B{2)¢u(3)dtld'rzd'r3
- {J"J»';lll'b,r{l)d'rl}[fﬂlg(mws(2)312}{1'1!;(3)1!0(3)613}.

= {0}{1H0} =0,

due to the orthogonality of the eigenfunctions. All of these
cross terms vanish.

Thus, the total integral egquals 6 and, since 31 = 6 also, W
is normalized as originally written. A

99
By assumption
wﬁ = wspaceq’apin'

Look first at the symmetric space functions; since both of the
electrons are in the same (ground) state,

87

1
Vspace = 721%100 W¥100 (2 + V100 (2 V00 (1)}

- 7?2-{71;(%1 3/2g2x1/20 }{71""(325} 327202/,

wspmmstbeantismtrmsimethespwefmﬂmmdmm

to be symmetric (electrons in the same level). The coulomb
energy is

1 e2

Ve Ty

w;e:erlzfrl-rzismedistancebemmeelectrms.mus

V = JigWydr,dr,do, do,,

in which 0,0, are the spin variables. Now V is independent of

the spin of the electrons, so that if the spin wave function is
normalized, then

Vo= fyr W dr,dt,.

Putting in the wave function gives

2
= __8e -4 (ry+r;) fag,_L 2
V = ——\e T ridrlrzdrzainalsinezdﬁldequ;lmz.
0 12

in which r , = r),(r),55,0,,05,0,,4,) -

Now suppose that the antisymmetric space function had been
chosen. With both electrons in the ground state, this will be

-1 - -
Vepace = 750100 WV¥100(2) = ¥y00 @100 (W} = 0.

It may be concluded then that with both electrons in the ground
state, the electron spin must be in the antisymmetric (singlet)
state. The coulamb interaction, being positive, will increase
the ground state energy over that calculated by ignoring it.
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S5-10
Consider two eigenfunctions *j""i' solutions of

2 ay, &y,
-%Ql*-wj: j"j (1) ; —%-dx—i—‘l-wizgiwi (2).

Take the camplex conjugate of (2) to get

2
s
_zmdxz +V¢;=Ei¢;. 3)

Multiply (1) by w{. (3) by ﬁj and subtract; this gives

2 2
2 a~y a“yx
—Lfﬂl’.-—i—ﬁ -—i)={E-El‘M‘.
2m 1dxz jdxz b] 1°71%)
Now integrate over x:
) 4o 2 2
a%y ayx
e = —_,, L
uz'Ej Ei}h?jdx i:; Z T

4o
ay, ¥ & i e

=14 - —Vax = Yk el - . —

'ldx“’i?&i WEIx=F - Hl_-

(1) Iij#Eiandthesystﬁnism,'thewaveﬁumﬂqw

approach zero at both infinities. Thus the integral vanishes and

o
g"i"'jd’“ = 0.

(ii) In the contimmum region (unbound system), the wave function
remains finite at large positive and negative x. In practice,
however, box normalization is invoked and the wavefunction
vanishes at the surface of the box, so that the result above
is achieved here also.

RO

(iii) If Ej = Ei (degenerate case), construct

¢’a = ai"i + aj¢j’
also a solution for this potential. If ai,aj are chosen properly
¢acanbemadeortngma1 bow].:

f¢;¢jdx =0= aiflbj‘.wjdx + a;ﬂ;;urjdx,

a;,r‘q;zq;jdx + a'j' =0,

and so choose

]
af =- .rw;q;jdx.

N B w s g O




(a)
2
Vir) = - Z{x)e

2
(rje” _ _ Z(rle == Z(x
41|eor heoaotr ao) (ZEIH) I, ao'

Vir) = -(27.2 eV) %;'1'.

mzmamﬁmmofthemm.mmof
Z(r) may be taken (not easily) from Fig.9-11.

(b) The results are shown on the preceding page. The first
three levels of argon are

E]. = -3500 eV; E2 = =220 eV; EB = ~16 eV,

9-14
(a) Eq.9-27 is, with F.H referring to hydrogen,
2 4
uZne
E=-—2>0 - 3% |
(4mep) zzﬂznz :‘;EH

In the ground state (n = 1) of helium, Pig.9-6 gi.ueanlu-aow )

and therefore
= = 7%
-80 = zlzﬂ'm 31{13.6),

Zl = 2.4.

(b) With so few electrons, it is not clear whether an inner or
outer shell is being described. Ileun=1anmtersheuis
indicated; for an inner shell, zlsz-z-z-_z=o.

{c) The fact that 21 equals (or roughly equals) neither n = 1
(outer shell) nor 2 = 2 = 0 (inner shell) implies that the
Hartree method is not applicable to helium. This is not very
surprising since a statistical method cannot be expected to
work well with so few particles (two electrons).

91
815

(a) From Fig.9-6, Ecoul = +30 eV;

R
coul ~ 4ne, r'
0

-19, 2
30 = (9 x 10916220 L
r(l.6 x 10 ™)

r = 0.048 rm.
(b) Em1=+9ev + r=0.16 nm.

9-17

-+

Fbrtlwelectrmf*=rx'ﬁandz.tsperpendicula.rtotheplane
of the orbit. Now v # 0 anywhere in the orbit and therefore
p#0. IfL#0, thenr #0

everywhere and the electron

avoids the nucleus (r = 0). If

L = 0, the electron would move ll!
on a straight line through the -
nucleus. A
A
(a) )
E=k+v=E 4y, shock o,
1,2 2 T
E = 3-(pg +pL) + V. T
But L = mp, (since ¥ x B= 0); cleus
hence, 2
2 P 2
25%; E=$‘+(-L'H§+V).
r 2mr’

(h)Incmedimension&=E},L=Dandl=:=pf/2m+v'.’misand
the preceding equation are formally identical if

V' = 11.2/Z|1:r:2 + V.
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2 jomr?
(c) If the electron is bound, V(r) < 0. Clearly L%/ >0
{recall that L is a constant for central forces). For small
enough r, L2/2mc® >> |V(r)| and V* > 0, indicating a repulsive
core in the one—dimensional formalism. Only if V « r_n, n>2
will this core disappear (unless L = 0).
9-18
(a) The potential in question is V':
V' =V + szz'ﬂl'z.
Now, in electron wolts,
BRI\ G S TS RPN 1 S )
mr? 2nc? 2ma§ (x/ay) (rfﬁolz

Clearly, for £ = 0, V' = V; see Problem 9-13. For £ =1,

’u"(f] v

6.8 oS0 0.5
0 . i . 1 N 1 - T/t

PETT T T

ok,

-200 Friﬂ}‘.ﬂbi

|
-~
-4
(=]

T
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27.2 Z(r -2
V' =V o+ =t = o (27.2) + (27.2) (x/a;) “.
tr/aol . aD) 0

(b) E2 = =220 eV.

(c) The classical region of motion is shown on the sketch: it
falls within the range for which 921{1_-), Fig.9-10, is large
L=1.

(d) For & = 0 see Fig.9-13. The classically permitted region
there falls within r = D.Zaa, a bit smaller than for £ = 1.
This result also corresponds roughly to Fig.9-10, where on is
large at r = 0.5&0. There is qualitative agreement between
classical and quantum results.

9-22

(a) From Fig.9-15, the icnization energy for the first electrorn
is 24 eV. In the ground state the energy of the atom, from
Fig,9-6, is -78 eV, Thus the energy after the first electron is
removed is -78 + 24 = -54 eV. The enerqgy with hoth electrons
removed is zero; thus the energy needed to remove the remaining
electron is 54 ev.

(b) With the first electron gone, the helium atom resembles a
hydrogen atom with Z = 2. For such an atom the ground state
energy will he

— 2 _ 52, — -
El—z (ElH) = 27(~13.6) = ~54.4 eV,

and therefore 54.4 eV are required to ionize it. Agreement with
(a) is excellent.

-~

923 _ . _gremdsbds

Py B p— 1Y o
1Tl 141112
@,m M T T E
L AL AIAT
Tevlw I‘“u'.%'l{hk E<O
n L oshell
k A Prmissing i€ haden k shell
1
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(c) In the x-ray diagram the levels are inverted, the ground
state is taken as zero energy, and the energy is plotted on a
logarithmic scale.

l*‘l‘l‘\
I K
1035 -
E>0 .
(A I LA
T TE
EJLJEEIL N M
VI TET LTETH]

(d) When the hole is in an inner shell the energy differences
for likely transitions are large; thus the x-ray diagram,
plotting logE, is easier to handle than the standard diagram.

(e) When the hole is in an outer shell, the transitions are

more likely to be optical, and the associated energy differences

are small. Hence, the standard diagram is adequate.

9-24
The photon energies are

hc 1.2400
E=T; E(keV) YT

Use of the last expression gives the following:

Ka (I+K): A = 0.0210 rm, E = 59.0 keV;
Ke (M+K): A =0.0184 nm, E = 67.4 keV;
KY (+K): X = 0.0179 nm, , E = 69.3 keV.

For the absorption edge, E = 1.2400/0.0178 = 69.7 keV = energy
needed to ionize the atom by removing an electron from the K
shell. Hence, EK-= 0 (ground state) + 69.:? = 69.7 keV = energy
of the atom with a hole in the K shell. ThenBL=59.?— 59.0
= 10.7 keV; similarly, EM = 69.7 - 67.4 = 2.3 keV and B, =
69.7 - 69.3 = 0.4 keV,

95
€17 k
k
E < |k
(A0)  jo.7 3 ! ky L
.3 ¥ N
0.4 . N

9-25

(a) The line is emitted when a hole jumps from the n = 2 to
an n = 3 level. The enerqy required for this is approximately
the energy needed to ionize the atom by removing an n = 2
electron. Using the cne-electron formula with zz=z - 10,

26 - 10,2
19

Z
E, = -(D%a3.6) = - (13.6) = -870 ev.

Thus the required voltage is about 870 V.
(b) The wavelength is obtained from

m— - = - = -] = . =
N =Fy-F =FE;-E,=-F,=870eV; \=1Lldm

9-26
(a) The empirical formula is

-1

ylocz-aZ 2% =cdi - a).

Thus a plot of 1-5 vs. Z is a straight line with a Z-intercept
of Z = a and a slope of vC. From Fig.9-18, the Z-intercept = a
= 1.7. Also

1

1.0 = 0:5105) . ¢ = g.65 x 10° mL.

¥
Slope = C* =T3¢~ 17

6 =1

(b) For a: a=1.7; C =R, =11 x 10 m .
9-27
(a) The K absorption edge (n = 1) should be given by

_ 2
Epgge = (13-6 V) (2, /m) %,
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Thus,
cobats By = (13.6) EH7 = 8.5 kevs
1 _ 26 - 2,2
ron: EK—IB.G)I 1 )“ = 7.83 keV.
(b) For photon qreater than 7.83 keV, the probability

that iron will absorb the diminishes sharply. With 8.5
greatertl-nan?.ﬂ,a:ﬂshmﬂ.ikevfansnea:thexedgeﬁor
mlt,vn:eretheprd:ahintyforabeorpﬁonishigh,aphohm
energynearﬁ.Sdewuldbebest.

9-28

For the inner electrons, the wave functions are essentially

hydrogenic, with an appropriate effective Z. For the Ku line,
use

Y100 = 75 %/20) 2gEle,
1 5/2._-2r/2a
Y10 = Wiz /3T T *cost,

with the selection rule AL = ¥1. The matrix element is
4
2 3 -32r/2a
Pgy = |Svgev ar| =iﬂ%t2-—4|£r o325/ 2207 ,gp81n0d0d4dr | .
ao

Since
% = rsinecossl + rsingsing} + roosek,
the Z-dependence follows from

Z4F4 35/2805, _ 54 A4l
0

(3z/2a,

)

-1
Pgy <% -

The lifetime becames

Therefore,

3 32
3¢ he T
rale L . B 31%.1..:1_
16mv'Pgy H VP pb
. 2
hv = B = Zogs.
6 2
Tob _ ’ieff “pheff | Hieff 4
T 3 2 Z
H  Zp, off ZH,eff Pb,eff
T
Fb _ 1,4 _ -8
= E=7 =2.44x10 °,
H
=108s + T, =2.44x 10716 5.

Pb

97



CHAPTFR TEN

10-1

(a) Fram Fiq.10-1,

EZp - EZs = -3,50 - (-5.35) = 1.85 eV.

For photons,
so that
2 =2280 _ 630.3 m = 6703 &
1.85 .
(b) By Fxample 10-1,
hodE _ hc GE _ , B
K="2 "FEE " E

From Table 10-1, dE = 0.42 x 10-"l

0.42 x 104

dx = (670.3) 1.85

10-3

(a) The around state confiquration is 1s22s22pf3s!, the first
three shells heing closed; the possible excited states will be
those with the optical electron in the 3p,34,4s,4p,4d,4£,5s etc.
levels. But 4d,4f lie above 5s and 4s lies below 3d. Also, for

any n, the level with maximum permitted § (=n = 1)

corresponds
to the hydrogen atom level of that n. That is, for 3d (n = 3,

=2,

E=E3H= -1.5 ev.

(b) Each level, except s-states, is split into two levels, with
the state of smaller j being more negative in enerqy. The eneray
splitting is small compared to the energy of the degenerate

states. This spin-orbit splitting is given by

98

eV, and therefore

= 0.0152 rm = 0.152 .

1dv

r dr
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2
—L“z s{3(3 + 1) -2 +1) -s(s+ D},
4m-c

=K{jJ(3 +1) - (& +1) -s(s+ 1)}

Assume K = K(r=0) = constant. In all states s = %, 2s + 1 = 2,
j=12 %, except § = 0 where j = s. Putting all this together
gives the results below.

dp:

5s:

L=0, =12 E=0; %5 ,.
le'{j=3/2: AE = +K; 293/2.
j =1/2; OE = -2K; 291/2.
L=0; j=1/2; ME=0; 281/2'
. .{j=5/2= AE = X; 21:5/2.
j =3/2; AF = -3K; %3/2.
£=1:{j=3/2; oF = K; %3/2.
3= 12 88 =<2 P,
L=0; j=1/2; AE=0; 21/2.

(c) The selection rules are: AL = *1, Aj = 0, 1. Usina these
crivesforthepemutted transitions:

- 21’1/2; 293/2- Each of the 3s,4s,5s levels can make a
transition to each of the two levels of
the 3p,4p states.

21’ "203,2. mtwttnsbs/z since then Aj =
Also to the S-state above.
2
zp - 293/2, %D /,- These in addition to the S, )
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Mithout Wity Spin-Orhit Bplitting
Bpin- Fnerpy (eD)
arbit

a
Fneres /2 a"sxz a”uz z“sxz a“:l/z

Gp ——ia e

G  — e

33

48 ——-z2-e

-4

-
-+ "

Scule of Eplitting

38 =i

101
10-4

(a) 9.1 =1, ?vz = 2; §) =8, = k. Thus the possible values of L'
are L' = 3,2,1; possible s' = 1,0. The smallest L',s' is the
state of maximum eneray: i.e., L' =1, s' = 0. With &' =1, s' =
0, there is only one possible j': to wit, j' = 1.

(b) since &' =0, ' lies along J'.

2, =2, %, = 3; 5, =s, = k. The possible 4" = 5,4,3,2,1; the
possible s' = 1,0. For j':

'=at s, L 48 -1, ... |0 -8

Therefore, the possible confiqurations are:

!'l st il—
5 1 6,54
5 0 5
4 1 54,3
4 0 4
3 1 4,3,2
3 0 3
2 1 3,2,1
2 0 2
1 1 2,10
1 0 1
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10-7

For the configquration 4s3d, !,1 =0, 12 =2, §; =8, = L. Hence,
L' =2 only, s' =1,0. With &' =2, s" =1, j' = 3,2,1 giving
3D3'-2'1 levels. For &' =2, s' =0, j' = 2 only, resultina in a

J’D2 state. By the Lande interval rule, the separation is

3 3. _
(0, - %,)/(p, - b)) = 3/2.
The enerqgy shifts themselves are

AE = K{j"(3' +1) - 2" (2" +1) - s'(s' + 1)},

giving
]'Dz: AE = 0;
3D3: AE = 4K;
3 = = o= -
DZ' AE = -2K;
3Dl: AE = -6K.

The latter three shifts cbey the Lande rule.

e =ni1 =2 _ _ _ _ _ __ 'I' =2 lnz
it=3 3
/
. - /'—"
B =1,1"=2 B
e T =~ i=2 2
S
R
Splitting scale ~_i =1 3a

K" el

i
T
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10-8

The magnitudes of the vectors
are:

J' = /124; L' = /6K; S' = v2H.

hpplying the cosine law:

3'2 = .:!‘2 + L'2 - 2J'L'cos8,

2 =12 + 6 -2/72cos6,
6 = 19.47°.

Again resorting to the cosine
rule:

2 =52+ 102 4 25'L'cost,

12 = 2 + 6 + 2¥/12cosd,

¢ = 54.74°.
Turming to the magnetic moments:
2
u; = *;bS' = 2/2|.|b,
T "= J'pr.
uz = u;z + u;vz + 2u_p cosd,
2_ g2 4 62 2 o = 4.6903
weo= 8|.|b + 6y + 4/12pbm554.?4 + u . e
Finally, )
u;-z = u,{z + 1" - 2ugucosa,
R =6+ 21.999 -~ 2/6(4.6903)cosa + a = 29.50°,

so that ¥(y,~F') = 29.50° - 19.47° = 10.03°.
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10-9

(a) On Fig.9-13, the colums reveal the last shell being filled,
the row the numbers of electrons in that shell. Therefore,

leq: 152, 232, 2p6. 352:
a1 152, 252, 265, 382, 3pl;
Si: 152: 252: 296: 332: 3p2-

(b) 12Mg; the confiquration represents a filled shell, and thus
all the angular momenta are zero, leading to 15,.

Bals there is a single valence electron (s = s' = k); thus

2s' + 1 =2; L' = 1 giving a P-state; j' = 3/2, 1/2 with the
smaller j' lying lower, leading to zP;r

1451: here there are two & = 1 electrons; s' = 1,0 and &' = 2,1,
0. For the lower energy pick the larger s'. This gives as
possibilities:

3

L' =2; 3'=3,2,1; D3 2,1
2 =1 3 =2,0; b, 0
. L - 3
L*=0; 3'=1; 81.

The 3p; and 35, states are, however, prohibited by the
Fxclusion principle. Of the 3P2,1‘ states, the smallest j' lies
lowest; hence the ground state iguration should be 3Po.

10-11

For a single multiplet s' and L' have the same value for each
level. By the interval rule,

ig
%, = X3, £, :
_ 4
%, = %3, s _
£, = %Ki, i3
E
1 = &, ia
H

[
.
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Therefore
£ /E, = % =3g/iy = Gy * V/igi 3,=3
since j =1, 35 =4, 3, =3, 33 =2, 3, =1, 3) = 0. But

3 = g'es, L'4s'-1, ... |2'-s'],

L' +s'=4, ' ~-s"=0; &' =s"=2,
and hence the results are
= 4,3,2,1,0.

=
[}

)
L]
[

[
[l

10-14

(a) The g-factor is
' (§'+1) + s'(s'+l) - £'(L'+1)
g=1+ 23° (3741 :

(i) For g > 2,
3JT(3'+1) < s'(s'+1) - L' (R'+1). (*)
If j' = 4" + s', this becomes
0 < -(9.'2 + L' + 4's'),
which is impossible. But if j' = &' - s' the relation gives
s' >4,

so that j' = s' - ', a contradiction. So try j' =s' - &' in
(*), which will now reduce to

L' < s',

which is acceptable. For example, s' =2, ' =1, j'=2~-1+=
1, aiving g = 5/2 > 2, as required.

(ii) For the case g < 1, the formula for g requires that
' (3'41) + s'(s'+l) < R'(R'+1). (*%)

If 3' = 4" + s', (**) becomes
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.2 L
0>s""+s"+2's'",
which is impossible. But if j' = &' - s', (**) reduces to
L' > s'.

For example, &' =2,s8'=1, 3'"=2-1=1,qg=% < 1.
(b) Consider this second case: L' =2, s'=1, j'=1, g=%
r

L' = /6h, S' =y/24, J'=v2, x@',§") = 150°.

Since gy = ,as=2,dra\nr'|:§_ linlmqﬂztof',ﬁém
as long as §'; it is seen that u} is about half as long as J°',
indicating that g = .

10-17
(a) The 1P) yields three levels, the 31>2 five, 3p; three, and
the “Py gives one; thus the total mumber is 12.

(b) For the 3s electron & = 0; 2(28+1) = 2;
For the 3p electron % = 1; 2(20+1) = 6.

Clearly, with (6) (2) = 12, the field has removed the deceneracy
completely.

10-18

For a singlet s = (1, so there is oply orbital anqular momentum
to consider. The potential energy of orientation is

AR = - 3R,

107
For orbital anqular momentum g = 1 so that

H_ &

L Zm; u=—'TL.

1f B is in the z-direction,
o o D T N
AE = - V T8 =- W LZB——T(m!}D = -~ B, .
giving rise to 20+1 levels. Since s = 0, L = j; making this
substitution, and inserting a factor g = 1, leads to
AE = -ubgﬂ'nj.

which agrees with Eq.10-22 in the case g = 1.
10-19
In the classical model, picture the magnetic field building up
to a value B from zerc in time T. Faraday's law requires an
induced electric field E,

8 _, B
r 3 = kr T

This imparts an additional velocity Av to the electrons, which
circulate either clockwise or counterclockwise. Hence,

R=}

—ar=Ep - E,_egrB, _emB
M"aT’mT_mT"m{zT)T'zm'
The new speeds are
= erB
V=Y -’
vielding frequencies v given by
v=Y_=, +t5B
2nr 0~ 4m’
=hy=hy, + -2
E=hv=hv 2 gm B
ﬁE=pbB,

corresponding to Bg.10-22 with g = 1, ”"5 =1.
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10-20

(a) ForlPl, j'=1aotherearethree1evels:the102hasj'=
2 giving rise to five levels with the field. For both these
statess'=050tlmtg=1anda‘r?=ubnn§.ﬂawe,tlmlevel
spacings are the same for each state.
(b) The selection rules are Am! = 0, *1, allowingzero to zero
since Aj' # 0 between these states. The group I of transitions
give the same wavelength as when B = 0; ﬁrII,m<aEB=0m
thatln>:\0;
with all the level spacings the same, all wavelengths in II are
equal, as are all in III. Group I has wavelengths equal to those
with B = 0 and so are all equal. Hence, three lines appear.
(c) The wavelength of a line is given by

he

A=K,

AE
Considering two transitions whose energies differ by nZE, the
wavelengths of these lines differ by

3\, ipm o _BC_,
e 7 (mz“z‘z'
Now clearly,
Ar = % = 2 T A

andoonsequentlyMH =MIH-=M=.\H -AD. The energy AE,
corresponding to m; = 0, gives wavelength RO' which is
identical to that for 'P) + 'D, when B = 0. From Fig.10-8, this
is

AE = 10 - 3.6 = 6.4 eV = 10.24 x 107 %° 7,

since am} = 1, 2% = BN = B = (9.27 x 1074 (0.1) =
9.27 x 10~25 J. Therefore

in III, AR > ﬂEB=O and therefore AIII < lu. Also,
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B=10 B0 .
.
i
— 4]
el M
o ——— i
'y ~~ r
1 —
~ .1
33 €0 3¢hITIqTS
y +2
/ h
//", +1
Z -~
e X K 11—
1 RSO .
] SO~ ...-_L_
~ =1

‘mo M am

=34 B
6. . -
oy =A6:626 X 10 ") (2.998 % 10 ) (9 27 x 10725) = 0.000176 rm.

(10.24 x 10719)2

(d) As given in (c), the enerqy difference between the
degenerate B = 0 levels is 6.4 eV. A photon emitted in a
transition between levels separated by this energy has a
wavelenath

_ 1240 _
A= =194 im.
10-21
(a), (b) From Eq.10-25,

4B = wBmy + 2m2).

Now j' is no longer a qgod quantum number; thus the levels are
identified only as 2P, 2s.
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f=0 B#D
(spin-nrhit splitfing /——'———ﬂ +1
ignoret) / R
-
Z - + -1 tmo-fald
_'_'_":: - =%k +1 degeneracy
au N~
~ "\.‘ _g 0
LN
LN -5 -1
m ui
- + 0
-
1_._’:_ —— e - ——
K ~ed bl
“~ % 0
&)
No line hae the II;!]?III!- ‘ I l
lennth us the B = ine.
Ay Az Mg

W %p: s* =%, my =24 2" =1, mp = 1,0,-1. Using the

relation for AE, these give:

-

,L'LQDI-‘I-"H
JEU T D O S P

AE (units of ubBl

+2
0
+1
-1
0
-2

(11) %s: Acatn m! = 4, but £' = 0 and therefore m; = 0 only.
AR = Hu R, and no level exists at the B = 0 position. The
selection rules are amg = 0, g = 0,1,
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10-22
(a) From Fig.10-8, the approximate eneraies for the 2p2 levels
are:
3

P2,l,0= -11.3 ev (s' =1, &" =1);
lDz: -0 eV (s' =0, &' = 2);
lSU: -B.6 eV (s'=0, 4" =0).

Now the 'p, and s, levels both have s' = 0. Thus their energy
difference corresponds to lining up Il and 12 "parallel” in one
case and "antiparallel™ in the other. This energy difference is
10 - 8.6 = 1.4 &V. In the ’p, ) o and D, levels, &) and I, are
roughly parallel in one and antiparallel in the other. Hence,
the eneray difference is due mostly to different spin coupling,
or 11.3 - 10 = 1.3 eV, 'I'lm-m“fore, the aligning energy, spin or
orbital momentum, is about 1.4 eV,

(b) The difference in "parallel-antiparallel"” energy gives

-19
B=%Eu_= (1.4) (1.6 x 10 ) _ 04 o

2(9.27 x 10°2%)

(c) The largest laboratory fields are about 100 T.



CHAPTER ELEVEN
11-7
(a) Bq.11-25 is
3Rhv 1
E==1
k] ~

By definition,
cv—a—=3R-T-——(h“l
(b) Let x = kT/hv; T + 0 implies x + 0 also. Then, in terms of x
_ e]'/x -2
SR ZX

As x + 0, ITL NN 1; therefore ¢ + 3Re ~1/x2 Hence, for small
Xy

Cy = 3Re_1/ xx—z.

Nowt,
xzellx—x{1+l+ +_.l-...+,,)=x2+x+211+-§-%-+...
21x2 3!x *
Hence,
Limxeux
x+0
and
Lim(c ) = 0.
T+0
For small T,

¢, = me ™/ ¥ hypmy 2,

112

113

11-8

The Debye specific heat is, with y = 6/T,

3!”’:0:3 1

= 9R{4y | —dx -y }.
Lx—l e -1
0

For y << 1, the second term becomes

Yy Y - 1
= L
ey—l (1+y+y2/21+..-)—1 1+y/21 + ...
implying that
Lim—L= .
y0 e -1
The first term is
Y
- xa
dy “|\——dx.
X
€ -1
0

If y is small then, over the range of integration, so is x.
Fxpanding the integrand,

| S 3 2. 4
|l x .

—_—dx = ——y = =T
iy PR 4y ](l+x+...)—l 3xdx 3

Yl
Therefore
Lim(c)) = 9R(3 - 1) = 3R,
T/6>>1

the Dulono-Petit result.

11-10

(a) Let the sample be a square of sides a, sothatl\:az, and
oriented as shown, p.ll4. If standing waves are set up in the
material, then,
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BA
y T
. /!
/
/
adjacent
nodes T —
= ~
A ~
~
~ ~
~
~ ~
a ~

\\ Y
—u, —o

E(x,t) = Bmsin(an/Ax)sinZM,

Ely,t) = Eoysin(Zn'/'.\Y)sinZ‘wt.

There must be nodes at the boundary: hence,

2ma/A, = n m; Zna/xy =ngm NN = 0,1,2, ....

I1f the wave makes an angle a with the x-axis, B with the y-axis,
and has wavelenath )\, then

A, = )/cosa; ly = )\/cosB,

Each frequency is represented hy
a set or sets of points nx,ny.
If (ni + n}zrj” = 2av/v, then the
points nx,nl||r represent v. It
follows that all points on a
circle of radius 2av/v stand for
frequency v. The density of the
points is 1/unit area. Thus with
r= (ni + n;‘;J,’, the mumber of
points between r and r+dr is

N(r)dr = 3%’& = knrdr,

and this is the allowed mmber of frequencies between v and

vidy:

2
Nay = 1) Eay) = 2y = Zay.
v v

(b) There are still 3N modes per mole, so that

0

N
m
gﬁlvldv = 3N,
0

where A is chosen so that there are

2

2
3"0 = vz (Vm/z] | \im
The average energy of each oscillator is

R

1

e

so that the total energy of each mole will be

n_4
]

>

- 8 ® o s 8
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v

m
2ma
2

v
0

= viaNy/ma) .

ND atoms in the sample:
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m and
—_ h .
E= EN(v)dv= ﬁﬁ—g@\ﬂv- 6/T o
ﬁh" -1 v 2 2
0 Lim-—-;—--—dx= —-)—c—-dx=afinitenunber.
3] € =1 e -1 '
If x = hy/kT, 0 0
m 2 ﬂ'ﬂ.ls;
E= M("E“) —E—ax. Lim(c ) = .
v e -1 8/ Treo
0
But 11-11
2
A= JNsz/wm; (a) Since the atoms are distinguishable, use Boltzmann
| statistics:
using this gives |
n = ae E1 /KT ny =& n,= M-gm,
6N KT Xm 2
E = —-&h | X —ax. | since ¥, = 0, E, = E. With N = total mmber of atams,
v e -1
m
]

n +n, =M N=AQ+e /K, r=—L
Finauy,obaarveﬂnt:s“=humfkriadjnmsjm1m;he!m, 1+e

hum/khasthedimmi.onsofatmpemmre: let\;mfk-a/h,
The total energy is

giving
/T E=nE +n =n —Ae_im
= = = E=
I hy " 1B+ pEy = 1+ ENT
E= 107\ oy e-=k{3No/1ral .
(b) As usual, the specific heat is
(c) The specific heat per mole is ] - m(%ﬁe-z/k‘r
R 7/
", MRS
) 2| _x o .8 1
o= ar T RO\ T A () Let x = E/KT; then,
0 2 -x
__Xe
Py
If T/ << 1, /T >> I; but
[:] =0, Forx«l,Tla.rqe,e_x=1andc‘jm(=¥x2.mtheoﬂmr

Lim = g
&{'I'nnTee -1 hand,wimx»l,Tmll,exzo,mcvm-xze'x,hskemh

of the specific heat vs. T is on the next page.
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c_/Nk

n4p

1-15
The population of the levels is

n. = M—h/ﬂ" n = M-!zﬂﬂ‘
1 2
A = constant. Hence, the fractional difference is
n

bf:g:. :I'-nz-n]“fnz_l:“'l
N " n o+ nlfnz'l-l en‘!/kT+1

with AE = ;52 - ;1. Mow, for ; aligned parallel or antiparallel
to the field, AE = 2.B:

AE = 2(1.4 x 10726 (1) = 2.8 x 20726 3.

(@) KT = (1.38 x 10"23) (300) = 4.14 x 1072}

AE _ -6
kT——S.?leD .

J. Hence,

119
Then, to a good approximation,

An _ AE _ —6
—*N-QH—H-S.ixlD .
-23 . -4
5.52 x 10 J. This gives AE/KT = 5.07 x 10 °,

(b) T=4K, kT =
and since this is so small, the same approximation as in (a)
applies here also; therefore, An/N = 0.00025.

11-17

(a) At T = 300 K, KT = 2.585 x 102 eV. For hydrogen,
aE = (13.6) (% - ) = 10.2 ev,
12 2

giving AE/kT = 395. Thus, ignoring the degeneracy of the states,

ny/n, = e ME/KT _ -395 _ 147170,

(b) The degeneracy of the levels is 2r12; therefore,

= - 8 —.BE/}CT,
r|2/n;l =0.01 =2e

e 8E/XT _ 4.0025.
Therefore,
AE/KT = -In(0.0025) = 6; T = AE/6k; T = 20,000 K,
since AF = 10.2 eV.

11-19
The desired ratio is

_ probability of taneous emission _ 15‘21

R = Sorobability of stimulatedemission Bp (W
But,
A, 3 3
_21 _ Brhv” | plv) = Sshv 1
B21 c3 {:3 ehuﬁﬂ‘ -1
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therefore
R =™K _

At room temperature, kT = 1/40 eV.
(a) X-ray reqgion: A = 0.1 nm; v = 3 x 10

keV. Thus, hv >> kT, R = e™/*T + o

(b) visible: A = 600 nm, v = 5x1014 Hz, E = 2 eV, giving
hv/kT = 80, or R = =, once again.
(c) Microwave: A = 1 am, v = 3 x 100 Hz, F = 12 x 107> ev;

/KT, 0-005 _ 4 405, so that R = 0.005.

18 br, E = hy = 12.4

11-20

(a) Assuming no degeneracy,

ny/n, = o BE/KT
Since
88 = 00 = 2.138 Vi KT = 0.0259 eV,
ny = (4 x 1020)e=2:138/0.0259 _ 5 co 10714 oo
i.e., none.

(b) A laser pulse operates until the population inversion
is destroyed; hence

E = (1.5 x 10%0) (2.138) (1.6 x 10°) = 51.4 J.

11-21

For a beam of radiation, applicable to a laser (stimulated
emission) ,
p=1/c= 4 = 1.334 x 1078 J/m>es.

2.998 x 1II|B

The transition rate is
R =nBp = (3 x 20'8) (3.2 x 10 (1.334 x 107),

R =1.28 x 10%6 &1,

11-23

Since n@a = 4 ond) e,
h

the total number N of particles is
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_ N(E _ 4., 3% £”
N=\3=% =3 (&) o_E/KT %
e'e -1 b (=} -1
0 0
Let x = E/kT; then,
{--]
]
N = 2 (o) 3/ 2| —X——ax.
h ee -1
0
Since a > 0,
1 1 ¢ —o-x | _=20-2X
= — =-—(1+e + e + ..),
e“ex—l em{], e—u x) ex
xl = e e X 4 gOE L 23Ky,
e%* -1

Hence,

N-= 2‘?{2&‘1‘}3/21\&:,’ € + ne 2 4 2% 4 LLax,
h
0

with A = e %, Now,

gxlfe_nxdx = n’al 2‘x“ie_"‘d.:n{ = n-3/2”%} = l51'1_3/21#’.
0 ]
Therefore,

N = l“;—"-(mla/zmksu $ 2732 L 37322, ),
h

3/ _ -
o = (2-rtrnkT3 Gt T R V. X
h

- D N N R —
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11-24

The enerqy of a Bose system is, with x = E/kT,

3/2
= lm@v@ma = o) 5o 3/ Y K.
0 h ee =1
0
As in Problem 11-23, put
-1 E-cf.(e—x"e-u—Zx + E-Zc—3x + ...
%X -1
-0

with A = e ~, the energy becames

B = 411"-’{2'“ )ljuﬂ.] E3f2(e—x + M-Zx . A2e-3x + ...)dx.
h

But,
g 32 -5/2%3/2E ax = 17520 ) = 0752 g%”__
0
Therefore,
ﬁw-——ﬂ(%kmnu + 2752 L3722, ).
11-25

The average energy per particle in a Femmi gas is,
approximately,

-5/2 N

E:%mu+2

Since the average energy in a classical gas is 3kT/2, quantum
deqeneracyoocursvmenthesecxxdbemintheahcveisnot
neqligible compared to the first; i.e., certainly when

t—1——-—-~7-}
(2qmkT)

N__ K

—h .
V' (2mikT) /2

Now if kT << ;F' then
, .
£ =Eaym?? s 5= Tee )2

Substituting this into the ineguality above yields

S5,

which clearly is satisfied. Thus, when EF >> kT, quantum effects
must be considered.

11-26

AT = 0K,
1, 0<XEc<E,

0, !>£F.

n(g) =

Hence, the total mumber of particles is

- Ft!}m!)dﬁ = r::)az -‘-‘-‘ii--J—
1] 0

Thus, the average enerqy per fermicn is

_ l6wv(en)® Lo 12,
3

E=3 E:n(m(z)as -3 |p@E,
0 0

Ep
&V %;'3 N e3/2a -

b 0

3'5
116 v (2m
N5 = /5

n’

".Il

=1
=n

using the expression for N found first.
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11-28 11-30
The depth of the well isV0=wa+£F=fl.a eV+£P. Hence,
it is only necessary to compute the Fermi energy. If kT <<

E,, then,

For silver, =5.5eVatTs=
300 K (T << 10° K, above which
the material is classical in
behavior) . Since kT = 1/40 ev, 1
kT << ¥p, and the Fermi r
distribution is close to the
= 0 K distribution.
Approximate the distribution by
n = 1 for energies less than
E~kT, n = 0 for energies i
qreater than kT, and in the
transition region the straight

line
E £F+kT
"ETaTt Taw 7 B oK< ECE 4k

b2 3n,2/3,
Fm'm

zF =
The electron density is

23 -
o 09.3 x10% (6.02 x 202) _ ¢ g, 107 573,
197

Using this and m = 9.11 x 10738 kg gives

= H = .53 = 10.3 eV.
‘EF = 5.53 eV; Vn 4.8 + 5.53

(Any reasonable approximation will yield the same final result.)

11-29 The number # of particles with energies greater than the Fermi
enerqy is
i that
It is given . \ 2’55%' @ %EF'H(T !F'I-kT
N(E) = =(2n/E)*; n(¥) = : - _Bmw, . 3 __E
® =¢ 0, > E,. #(P>F) = \NEn(E)dE 3 (2n™) #\vE( 37+ ) O

%

(a) The number of particles is

r
F
N= Emm;mz - S{zii—(znm“d! - am¥ &,
0

3y %
§ = AW ) %Egjz{(l+_g)5/2_ a+dk

3. _z';) }1
# = 2nv(2n’) S m?,

h™kT
For the total mmber of particles, the value calculated at T =
0 K may be used: see Problem 11-26. Hence

so that

£, = n2/32me2.

(b) The average energy is

% 4 20m) %372 § = 50/ = 3L < 0.0 = 1073,
F= %Fn EN@E = %m:-ﬁ-(ma“a -3 .

0 0

Using the expression for ¥ found in (a) givesﬁ-‘EF/S.




CHAPTER TWELVE

12-1

The potential energy of K and C1~ separated by distance r is

1 %% _ 1 Ge)(e) _ _ (0x10% 0.6 x 1072

411:0 r 4me, r r (in meters) '

v =

9 -19
v X100 (.6 %1077 oy .18 oy (r 4n ).

r (in rm) x ll.'.'f_9

The requj_reddlssociaﬂmenexgyisthenegativeoft}nmgy
required to assemble a KCl molecule from neutral atams of K and
Cl, initially an infinite distance apart. This latter process
involves

(i) removing an electron from the K atom; energy needed
= 4.34 &V;

(i#) attaching the electron to the Cl atam; energy
required = -3.82 eV (i.e., energy is released) ;
(iii) moving the newly created ions fram infinity to
their equilibium positions at a separation of
0.279 rm; this requires
1.44
0.279

of energy (energy is liberated).

= =5.161 eV

Hence, the energy needed to form the molecule is 4.34 - 3.82 -
5.16 = -4.64 eV. Thus, to dissociate a KCl molecule requires
+4.64 eV of energy.

12-2

A bound KBr molecule must have negative total energy. Hence,
the possible separation distances are bounded by that for which
B, = 0. By Problem 12-1, the total energy of a KBr molecule is

1.44

Bp = Oy

+ 3.5 - 4.3) eV,
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Rolnm.l-!enoe,R = R* is given hy

0,max

1.44
—'ﬁ';'—-O.SSU; R* = 1.8 nm.

12-5
(a) If a = K2/2IKT, then

-atr+r2]

n, = nO{Zr + l)e

At the desired level,
2
an Jar = ne 2™ 2 —a@r + % = 0,
= (¥ oy = EOE L
r=G -k (uzl 5.

-47 2

(b) From p.426, for HC1, I = 2.66 x 10~ kgem’; also,

23
= {1.381 x 10 ") (600)
kr = 1381 X 10 _)(600) - ,05172 ev;
1.602 x 10
¥ _ (1.055 x 1073472
T (2.66 x 107%7) (1.602 x 1071%)

= 0.00261 eV.

Therefore, fram (a),

rﬂ{gégém)&_kt

0.00261 3.95 + r=4.

12-6
The rotational energies are

2
= n—
Er r(r + 1)21.

From Table 12-1, p.429, for Hy, K2/2I = 7.56 x 107

127

eV. Thus,
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2

=g - =28 -p=
AE = E, - Ej = 2 57 = 0 = 0.015 eV,

1

At temperature T, the average translational kinetic energy is
3KT/2. Since k = 8.617 x 10™> eV/K, these energies are equal at
T = 117 K.

Therefore, at room temperature T = 300 K, some molecules will
be in excited rotational states, as the moving molecules have
energies of translation sufficient to excite rotation upon
collision.

12-9

The highest rotaticnal level that can fit into A'Evﬂ: = 0.04 eV
is given by

2
r'(c' + 1) E-I—=

T = BBy

r'2(2.36 x 1077) = 0.04,
r' = 40.

12-10

(a) The internuclear distance Ry is given by 3V/3R = 0; hence,
Ro1 > Roa-

®) I= uRg: with p) = by, I, > I,

(c) B = r(r + DK/21; since I,>1, 8B, > 4E,.

(d) The energy F = 0 separates the bound and unbound states.
Simemmzmmrenegative,EszEal.

(e) The zeroc-point energy is
__h 2
By = gyl (0°V/3K %

But u, = u,; also, classically, azv/anzlno =k, where V = 'l-b‘z-

}i.

A larger k yields a sharper curve of V vs. x. Hence, k2>k1
and therefore 302 > Em.
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(£) The vibrational energy is E, (v + !,)hvn, 80 that

n

Aﬂv = hvo

ZEO.

Thus, from (e), > AR

nEvZ vl®
12-11
(a) The vibrational states are not degenerate, so that
n)/ny = e Br-Eo) /KT,
E, = v+ %) hvo.
Therefore,

E) - By = hyy = 5.9 x 10720 5,

by Exanple 12-3(c) . For T = 1000 K, KT = 1.381 x 10720 J,
giving (E -E,) /KT = 4.27 and

ny/ng = 4?7 = 0.014.
(b) I..ei:n|J = number of molecules in both the ground rotational
and ground vibrational states. l_E‘or rotation,
n/ng = (2r + De” ErFo) /KT
Forr =1,
ny/ng = 3/,

since Eu = 0. But

2 2
E =rr+ DBy B = <260 x103 ey
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-2
Also, with T = 1000 K, kT = 8.617 x 10

3e 0.0306 _ 5 g7, ‘Thus,
n) {n
0 2.91
n, /n, = = === = 2]0.
lr/ v nlvlnn 0.014

=e h=re-2x;etat::.
T
Therefore,
n, + + .. - -

R =% i seXp e Xy X,
1y
R=e_x(1+e'x+e_2x+...):

R=—S = = L—
1-eX -2 Wo/KT _
12-15

E= 50\2 =%‘m0-

3 470 %

1L 1. C % _3 )
Y T 20w T 20336 T W (35) (1,673 x 1072

vy = 8.555 x 10" nz.
Therefore,
c? = 3hvy,
(470082 = 3(6.626 x 107>%) (8.555 x 10%%),
A = 0.0190 rm.

eV giving nl/no =
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12-17

The classical vibration frequency (= /!5) is proportional to u"“
and therefore, -

m.ro/vo ==k Ap/u,

Vo = classical frequency. For Cl

?'35 the reduced mass is, in u,

3735
37,35 =37 7 35 ~ 17-986.

For €13°73%, Mys 35 = %(35) = 17.500 u. Putting these numbers
r

into the first equation above,

W -V n -u
Bvy/v, = 3513‘;" 37,35 _ _ y 3535 137,35
35,35 ¥35,35
2940-8 - V37 35 _ -y 12.5 - 17.986
2940.8 - 17.5 '

V37,35 = 2900 an ! + Av = 40 an 't

12-30

The vibrational levels are separated by huo in energy. But hvc «
1/¥y, so that

hyg (Hy) = C/2 = 2(0.265),
C = 0.3748.
Using this,
ABp, = (0.3748) /1 = 0.375 ev.
For HD the reduced mass p = (1) (2)/(1 + 2) = 2/3, so that

8By = (0.3748) /¥ (2/3) = 0.460 eV,
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12-21

For air to be opaque to visible light, visible light photons
must be energetic enocugh to excite the oxygen or nitrogen
molecules; i.e., carry over 3 eV of energy. But in the visible
region of the spectrum, A > 400 nm, this shortest wavelength
characterizing the most energetic visible photons. Their energy
is

barely sufficient (but close). All other visible light photons
are less energetic.
12-23
For the laser,

A = 694.3 tm; v = 4.321 x 10* Bz,
using ¢ = 3 x 108 m/s.
(@) E_ = r(r + DK?/2I. Now br = 2; E, = 6/2T = 14.88 x 10
ev. ED =0, so hy' =E, - EU = E2 giving v' = 3.593 x 1011
The Raman lines have frequency v-v' = 4.321 x 10t - 4x10
= 0.4317 x 20" Bz, or )y = 694.9 .

4

11

If there are enough molecules in the r = 1 state, the r = 1 to
r = 3 transition can be cbserved. But E - E) = 1042/21 =
24.8 x 10~ v, giving v' = 5.99 x 10*) Hz. Again, the line
frequency is v - v* = (0.4321 - 0.0006) x 10%° = 0.4315 x 10
Hz, indicating that 131 = 695.2 mm.

(b) The intensity ratio equals the level population ratio.
Since the ).. line originates at r = 0 and Aalwithr= 1,

15

20
n /ny = (2r + 1)e_erm,

- = a.-F1/kT

ny/ng = T3y/Ty0 = .

-4

With E; = 2(2.48 x 10" eV), KT = 1/40 eV, this intensity

ratio is 2.94.
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(C)lFor vibrations, AF = hvy, giving v' = v,. For N,, vy = "2360
cam " which translates into v' = 7.08 x 1013 Hz. Hence, the line
frequencies are

L]

} =0.4321 x 10
= = u'
“Dl =v v

V. =y +v
10
15 1z + 0.0708 x 101° Hz,

v, . = 0.5029 Ayn = '596.5 nm
10 } x 1|:‘.'15 Hz; 10
Vo1 = 0.3613 RD]. = 830.3 nm.

(d) As in (b),
T = _ ~(Ey=Eg) /KT _° <hvo/kT
T)o/Toy = My/mg = € 10N = TV

Since vy = 7.08 x ].l:.'lzl'3 Hz, th = 0.293 eV. At room temperature

kT=1/40eV,_andttmemnbersgive

- o~ (0.293) (40) 6

I =8.1x10 ".

10/%01
12-24
ﬂ:emezgyoftherotaﬁmllmJa,abover:O,amgimby

E=r(r+ 1))12/21.
For r = 1:

2 .
/21 = 0.0005 eV (v* = 0)

E = K - 2 !
W/21 = 0.0004 eV (v' =1).

Thus the energies of all the 1

s pdbeios ) evels can now be assigned, and are
For rgtation-vibration transitions, the selection rules are
Ar = 1, Ay = ¥1 (rotation transitions with Av = 0 are in the
farinfmredandaxemtnmsideredhere).nsmmgthatmly
the v = 0 band is occupied, the allowed transitions are shown.
Thephotonenexgiesamthediffemmehetweentmm

of the two appropriate states.
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These infrared transitions are not seen in molecules with
identical nuclei. These molecules display only the Raman
spectrum. The Raman spectrum is seen in non-identical nuclei
molecules also. For these transitions the selection rules are
av =+, Ar = 0, 12. The resulting transitions are shown above.
If the nuclei have identical spin each equal to zero, then

one set of the Raman lines will be missing: i.e., those that
originate either on even-r or odd-r levels.




CHAPTER THIRTEEN

13-1

(a) Metallic: charge density uniform, like an electron gas.
(h) Ionic: alternating positive and negative distribution.

(c) Molecular: molecules retain identities, charue zero between
them.

(d) Covalent: electrons shared, highest charge density between
molecules.

13-4

From the text, construct the following table.

Transparent
or cpadque Melting Elect. & Th.
Type of Solid in visible? Point  Malleability Conductivity
molecular low soft poor
ionic transparent high hard poor
covalent* most opaque high hard fair
metallic reflective high hard excellent

(*) Properties vary, depending on bond eneray.

Also, by Problem 13-8, for a metal the resistivity increases
linearly with T near room temperature. From p.497, the
conductivity of a semiconductor increases with T.

Use of these considerations gives the following results:

(a) metal;

(b) covalent, since the conductivity increases with T;

(c) covalent semiconductor;

(d) ionic (if covalent, conductivity may increase with T :
(e) molecular, by virtue of low melting point.

13-5

(a) V= B'.F = =(gB) .. Since ¥.B = rpcosg,

Be- B - By,
r

4meg y
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Hence,
2E= 4Ll D+ (3poosh) 2y 3 _ Bpoost L 3.3
47[5:0 r6 r4 r4 r3 !
2
EE = G L 12(1 4 9cos2e = 6c0s26)Es;
ey r
2 2
v=- 5(1 + 3cos e)P—.
td-nsol r

(b) The force is derived from the potential energy.
- N \' AP W\
F=-F= arg_ rar ¢

2 -
F--—2—Eqa+ 3c0s%0)® + 3sin200,} = ¥ s
(411:0) r

since a > 0, Fr < 0, indicating an attractive force.

13-6
From Fig.l12-1, Eb =5.1eV, r=0.24 nm. Since
By, = eEr,
5.1 = (1)E(0.24 x 107,

E = 2.1 x 1010 n/c.

13-8
(a) By Eq.13-1(a),
p=—5

ne
Bv analogy with the classical Boltzmann gas,
yw? = %ﬂ‘; v e« /T,
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Due to lattice vibrations, each ion has a cross section that is
proportional to nﬁz, A the amplitude of oscillation. The
electron can be treated as a point particle. Thus the collision
cross section also is proportional to HAZ. In time t the
electron collides with nA%(Vt)n ions, n = ion number density.
The distance travelled in this time is vt and therefore

-1 2

m2rvt)) = b5 AL = nma?.

ekt A2 am; Alean,

pan !« oy = /2,
(b) For kT << EF, the Fermi function changes slowly with T,
which indicates that vV is independent of T. Thus p « T in this
event.
13-9
(a) The current density j is
i=i/a= nevgyi Vg = i/neA.

The Fermi energy is

2
£, = o/m?2 o+ n = Lemgmd3/2,

so that

vg = 1/8%EnE/m) ) (o) (hnd®) = 1210/ (8 >/ 2en?e?.

Put i =53, £, = 7.1V, d=0.001 m to get vy = 4.63 x 1074

m/s.
®) V= (3kT/m)%; for T = 300 K, v = 1.17 x 10° m/s; this is
the root-mean-square velocity.
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(©) By = wi; v = (2E/m* = 1.58 x 105 m/s.

13-10
Eg.13-1(a) gives
P ==

ne”

for the resistivity, which is defined by
R = pL/A,
R = resistance of length L of wire. Therefore

mL v
R=-5-2,
2, X
But _
VT = A,
s0 that
R=—— .
ne“AT
13-13

(a) The current is set up by
the electric field E directed
along the negative x-axis;
hence the resultant current
density jx is

jx =nev_ + pevp.

The mobilities are given by
v = Ey, so that
Iy = (nun + %)eE.

The Hall coefficient is defined
from

E, = (coeff)j B,
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where E, is the transverse (y) Hall electric field. To find E,,
miderthetraawversecurmtjy. It is the sum of two parts:
(i) From the Hall electric field EH' which sends the positive
and negative charge carriers in opposite directions; the current
from this is

(ny, + pupleEH:

(ii) by the magnetic field, which sends the positive and
negative carriers in the same direction; its contribution is

ne\rw -pevyp- ne%l‘:n - pey Ep,
with En' Ep defined by

EVPB = EEP3 EVnB = E.En.

Hence, this transverse current heccme
ii = ne}.;n(vnB) - pe'%{va) = nep, { (anJB} - peup{(upE)BL
11 = o - pd)emB.

In equilibrium, the total transverse current jlllr = 0; that is,
taking (i)+(ii) = 0 gives

(b, + P B + (12 = PIS)eEB = 0,

2 2
..nun
EH=%TED:E'
But jx = (% + nun)eE and Hall coeff. = EH/ij which vields
2 2
Hall coeff. -‘—PHE-—-H—“B‘)-:',-.
epup+n'|,|n

{b) If EH = 0, Hall coefficient = 0 and from (a),
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2_ 2
P, = N
The fraction of the current carried by holes is

f= > — pl-lp .
(pup+nun“ieE pup+%.

But p_ = %(p/nll’ under these conditions, so that

fEEL/H e

(a) The Fermi energy is
2
£, = Ean/m?/3,

where n = number density of electrons. If each atam contributes
a single electron, n = number density of atoms also. With A =
64 and p = 8 g/an’, n = N, /8 = 7.525 x 1028 w3, This gives
EF = 6.52 eV.
(b) The band width is

Eax Y
For the internuclear spacing, use a = n"%/3 = 2,37 x 10710 ,
using (a). Then, ircax = 6.7 eV,

13-15
(a) For the Fermi energy use
2
£ = Lan/m?3,
By Problem 13-14, 100% copper has n = 7.525 x 102 m3 = mmber

density of electrons. In an alloy with 10 zinc atoms each
contributing 2 atoms, to every 90 copper atoms providing 1 each,-
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the average number of electrons per atom is

{10)(2) + (90) (1) _ . = .
10 + 90 L1 nyyyoy = 110y,

Therefore, the formula for the Fermi energy of the alloy gives

¥

= 2/ = = - .
e alloy = (1D 3£r'0u (1.066) (6.52) = 6.95 &V

(b) The band width is °12/2ma’ and depends solely on the
internuclear spacing. This, by assumption, is unchanged, and
therefore there is no difference in band width between copper
and the alloy.

13-17
(a) From Table 11-2, p.408, EF = 3.1 eV for Na. By definition,

4
£F=kTF; TF—3.6x10 K.

(b) Rount;enparamreisabaatmnx,mmhlessthanthekm
temperature above. Hence, to a good approximation, put T = 0 K
instead of 300 K and use F-D statistics (classical methods
not applicable since T << 'I‘F) .

(c) By Example 13-2,

13-18

(a) By definition,
v = (2E/m¥ = 1.29 x 10° s,

since ?.F = 4.72 eV.

(b) The de Broglie wavelength is
6.626 x 10 %

h
P M™p  (9.11 x 10732) (1.29 x 10%)

A = 0.564 rm.

n—-b-—=
mv,
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Thisisaanparabletotlﬁinteratarﬁcépacinga,wtddmcanbe
estimated as follows: from Table 13-1, p.451,

-1

ng) ™t = 1.70 x 10710 ni/c,

so that
= (1,70 x 10729 (1.602 x 107%%) = 2.723 x 107%° o,
a=nY3_0.30 mm.
13-20

The Fermi distribution is smudged over a reqion = 2kT wide about
the Fermi energy. Of the Npy electrons (i.e., one mole of Li,
one valence electron per atom; see Table 13-1), NayT/T, have
their energy increased upon heating (by Fxample 13-2, Tp
>> T). The average energy increase is approximately kT, so that

T
U= (Nnv:‘."‘l (kT) + K,
F
where K = the constant energy of the other electrons. Hence,

U _
Cer = a1 = DT/ Tp-

For the lattice,

and since k = n/ﬁm,

T _2 300 _
T, - 3 36000 0.0055,

the Fermi temperature from Problem 13-17(a).

13-22

In momentum space, two electrons occupy each point, cut to the
surfaoeofasphereofradiuspf:exteriorpointsareapty.
Electrons with x-momentum = py_ lie on a circle, oriented as
shown on the sketch, next page. The mmber # of electrons with
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Xx-momentum = is
to the area the circle: i.e.,

# = 2nR%

= 21} - B2,

# « 2m2(1 - p2/pd),
=1 - (p/p)2.

The ratio of the number ANof electrons in the conduction band
1 mumber N is, by Example 13-6,

AN/ = (—’%)3/ 25-%g/ 2T

cmparinqcmditicnsatuxetwotmperaturesTlande:

E
= 3/2 - 9L 1
AN, /6N, = (T, /T,)~ “exp{ 2,((.1.1 Tz”'
W’.‘I.th'I‘2=300K, the nurher ratio = 20, ¥ = 0.67 eV, this
gives g

0.248 = Ti/2e-3884/1'1: T, = 377 K.
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(a) The Fermi distribution is
n® = FF/KT 4yl

and the density of states is
3,%
NE) =AE-E)Y a=SED
h

Hence, the number of conduction electrons is
n, = Ea(z -2 ) FE /T Lyl
EC
If the material is a semiconductor or insulator, it is expected

that, over the range of integration, (EC-EI.-} >> kT and thus
also (E - Ep) >> kT, so that

n, = AFE - ﬁcl%e_ (E-%p) md!,
Ec

n, = ne ErEc) /k‘f:z - !cl b - (EEp) /chE'
8

n, = Re (Ep-£c) /KT (kT) 3lzgxl‘"'e-xdx-.
0

The value of the integral is vn/2 and therefore, inserting the
expression for A,

n /v = L(2min) ¥/ Ze~ EEp) /KT
h

(b) For the valence band,

NG = AR, - B
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Tremm'berzg’ofmles is given from

£,
N-n, = {;az - x{(!v -0 EFF/T 1yl
0 0

Since

N= gnmz,
0

Ey
nv=[:;ﬂi—§nnd:€.
0 0

In the first temm on the right use n(T = 0). This equals zero
above Ep; but then, since in effect in the integration N = Ny
and £ < £, < Ep, as in the second integral which does not extend
above the valence band. Hence,

Ey Ey
nv=[Nd!— xmz=[t1—n)mt.
0 0

since N, = 0 above £,. But

it follows that

1 - n(0EE) = n(E Few),

if E, = E;; only approximately equal above since the energy cuts
off at zero but has no upper bound. Making the switch indicated
here and noting that Ny,; and Negng are identical curves, it
follows that the resulting integral is essentially the same as
for the number of electrons in the conduction band; i.e.,

AV = Samien /2" B R

To ohtain this result from direct integration, note that if
(Ep—%y) >> kT, then (Eg—E) >> kT over the range of integration.
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Therefore,

E, Ey
[(zv- B EF /T, )l - {t!v- 0 - o &/ T,
0 0

Ey E,
- [(zv -5 - e“’F"vV"‘i(zv -5t & /KTy
L] 0

The first integral is
£,
va -z = 2 };’,/2.
Write the second as
£, 0
]{:v - ple & B /Mg o _gm¥ ZXie"‘.m.

0 /KT

But (Ep-E,) /KT >> 1, so it may be assumed that >> 1; then,
replace the lower limit with infinity with little error, and
this second integral becomes

]
(k‘I‘):’{zF}‘e’x&: = %_tk.n 3/2'
0
W, = A £/2 - & BB M0 3/2 {1y

For N use the T = 0 value:
2 2
n=a\ - pima =22

Therefore, the same expression as obtained above is derived
here also: i.e., for nv)‘V.
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13-26

Under conditions of charge neutrality, nc/v = nvjv:
2 (2mim) ¥/ %™ EER KT 2 (i) /2™ B E) /KT,
h h

this gives directly
E S E - K,

therefore the Fermi level lies midway between the top of
valence band and the bottom of the conduction band.

7

o

—-27

(a) By Problem 13-25, the densities are (with an obvious change
in notation),

- %tzm; 3/24 EcFp) /KT, 2 (2mir) 3/ 26~ ErE) /KT

3

l1"=h

whid\depmdsonTandthemxgygap!gmly.
(b) The conductivity ¢ is

0 = Ny * NSy

With n e =Ny
= () Ha, + ),
_2 3/2_ ~Eq/2KT
= —gtzm} e ¥/ 2T gy + Q)
Therefore,

@y + ) b

E
() = - 33 + g emen /2
h
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so that a plot of In(o) vs. 1/T is a straight line with a slope
proportional to ¥y, provided that T is not too large (in which
case the second térm above cannot be considered as roughly
constant) .

13-28

The electron of an icnized donor is at the donor level, in
energy. If contributions from the valence band are ignored, then

N) = N fe EER /AT 4 1571

since the Fermi energy distribution gives the fracticnal
occupancy at any given level. Also,

+ _ 0 ) /KT -1
NG =Ny - N] = Ny (e EFEDAT )71

13-31

(a) Current p to n: The mechanism is thermal excitation of
electrons from the top of the p-valence band to the conduction
band. By Problem 13-25, the number of electrons per unit volume
in the conduction band is

;%(Zmﬂ('l') 3/2- (EE%p) /KT e (!g-ﬁlfk'l‘ .

where!?:mmia\ergymasuredfmthempofthepdvalence
band.

Current n to p: The mechanism is that (i) there are some
electrons in the n-conduction band and (ii) some of these may
be thermally excited to above the bottam of the p-conduction
band. Hence, the current is proprticnal to the number of
electrons per unit volume times the probability of surmounting
a barrier of height ¥B-El: i.e., taking the sum over ¥ > ¥,

et « s 108 BT B R T
current « e (EG_EB) /KT ~{ (g% l'lig‘EF‘)}ﬂCT ,

where
band. T

= Fermi energy measured from the top of the n-valence
follows that
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® canduction hand @

valence band

TOREASED J1ENEION

current n to p « e-{;?ﬂ)me-tﬁ-gglm = _(w)m,
which ayrees with current p to n (proportionality constants are
equal and depend only on T).

(b) If a forward bias is impressed, then the potential barrier
seen by the electrons in the n-conduction band is reduced, in
effect, by eV, the energy gained by the electrons in moving
through the field. (For reverse bias, the barrier is increased
by €V). The current n to p now is proportiocnal to

o~ (ER-Ep) /KT - (FR-ED-eV) /KT _ - (-eV+Eq—%F) /KT.
The net current is (n to p) - (p to n) and is proporticnal to
o EqFR) /K SV/KT _ - (EgER) /KT _ - (EqER) /KT V/KT _ )

13-33
The current is
I=(Qer,

where T is the barrier penetration probability. For this, use
Eq.6-50:

Hence,

kppa = § (2m vy - B)* = 12.55,

T =16 g-(1 - e FIIA £ 1,145 x 1071,
0

Yo

I = (1.00 x 10%%) (1.602 x 107%%) (1.145 x 1071},

I=1.834x 10

5

A.
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CHAPTER FOURTEEN

14-1

At T = 0K, !g = 3ch so that

n

1l €

41150 r

3k'rc =
By Example 14-1, Tc = 4.2 K; hence,

2 -19 2
1 e 9 (1.602 x 10”19)
r=——"—o= (B,988 x 107) = "
dmey 3KT, 3(1.381 x 10~23) (4.2)
r = 1300 nm.
14-2

The relevant equations are

daeo
fpar--S2 -t 2=,
(a) The first of the equations above implies that
an
B dB
593"53“3?““5-
If p =0, then dB/dt = 0 giving R = constant, not necessarily

Zero.
(b) IEB =0,

p[}az - 0.

But a current exists on the surface and outer layers of the
supemmcbor;i.e.,j#D.Hence,::GunlessJ‘-dI=D.

152
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14-3

Consider the total field inside the superconductor as the sum
of an external field and an internal field due to the currents
set up in the material as the external field changes. By Lenz's
law, if the total field is zero and one tries to change the
external field, the induced currents flow so as to set up
internal fields oppositely directed, so that the total field
remains zero. If the material can do this, the currents must be
able to respond precisely to the changing external field, i.e.,
p = 0. Hence, Meissner effect implies p = 0.

Lenz's law states that an induced current will flow in a sense
so as to oppose the change that produced it, but this carries
no implication that the original change will be annulled
completely even if p = 0 (above, it was assumed that camplete
annullment occurs). For example, if dBgyy/dt = £(t), the
current set up may be independent of t, in which case Bp = 0
(Meissner effect) cannot be satisfied for all time.

14-4

normal paramapnetism

supercondncting

ﬁ:-i
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14-8 (b) For one kg-mole, n = 6.022 x\mzﬁ: then,
The isotope effect is that

s W = hu_ (6.022 x 10%%){(2.8) 9.27 x 10724} _ L0000
M*T_ = constant. sat v 22.4 .
[+
For naturally occuring vanadium, in atomic mass units, 14-12
M = 0.9976(50.9440) + 0.0024(49.9472) = 50.9416. (a) With x = WB/kT,

X =3
Hence, M=nu—ex‘e_x.

e + e,

(50.9416)%(5.300) = (49.9472) 1,
Set M =%M = to get
T = 5.352 K. s =
1 X - =3

14-10 2 + E—-x'

Fg.'s 14-2, 14-3 are

E:uoﬁi-uoﬁ; ﬁ=xﬁ.
Inside a superconductor B = 0 and therefore the above imply

X = 1Inv3 = 0.549.

(b) By Fig.1l4-6, at M = l;Ms, B/T = 0.53 T/K. Therefore,

that - uB
X =5
unﬁ=—1‘|oﬁg ﬁ=—§=xﬁ: x:-l.
0.549 = ———Hsr(0.53),

Fram Bg.14-4, 1.381 x 10

Fi= X ®ug)s up + f = 8. o= 1.43 x 10723 g7,
The last of these with y = -1 gives B = 0, consistent with the | 14-13
above.

The magnetization is
14-11
- 1"'-=XH=)(B/L10=“£%.
(a) Since 0

fi = 1_*_}.{.@/"0;’ assuming Curie's law (y = C/T). Hence,

31/'1'1 = 52/‘1‘2 -+ 'I‘2 = 0.01 K.

-6 -5
=2l xW0E X0 g gy 1075 am,
(4m x 10 ") (1)
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14-14

The macnetization is

=3
M= 2
e +e

with x = yB/KT. If WB/KT >> 1, then e* >> 1, e~ = 1, 0 that
eX >> e~X. Thus

the saturation value.
14-15

N
(@) n (E)N(E)

)

antiparailel )
Bpin |

=
- ———— =

parallel
Bpin

After some antiparallel-spin electrons make the transition to
parallel-spin, as indicated, the excess An of electrons with
parallel spin over those with antiparallel spin is represented
by twice the shaded area, which may he approximated by a
rectangle. Thus,

3.k
tn = 28) INEHNED} = 2:8) (D (& 5‘%’—13}.

in which the factor of % occurs since the upper curve stands for
only half the electrons. The total mmber of particles ¥ of a
Fermi gas is

= (8m3/2 n.3/
N=C3 =B
so that the excess per unit volume is
an _
v = SnBu/2¥,

where n = mumber of electrons per unit volume. Now£F=k‘I‘Fand
M= H, =g = (2 () = W, giving

M= Gy = el = xo/,

L8

x=1nu°
2 kTF
(b) For_copper Ep = KTy = 7.1 eV (Table 11-2) and n = 1.1364 x

1029 m~3 (Table 13-1). Substitution of these into the formula
above for the susceptibility gives y = 1.62 x 10-5,

L-16

(a) The number of dipoles per unit volume, aligned parallel and
antiparallel to the field is

n_= Cl'ﬁuBm: n+ = CHE_HBM.

The energy associated with parallel aligrment is -B, with
antiparallel alignment +uB. Hence, the total energy is

U = V{n_(-uB) + n,(+B)} = ctie WB/KT () _ Q2UB/KT)
Now, with x = uB/kT,

n,+n_=n=cn(E" +e™),

c=(*+e X1+l

Put this into the expression for U above to get



U = l-ezx.
1+e2x
The specific heat is
2%
au e
=8 o 20—
B~ Y

(b), (c) See Problem 11-11 replacing E with -2uB.

14-17

(a) kT, = uf, = (2.2u )R B, =677 T,

since Tc = 1000 K. Then the internal field Hy is
HN = Bﬁ/uo = 5.4 x 108 A/m.

(b) 'I'hem.mberofamnsinlmg is

22 u'n-3 .

N = Z2(6.02 x 1083) = 8.492 x 10
Since all the dipoles are aligned,
M= Ny = (8.492 x 10%) (2.2) (9.27 x 10724 = 1.73 x 10° A/m.

(c) U=Nl€1‘c=1200 J.

14-18

(a) If H = external field, Hy the molecular field,

C
M=E(H+Hw)'

assuming Curie's law. If HW= WM, then
=&
M-TIH+ M) .

With susceptibility defined by M = yH,

159

8y _Ch. =—C
M1 - ) =gFH M=g"7H,
C
so that

c
x=Fmry To =

(b) Using results from Problem 14-17,

8
5.39 x 1C

X =H M= === = 3]0.
1.73 x 10°



CHAPTEF. FIFTFEN

15-1

The mmber of levels equals 2i+l if j > i and 25+1 if 1 > J.
In this case the number of levels is 4 and 2j+1 =5 (j = 2), so
that j > i. Therefore, 4 = 2i+l, or i = 3/2.

15-2

Boron: Z =5, A =10, N =5, i = 3, symmetric.

(a) Assume 5 protons, 5 neutrons.
Mass: = My, mass = 10 u.
P _il,qn-u,chaxge-ﬁ.

Spin: : = k; 10 particles each of spin %; integral spin.
m& protons and neutrons are fermions; 10 fermions:

(-1)1V = 41, symmetric nucleus.
All of these agree with ohservation.
(b) Assume 10 protons, 5 electrons.

Mass: mg = 0, mass = 10 u; agrees with observation.

Charge: = +1, = -1; total charge = +5; agrees.

Spin: odgpm:ber of fermions (15), total spin half-integral;
disadrees.

Symmetry: (-1)15 = -1, antisymmetric nucleus; disagrees.

15-4

(a) From Fig.l15-6, p.518, r’! = 6.6 F.
(b) 8 =)= :\/r,,. The kinetic energy K = 1000 MeV >> 0.511
MeV = electron rest energy, so that

_ 6. 626x10 3 . 998139c 10%) = 1.240 F.
(10)(1 602 x 10 )

With this,

160

15-5

With p(0) = central density,

_ Qlﬂt
‘)_lstalrhi’l )

At r =g,

1+ e/ 0.,
and at r = I,

1+ePAP g0,
These give

Ty = -2.197b + a; r = 2.197b + a;
Ar = r-r= 4.394b = 2.4 F.

15-6
Since

At p =%,

p(0) -1__plo)
1+ e(m)fb 2

r=a +b1n(1+2e'°fb),

1/3

= 1.0 = 1.07012%/3

iad = 4.454.

ol

b = 0.55

161




162

163
Thus, Using this to eliminate Ky gives
r=a+ (0.55)1n(1 + 2¢34*%%%) = a4 0.0126.
mb a I,
15-9 0=KQ+ --) - K (k- E) - —{Ka m.m ) ‘cos8.
Conservation of mass-energy and of mamentum (classical form is
used) require that 15-11
2, nc? ok +mc? + K +mc? E, (Cr°2) + 0 = 25, (Mg?®
l<a *mye maS B ™ l"lr.v e v 0 0
= vaEcosq; + rnbvboose; rnBvBsinq; = mbvbsina. 0= {ZM(.MgZGJ - H(Crsz) }cz’
Using classical expressions for K also, this last gives Q = {2(25.98260) - 51.9 4051}uc2,
(2K, ) *sind 0 = (0.02469) (931.5 MeV) = 23.0 Mev.
sing = —----—g-—-—

Z‘Bmal 15-12

Therefore, (a)

0= (yy + My = Mg = m)?,
(2K )% - (2Kym,) ¥oose = (2Kgng) Soose, 0 = (2.0141022 + 3.0160500 - 4.0026033 - 1.0086654) (uc?),

2
2 2 K Q = (0.0188835) (uc”) = (0.0188835) (931.5 MeV) = 17.59 MeV,
t%)oos¢=zxm +2K] cos“® - 2(4K mrnbl cosf.
ae b ane (b) In Eq.15-16, leta=H2,b=n,a-H3,a=m4;tlm,

But,
=1, 1, 2
2 ZKbmbsinze 2 m /Mg = g7 m/fmy = 53 (mamb/mB)” = /2/4; K_ = 0.5 MeV.
sin“y = —5——— =1 - cos“¢,
g'p , With these, Eg.15-16 beccmes
2, . Xe'p - ysin’e "
cos“p = R . 35.63-5Kb/2-1<b3 !(b=l5.9l&=.'v.
Foquating the two expressions for ooszd; gives 15-13
K +Em - Kgng - 2(K] m_m, ) fcose = 0. The binding energy AE is
Finally, OE = {Zmy + N - M(atam)}(c),

Km0~ Ky Ky
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AF = {6(1.0078252) + 6(1.0086654) - 12.0000000}uc2,
AR = (0.098943) (931.5) = 92.165404 MeV.

The average binding enerqy per nucleon becomes

£, 92.11625404 - 7.68 M.

15-14

(a) The energy release is

E = {2ng, - my )c? = {2(2.0141022) - (4.0026033) Juc?,

F = (0.0256011) (931.5) = 23.8 MeV.
(b) With the nuclei just touching, their centers are 3 F apart:
2 9 19,2

U=41 e _ §9x10~151[1.6xyz‘] = 0.48 MeV.
T T (3x107)(1.6x 10 )

15-15

(a) with r* = 1.1aY3 x 1071% m,

vo3 2 _3 e? ,2,-1/3
5 4meyr’ -5 -

XV
(41:50} (1.1 x 10‘151

this has the same form as the Coulomb term of the mass fornmla.
{b) The energy coefficient in V above is
=19, 2

a=2(@.988 x 10°) 1602 x 10 )

.1 x 10 ) (1.602 x 10 ]

= 0.7854 MeV.

In mass units,

0.7854

2 ="931.5

= 0.000843 u,

mmredto%=n.000763unftMmassforrmla.
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15-16

(a) The binding energy of SBH is, with masses in u,

0E, = (5my + 6m = m)c? = (11.091118 - 11.009305) (931.5 MeV),

Eﬂ = 76.209 MeV.

6

Similarly, the binding eneray of el is

. 2 _
QEC - (EInH + i'nn - mc)c = (11.090278 - 11.011432) (931.5 MeV),
E. = 73.445 Mev.

The difference is 2.764 MeV.
(b} From Prcblem 15-15,

z2
VvV = (0.7854 MeV) o

For %11, z = 6 and for JB* z = 5. Assuming the same r', it is

required that

0:-1854(¢? - 5%) = 2.764; ' =3.13 F.

(c) This is somewhat larger than the mean radius (= 2.5 F) of
the charge distribution of 6cl2 given in Fig.15-6.

15-17
{a) For 26?856, Z = 26, A = 56, N = 30. The mass formula is Eq.
15-30 and the terms are the following:
Mass of separate parts: 1.007825(26) + 1.008665(30) =56.4634 u.
Volume term: -a.A = =0.01691(56) = -0.94696 u.

23 2/3
Surface tem: +a,A”/> = (0.01911) (56)%/3 = 0.279717 u.
Coulomb term: a,2” “1/3 _ (0.000763) (26)2(56)"1/3 = 0.134816 u.
Asymetry temm: a,(z - ) 2/A = (0.10175) (2)%/56 = 0.007268 u.

Pairing temm: Z even, N even so this temm is -ash-“ =
-(0.012) /¥56 = -0.001604 u.

(b) To convert to energy, multiply by 931.5 MeV/u. To form the
average binding energy per nucleon, cmit the first term, add
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and divide by A:

% = |-15.7517 + 4.6528 + 2.24252 + 0.1209 - 0.02668].
volume surface coulamb asymmetry pairing

There is good agreement with Fig.15-12, except that the pairing
term is too small to discriminate from the graph.

(c) The atomic mass is the sum of the temms in (a): to wit,
55.93664 u.

(d) From (b), AE/A = B.762 MeV, and agrees well with Fig.15-10.

15-18
(a) The binding energy of %2 is
(6my, + 6ém - m.) (931.5 MeV/u) = 92.1660 MeV,

and that of Zne? is
(2my + 2m = my ) (931.5 MeV/u) = 28.2970 Mev.

The difference, BE(C) - 3BE(He) = 7.275 MeV, and equals the
binding energy of C on the alpha-particle model.

(b) The binding energy of 3016, calculated as above, is just
127.62463 MeV. Then, BE(O) - 4BE(He) = 14.44 MeV, and is the
binding energy of 0 on the alpha-particle model.

(c) The mumber of bonds is N(N - 1)/21 = 3 for °c*2 (N = 3) and
6 for 8016 (N = 4). .

Bl2. 3 panas i t BplF, & bands @

(@) The energy per bond for °c'? is 7.275/3 = 2.43 Mev; T0®

gives 14.44/6 = 2.41 MeV,virtually identical.

15-21

(a) 6(:11. Protons: an even muber; j = 0, P even.

Neutrons: 5, 3 in 1py p: i = 3/2, P = (-0l = 1,
odd; hence, (3/2, odd).

2Ovi'.‘a‘u"‘. Fven M, even Z: (0, even).

167

2 .
Bmﬁl' Z even, j =0, P even, N = 33, last single neutron

in 1,01 3 = 5/2, P = (-1)? = -1, giving (5/2, 0ad).

3273
Ge'". Z even, j =0, P even. N = 41, last single neutron

in 19y 1 1 =9/2, P = (-1)* = +), predicting (9/2,
even) .
(b) Discrepancy is 2°N16l: observed is (3/2, 0dd), and predicted
r r
is (5/2, odd). The lfS/Z" 2p3/2 levels are very close together,
so one neutron in 2p3/20m:plesw1ﬂ1ﬂresing;enmtrmin
lf5/2' leaving a nucleon in 2p3/2, giving i = 3/2 rather than
5/2. Parity is unaffected since (-1)* = (-1 = (-1)3 = -1.

15-23

(a) By Example 15-10, spin 1i=75/2.

(b) By Example 15-11, parity (-1)* = (-1)? is even.

(c) Ik:pa.tredneutrmisinaldsﬂstate: L=2,3=5/2+

j =2 + %, By Fig.15-19, the lower Schmidt line gives —1.8pn,
i.e., negative.

(d) 2 = 8, which is a magic rumber; hence, g = 0.

15-24

(a) 23V51hasoddz, even N; st"lies close to the upper
(G=2+% lima,sothatmthisbasisl=j—’s=?/2—l/2=
3 is expected.
tb]Bytheshellmdel,anevenmnberofnmttmsm:plem
pairs; the last pmtmisinlf?/z: the f-level has & = 3,
which agrees with (a).

15-25

(a) From Fig.15-20, g/2r'? = 0.09 > 0. The desired ratio is
1+q/2c'? = 1.09.
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(b) From Eq.15-6, a = 1.07Y/3 = 1.0781) /3 = 6.0526 F.
(c) a'/a" = 1.09; %(a' + a") = 6.0526. Solving these two

equations gives a' = 6.31 F, a" =5.79 F.
(d) The cross section is an ellipse of small eccentricity: e

= 0.16.

2

15-26
The quadrupole mament q is defined by
q= ]L{Bzz - (x2 + ?2 + Zz)}dt-
The origin of coordinates is at the center of the nucleus. For

the cylinder, put the z-axis along the axis of the cylinder and
use cylindrical coordinates; then,

dt = 2mrdrdz,
r2=x2+yz.

g= 2119‘. Fz:z - rz)rdrd.z,
z=-kLJr=0

3 2 4
a=2m2& & - @ &y,
1 212 _ 2
g = LR (%L RY).

Therefore, q > 0 for L/R > /3.

CHAPTER SIXTEEN
16-1

(a) The decay energy is
E= {M(8331210} - M(BI,HZOGJ _ M(zl-!e")]-cz.

835,210 81,206
1.0078252 83.649475 81.633825
1.008665 (A-Z) 128.10046 126.08313
-ah -3.5511 -3.48346

ap?/3 0.6751615 0.6665605
az?a™/3 0.8843179 0.8476299
a, (z-2/2)%/A 0.2345095 0.2390631
iash_s +0.0008281 0.0008361

209.993652  205.9875846

Use, from Table 15-1, M(Z}ie4) = 4.0026033 u, Then, since 1 u is
equivalent to 931.5 MeV, E = 3.23 MeV.

(b) By Fig.16-1, E = 5 MeV.
16-2

By the definition of average,

where t = nuclear lifetime and AN = change in the number of
atoms due to those that decay between t and t+dt. Now,



N = N(O)e Rt

Since N(0) = number of undecayed atoms at t = 0,

[;N-N(o),

0

T-RFE_tht =1
0

Let T = half-life; the mmber of atoms that decay in the time
interval 0 < t < € must equal the number that decay in the

interval T < t < =
T L]
0 T

Substituting N = N(0)e R* and integrating gives

e—m_l_e-nz'

; AN = -N(O)Re "Cat,

16-3

o _n2 _
“l'—ﬁ'— Tln2.

16-4

Let N(t) = rmumber of nuclei present at time t. Then -NRdt =
the mmber added in the time fram t to t+dt due to decay, and
Idt = mmber added fram the cyclotron, If

the mmber of nuclei in this same time interval, then

aN = -NRdt + Idt; dt =

an
-
~dnr-m =t+x

1 .

But N(0) = 0 =0 that K = -In(I)/R and therefore

171

1 L]
- - ) =t - AL e =i,

16-7

(a) Currently,

103 24
# atmofl‘l-nriun:N:iﬁlvhv:Z.SQSx 10°7;

# atans of lead =Ny~ =2 = 5.791 x 102,

In the above, N, = 6.02 x 102>, If few nuclei are "on the way"
(i.e. have left 90Th232 put not yet arrivedasszpbzos), the
original number N(0) of thorium atoms is

2

4 2 3,175 x 1044,

N(0) = (2.596 + 0.579) x 10
Then,
N = N(0)eRF = n(0)e~tIN2/Ty,

10
-1, N(0) _ 1.4 x 10 3.175
t =T, (1n2 ===2 %10
Ty (1n2) 0=y in2 (23556

t=4x 1i:l9 yr.
(b) The # alpha-particles = (# nuclei that have decayed) (6) =
(6) (5.791 x 10%%) = 3.475 x 10%%, The atomic weight of the
helium is 4, and therefore,

24
# grams of Zet =_1_i_=_4_?_5_x_10_2§“} =23 q.
6.023 x 10
(c) Assuming radicactive equilibrium,

NpR T = N B2 N = (2.596 x 1024 —3:1

1.4 x 1019°

N, = 10.57 x 10,
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16-8
For A atoms,
dN
A = ~Rpt
.d_t— = - RRNA - Nﬁ Nme .

The number of B atoms increases due to additional A atoms that
decaytoaabms,mtdecxeasesasBatcmsdecayboCabms:

hence,
g -Rpt

N

Multiply by e Bt and integrate:

t
r% » gt - Sﬂm&e‘“""‘“’ fat,
0 0

t t
K%mgenat,at - g% B e,
] 0

(RgRp) £ .
R Y

ButNBo=0byaasmpt.ion.ﬂ1emﬁore,

o no"A Rat _ Rs
Ny Ra'pi( A %)

4§

v
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16-10
(a)

2=12,N=15 2=13,N=14 z=14,N=13
1.007825 2 12.0939 13.101725  14.10955
1.008665(A-2)  15.129975  14.12131 13.112645
- -0.45657 -0.45657 -0.45657
a 0.17199 0.17199 0.17199
aazza'mz 0.0366239  0.0429823  0.0498493
a, (z-3/2)%/a 0.00847916  0.00094213  0.00094213
(=1,0,+1) 35/.1\k 0 0 0

Summing gives: MIZ,ZT = 26.984397 u; E12,2'? = 25135.965 MeV;

MlB,Z? = 26.982379 u; = 25134.086 MeV;

Ey3,27

= 26.988406 u; = 25139.700 MeV.

Mis,27 E14,27

(b) The smallest M is the most stable: this belongs to Z = 13.

(c) Electron rest mass m, = 0.0005486 u; rest energy = mec2 =
0.511 MeV, Masses in (a) are atamic masses, and so the various
decay possibilities are:

(1) Electron emission by % = 12; E = (M, , - un’z.‘,)é -
25135.965 - 25134.086 = 1.88 MeV.
(11) Electron capture by 2 = 14 E= (My, 5 = :~113':,.,)c2 -
25139.7 - 25134.086 = 5.61 MeV.
(141) Positron emission by Z = 14; E = Oty o7 = My o - )c?
= 5.614 - 2(0.511) = 4.59 MeV.
16-11
(a) By the conservation of momentum, with the initial momentum
equal to zero,

E

W"p\,:'aa



174

with E = neutrino energy = (0.00093) (931.5 MeV) = 0.8663 MeV,
ignoring the kinetic energy V2 of the nucleus. Evidently,then,

-13
veE- 0.8663) (1.602 x 10 = 3.98 x 10% m/s.

(7) (1.661 x 10”27) (2.998 x 10°)
(b) Theprocessnaybeumiwmdhydetecumwxbraymissim

asmﬂ:erelectrmdxopsmbothemmmbedbyabaomdmof
the K-shell electron, and other transitions.

16-12
(a) For the electron,
E = p""c:2 + m2ct,
Thekineﬂcmergyl(-l!-mzsoumt
xz + zmcz —pzn::2 =0; K= (mzc:'I +1:;:‘1~-.:2)lj -mcz.
1f p = nmc, then
K = nc’{/(1 + 0 - 1}
Putting in the indicated numbers gives the following:

p/c 2.8 4.9 6.9
R 375 500 250

meR/pD)Y  6.916  4.563 2,292
K/mc? 1.973 4 5.972

{b) Fram the graph, p.175,
K o = (c?L(8) = (5 MeV) (B) = 4 Mev.

vmx,ﬂekimﬂcmrgyof&ﬁelectrm,-Kmthemof
theantineutdmiszem,sothatthe&cayenergyE-QMev.
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me (875%) 5
BE
T
B}
5t
41
3
21
11
n " >
1 a " 5 8 Kme”

16-14

(a) FJI:CI'I\ Fig.16-12, Ke'm

= 0.8 MeV. Fig.16-13 has logF = 0.3;

F=2; T=1000s; FT = 2000 s.

In actuality, FT = 2340 s.

(b) 'é‘!gedecayisalittle slower tha that of 1!!3, for which FT
= 1200 s.

16-15

(a) Use FT = 2000 s and assume M' = 1. Example 165 with FT =
1200 s gets B = 3.7 x 10-62 Jem3, Since

g% « 1/FT,
-62 . 3

the value of B for the present case will be 2.9 x 10 Jem™ .

(b) The result for this process is a little less than for
Example 16-5 due to the larger FT.
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(c) The shell structure of the initial nucleus, a neutron, is
identical with that of the final nucleus, a proton (Coulomb

energy is absent with only a single proton as the final nucleus)
and thus the eigenfunctions are identical.

16-16
U(magnetic) _ B B
Ulelectric) %E ® B

Let a = characteristic distance between charges, j = current
density and p = charge per unit volume,
u=iA s 18 = (jad)a? = jalt,

p=eas= (m3}a=na‘.

and thus
ﬂ,lﬁ,i§= (ﬂ]ﬁ.,.‘."_'
pa4E pE p'cB ¢

where E = ¢B for a plane electromagnetic wave in a vacuum.
16-17

UguaaVatp = T S/
IfE = EosinZn(§ - vt) = E,

3E _
ax

X
(21TE0/” cos2n (T = vt)

EGIA,
implying that
U 3/‘udip = qr'zsollqr'r:o

' /).

16-18
Follow the reasoning on p.580. )
(2,even) to (0,even): |ij - ig| = 2 = L; since parity does not

change and L is even, radiation is
electric quadrupole (L = 2).
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(1,0dd) to (0,even): |i; - ig| =1 =L; L is odd and the parity
changes, indicating electric dipole.

(1,03d) to (2,even); |ij = ig] =1 =1L; L is 0dd and the parity
changes; as above, this indicates electric
dipole radiation.

16-20

The integral in Eq.16-26 is
oo
2
[WP‘ b0

The parity of x’ is even; if Y} ; is of odd parity, the parity
of the integrand is odd and the integral vanishes. For the
integral to be different from zero, ¢§mthavethesme

parity as ‘pi'
The other integral being considered is

4o
[»p;ty 2 - 2 Hyyar.
-
These parities are:

Py} = -y, oad; PEH =22 o 22 4160 oda.
Thus the parity of the operator, involving products of those

above, lse\m.naacmsequerwe,q;%mttmthempaﬂty
aswiocrthe.i.nteqmlvanisl'm.

16-25
The net reaction is
31}12 + 151:‘31 + 145131 + 2]111 + 2!!6‘:
That is,
e + mA%%Y - 2ty - mimet) - mMsi3h)ye? - 20.01

Qmm = 20.91 MeV.
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in MeV, Using values from Table 15-1, this becomes

%Y - mMs13) + 0.0240529)c% = 20.91 Mev.
In terms of rest energies,
%Yy - E(Ms13)) = -1.4953 vev.

With the rest energy of the Si isotope greater than that of the
P isotope, electron emission can occur, with energy = 1.5 MeV.

16-26
(a) Using the indicated notation,

k = Jion(e - v ¥ = § (amvy) - 12w,
k= ia + 0¥,
with
a = 2n(E - V) /K% b = -2, /K
R ’ I .
Therefore,

2

k=(a+i)¥ =k + ik a=k -k b=2gk.
kRamikIcanbedebemmedintemofaandbfmnﬂmeae
equations.
(b) With k = ky + ikp,
vy = oikx _ oilkpikp)x {e-ka)e_ika,

the tem in parenthesis being an "amplitude" that decreases
exponentially.

(c) Fram (b), -
Yy = e KIX,
If L = distance for {*} to decrease ky a factor of l/e,
ZkIL =1 L= 1/2FLI.
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16-27

The probability of fission is given by

P =on,

o = cross section per atom = 10 zsmz,n‘-mmbexocfatunsper
unit area, If m = mass of one atam = 235 u, then the mass per
unit area = nm and

p=cm£m‘-"‘i‘:m'

P = (10728 010 . 3x1075
(235) (1.66 x 10

7
16-28
The solid angle of the detector, at the nucleus, is
a = an/r? = 107/ (12 = 1075 sr,
=g -5 dg

do = a aq = 10 a
The probability of any one proton being scattered into the
detector is

dP = ndo = (9.562 x 10 )d_o,
since

0.01 —5— = 9.562 x 1022 2
(63) (1.66 x 10 “')

n=

'memxnberofpm-hmsincidmteachsecwﬁm&netargetis
lll)_8 C/s)/{l.&xlu C) = 0,625 x lOll . Since the number
scattered to the detector = 240 mint = 4 s~%,

4 -11
@ = = 6.4 x 10
6.25 x 10%° !
and
o=® o Sax107 -2
= - 73 = 6. x 10 m.

9.562 x 10
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Finally,

& . G9 - 6.7 x 107 n?/sr = 0.67 bn/sr.
10

16-29
The number # of decays in 12 hours is
# = RNt,

0.005
t = a0 ) e 32616 * a2,

# = 7.87 x 10°2,

The energy absorbed is

E = (0.9) (7.87 x 10%2) (4.87) (1.6 x 107*3) = 5,52 7.

Hence the dose is

pose = 3:52.x10% 52X 10 _ 7.36 rad.

16-30

(a) The probability of decaying via a specific channel = I‘r/t‘:

the total pmbabilityofdemyingbymansof all the other
channels is I‘n/I'. Clearly,

r=Tr + I'r: r.= 0.140 = 0,005 = 0.135 MeV.

(b) The cross section is

4arr
= 2___11.1‘_____ 2_nr_ 2
crr(Ei) ‘H[ ey ) " 1'2/4 = "(211 2 0.01096)°.

But Ei = 0.29 eV, and as this is definitely nonrelativistic,

-Eu h = =11
A ® mris- 5.339 x 10 m
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Substituting this into the previocus equation yields

o, =3.12 x 102 n?,

(c) The Uncertainty principle gives an estimate of the lifetime:
T =-I¥—= 4.9 x 10715 §,
r
using the result from (a).

16-31
(a) Bq.16-33 is

i
e=dUA g2 40,24, ...

The theoretical and measured ratios are

E

4 _10_0.309

B, =3 %003 - 3%
E

Evidently, agreement is good in all cases.
(b} Using E, as an example:

2
10 -
E4=_3ﬁ: 3=l%£_,2.25x1054]

'm2 ’

since E4 = 0.309 MevV,

16-32

Into Bq.15-16,

0= Kb(l + %) - Ka(l - %} - 2(K Kbm mbﬁnB) cosé,
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put
-=0,mB 12, m -mb=1,5-90,!! = ? MeV,
to get
1 1 - K ---Z—K
0= Kty - K -gp)s M=K oKy =gy

(a) K =1 MeV; AK = 0.154 MeV.

(b) K —0001@,“8154&\?-

(c) E = 3kT/2 = 3(B.617 x 10”7 ](500)/2 = 0.06463 &V,
(4) Since

=g =8k, = ete.
Ky = Kaz = 13 ¥ar? ¥z = Kas3 ) &% ’

it follows that

K = 0.06463 eV = (—l (1 MeV),

-16.5546 = nln(% = -0.167In; n = 99.

(@ 0 = (D) - une?) - m}(ch),
0 = (0.00351) (931.5) = 3.27 MeV.

(b) One Megaton yields 2.6 x 102'3 MeV; hence 48 Megatons gives
1.248 x 1030 MeV. The murber of required fusions is

30
_1.248 x 107" _ 30
#= ==7 = 0.38165 x 107" .

Since two hydrogen atcms”are required for each fusion, the
minimum mass of hydrogen needed is

m = (0.38165 x 10°0) (2) {(2) (1.66 x 10721)}

m = 2534 kqg.

CHAPTER SEVENTEEN
17-1

(a) BEg.7-17, with £ = 0 is

28R 2u
== 4 £, (E - VIR = 0.
drz r dr "2
(b) With R(r) = u(r)/r,
®__uw,la R 2 _,1m, 18k
dr rz r dr drz r3 er.r r *
Substituting into the equation for R(r) given in (a)
yields
2 .2
Edu,
-£ 21 = EFu.
Zud:Z

(c) Eq.5-43, the time independent one-dimensional Schrodinger

equation is
2
d
‘)g g"'w‘" '
ax . =

identical in form to the equation of (b).
(d) Since uwku = (F*R*) (IR) = r2(R*R),

rl 1

r, r,
[u*udr = [ (R“R}:—:rzdr,
r

= i{pmbability of the neutron-proton separation being between

ry and rz).

183
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(e) The reduced mass is

il

Use of the reduced mass reduces the problem to one of relative
motion; i.e., one nucleon is at the center or origin of the
coordinates.

17-2

(a) Assume a bound state, E<V,.
Forr<r', V=0 and

2 .2
-Ldu=m
2udr§

Inthetegimr:r',‘?-‘fo
so tha

(b) Replace E with V., = AE; the equations above and their
solutions will be:

r<r': -é?+§2“(vo—a£:}u_=0; u = Asink,r + Boosk,r;

-] k
r>r': 9—%-£“-(m)u=o: u = ge KT | pgkeT,
dar

r<r': k2=21{v0—m)s r>r': kg-i%(&ﬂ).

17-3
(a), (b) In the solutions given in Problem 17-2,
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(1) D=0, otherwise u + w as r + =,

(ii) B = 0, otherwise R(r) = u(r)/r + Y= as r + 0.
For the remaining, the conditions at r = r' are
(iii) u contimuous at r': Asink.r' = -k,r"

1
(iv) % continuous at r': kll%cosklr' -k20e-k2r'.

These last two conditions thus imply that
") = ]
klmt(klr ) kz.

Substituting the expressions for k and k

2 fram Problem 17-2(c)
gives the desired relation.

17-4

Making the substituticns indicated in Problems 17-1(e) and 17-3
results in

cot{-;-m\PVO)“r' 1-x

withx—aE/V Mmrically,withr'-zF—leols and
O—BGWN,

Fomv) et = 186,

Hence, the equation becomes

cot{1.86(1 - x)

nxemlutimfumbytrialmdenorisx-onss,wmmgim
AE = 2.0 MeV. Evidently, to obtain 2.2 MeV, either the depth of
the well and/or therangeofthepotmtialmtbealtemd

slightly fram the text values, or greater precision is needed in

the calculations. In any event, 2.2 MeV will be used in the
following problem to maintain conformity with the text.



17=5
{a}mmas-z.zmv,vo-asm, r'-ZF,ﬂnmtakl
=1

-1
ky =0.90 '3 k,=0.23F

u = Asin(0.90r), r<r'=2F;

=0.23r
’

u = Ce r>r' =72F,

These expressions must be equal at r'; that is,

Asin(1.80) = ce°*%6; c/a = 1.54.

Also, it is necessary that

Fﬂrzﬂz (r)dr = [4111126: =1,
0

0

?utﬂ:ginﬂaemusimsﬁoru,amcmhemofnﬂ.elds

mz{gmz (0.90r)dr + El.w"’e""“"ar} =1.

Evaluating the integrals,

2 ©
[_sinz (0.90r)ar = 1.123; ge""“rd: = 0.866.
0 2

-~
Therefore,
ana2{(1.123) + (1.54)2(0.866)} = 1; A = 0.16.

Thus, the final results are, with r in F,
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u(r) = (0.16)sin(0.90r), r < 2,

u(x) = (0.24)e70-2%,

r>2,

(b) For V(r), see Problem 17-2.

ur

(T

3 " ()

L]

The radial probability density P(r) = u*u = u2(r).

3

v(r) |
n.n2s |-
nz b

n.ms
nm L
n.on%

I 1
n 1

% VI T

"
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17-6
In the Lab frame,
xm-who-wz.
The speed of the center of mass in the Lab frame is

mv + m(0
2m

i<

v =
(=1}

Therefore,
K, = (v - $H7 + (0 - H? = ow? = ),
Ko = ¥pqp = ¥
17-7
By Example 17-1,

2 2
k=L@ +r VW W gy

It follows that
{a)K_g_SOMgiveszlz,sochfan<30m,& =1,
(b) K > 60 MeV, % > 3, and 1f 30 <K < 60 MeV, & = 2.

17-8

(a) 2 2
PP S TOE S
. 2mx"'

“r
e =1.07000Y3 + 2= 7F.
Taking same mmbers from Example 17-1,

4 20
_1'2_.- (5 MeV)-= = 5= MeV.
o' 2 29 - 29

Hence,

g e
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50=20+0&; g+ =125 2 =10.

(b) The angle is

e-?"r-hﬁe.

The kinetic energy K = 50 MeV is much less than the rest energy
931.5 MeV and therefore classical can be used. Put
p = ¥ (2rK) and substitute into the expression for & to ge

6 = h/r'v/(2mK) .

With r' = 7 F and K = 50 MeV the formula gives 6 = 0.58 = 33°,
From Fig.16-26, 6 = 30°, so agreement is good.

17-10
(a) The uncertainty principle implies that
bpAx = Yi; Ap = W/r',

N> L

min ¥ Tm T 5 02

and therefore
1
e

(b) It may be anticipated that V is proportional to the
of the number of nucleons within a sphere of radius about 2 F
and the nucleon-nucleon potential Vy; that is,

A 4 3
Ve (—=—sam(2)"v
{4/3)11'!'3 3 n’

A = mmber of nucleons., Now V,, depends on the distance between
nucleons and not on r', for it is cbserved that the interior
mass density is about the same for all nuclei and therefore so
is the average nucleon-nucleon separation. Also, V, < 0 for
attractive forces. This indicates that

1
v .
==7

(c) The total energy E is



a b
E=K = — -
+V rlz ;—'5,

a,b positive, As r' goes to zero, Ebmsnegativemgudlm
of the relative magnitudes of a,b, since r'3 approaches zero
faster than r'2, The nucleus would collapse.

17-11

(a) T =

For 17, 2= 1, N=2 50 that T, = -k, For ZHe’, 2=2,N=1
giving T, = +4. Tm:stbehalf—integral.Sinoeh-3,‘1‘=1/2
3/2. If-r-sfz, states with T, =12 wu.tldluve abcaxht.he
same energy as mﬂzﬁeastmsehmldbeon3 P or3I.13
But these muclei are not cbserved (either stable or as beta-
emitters)., Hence, T = k.

(b) 31..1.’:z-3,N-4;Tz--a.‘Be7=z-4,N-3;Tz-+§.
No other nuclei with A = 7 are observed, so T = k.

17-12
(a) Use the uncertainty principle to cbtain an estimate:
AEAt = ¥h, AE = mﬂcz,

h_ _ 4.136 x 10721 -23

M‘.-h—f W- 1.477 x 10
1‘3

(b) Assume the meson speed to be close to the speed of light.
Then a time At/2 takes the meson a distance r = c(kAt) = 2.2 F.
Heme,withinzrmlycpemise:q:ecbed

(c) Clearly, up to one-fourth this distance, four may be found.

17-13
K 1':0 + 1r+.

Since the rest energies of these particles are 493.8 MeV,
135.0 MeV and 139.6 MeV, the kinetic energy of the pions is, in
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total, 493.8 - 135.0 - 139.6 = 219.2 MeV. Using 137 MeV as an
average rest mass and dividing the kinetic energy equally, for
an estimate, then,

..mocz'
110 = 13N{Q - A% - 13,
B =0.83; v=gc=2.5x 108 m/s.

The distance travelled to decay is (2.5 x ].0a m/s) (B x 10-17
= 20 rm.

17-14

(a) In the LAB frame,

_ Mm@ +my, Py ol
motm, T E FE

Thus, the speed of the frame in which the center of mass is at
rest is

v_ =
amn m1+m2

Py
=cETE -
an 115

-

(b)EuJB=E1+E2.Inthemframetheparticleamgiesare

. -Bcpp  E 2'3@2
o = tz-e}” G-y oeT Ty
Thus,
Eqy = Eqn * o —(1—31"’((E1+E2)—Bcpzh
Eq = (1= 897H(E,; - pop,).
By (a),

s)
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v
B‘E'@z%l

and therefore

E[AB-B'CPZ-ELP.B“'_BZ)'

Since El = mocz and Eé = cng + mﬁc‘,
22 2
2 <P, (EI+EZ} -(E%—Ei} zsiézzlzz
l=-g"=1= E - i = : ’
2
P i i
Eap  Frap
These give,
Ecn"EmB(z“nczlzms)%'
By = (2myc’Ey )%,
™
17-15

The reaction under consideration is

P+p+P+P+P+P.
In the M frame, immediately. after the reaction the four
pa:omcmldallbecatrest.'mehotalenergyaftermacttm

in this event is and therefore this must be the total
energy before in the oM frame. Hence,

Eou = ;";J"z = ‘Z"DCZELAB""
Brap = 8-

n;ekmeﬂcmexgynequlredinﬂxemfrmisjust&nocz—
2myc? = 6myc? = 5630 Mev.

PEPENSESS
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17-16

(a) The neutrino de Broglie wavelength is A = h/(E/c). The time
interval At during which the neutrino-proton distance is less
than the de Broglie wawvelength is

2—1-E
At = 2= 2

With T = characteristic time for the reaction, the probability
P of reaction is
Px.ﬁtﬂﬂﬂ)}ﬂi,

so that
o = a2 = 2 /ET = 107
-4

(b) For lead, Z = 82, and g = (100) (10~*> am?) = 1074 an?, 1f
L = mean free path,

L=

n = number_of nuclei per unit volume. But the density of lead is
ll.36g/m33ndhmced:emaanfreepathbeomesabu1tmlsm.

17-18

(a) Forbidden: baryon nmumber not conserved.
(b) Forbidden: lepton number not conserved.
(c) Forbidden: lepton number not conserved.
(d) Forbidden: aT, = +1; 4S = -2,

(e) Satisfies all conservation laws; strong interaction would
be fastest.

(f) Forbidden: AT, = -1; AS =2,
(g) Forbidden: zestmrgyofdmxghbeneomeeﬂst}ntoilu.
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(b)

18-3 v d
(a p*, o~ are antiparticles. The absorption of a p' is u) Cd

equivalent to the emission of a p .,
P y——nu n

[N
o
&
L1

[T 4
W=

win ©

1

Wi

]

W=

1

wi=

win o
win o 5.

mﬂmemocbetqjajmdmebaz}moctetqiqjqkhmﬂe
sameTzandYquan‘umnmbers.

18-5
(a)

-y
]
1

ol
e

|
=
I

o]

I
A
]
]
Wi Wi 2|
]
1
1

U
[
o wiFw win 2|
[ |
LI
W= e W=
O Wi Wi o
O Wl Wi B
+ +
= WO W= 0
|
(=
1
O W= W= o
[ |
© W e wino

+ + + o+

Tz
B
s |o -1

+

“'-'.
\\/no
/
‘!‘D+
/
T
z
‘/A\ Y
n 'I&msqjamlqiqkmvethesmTzand!t=s+Bquanu:nrmbers.
0 1
- L
!\\/ .
\ -
P
¥
\
p/A‘\
n

(b) The g is composed of a quark and antiquark in the anti-
paranelspmmtelso.'mequakaﬂmuquaﬂcinaphave
parallel spin: 351.




I= (Ne) (35 = 6.87 x 101,

electrons in each beam. By Problem 18-2,

%r-=-mdx--mcdt.

where n = N/2nrA = number of electrons per unit volume. Hence,

L= ne = X,

with f = frequency of revolution = ¢/2nr. Since A = 10'6 mz,
L = Nf/A = 9.37 x 1022 /mz-s.

18-9

E:q:ectﬂ:ea—quaﬂ:inazbobereplwedbyac—quaﬂcmzc:
£ = wos 10 = ades I} = ude.

D/

18-11

E ] né}n- s'J-I=|+
=

T

Energy conservation prevents decay into a particle with b
quarks, leaving Zweig forbidden decays possible.

to e
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18-13

The substitution of ¥ = e -0y! implies first derivatives of the
form

¥ _ 102 _ 20
- Guo Y

for u = x and t. Then the one-dimensional time-dependent
Schroedinger equation

2
-%:—z‘%"i}i%%.

implies

2
26 ' '
-Ed - 0% = s - 1fdve.

18-14

The three canbinations of the type rr + rr, normalization 1/6,
each have, by Fig. 18-21(c), color charge product 2y°/3,
inplying a total contribution 36D (2%/9) = 1:- Expanding

(b + br)?, there are two square terms of the form Fig.18-21(b),
1b + rb, giving oolord'la:geﬂ-x;-} +208) =48 e ry
and yb terms of the same form contribute the same color charge,
Since the nomalization is 7, the contribution is 365 & )

2
%xz.mmﬂremtalmbindingpomm 1s%%+%xr—-
2
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18-18

(rx - yy) V2
+
(rT + yy - 2bb) V6

199

The (rT - yy)/¥2 gluon couplings to the top, x/v2, and bottam
vertex, - y/¥2, contribute - y2/2 to the color charge product.
The other gluon couples to the top, ¥/v¥6, and bottom, x/v6,
contributing x2/6 for a total - x2/3 for both glucns.

18-19
Given dc=ﬁcosec+ssinﬂcarﬁsc=swsacedsinac,ﬂme
stmgmmsdmxgingpartofm_x+c€+dc§c+scgcmmtahﬁ
in the two temms:
= - . .o 2 - 2
ad, +ss, = (dd + ss)cos“g  + (ss + dd)sin‘e,

+ (sd +sd - sd - Ba)sineccoeec.

In this last texm, the unwanted AS = 1 neutral currents cancel.
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For the flat infinite well, E; = 12f/2ma’ and this is greater
than vg. By Problem 5-25, a bump increases the energy of the

eiqenfunctims.ﬂetm,inthispmblm,takek>vo.u\eﬁonn
of the wavefunction in the various regions will be:

region 1: ¢ = As:l.nklx + Buouklx,

region 2: ¢-Csink2x+Dwsk2x,

region 3: ¢ = A'sinklx + B‘oodclx,

with k, = (ma“m.
k, = /{2m(EV ) }/h.

Since V(a/2) = V(-a/2) = =, y(a/2) = y(-a/2) = 0, giving

-ns:in{klalm + ch(kla/zl =0,
A'si.n{kla/z) + B'onsﬂtln/m =0,
so that A'B + AB' = 0.

At the points x = a/4 and.x = -a/4 the wavefunction and its
derivative with respect to x must be continuous. Using the

expressions for the wavefunctions in the appropriate regions
as given above, these requirements yield the following:

A'sin(k,a/4) + B'cos(k,a/4) = Csin(k,a/4) + Doos(k,a/d),
-Asin(k,a/4) + Boos(k,a/4) = -Csin(kja/4) + Doos(kya/4),
200

201

k A'ooa(kla/ﬂ—le'ain(klaM) = kzcoos(kza/ill-kzDsin{kzaMh

1

kl}\cos(kla/alh-lesin{klalé) = kzcoos(kza/4l+kznsm(k2a/4) .

Write s = sin(k,a/4), cp = cos(kpa/4) etc.; then the sum and
difference of the first two equations above, and the sum and
difference of the last two equations above are

a' - A)sl + (B" + ‘B}cl = 2Dc2, (1)
(' +A)s, + (B' - Ble, = Cs,, (2)
@' +A)c-1- (B' - B)sl = Zmzﬂtlwcz, (3)
(A' = A)c, - (B" +B)s) = -2(k,/k,)Ds,. (4)

Divide equation (1) by (4) to get

(A'—Alsl+{B'+B)cl--ﬁc_2
Al - ] -
(A h}cl (B +B)Bl 232
If B' + B # 0, this becomes,
A' - A
S S e W Y
AT -A o Tk 2
B' +B 1
Let
A' - A
B—.;—B-tanﬂs

then, in terms of @, the previous expression becames
ot
cot(e - klalé) == k_z cot(kzn/ﬂ . ()

Similarly, divide equation(2) by (3); if A" + A # 0 and the
angle ¢ is defined by

B' -B _
AT T A - oot
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then the result will be

k
cot(y - k,a/4) = Ezl tan(k,a/4) . an

Now equations (I) and (II) cannot be satisfied simultanecusly
for, if they were, they would imply

2
=k /k,)” = cot(8 = kja/d)cot(d ~ k,a/4).

B'+B_B'-B AB' + A'B

O oM = RT-ATATFAT 2 T _ 2

(see conditions at x = a/2, -a/2) and therefore
0 =0 =0k /k)? = cot’(e - kja/a).

kal,kz,ammlshamifeiaml (I) and (II) cannot
hold together. Hence, either

k
A' = -h, B' # -B; oot(6 - kya/d) = - -E-iootﬂczali)._ 89}
or

k
A' # A, B' = -B; oot(o - kja/d) = E—:’tm(kza/4) . am

Also, fram the relation A'B + AB' = 0,

B=B', (I); A=A', (ID);
c=0, (I); D=0, (I).
Beme,t.hesolmﬂmmh.

region 1: § = Asin(k,x) + Boos(kX),
region 2: = Deos(kyx),
region 3: § = -Asin(k,x) + Boos(k;x).

(1), symmetric.
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region 1: ¢ = J\sin{klx) + Bcos{klx),
region 2: ¢ = Csi.'ﬂ(kz)‘) '
region 3: ¢ = Min{klx) - Beos{klx).

(II), antisymmetric.

For the lowest energy take the symmetric case (fewer nodes);
for (I),

B'+B_ _B

A'-A" A

cotf =
But,

¥(a/2) = -Asin(k,a/2) + Bcos(klaIZ) =0,

B
-z= —tantklaﬁl = coth,

Using this for & the relation

k
cot(6 - kya/d) = - r:oot(kza/n.
k
~tan(ya/4) = = pootla/4),

2 2 2
tan® (k,a/4) tan’ (kya/4) = (k;/k,)>.

Using the definitions of kl,‘kz, given earlier and letting z =
E/v,, the last equation may be written

tan’ @ /2)tand /(z - D} = 2.

The solution is z = 4.8, approximately, and hence E = 4.Bv°.



