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Preface

In the strange world of quantum mechanics the application of visualization
techniques is particularly rewarding, for it allows us to depict phenomena
that cannot be seen by any other means. Visual Quantum Mechanics relies
heavily on visualization as a tool for mediating knowledge. The book comes
with a CD-ROM containing about 320 digital movies in QuickTimeTM for-
mat, which can be watched on every multimedia-capable computer. These
computer-generated animations are used to introduce, motivate, and illus-
trate the concepts of quantum mechanics that are explained in the book.
If a picture is worth a thousand words, then my hope is that each short
animation (consisting of about a hundred frames) will be worth a hundred
thousand words.

The collection of films on the CD-ROM is presented in an interactive en-
vironment that has been developed with the help of Macromedia DirectorTM.
This multimedia presentation can be used like an adventure game without
special computer skills. I hope that this presentation format will attract the
interest of a wider audience to the beautiful theory of quantum mechanics.

Usually, in my own courses, I first show a movie that clearly depicts
some phenomenon and then I explain step-by-step what can be learned from
the animation. The theory is further impressed on the students’ memory
by watching and discussing several related movies. Concepts presented in a
visually appealing way are easier to remember. Moreover, the visualization
should trigger the students’ interest and provide some motivation for the
effort to understand the theory behind it. By “watching” the solutions of
the Schrödinger equation the student will hopefully develop a feeling for the
behavior of quantum-mechanical systems that cannot be gained by conven-
tional means.

The book itself is self-contained and can be read without using the soft-
ware. This, however, is not recommended, because the phenomenological
background for the theory is provided mainly by the movies, rather than
the more traditional approach to motivating the theory using experimental
results. The text is on an introductory level and requires little previous
knowledge, but it is not elementary. When I considered how to provide the
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vi PREFACE

theoretical background for the animations, I found that only a more mathe-
matical approach would lead the reader quickly to the level necessary to un-
derstand the more intricate details of the movies. So I took the opportunity
to combine a vivid discussion of the basic principles with a more advanced
presentation of some mathematical aspects of the formalism. Therefore, the
book will certainly serve best as a companion in a theoretical physics course,
while the material on the CD-ROM will be useful for a more general audience
of science students.

The choice of topics and the organization of the text is in part due to
purely practical considerations. The development of software parallel to
writing a text is a time-consuming process. In order to speed up the publi-
cation I decided to split the text into two parts (hereafter called Book One
and Book Two), with this first book containing selected topics. This enables
me to adapt to the technological evolution that has taken place since this
project started, and helps provide the individual volumes at an affordable
price. The arrangement of the topics allows us to proceed from simple to
more and more complicated animations. Book One mainly deals with spin-
less particles in one and two dimensions, with a special emphasis on exactly
solvable problems. Several topics that are usually considered to belong to
a basic course in quantum mechanics are postponed until Book Two. Book
Two will include chapters about spherical symmetry in three dimensions,
the hydrogen atom, scattering theory and resonances, periodic potentials,
particles with spin, and relativistic problems (the Dirac equation).

Let me add a few remarks concerning the contents of Book One. The
first two chapters serve as a preparation for different aspects of the course.
The ideas behind the methods of visualizing wave functions are fully ex-
plained in Chapter 1. We describe a special color map of the complex plane
that is implemented by Mathematica packages for plotting complex-valued
functions. These packages have been created especially for this book. They
are included on the CD-ROM and will, hopefully, be useful for the reader
who is interested in advanced graphics programming using Mathematica.

Chapter 2 introduces some mathematical concepts needed for quantum
mechanics. Fourier analysis is an essential tool for solving the Schrödinger
equation and for extracting physical information from the wave functions.
This chapter also presents concepts such as Hilbert spaces, linear opera-
tors, and distributions, which are all basic to the mathematical apparatus
of quantum mechanics. In this way, the methods for solving the Schrödinger
equation are already available when it is introduced in Chapter 3 and the
student is better prepared to concentrate on conceptual problems. Certain
more abstract topics have been included mainly for the sake of completeness.
Initially, a beginner does not need to know all this “abstract nonsense,” and
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the corresponding sections (marked as “special topics”) may be skipped at
first reading. Moreover, the symbol Ψ has been used to designate some
paragraphs intended for the mathematically interested reader.

Quantum mechanics starts with Chapter 3. We describe the free mo-
tion of approximately localized wave packets and put some emphasis on the
statistical interpretation and the measurement process. The Schrödinger
equation for particles in external fields is given in Chapter 4. This chap-
ter on states and observables describes the heuristic rules for obtaining the
correct quantum observables when performing the transition from classical
to quantum mechanics. We proceed with the motion under the influence of
boundary conditions (impenetrable walls) in Chapter 5. The particle in a
box serves to illustrate the importance of eigenfunctions of the Hamiltonian
and of the eigenfunction expansion. Once again we come back to interpre-
tational difficulties in our discussion of the double-slit experiment.

Further mathematical results about unitary groups, canonical commu-
tation relations, and symmetry transformations are provided in Chapter 6
which focuses on linear operators. Among the mathematically more sophis-
ticated topics that usually do not appear in textbooks are the questions
related to the domains of linear operators. I included these topics for several
reasons. For example, solutions that are not in the domain of the Hamil-
tonian have strange temporal behavior and produce interesting effects when
visualized in a movie. Some of these often surprising phenomena are perhaps
not widely known even among professional scientists. Among these I would
like to mention the strange behavior of the unit function in a Dirichlet box
shown in the movie CD 4.11 (Chapter 5).

The remaining chapters deal with subjects of immediate physical impor-
tance: the harmonic oscillator in Chapter 7, constant electric and magnetic
fields in Chapter 8, and some elements of scattering theory in Chapter 9. The
exactly solvable quantum systems serve to underpin the theory by examples
for which all results can be obtained explicitly. Therefore, these systems
play a special role in this course although they are an exception in nature.

Many of the animations on the CD-ROM show wave packets in two di-
mensions. Hence the text pays more attention than usual to two-dimensional
problems, and problems that can be reduced to two dimensions by exploiting
their symmetry. For example, Chapter 8 presents the angular-momentum
decomposition in two dimensions. The investigation of two-dimensional sys-
tems is not merely an exercise. Very good approximations to such systems
do occur in nature. A good example is the surface states of electrons which
can be depicted by a scanning tunneling microscope.
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The experienced reader will notice that the emphasis in the treatment of
exactly solvable systems has been shifted from a mere calculation of eigenval-
ues to an investigation of the dynamics of the system. The treatment of the
harmonic oscillator or the constant magnetic field makes it very clear that in
order to understand the motion of wave packets, much more is needed than
just a derivation of the energy spectrum. Our presentation includes advanced
topics such as coherent states, completeness of eigenfunctions, and Mehler’s
integral kernel of the time evolution. Some of these results certainly go be-
yond the scope of a basic course, but in view of the overwhelming number
of elementary books on quantum mechanics the inclusion of these subjects
is warranted. Indeed, a new book must also contain interesting topics which
cannot easily be found elsewhere. Despite the presentation of advanced re-
sults, an effort has been made to keep the explanations on a level that can
be understood by anyone with a little background in elementary calculus.
Therefore I hope that the text will fill a gap between the classical texts (e.g.,
[39], [48], [49], [68]) and the mathematically advanced presentations (e.g.,
[4], [17], [62], [76]). For those who like a more intuitive approach it is rec-
ommended that first a book be read that tries to avoid technicalities as long
as possible (e.g., [19] or [40]).

Most of the films on the CD-ROM were generated with the help of the
computer algebra system Mathematica. While Mathematica has played an
important role in the creation of this book, the reader is not required to
have any knowledge of a computer algebra system. Alternate approaches
which use symbolic mathematics packages on a computer to teach quan-
tum mechanics can be found, for example, in the books [18] and [36], which
are warmly recommended to readers familiar with both quantum mechanics
and Mathematica or Maple. However, no interactive computer session can
replace an hour of thinking just with the help of a pencil and a sheet of
paper. Therefore, this text describes the mathematical and physical ideas of
quantum mechanics in the conventional form. It puts no special emphasis
on symbolic computation or computational physics. The computer is mainly
used to provide quick and easy access to a large collection of animated il-
lustrations, interactive pictures, and lots of supplementary material. The
book teaches the concepts, and the CD-ROM engages the imagination. It is
hoped that this combination will foster a deeper understanding of quantum
mechanics than is usually achieved with more conventional methods.

While knowledge of Mathematica is not necessary to learn quantum me-
chanics with this text, there is a lot to find here for readers with some
experience in Mathematica. The supplementary material on the CD-ROM
includes many Mathematica notebooks which may be used for the reader’s
own computer experiments.
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In many cases it is not possible to obtain explicit solutions of the Schrö-
dinger equation. For the numerical treatment we used external C++ routines
linked to Mathematica using the MathLink interface. This has been done to
enhance computation speed. The simulations are very large and need a lot of
computational power, but all of them can be managed on a modern personal
computer. On the CD-ROM will be found all the necessary information as
well as the software needed for the student to produce similar films on his/her
own. The exploration of quantum-mechanical systems usually requires more
than just a variation of initial conditions and/or potentials (although this
is sometimes very instructive). The student will soon notice that a very
detailed understanding of the system is needed in order to produce a useful
film illustrating its typical behavior.

This book has a home page on the internet with URL

http://www.kfunigraz.ac.at/imawww/vqm/

As this site evolves, the reader will find more supplementary material, exer-
cises and solutions, additional animations, links to other sites with quantum-
mechanical visualizations, etc.
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Chapter 1

Visualization of Wave
Functions

Chapter summary: Although nobody can tell how a quantum-mechanical particle
looks like, we can nevertheless visualize the complex-valued function (wavefunction)
that describes the state of the particle. In this book complex-valued functions
are visualized with the help of colors. By looking at Color Plate 3 and browsing
through the section “Visualization” on the accompanying CD-ROM, you will quickly
develop the necessary feeling for the relation between phases and colors. You need
to study this chapter only if you want to understand the ideas behind this method
of visualization in more detail and if you want to increase your familiarity with
complex-valued functions. Here we derive the mathematical formulas describing
the color map that associates a unique color to every complex number. This color
map is defined with the help of the HLS color system (hue-lightness-saturation): The
phase of a complex number is given by the hue and the absolute value is described
by the lightness of the color (the saturation is always maximal). On the CD-ROM
you will find the Mathematica packages ArgColorPlot.m and ComplexPlot.m which
implement this color map on a computer. These packages have been used to create
most of the color plates in this book and most of the movies on the CD-ROM. In
this chapter you will also find a comparison of various other methods for visualizing
complex-valued functions in one and more dimensions. Finally, we describe some
ideas for a graphical representation of spinor wave functions.

1.1. Introduction

Many quantum-mechanical processes can be described by the Schrödinger
equation, which is the basic dynamic law of nonrelativistic quantum me-
chanics. The solutions of the Schrödinger equation are called wave functions
because of their oscillatory behavior in space and time. The accompanying
CD-ROM contains many pictures and movies of wave functions.

Unfortunately, it is not at all straightforward to understand and interpret
a graphical representation of a quantum phenomenon. Wave functions, like
other objects of quantum theory, are idealized concepts from which state-
ments about the physical reality can only be derived by means of certain
interpretation rules. Therefore a picture of a wave function does not show
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2 1. VISUALIZATION OF WAVE FUNCTIONS

the quantum system as it really looks like. In fact, the whole concept of
“looking like something” cannot be used in the strange world of quantum
mechanics. Most phenomena take place on length scales much smaller than
the wavelength of light.

With the help of some mathematical procedures, a wave function allows
us to determine the probability distributions of physical observables (like po-
sition, momentum, or spin). Thus, the wave function gives high-dimensional
data at each point of space and time and it is a difficult task to visualize
such an amount of information. Usually, it is not possible to show all that
information in a single graph. One has to concentrate on particular aspects
and to apply special techniques in order to display the information in a form
that can be understood.

Mathematically speaking, a wave function is a complex-valued function
of space and time; a spinor wave function even consists of several compo-
nents. In this first chapter I describe some methods of visualizing such an
object. In the following chapters you will learn how to extract the physically
relevant information from the visualization.

For the visualization of high-dimensional data a color code can be very
useful. Because the set of all colors forms a three-dimensional manifold (see
Sect. 1.2.2), it is possible—at least in principle—to represent triples of data
values using a color code. Unfortunately, the human visual system is not
able to recognize colors with quantitative precision. But at least we can
expect that an appropriately chosen color code helps to visualize the most
important qualitative features of the data.

1.2. Visualization of Complex Numbers

As a first step, I want to discuss some possibilities to visualize complex
values. It is my goal to associate a unique color to each complex number.
You will learn about the various color systems in some detail because this
subject is relevant for the actual implementation on a computer.

CD 1.1 and Color Plate 3 show an example of such a color map,
designed mainly for on-screen use. Here the phase of the complex
number determines the hue of the color, and the absolute value is
represented by the lightness of the color. This color map will be now
described in more detail.

1.2.1. The two-dimensional manifold of complex numbers

Any complex number z is of the form

z = x + iy, x = Re z, y = Im z. (1.1)
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z = x + iy

x

y

Re z

Im
z

ϕ
r =

 |z|

i

1

Figure 1.1. Graphical representation of a complex number
z in Cartesian and in polar coordinates.

Here i is the complex unit which is defined by the property i2 = −1. The
values x and y are real numbers which are called the real part and the
imaginary part of z, respectively. The field of all complex numbers is denoted
by C.

Thus, complex numbers z ∈ C can be represented by pairs (x, y) of real
numbers and visualized as points in the two-dimensional complex plane.

Using polar coordinates (r, ϕ) in the complex plane gives another repre-
sentation, the polar form of a complex number (see Fig. 1.1)

z = r cosϕ + i r sinϕ = r eiϕ, r = |z|, ϕ = arg z. (1.2)

Here we have used Euler’s formula

eiϕ = cosϕ + i sinϕ. (1.3)

The non-negative real number r is the modulus or absolute value of z and
the angle φ is called the phase or argument of z.

For z = r eiϕ = x + iy the conjugate complex number is z = r e−iϕ =
x − iy.

One often adds the complex infinity ∞ to the complex numbers. This
can be explained easily with the help of a stereographic projection.

The stereographic projection: You can interpret the complex plane as
the xy-plane in the three-dimensional space R3. Consider a sphere of radius
R centered at the origin in R3. Draw the straight line which contains the
point (x, y, 0) (corresponding to the complex number z = x + iy) and the
north pole (0, 0, R) of the sphere. Then the stereographic projection of z is
the intersection of that line with the surface of the sphere. Obviously, this
gives a unique point on the sphere for each complex number z. Using polar
coordinates (θ, ϕ) on the sphere, it is clear that the azimuthal angle ϕ is
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r

R

θ
z

complex plane

x3

Figure 1.2. Stereographic projection of a complex number
z with |z| = r.

just the phase of z = r exp(iϕ),
ϕ = arg z. (1.4)

A little trigonometric exercise (see Fig. 1.2) shows that the polar angle θ is
given by

θ = π − 2 arctan
r

R
, r = |z|. (1.5)

In that way the circle with radius R in C is mapped onto the equator of
the sphere. A complex number z = r exp(iϕ) is mapped to the northern
hemisphere if r > R, and to the southern hemisphere if r < R. The origin
z = 0 is mapped onto the south pole of the sphere, θ = π. Every point of
the sphere—except the north pole—is the image of some complex number
under the stereographic projection, and the correspondence is one-to-one.
The north pole θ = 0 of the sphere is interpreted as the image of a new
element, called complex infinity and denoted by ∞. The complex infinity
has an infinite absolute value and an undefined phase (like z = 0). Obviously,
∞ can be used to represent limn→∞ zn for all sequences (zn) that have no
finite accumulation point.

With a stereographic projection, the whole set of complex numbers to-
gether with complex infinity can be mapped smoothly and in a one-to-one
fashion onto a sphere. Because the sphere is a compact two-dimensional
surface we can regard the set C = C ∪ {∞} as a compact two-dimensional
manifold. It is called the compactified complex plane.

Exercise 1.1. Check your familiarity with complex numbers. Express
|z| and arg z in terms of Re z and Im z, and vice versa.

Exercise 1.2. Given two complex numbers z1 and z2 in polar form de-
scribe the absolute values and the phases of z1z2, z1/z2 and z1 + z2.
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Exercise 1.3. The stereographic projection is one-to-one and onto. De-
termine the inverse mapping from the sphere of radius R onto the compact-
ified complex plane C.

1.2.2. The three-dimensional color manifold

For the purpose of visualization we want to associate a color to each complex
number. Before doing so, let’s have a short look at various methods of
describing colors mathematically.

The set of all colors that can be represented in a computer is a compact,
three-dimensional manifold. It can be described in many different ways.
Perhaps the most common description is given by the RGB model (CD 1.2).

The RGB color system: In the RGB system the color manifold is defined
as the three-dimensional unit cube [0, 1] × [0, 1] × [0, 1]. The points in the
cube have coordinates (R, G, B) which describe the intensities of the primary
colors red, green, and blue. The corners (1, 0, 0), (0, 1, 0), and (0, 0, 1) (=
red, green, and blue at maximal intensity) are regarded as basis elements
from which all other colors (R, G, B) can be obtained as linear combina-
tions (additive mixing of colors). Of special importance are the complemen-
tary colors “yellow” (1, 1, 0) (=red+green), “magenta” (1, 0, 1), and “cyan”
(0, 1, 1), which are also corner points of the color cube. The two remaining
corners are “black” (0, 0, 0) and “white” (1, 1, 1). All shades of gray are on
the main diagonal from black to white. In Mathematica, the RGB colors are
implemented by the color directive RGBColor.

In order to visualize a complex number by a color, we have to define a
mapping from the two-dimensional complex plane into the three-dimensional
color manifold. This can be done, of course, in an infinite number of ways.
For our purposes we will define a mapping which is best described by another
set of coordinates on the color manifold.

The HSB and HLS color systems: A measure for the distance between
any two colors C(1) = (R(1), G(1), B(1)) and C(2) = (R(2), G(2), B(2)) in the
color cube is given by the maximum metric

d(C(1), C(2)) = max{|R(1) − R(2)|, |G(1) − G(2)|, |B(1) − B(2)|}. (1.6)

The distance of a color C = (R, G, B) from the black origin O = (0, 0, 0) is
called the brightness b of C,

b(C) = d(C, O) = max{R, G, B}. (1.7)

The saturation s(C) is defined as the distance of C from the gray point on
the main diagonal which has the same brightness. Hence

s(C) = max{R, G, B} − min{R, G, B}. (1.8)
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The possible values of the brightness b range between 0 and 1. For each
value of b, the saturation varies between 0 and the “maximal saturation at
brightness b,”

sb
max = b. (1.9)

The set of all the colors in the RGB cube with the same saturation and
brightness is a closed polygonal curve Γs,b of length 6s which is formed by
edges of a cube with edge length s (see Color Plate 1a).

The hue h(C) of a point C is λ/6s, where λ is the length of the part
of Γs,b between C and the red corner (the corner of Γs,b with maximal red
component) in the positive direction (counter-clockwise, if viewed from the
white corner). In that way h = 0 and h = 1 both give the red corner and it
is most natural to define the hue as a cyclic variable modulo 1. Hence the
pure colors at the corners of the RGB cube (red, yellow, green, cyan, blue,
magenta) have the hue values (0, 1/6, 1/3, 1/2, 2/3, 5/6) (mod 1).

For any color C = (R, G, B) the lightness l(C) is defined as the average
of the maximal and the minimal component,

l(C) =
max{R, G, B} + min{R, G, B}

2
= b(C) − s(C)

2
. (1.10)

We have 0 ≤ l ≤ 1 and, at a given lightness l, the brightness ranges in
l ≤ b ≤ min{1, 2l}. Lightness l = 0 denotes black, l = 1 (which implies
b = 1, s = 0) is white. If we keep the lightness fixed, the saturation has
values in the range 0 ≤ s ≤ sl

max, where the maximal saturation at a given
lightness l is

sl
max =

{

2l, if l ≤ 1/2,
2(1 − l), if l ≥ 1/2.

(1.11)

The set of color points which have the maximal saturation with respect to
their lightness is just the surface of the RGB color cube.

In the HSB color system every color is characterized by the triple (h, s, b)
of hue, saturation, and brightness. We can interpret the color manifold as
a cone in R3 with vertex at the origin (see Color Plate 1b and CD 1.3).
The values (2πh, s, b) are cylindrical coordinates where b corresponds to the
z-coordinate, s specifies the radial distance from the axis of the cone, and
ϕ = 2πh gives the angle.

The coordinates (h, l, s) describing the hue, lightness, and saturation of
a color are used in the HLS color system. The color manifold in the HLS
system can be interpreted as a double cone where the position of a color
point (h, l, s) is given by an angle 2πh, the height l, and the radial distance
s from the axis (Color Plate 1c and CD 1.5).
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In the HSB system one often redefines the saturation as s′ = s/b such
that the maximal s′ at a given brightness b is equal to 1. This provides a
cylindrical color space, see CD 1.4. Likewise one renormalizes the saturation
in the HLS system such that its values at a given lightness range between 0
and 1. In Mathematica, the HSB color system is implemented by Hue[h, s′, b].
The standard package Graphics`Colors` adds the color directive HLSColor.

The movies CD 1.2–CD 1.5 present animated views of the color man-
ifold as it appears in the various coordinate systems. See also Color
Plate 1.

Exercise 1.4. Try to invert the mapping between RGB and HLS coor-
dinates. That is, find an expression for the red, green, and blue components
of a color in terms of its hue, lightness, and saturation.

1.2.3. A color code for complex numbers

This section finally describes the mapping from the compactified complex
plane C into the manifold of colors. This color map associates a color with
each complex number in a unique way. Because C is two-dimensional,
there exists a unique correspondence between C and the surface of the
three-dimensional color manifold. (In fact, any mapping from C to a two-
dimensional (compact) submanifold of the color manifold could be used for
the same purpose, but the colors on the surface of the color manifold have
maximal saturation and thus can be distinguished most easily).

We are going to use a stereographic projection to obtain unique colors
for complex numbers. As a first step step we color the sphere by defining a
mapping from the sphere to the surface of the color manifold. Each point in
the complex plane will then receive the color of its stereographic image on
the surface of the sphere.

CD 1.6 shows the surface of the color manifold represented as a
sphere. In polar coordinates (φ, θ) the angle φ gives the hue and θ
gives the lightness of the color. See Color Plate 2. The animation
in CD 1.7 explains the stereographic color map that projects colors
from the surface of the colored sphere onto the complex plane.

Color map of the sphere: Every point (θ, ϕ) of the sphere (except the
poles) will be colored with a hue given by ϕ/(2π). The lightness of the color
is defined to depend linearly on θ,

l(θ) = 1 − θ

π
, 0 ≤ θ ≤ π. (1.12)

We choose the maximal saturation corresponding to each value of the light-
ness, s(θ) = sl(θ)

max. In this way we have defined a homeomorphism (i.e., a
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mapping that is one-to-one, continuous, and has a continuous inverse) from
the surface of the sphere onto the surface of the color manifold (see Color
Plate 2 and CD 1.6). The north pole (θ = 0, z = ∞) is white, the south
pole (θ = π, z = 0) is black. The equator (θ = π/2, |z| = R) has lightness
1/2 and hence shows all colors with saturation 1.

Exercise 1.5. Show that in the HSB system the mapping defined above
can be described as follows: The southern hemisphere has a brightness that
increases linearly in θ toward the equator, and a maximal saturation. The
equator has maximal saturation and brightness. The northern hemisphere
has maximal brightness with saturation decreasing linearly toward the north
pole.

Color map of the complex plane: The composition of the stereographic
projection described in Section 1.2.1 with the color map of the sphere defines
a coloring of the complex plane, which is shown in Color Plate 3. The color
map is a homeomorphism from the compactified complex plane C onto the
surface of the color manifold. CD 1.7 illustrates this method of coloring the
complex plane.

Color Plate 3 shows that each complex number (except z = 0, which
is black, and z = ∞, which is white) is colored with a hue determined by
its phase, h = ϕ/(2π). Positive real values are red; negative real values are
in cyan (green-blue). For any complex number z, the opposite −z has the
complementary hue. The additive elementary colors red, green, and blue,
are at the angles ϕ = 0, 2π/3, and 4π/3, the subtractive elementary colors
yellow, cyan, and magenta are at ϕ = π/3, π, and 5π/3. The imaginary unit
i has ϕ = π/2, and hence its hue h = 1/4 is between yellow and green.

Exercise 1.6. How would the color map look like if we used the bright-
ness instead of the lightness in Eq. (1.12)?

While the simple relations between the complex numbers and the HLS
color system are easy to implement, they don’t take into account the more
subtle points of visual perception. Colors that have the same computer-
defined lightness don’t appear to have the same lightness on screen. In
particular, yellow, magenta and cyan (the edges of the color cube) seem
to be significantly brighter than their neighbors in the color circle, while
blue appears to be rather dark. As a consequence, the colors with the
same perceived lightness do not lie on a circle in the complex plane. Those
nonlinear relationships between our mathematically defined lightness (and
brightness) and the actually perceived lightness can only be dealt with in
special color systems (e.g., CIE-Lab). Another drawback of our color map
is that the colors with maximal saturation and brightness in RGB-based
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systems cannot be reproduced accurately in print. Thus, the color plates in
this book look a little bit different from their counterparts on the CD-ROM.

1.3. Visualization of Complex-Valued Functions

A complex-valued function ψ associates a complex number ψ(x) to each
value of an independent variable x ∈ Rn. A color code such as the one
explained above is very useful for the qualitative visualization of such an
object—even in the one-dimensional case n = 1.

1.3.1. Complex-valued functions in one dimension

One of the simplest quantum systems is a single spinless particle in one
space dimension. At a fixed time the particle is described by a complex-
valued wave function ψ. This means that a complex number ψ(x) is given
at each point x. As an example of a complex-valued function we consider
the one-dimensional “stationary plane wave” with wave number k,

ψk(x) = exp(ikx), x ∈ R. (1.13)

The real number k describes the wavelength λ = 2π/k. Using this example
we illustrate several methods of visualizing complex-valued functions.

Method 1. Real and imaginary part: We can visualize a complex-valued
function ψ by separate plots of the real part and the imaginary part. For
the function ψk we have Reψk(x) = cos(kx) and Imψk(x) = sin(kx) (see
Color Plate 4a). Later we will see that the splitting into real and imaginary
parts does not have much physical meaning. It is more important to know
the absolute value of the wave function.

Method 2. Plot the graph: One-dimensional wave functions can always
be visualized using a three-dimensional plot. In three-dimensional space the
plane orthogonal to the x-axis can be interpreted as the complex plane. At
each point x we may plot Reψ(x) as the y-coordinate and Imψ(x) and the
z-coordinate. In this way the complex-valued function ψ can be represented
by a space curve. This space curve is called the graph of the function ψ. The
orthogonal distance of the curve from the x-axis is just the absolute value
|ψ(x)|. Color Plate 4b illustrates this method for the stationary plane wave
ψk. This method of visualizing a complex-valued function has nevertheless
some disadvantages. The plots are sometimes difficult to interpret, and the
method cannot be generalized to higher dimensions.

Method 3. Use a color code for the phase: Color Plate 4c shows how a
color can be used to visualize a complex-valued function ψ(x) in one dimen-
sion. We plot the absolute value and fill the area between the x-axis and the
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graph with a color indicating the complex phase of the wave function at the
point x. In this case we may use a simplified color map, because the absolute
value is clearly displayed as the height of the graph. Hence we plot all colors
at maximal saturation and brightness (i.e., with lightness 1/2). The hue h
at the point x depends on the phase as discussed in Section 1.2.3, namely,
h(x) = argψ(x)/(2π).

CD 1.8 shows several examples of one-dimensional complex-valued
functions visualized using the methods described above.

Exercise 1.7. Find the real and the imaginary parts of the function

φ(x) = ψ2(x) + ψ3(x), (1.14)

where ψk are the plane waves defined above.

Exercise 1.8. Multiply the function φ defined in Exercise 1.7 by the
phase factor eiπ/4. How does this affect the splitting into real and imaginary
parts? How does this change the phase of the wave function?

Exercise 1.9. Draw a color picture of the functions sin(x), eix sin(x),
and of other functions of your own choice. Check your results with the
Mathematica notebook ArgColorPlot.m on the CD-ROM.

Exercise 1.10. A function x → ψ(x) is called periodic with period λ if
ψ(x+λ) = ψ(x) holds for all x. The plane wave ψk is obviously periodic. Is
the sum ψk1 + ψk2 of two plane waves again periodic?

1.3.2. Higher-dimensional wave functions

Complex-valued functions of x ∈ R2 (i.e., functions of two variables) can
again be visualized using several methods.

Method 4. Real and imaginary part: This is the same as the first
method described in the previous section. If ψ(x, y) is a complex-valued
function of two variables, then the real-valued functions Reψ and Imψ can
be visualized as three-dimensional surface plots. An example is shown in
Fig 1.3 for the function ψ(x, y) = (x + iy)3 − 1.

All the methods described here are presented in a sequence of movies
on the CD-ROM. These examples show a time-dependent quantum-
mechanical wave function that describes the propagation of a free
quantum-mechanical particle in two dimensions. CD 1.12 shows the
real part of this wave function. The other visualization methods are
shown in CD 1.13–CD 1.16.
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Method 5. Plot of vector field: A complex number z can be interpreted
as a two-dimensional vector with components (Re z, Im z). Hence a function
ψ(x, y) may be regarded a vector field. Figure 1.4 visualizes the function
ψ(x, y) = (x + iy)3 − 1 by plotting little arrows on a suitable grid of points.
Of course, this method is not able to show very fine details of a function.
See also CD 1.13.

Method 6. Plot the graph: The graph of a function ψ(x, y) of two vari-
ables would have to be drawn in a four-dimensional space with coordinates
x, y, Reψ, Imψ. Of course, this cannot be done easily on a sheet of paper.
Hence this method does not work here.

Method 7. Image of the coordinate lines: Apart from giving separate
surface plots of the real part and the imaginary part of the function, one
could try to visualize how a grid of coordinate lines in R2 is mapped onto
the complex plane. This is illustrated in Fig. 1.5 for the function ψ(x, y) =
(x+iy)3 − 1. While this method is sometimes very instructive, the resulting
plots are usually very difficult to interpret for functions with a complicated
structure. See also CD 1.14. This method is implemented by the standard
Mathematica package Graphics`ComplexMap`.

Method 8. Use a color map: The method of using a color code for
the visualization of a complex-valued function can be easily generalized to
functions of two variables. An appropriately colored surface graphics or a
density graphics can give a useful graphical representation of a complex-
valued function. An example is given in Color Plate 5. Even in case of a
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Figure 1.3. Visualization of the function (x + iy)3 − 1 by
surface plots of the real and the imaginary part.
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Figure 1.4. The function (x + iy)3 − 1 as a vector field.
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Figure 1.5. Another visualization of the function ψ(x, y) =
(x + iy)3 − 1. The left graphics shows a rectangular coordi-
nate grid in the x-y-plane. These lines are mapped onto the
complex plane by the function ψ. The right graphics displays
the image of the coordinate grid in the complex plane.

surface graphics we find it useful to indicate the absolute value also by the
lightness of the color, for example, by using the color map shown in Color
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Plate 3. For comparison, we show in Color Plate 6 a density plot of the
function ψ(x, y) = (x + iy)3 − 1 which has been used for illustrating the
other methods. Now we see immediately that the function has three zeros
of first order on the unit circle.

As you can see from the examples, already in two dimensions the color
map described in Section 1.2.3 becomes an indispensable tool for the visual-
ization of complex-valued functions. Most visualizations in this book or on
the CD-ROM use Method 8.

But this method can be generalized even to three dimensions. For
complex-valued functions depending on three variables one may use isosur-
faces to represent the absolute value of the function. This surface can be
colored according to the phase of the wave function.

CD 1.9 shows the graphical representations of complex functions on
R2 using the stereographic color map. As an example, the Riemann
zeta function is discussed in more detail. CD 1.10 contains many
more examples of analytic functions and some special functions of
mathematical physics. CD 1.11 is an animation showing the depen-
dence of the Jacobi function sn(z|n), z ∈ C, on the parameter n.

CD 1.17 is an example of a wave function in three dimensions. An
isosurface of the absolute value is colored according to the phase.
The example shows a highly excited state of the hydrogen atom; see
also Color Plate 7. Many more visualizations of three-dimensional
wave functions will be presented in Book Two.

1.4. Special Topic: Wave Functions with an Inner
Structure

Elementary particles usually have an inner structure described by wave func-
tions with several components. The simplest case of a two-component wave
function occurs for particles with spin-1/2 which will be treated among other
things in the second volume of this title. In this section we describe a possible
method of visualizing such a “spinor wave function.”

A spin-1/2 wave function is a function of a space variable x with values
in the vector space C2 of pairs of complex numbers,

C
2 =

{

z =
(

z1

z2

)

| zi ∈ C

}

. (1.15)

For two vectors y and z in C2 a scalar product is defined by

〈y, z〉 = y1z1 + y2z2, (1.16)
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and the absolute value of z ∈ C2 is given by

|z| =
√

〈z, z〉 =
√

|z1|2 + |z2|2. (1.17)

A spinor wave function is a mapping

x → ψ(x) =
(

ψ1(x)
ψ2(x)

)

(1.18)

which consists of four independent real-valued functions, the real and imag-
inary parts of the components ψ1 and ψ2. In order to visualize such a
high-dimensional object, we introduce the Pauli matrices

σ0 =
(

1 0
0 1

)

, σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i
i 0

)

, σ3 =
(

1 0
0 −1

)

,

(1.19)
and define the four real-valued functions

Vi(x) = 〈ψ(x), σi ψ(x)〉, i = 0, 1, 2, 3. (1.20)
We note that V0 depends on the other functions because

V0(x) =
√

V1(x)2 + V2(x)2 + V3(x)2 = |ψ(x)|2. (1.21)

With the three functions (V1(x), V2(x), V3(x)) we form a vector field (V (x)
that can be visualized in a three-dimensional graphic by arrows attached
to a grid of x-values or by flux lines. In Book Two, we discuss how this
vector field describes a “local spin density” (the integral of (V (x) over x gives
twice the expectation value of the spin). Hence this method of visualization
displays physically interesting information. By comparison, a visualization
that just plots the real and imaginary parts of both components of ψ is not
very instructive.

We finally note that the spinor wave function ψ(x) is not represented
uniquely by the vector field (V (x): Multiplication of ψ(x) with a phase factor

ψ(x) → eiθ(x)ψ(x) =
(

eiθ(x)ψ1(x)
eiθ(x)ψ2(x)

)

(1.22)

would not change any of the functions Vi(x).



Chapter 2

Fourier Analysis

Chapter summary: Fourier analysis is of utmost importance in many areas of
mathematics, physics, and engineering. In quantum mechanics, the Fourier trans-
form is an essential tool for the solution and the interpretation of the Schrödinger
equation. It will help you to understand how a wave function can describe simulta-
neously the localization properties and the momentum distribution of a particle.

In this chapter we collect many results from Fourier analysis which will be
used frequently in later chapters. In passing, you will be introduced to the most
important mathematical concepts of quantum mechanics, such as Hilbert spaces
and linear operators. Moreover, you will learn that the famous uncertainty relation
is just a property of the Fourier transformation. If you need some more motivation,
you may read Chapter 3, Sections 3.1 and 3.2 first.

This chapter starts by describing the Fourier series of a complex-valued peri-
odic function. The Fourier series describes the given function as an infinite linear
combination of stationary plane waves, each characterized by an amplitude and a
wave number. In order to understand in which sense the Fourier sum converges, we
need to introduce the concept of a Hilbert space.

As the period of the complex-valued function goes to infinity, the Fourier series
becomes a Fourier integral which represents the function as a “continuous super-
position” of stationary plane waves. The spectrum of wave numbers is described
by a function on “k-space.” This is the space of all possible wave numbers, which
in the context of quantum mechanics is called the momentum space. It is a very
important observation that the original function and the function describing the
continuous spectrum of wave numbers depend on each other in a very symmetrical
way. This relationship—the Fourier transformation—can be described as a linear
operator acting in the Hilbert space of square integrable functions.

The properties of the Fourier transformation make it a very useful tool in quan-
tum mechanics. For example, the derivative of a function corresponds via the
Fourier transformation to a simple multiplication by k in momentum space. This
fact will be exploited in Chapter 3 to solve the free Schrödinger equation with
arbitrary initial conditions.

While this chapter contains some material that is indispensable for a thorough
description of quantum mechanics, there are some mathematically more elaborate
sections that may be skipped at first reading. These sections are labeled “special
topics.”

15
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2.1. Fourier Series of Complex-Valued Functions

Fourier analysis is the art of writing arbitrary wave functions as superposi-
tions of trigonometric functions. As a first step we consider periodic func-
tions and the associated Fourier series.

2.1.1. Basic definitions

Given a real number L > 0, we define the numbers

k(L)
n = n

π

L
, n = 0,±1,±2, . . . , (2.1)

and the associated functions

u(L)
n (x) =

1√
2L

eik(L)
n x for all x and n. (2.2)

In view of the quantum-mechanical applications, we call u(L)
n a stationary

plane wave with wave number kn. An example of a stationary plane wave is
shown in Color Plate 4. The function u(L)

n is a complex-valued trigonometric
function. The real and imaginary parts are given by cosine and sine func-
tions, respectively. If you remember Euler’s formula (1.3), you will notice
immediately that

u(L)
n (x) =

1√
2L

(

cos(k(L)
n x) + i sin(k(L)

n x)
)

for all x and n. (2.3)

The choice of the normalization factor (2L)−1/2 will be explained later.
Each of the functions u(L)

n is periodic with period 2L, that is,

u(L)
n (x + 2L) = u(L)

n (x) for all x and n. (2.4)

Because of the periodicity, it is sufficient to restrict the consideration to an
interval of length 2L, say, the interval [−L, L].

Obviously, any finite sum (superposition or linear combination) of the
form

ψ(x) =
N

∑

n=−N

cn u(L)
n (x), all x ∈ [−L, L], (2.5)

(with arbitrary complex numbers cn) is a smooth function on [−L, L] with
the property ψ(−L) = ψ(L). It can, of course, also be considered a periodic
function on R.

The expression (2.5) is called a trigonometric sum or Fourier sum. For
n ≥ 0 we call

cn u(L)
n (x) + c−n u(L)

−n(x) (2.6)

the summand of order n.
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CD 2.1 is an interactive demonstration showing how new functions
can be built by adding trigonometric functions. Summands of in-
creasing order can be added step-by-step in order to generate Fourier
sums that approximate Gaussian functions.

Exercise 2.1. Consider the important special case where cn and c−n are
complex conjugate numbers, say, c±n = an ± ibn. Show that the summand
of order n and hence the trigonometric sum (2.5) is real. Moreover, the
summand of order n can be written as

cn u(L)
n (x) + c−n u(L)

−n(x) = dn cos
(

k(L)
n x + φn

)

, (2.7)

with

dn =

√

2(a2
n + b2

n)
L

, φn = arccos
( an

√

a2
n + b2

n

)

. (2.8)

Exercise 2.2. Consider the superposition of two stationary plane waves

f(x) = exp(ik1x) + exp(ik2x), k1, k2 ∈ R. (2.9)

Find the period of the absolute value |f(x)|. Under what condition on k1 and
k2 is f(x) a periodic function?

2.1.2. Fourier expansion of square-integrable functions

The set of functions that can be generated by superpositions of plane waves
is huge. It is a fundamental mathematical result that every function that
is square-integrable on [−L, L] can be approximated by a superposition of
plane waves. This result is quoted in the box below.

Let me first give you the definition of square-integrability. This definition
is very important for quantum mechanics, because all wave functions with a
physical interpretation have to be square-integrable.

Definition 2.1. A (complex-valued) function ψ is called square-inte-
grable on the interval [a, b] if

∫ b

a
|ψ(x)|2 dx < ∞. (2.10)

The set of all square-integrable functions forms the Hilbert space L2([a, b]).
You will learn more about Hilbert spaces soon.
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Fourier series of a square-integrable function:
Let ψ be any square-integrable function on the interval [−L, L]. Then

ψ(x) =
∞
∑

n=−∞
cn u(L)

n (x), cn =
∫ L

−L
u(L)

n (x)ψ(x) dx. (2.11)

This infinite trigonometric sum is called a Fourier series. The coefficients
(amplitudes) cn are square-summable, that is,

∞
∑

n=−∞
|cn|2 =

∫ b

a
|ψ(x)|2 dx < ∞. (2.12)

Let me define a function ψ̂ by

ψ̂(k) =
1√
2π

∫ L

−L
e−ikx ψ(x) dx, for k ∈ R. (2.13)

Now the Fourier series of ψ can be written as

ψ(x) =
1√
2π

∞
∑

n=−∞

π

L
ψ̂(k(L)

n ) eik(L)
n x. (2.14)

This way of writing the Fourier series has cosmetic reasons which will become
apparent soon when I make the transition to Fourier integrals.

CD 2.2 shows again the approximation of real and complex Gauss-
ian functions by finite trigonometric sums on the interval [−2π, 2π].
Now the approximation is visualized by showing the spectrum of the
Fourier amplitudes (as in Color Plate 8) together with the corre-
sponding partial sum. (See also Fig. 2.1).

2.1.3. The convergence of the Fourier series

The mathematical interpretation of the infinite sums contains a more subtle
point. The convergence of the Fourier series has to be understood as a
convergence in the mean, that is,

lim
m→∞

∫ L

−L

∣

∣

∣

m
∑

n=−m

cn u(L)
n (x) − ψ(x)

∣

∣

∣

2
dx = 0. (2.15)

The convergence in the mean does not imply that the sum converges for a
fixed value of x, that is, in a “pointwise sense.” Indeed, this observation is
important if the function has discontinuous jumps.
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Figure 2.1. Approximation by a finite Fourier sum. (a)
Symmetric Gaussian function exp(−x2/2). (b) The sum-
mands in the Fourier-cosine expansion Eq. (2.20) up to or-
der n = 8. (c) The coefficients ψ̂(k(L)

n ), visualized as a bar
graph. Vertical lines of length |ψ̂(k(L)

n )| are drawn at each
k(L)

n . For arbitrary functions, we could use a color to indi-
cate the phase of the complex coefficients ψ̂(k(L)

n ). Several
examples are given in Color Plate 8.

A square-integrable function need not be continuous. For example, the
characteristic function of the interval [−1, 1],

χ[−1,1](x) =
{

1, for −1 ≤ x ≤ 1,
0, elsewhere,

(2.16)

has discontinuous jumps at x = ±1, but it is certainly square-integrable on
any interval [−L, L].

Exercise 2.3. Assuming L > 1, find the Fourier series of the charac-
teristic function (2.16).

If you take only finitely many summands of the Fourier series of a square-
integrable function, you get an approximation by a finite Fourier sum. Any
finite Fourier sum is a smooth function with the property ψN (−L) = ψN (L).
You can see in Fig. 2.2 how such an approximation of a discontinuous func-
tion looks like. Near the discontinuities the Fourier sum shows rapid oscil-
lations. The amplitude of the oscillations near the discontinuities does not
become smaller by adding more and more terms, and the Fourier series does
not converge in a pointwise sense to the correct value at these points (the
Gibbs’ phenomenon). Instead, the Fourier series converges only in the more
moderate sense of Eq. (2.15).
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Figure 2.2. Approximation of a step function by a finite
Fourier sum. Increasing the order of the approximation does
not reduce the amplitude of the oscillation near the disconti-
nuities of the function.

CD 2.3 and CD 2.4 show the approximation of discontinuous func-
tions by finite Fourier sums illustrating the Gibbs phenomenon (see
also Fig. 2.2). It can be seen that the Fourier series converges very
slowly and oscillates near the discontinuities.

A square-integrable function ψ on the interval [−L, L] may be regarded
as a periodic function on R with period 2L. If ψ is continuous on the
interval, but has different boundary values ψ(−L) -= ψ(L), then ψ has in
fact a discontinuity at ±L, and you can expect the Fourier approximations
to oscillate as in Fig. 2.2 near the borders of the interval [−L, L].

If ψ itself is a smooth function, then there are stronger results on the
convergence of the Fourier series. For example: Let ψ be continuously differ-
entiable on [−L, L], with ψ(−L) = ψ(L). Then the infinite sum in Eq. (2.14)
converges even pointwise and uniformly in x, that is

max
x:−L≤x≤L

{

N
∑

n=−N

cn u(L)
n (x) − ψ(x)

}

→ 0, as N → ∞. (2.17)

Exercise 2.4. Verify the following assertion: With respect to the scalar
product (see Sect. 2.2.2 below)

〈f, g〉 =
∫ L

−L
f(x) g(x) dx (2.18)
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the functions u(L)
n have the property

〈u(L)
n , u(L)

m 〉 = δnm =
{

1, for n = m,
0, for n -= m.

(2.19)

We say that the set {u(L)
n | n = 0,±1,±2, . . . } is an orthonormal set. Equa-

tion (2.19) looks so nice because of our choice of the normalization constant
in the definition of the stationary plane waves, see Eq. (2.2).

Exercise 2.5. If a function ψ is real-valued and symmetric, ψ(x) =
ψ(−x), show that Eq. (2.14) can be written as

ψ(x) =
∞
∑

n=0

an cos(k(L)
n x). (2.20)

with real coefficients an (see also Fig. 2.1). What happens for antisymmetric
functions, that is, ψ(x) = −ψ(−x)?

2.2. The Hilbert Space of Square-Integrable
Functions

The set L2([a, b]) of all square-integrable functions on an interval (see Defi-
nition 2.1) has the structure of a Hilbert space. In the following, the most
important concepts of Hilbert space theory are explained as far as they are
needed for Fourier analysis. In many respects the functions in a Hilbert
space can be treated like ordinary vectors. For example, we can define linear
combinations and scalar products of functions. This is not merely an exer-
cise in abstract mathematics, but will be useful for understanding quantum
mechanics. In the common interpretation of quantum mechanics wave func-
tions appear as elements of a suitable Hilbert space. Thus, Hilbert spaces
are a central element of the modern mathematical apparatus of quantum
mechanics. They will be encountered very often later in this course.

2.2.1. Linear structure

The set L2([a, b]) of square-integrable functions has the structure of a linear
space. For the following it is useful to bear in mind the analogy with the
n-dimensional complex space Cn which is a more elementary example of a
linear space. The vectors (v ∈ Cn are n-tuples

(v = (v1, . . . , vn), with vi ∈ C. (2.21)
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These n-tuples can be added and multiplied by scalars. For a ∈ C, b ∈ C,
(v ∈ Cn and (w ∈ Cn we can define the linear combination a(v + b(w by

(a(v + b(w)i = a vi + b wi, for i = 1, . . . , n. (2.22)

Linear combinations of functions ψ and φ in L2([a, b]) are defined in a point-
wise sense:

(

aψ + bφ
)

(x) = aψ(x) + b φ(x), for all x ∈ [a, b]. (2.23)

If ψ and φ are square-integrable, then the linear combination aψ + bφ is
again a square-integrable function.

2.2.2. Norm and scalar product

The linear spaces L2([a, b]) and Cn have much more in common than the
possibility of forming linear combinations. For example, the length (or norm)
of a vector in Cn is defined by

‖(v‖ =
(

n
∑

i=1

|vi|2
)1/2

. (2.24)

In the Hilbert space L2([a, b]) this corresponds to the norm of the function
ψ, which is defined by

‖ψ‖ =
(

∫ b

a
|ψ(x)|2 dx

)1/2

. (2.25)

Hence we can also define the distance d between two functions ψ and φ by

d(φ, ψ) = ‖φ− ψ‖. (2.26)

Likewise, the scalar product of two vectors (v and (w,

(v · (w =
n

∑

i=1

vi wi, (2.27)

has an analog for functions ψ and φ:

〈ψ,φ〉 =
∫ b

a
ψ(x)φ(x) dx. (2.28)

As for vectors, we have

‖ψ‖2 = 〈ψ,ψ〉. (2.29)

Notice that the scalar product has been defined to be antilinear in the first,
and linear in the second argument:

〈aψ1 + bψ2,φ〉 = a 〈ψ1,φ〉 + b 〈ψ2,φ〉, (2.30)
〈ψ,aφ1 + bφ2〉 = a 〈ψ,φ1〉 + b 〈ψ,φ2〉. (2.31)
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Moreover,

〈ψ,φ〉 = 〈φ,ψ〉. (2.32)
We also state without proof the important Cauchy–Schwarz inequality:

|〈ψ,φ〉| ≤ ‖ψ‖ ‖φ‖. (2.33)
Equality holds if and only if ψ = αφ with some α ∈ C.

2.2.3. Other Hilbert spaces

So far, we have only considered the Hilbert space L2([a, b]) of square-integrable
functions over a finite interval [a, b]. But in a completely analogous way we
can also define Hilbert spaces that are defined on some other set. Among
the most important examples are the Hilbert spaces L2([a,∞)), and L2(R)
of square-integrable functions on an infinite interval, and the Hilbert space
L2(Rn) of square-integrable functions on Rn. All we have to do is to define
the norm and the scalar product by taking the integrals in (2.25) and (2.28)
over the respective domain of definition. For example, a vector in the Hilbert
space L2(Rn) is a function

ψ : R
n → C

for which the norm

‖ψ‖ =
(

∫

Rn
|ψ(x)|2 dnx

)1/2

(2.34)

is finite.

Ψ Abstractly, a Hilbert space is defined as a vector space that is equipped
with a scalar product, and that is complete with respect to the norm

induced by the scalar product. The completeness of the Hilbert space means
that every sequence (ψn) with the property (Cauchy sequence)

‖ψn − ψm‖ → 0, for n, m → ∞, (2.35)
has a limit ψ = limψn, that is,

lim
n→∞

‖ψn − ψ‖ = 0. (2.36)

For example, the set of real numbers is complete, the set of rational num-
bers is not. Because the vector space Cn with the previously defined scalar
product is complete, it is a Hilbert space.

Example 2.2.1. The Hilbert space l2. The Hilbert space of square-
summable sequences is an infinite-dimensional analog of Cn. A sequence
c = (ci) = (c1, c2, c3, . . . ) of complex numbers is square-summable if

∑

i

|ci|2 < ∞. (2.37)
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The set l2 of all square-summable sequences forms a vector space if the
addition and multiplication by a scalar a ∈ C is defined by

(ci) + (di) = (ci + di), a (ci) = (aci). (2.38)

With the scalar product

〈(ci) , (di)〉 =
∑

i

ci di (2.39)

the vector space l2 becomes a Hilbert space.

2.2.4. Orthogonality

Two functions ψ and φ in a Hilbert space are orthogonal if 〈ψ,φ〉 = 0. They
are called linearly independent if aψ + bφ = 0 implies a = b = 0. If two
functions are orthogonal, then they are also linearly independent. A set of
functions {φi} is called an orthonormal set if 〈φi,φj〉 = δij . By Exercise 2.4
the set {u(L)

n } is orthonormal in L2([−L, L]).
An orthonormal set {φi} in a Hilbert space H is a basis, if and only if the

completeness property holds. The completeness property means that every
vector ψ ∈ H can be written as a (possibly infinite) linear combination of
the basis vectors in the form

ψ =
∑

i

ci φi, ci = 〈φi,ψ〉. (2.40)

The form of the coefficients ci is an immediate consequence of the orthonor-
mality of the basis:

〈φi,ψ〉 = 〈φi,
∑

j

cj φj〉 =
∑

j

cj 〈φi,φj〉 =
∑

j

cj δij = ci. (2.41)

The infinite sum is assumed to converge with respect to the norm of the
Hilbert space, that is,

lim
N→∞

∥

∥

∑

i≤N

ci φi − ψ
∥

∥ = 0. (2.42)

With the help of the distance defined in Eq. (2.26) this can be written as

d
(

∑

i≤N

ci φi , ψ
)

→ 0, as N → ∞. (2.43)

In the finite-dimensional Hilbert space Cn the set {ei | i = 1, . . . , n} is a
basis, where ei = (0, . . . , 1, . . . , 0) is the vector with 1 as the ith component,
all other components being zero.
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Exercise 2.6. Assuming that the set {φi | i = 1, 2, . . . } is a basis, prove
that

‖ψ‖2 =
∞
∑

i=1

|ci|2, (2.44)

where ci = 〈φi,ψ〉 are the coefficients in the expansion of ψ. Thus, the
sequence (ci) belongs to the Hilbert space l2.

Ψ With respect to a fixed orthonormal basis {φi}, every vector ψ in the
Hilbert space can be represented uniquely by the square-summable

sequence (ci) of expansion coefficients. This establishes an isomorphism
between the given Hilbert space and the Hilbert space l2 of sequences. It
can be shown that every (separable) Hilbert space has a (countable) basis
in the sense defined above.

2.2.5. Fourier series

The importance of the concepts introduced above for the treatment of Fourier
series is quite obvious. For example, the theorem on the Fourier series of a
square-integrable function can simply be rephrased as follows.

The orthonormal set {u(L)
n | n = 0,±1, . . . } is a basis in L2([−L, L]).

This can be seen by noting that Eq. (2.11) is equivalent to

ψ =
∑

n

〈u(L)
n , ψ〉u(L)

n . (2.45)

You should compare the condition (2.42) for the convergence of this sum
with the condition (2.15) for the convergence of the Fourier series.

The orthonormality of the set of plane waves u(L)
n is the subject of Exer-

cise 2.4. The completeness property of an orthonormal set is usually rather
difficult to prove. For the set {u(L)

n } the interested reader will find the details
in almost any book on Fourier series.

2.3. The Fourier Transformation

2.3.1. From the Fourier series to the Fourier integral

If the length of the periodicity interval tends to infinity, it finally fills the
whole real axis and the periodicity vanishes. It is interesting to investigate
the behavior of the Fourier series in this limit because this will lead us to
the study of nonperiodic functions.
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Let ψ be a smooth function which vanishes outside an interval [−L0, L0].
For any L ≥ L0 and all x ∈ [−L, L] the Fourier series of ψ is given as in
Eq. (2.14) by

ψ(x) =
1√
2π

∞
∑

n=−∞
ψ̂(k(L)

n ) eik
(L)
n x π

L
(2.46)

=
1√
2π

∞
∑

n=−∞
ψ̂(k(L)

n ) eik
(L)
n x (k(L)

n+1 − k(L)
n ), (2.47)

where

k(L)
n =

nπ

L
, k(L)

n+1 − k(L)
n =

π

L
≡ ∆(L)k. (2.48)

CD 2.6 shows the spectrum of Fourier amplitudes of a Gaussian
function depending on the length L of the interval. We see the
transition from the Fourier series to the Fourier transform. This
transition is achieved by letting the length L tend to infinity. See
also Color Plate 9.

Equation (2.47) can be interpreted as the approximation of an integral
by a Riemann sum:

∞
∑

n=−∞
ψ̂(k(L)

n ) eik(L)
n x∆(L)k ≈

∫ ∞

−∞
ψ̂(k) eikx dk. (2.49)

Because ψ(x) = 0 for |x| ≥ L0 we can replace the borders of the integral in
Eq. (2.13) by ±∞ and finally obtain the very symmetrically looking relations

ψ(x) =
1√
2π

∫ ∞

−∞
ψ̂(k) eikx dk, (2.50)

ψ̂(k) =
1√
2π

∫ ∞

−∞
ψ(x) e−ikx dx. (2.51)

The function ψ̂ is called the Fourier transform of ψ. The mapping F : ψ 1→ ψ̂
is called Fourier transformation. We will describe its properties in the next
section.

Ψ The Fourier transform can be defined for all functions ψ that are inte-
grable (in the sense of Lebesgue). The existence of

∫

ψ(x) dx is equiva-
lent to the existence of the integral

∫

|ψ(x)| dx and hence also to the existence
of

∫

eikx ψ(x) dx.
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2.3.2. Fourier transformation in n dimensions

The Fourier transform can easily be generalized to functions of several vari-
ables. For example, take some integrable function ψ(x1, x2) on R2, and do
a Fourier transformation first with respect to the variable x1, and then with
respect to x2. You will obtain

ψ̂(k1, k2) =
1√
2π

∫ ∞

−∞

{ 1√
2π

∫ ∞

−∞
ψ(x1, x2) e−ik1x1 dx1

}

e−ik2x2 dx2 (2.52)

=
1
2π

∫

R2
ψ(x1, x2) e−i(k1x1+k2x2) dx1 dx2. (2.53)

The double integral in Eq. (2.53) is well defined and independent of the order
of integration whenever ψ is an integrable function on R2. This suggests the
following generalization of the Fourier transformation to functions of several
variables:

Let ψ(x), x ∈ Rn, be an integrable function. The Fourier transformation
F maps ψ onto the function ψ̂ defined by

ψ̂(k) =
(

Fψ
)

(k) =
1

(2π)n/2

∫

Rn
e−ik·x ψ(x) dnx. (2.54)

The space Rn formed by the independent variables k = (k1, . . . , kn) ∈ Rn is
usually called the Fourier space or—in view of the application to quantum
mechanics—the momentum space. This helps to distinguish it from the
position space formed by the variables x ∈ Rn. Correspondingly, one calls
ψ the function in position space and ψ̂ the function in momentum space.

Moreover, for an integrable function ϕ(k), k ∈ Rn, we define another
function ϕ̌ by

ϕ̌(x) =
1

(2π)n/2

∫

Rn
eik·x ϕ(k) dnk. (2.55)

In view of Eq. (2.50) the mapping ϕ 1→ ϕ̌ is called the inverse Fourier
transformation and is denoted by F−1. Indeed, even for this more general
situation one can prove the relation

ψ = F−1(Fψ) (2.56)

for every integrable function ψ for which Fψ is also integrable. This is the
famous Fourier inversion theorem.
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Fourier inversion theorem:
If ψ is integrable on Rn and if the Fourier transform of ψ,

ψ̂(k) =
1

(2π)n/2

∫

Rn
e−ik·x ψ(x) dnx, (2.57)

is also integrable (as a function of k ∈ Rn), then ψ has the representation

ψ(x) =
1

(2π)n/2

∫

Rn
eik·x ψ̂(k) dnk. (2.58)

A function and its Fourier transform depend on each other in a very
symmetric way. Apart from the sign in the exponent the inverse transfor-
mation is just a Fourier transformation from momentum space to position
space. More precisely, we have

(

F−1ϕ
)

(x) =
(

Fϕ
)

(−x). (2.59)

Exercise 2.7. Prove that the composition F2 of two Fourier transforms
amounts to a space reflection, that is,

(

F2ψ
)

(x) = ψ(−x). (2.60)

Therefore,
(

F4ψ
)

(x) = ψ(x), or

F4 = 1. (2.61)

2.4. Basic Properties of the Fourier Transform

The following results describe the range of the Fourier transform. You can
find the proofs in any book about Fourier analysis.

2.4.1. Riemann–Lebesgue lemma

The Fourier transform ψ̂ of an integrable function ψ is a continuous function
with the following properties:

1. ψ̂ is bounded,

sup
k∈Rn

|ψ̂(k)| ≤
∫

Rn
|ψ(x)| dnx. (2.62)

2. ψ̂ vanishes at infinity,

ψ̂(k) → 0, as |k| → ∞. (2.63)
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The same result applies to the inverse Fourier transform of a φ which is
integrable with respect to k.

The Riemann–Lebesgue lemma does not state how fast the Fourier
transform vanishes at infinity. Hence the Fourier transform of an in-
tegrable function need not be integrable. Indeed, if ψ is discontinu-
ous at some point x0, then the Fourier transform ψ̂ is not integrable
in momentum space. (If it were, ψ would be the inverse Fourier
transform of ψ̂ and hence a continuous function). See CD 2.10 and
CD 2.11.

2.4.2. Fourier–Plancherel theorem

If ψ is both integrable and square-integrable, then the Fourier transform ψ̂
is also square-integrable, and

∫

Rn
|ψ(x)|2 dnx =

∫

Rn
|ψ̂(k)|2 dnk. (2.64)

Exercise 2.8. By giving examples, show that there exist functions ψ
that are integrable on R but not square-integrable. Similarly, find a square-
integrable function ψ ∈ L2(R) that is not integrable.

Exercise 2.9. Prove: A function that is square-integrable over a finite
interval [a, b] is also integrable on [a, b].

The Fourier–Plancherel theorem states that the Fourier transform F is
continuous with respect to the norm in the Hilbert space L2(Rn). If ψ and φ
are close together, then also ψ̂ and φ̂ are close together. Here “close together”
means that ‖ψ − φ‖ is small. The Fourier–Plancherel theorem implies that
ψ̂ and φ̂ are close together in the same sense because ‖ψ̂ − φ̂‖ = ‖ψ − φ‖.

2.5. Linear Operators

2.5.1. Basic definitions

The Fourier transformation F is a mapping from a set of integrable functions
ψ in a Hilbert space to functions ψ̂ belonging to the same Hilbert space. The
mapping F is an example of a linear operator. You will learn in Chapter 4
that in the quantum-mechanical formalism the linear operators play an es-
sential role (all physical observables are represented by linear operators).
Thus, it is important familiarize yourself with this concept at an early stage.

Mathematically, linear operators are defined as mappings on a vector
space that are compatible with the linear structure of the vector space. It
is typical for infinite-dimensional function spaces that linear operators often
can only be defined on a suitable subspace.
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Definition 2.2. A linear operator T in a Hilbert space H is a trans-
formation mapping vectors ψ from a domain D(T ), which is a linear
subspace of H, to other vectors Tψ in such a way that

T (aψ + bφ) = a Tψ + b Tφ (2.65)

for all ψ, φ ∈ D(T ) and all scalars a, b ∈ C.

Exercise 2.10. Verify that the set D of integrable and square-integrable
functions is a linear subspace of L2(Rn). Show that the Fourier transform
F : ψ → ψ̂ is a linear operator defined on the domain D, that is, prove that
Eq. (2.65) holds for F .

Two linear operators S and T can be multiplied. The product is simply
defined as the composition,

(ST )ψ ≡ S ◦ T ψ = S(Tψ). (2.66)

The domain of the product ST consists of those elements ψ in the domain
of T , for which Tψ is in the domain of S.

D(ST ) = {ψ ∈ D(T ) | Tψ ∈ D(S)}. (2.67)

The commutator of two linear operators:
The product of two operators is not commutative. This means that in
general ST is different from TS. The degree of noncommutativity is
described by the commutator

[S, T ] = ST − TS. (2.68)

The commutator is again a linear operator which is defined on the inter-
section of the domains of ST and of TS, that is, on the linear subspace

D([S, T ]) = D(ST ) ∩ D(TS). (2.69)

Exercise 2.11. The commutator is linear in both arguments, that is, for
any complex numbers α1 and α2,

[α1S1 + α2S2, T ] = α1[S1, T ] + α2[S2, T ], (2.70)
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and similar for the second argument. Moreover, the commutator has the
following algebraic properties which are often useful for practical calculations:

[S, T ] = [−T, S], (antisymmetry) (2.71)
[R, [S, T ]] + [S, [T,R]] + [T, [R, S]] = 0, (Jacobi identity) (2.72)
[R, ST ] = S [R, T ] + [R, S]T. (2.73)

Verify these identities by a formal calculation using the definition of the
commutator.

2.5.2. Boundedness

A linear operator T is bounded if there is a constant c > 0 such that

‖Tψ‖ ≤ c ‖ψ‖, for all ψ ∈ D(T ). (2.74)

The smallest such constant is called the norm of T and is denoted by ‖T‖,

‖T‖ = sup
ψ∈H

‖Tψ‖
‖ψ‖ . (2.75)

If the supremum above does not exist, then the linear operator is called
unbounded.

Ψ Unboundedness criterion: For an unbounded operator T there ex-
ists a sequence ψn in the domain D(T ), such that ψn converges to zero

while Tψn diverges.

Proof. If T is not bounded, then for every n there is a φn such that ‖Tφn‖ >
n ‖φn‖. Setting

ψn =
1√
n

φn

‖φn‖
,

we find that ‖ψn‖ = 1/
√

n → 0, and ‖Tψn‖ >
√

n → ∞.

The Fourier transformation F is an example of a bounded linear operator.
It is defined on the domain of functions that are integrable and square-
integrable at the same time. The Fourier–Plancherel relation states that

‖F‖ = 1. (2.76)

2.5.3. Special topic: Continuity

A linear operator is continuous if it preserves the convergence of sequences.

Definition 2.3. A linear operator T is continuous if limTψn exists
whenever limψn exists.

Here we state the basic theorem about continuous linear operators
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Theorem 2.1. Each of the following statements is completely equivalent
to the continuity of the linear operator T .

1. T is bounded.

2. T is continuous at 0, that is, lim Tψn = 0, whenever limψn = 0.

Let us sketch the proof of this theorem.
(1) The continuity of T implies the boundedness: If T were unbounded, then

the unboundedness criterion implies the existence of a convergent sequence that is
mapped to a divergent one (which clearly contradicts the definition of continuity).

(2) Boundedness implies continuity at 0 because

‖Tψn‖ ≤ ‖T‖ ‖ψn‖.
Hence, if the sequence (ψn) converges to 0, so does the sequence (Tψn).

(3) The continuity at zero implies the continuity at any other point ψ ∈ D(A):
If (ψn) is an arbitrary convergent sequence, limψn = ψ ∈ D(A), then the sequence
(ψn − ψ) converges to 0 and hence, because of the continuity at 0, the sequence
Tψn − Tψ also converges to 0. Hence Tψn converges.

In the definition of the continuity it is assumed that ψn ∈ D(T ) for all n.
Let us now assume that the limit ψ of the convergent sequence {ψn} is not
in the domain of T . In this case we can nevertheless define an action of T
on ψ in a completely natural way:

Tψ = lim
n→∞

Tψn.

In this way one can always extend a continuous operator T to an eventually
larger domain which contains all limit points of sequences in the original
domain. This process preserves the norm of the operator. If—as it is usually
the case—the original domain is “dense” in H, then the extended domain is
the whole Hilbert space.

Definition 2.4. A set A is called dense in H if every vector ψ ∈ H is
the limit of a convergent sequence of vectors ψn ∈ A.

Ψ By the definition above, the subset A is dense if every vector in the
Hilbert space can be approximated from within the subset. We can

reformulate this property as follows: Given ψ ∈ H and ε > 0, there is always
a φ ∈ A within the distance ε from ψ. A useful criterion for a linear subspace
to be dense is the following: A linear subspace A of a Hilbert space is dense
if and only if the only vector that is orthogonal to all vectors in A is the
zero-vector: A is dense if and only if 〈ψ, φ〉 = 0 for all ψ ∈ A implies φ = 0.

Let A be a subset of a Hilbert space. If we add all limit points of A to
A, we obtain the closure of A, sometimes denoted by A. A set which already
contains all its limit points is called a closed set. A set A is dense in H if
and only if A = H.
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Let T be a linear operator that is defined on a domain D(T ). The linear
operator obtained from T by extending its action to the closure of D(T ) is
called the closure of T . If the original domain is dense in H, then the closure
of T is defined everywhere in H.

The process of extending a densely defined linear operator to the whole
Hilbert space will now be demonstrated for the Fourier transformation F .

2.5.4. Special topic: Extension of the Fourier transform

We can extend the definition of the Fourier transform F to all square-
integrable functions in the Hilbert space L2(Rn). Let ψ be a square-in-
tegrable function. As you know, ψ need not be integrable and hence the
Fourier transform of ψ is perhaps ill-defined. However, we can approximate
ψ by integrable functions. Define

ψn(x) =
{

ψ(x), if |x| ≤ n,
0, if |x| > n.

(2.77)

Then ψn is integrable and you can see that

‖ψ − ψn‖2 =
∫

|x|>n
|ψ(x)|2 dnx → 0, as n → ∞. (2.78)

Thus, an arbitrary square-integrable function is the limit of a sequence of
integrable functions. This proves that the set of functions in L2(Rn) that
are integrable is dense in L2(Rn).

Each ψn is in the domain of F , and the sequence (ψn) converges in H.
The continuity of F implies the convergence of the sequence (Fψn) and thus
it makes sense to define the Fourier transform of ψ to be the limit of the
sequence Fψn.

Fourier transform in L2:
The Fourier transform of an L2-function ψ is defined as

Fψ = lim
n→∞

ψ̂n, (2.79)

where ψn is any sequence of integrable functions converging to ψ, that
is,

ψ = lim
n→∞

ψn. (2.80)
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2.6. Further Results About the Fourier
Transformation

The following discussion quotes some elementary properties that make the
Fourier transform a very important tool in analysis. For the proofs, we refer
again to the books dedicated to Fourier analysis.

2.6.1. Translation, phase shift, scaling transformation

For a function ψ on Rn one can define the following operations (a, b ∈ R,
λ > 0):

(

τaψ
)

(x) = ψ(x − a), translation by a ∈ R
n, (2.81)

(

µbψ
)

(x) = eib·xψ(x), phase shift, (2.82)
(

δλψ
)

(x) = λ−n/2 ψ(x/λ), scaling transformation. (2.83)

For each a, b ∈ R, λ > 0, the operations τa, µb, and δλ are linear operators
defined on the Hilbert space of square-integrable functions. The action of
these operators on a given function is depicted in Fig. 2.3.

Using a substitution of variables in the Fourier integral it is easy to see
that

(

Fτaψ
)

(k) =
(

µ−aFψ
)

(k) = e−ik·a ψ̂(k), (2.84)

(

Fµbψ
)

(k) =
(

τbFψ
)

(k) = ψ̂(k − b), (2.85)

(

Fδλψ
)

(k) =
(

δ1/λFψ
)

(k) = λn/2 ψ̂(λk). (2.86)

Translations in position and momentum space:
The translation τa in position space corresponds to a phase shift e−ik·a in
momentum space. The translation µb in momentum space corresponds
to a phase shift eix·b in position space.

The relation between phase shift and translation of the Fourier trans-
form is illustrated in Color Plate 10. The behavior of scaled functions under
the Fourier transform is related to the well-known uncertainty relation (see
Section 2.8.1 below). Equation (2.86) states that a scaling transformation
in position space corresponds to the inverse scaling transformation in mo-
mentum space. Narrowing a function in position space makes it wide in
momentum space.
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a

a

b

τ

µ

δλ

Figure 2.3. Action of the translation τa, the phase shift µb,
and the scaling transformation δλ (for λ > 1). The trans-
lation shifts the wave packet ψ by a; the phase shift adds
color stripes (with wavelength proportional to 1/|b|); and the
scaling transformation widens (λ > 1) or narrows (λ < 1) the
wave packet.

CD 2.7, CD 2.8, and CD 2.9 illustrate the behavior of a Gaussian
function and of its Fourier transform under translations, phase shifts,
and scaling transformations.

Exercise 2.12. Show that the operators τa, µb, and δλ are defined ev-
erywhere in L2(Rn) and that they are bounded with norm 1.

Exercise 2.13. Show that the operators τa, and µb do not commute,
that is, the composition of these linear mappings depends on the order of the
operations. To this end, calculate

τa µb ψ − µb τa ψ (2.87)

for arbitrary ψ ∈ L2. See CD 2.8. This result will be discussed further in
Section 6.8.

2.6.2. Derivative, multiplication

Let ψ be an integrable function on R. Assume that ψ is differentiable and
vanishes, as |x| → ∞, such that the derivative dψ(x)/dx is also integrable.
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Then (using a partial integration and the fact that the boundary terms
vanish)

(

F dψ

dx

)

(k) = −
∫

R

(

d

dx
e−ikx

)

ψ(x) dx = ik
(

Fψ
)

(k). (2.88)

A differentiation in position space is thus transformed into a simple multi-
plication with the variable k in Fourier space.

If the function xψ(x) is integrable, then
(

Fxψ
)

(k) = i
d

dk

(

Fψ
)

(k). (2.89)

Analogous results hold in higher dimensions and for higher derivatives.

CD 2.10 shows the function f(x) = a/(1+bx2) and its Fourier trans-
form. Because xf(x) is not integrable with respect to x, the Fourier
transform is not differentiable at k = 0.

2.6.3. Special topic: Generalized derivative

With the Fourier transform you can do fantastic things. For example, it is
possible to define in a mathematically clean way the derivative of functions
that are not differentiable in the sense of ordinary calculus. The expression

ψ′ = F−1(ikψ̂) (2.90)

is called the “generalized derivative” of ψ. Let me explain this concept with
an example.

The function (see Fig. 2.4)

ψ = e−|x| (2.91)

is integrable and its Fourier transform is

ψ̂(k) =
√

2
π

1
1 + k2

. (2.92)

As |k| → ∞, this function decreases so slowly that ikψ̂(k) is not integrable.
This, of course, reflects the fact that ψ is not differentiable at x = 0. But
since ikψ̂(k) is square-integrable, we can define its inverse Fourier transform
in the L2-sense as in Eq. (2.79). Thus, the inverse Fourier transform is the
limit (with respect to the metric in L2) of the sequence

φn(x) =
1√
2π

∫ n

−n
eikx ikψ̂(k) dk. (2.93)

It can be shown that the L2-limit of this sequence is given by

φ(x) = −e−|x| x

|x| . (2.94)
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Figure 2.4. The Fourier transform allows to define a gener-
alized derivative. (a) This function ψ(x) is not differentiable
at the origin. (b) The Fourier transform ψ̂(k) of (a). (c)
The function kψ̂(k) is not integrable because it decays too
slowly, as |k| → ∞. (d) Because ikψ̂(k) is square-integrable,
the inverse Fourier transform of this function can still be de-
fined and gives the derivative of ψ at all points x where ψ is
differentiable.

At all points where ψ is differentiable, φ obviously coincides with the deriv-
ative of ψ.

The Fourier transform even allows us to define functions of the linear
operator d/dx by

f
( d

dx

)

= F−1 f(ik) ψ̂. (2.95)

This is, for example, important in relativistic quantum mechanics where one
defines a relativistic energy operator by (c2p2 − m2c4)1/2 with p = −id/dx.

Generalized derivative of order s: Using the Fourier transform
one can generalize the notion of the derivative to noninteger orders.
The CD 2.18 shows the application of ds/dxs (for noninteger s) on
the Gaussian function exp(−x2/2).
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CD 2.20 deals with another function of the derivative operator d/dx.
This is the resolvent (−d2/dx2 − z)−1. The animation shows the
action of the resolvent on a Gaussian function and the dependence
on the complex number z. In CD 2.20 the resolvent operator acts
on a step function.

2.7. Gaussian Functions

Gaussian functions are smooth functions that vanish rapidly in all directions,
as |x| → ∞. In quantum mechanics, they are very well suited to describe
the prototypical case of a fairly well localized particle. We will therefore
frequently use Gaussian wave packets as initial conditions for the Schrödin-
ger equation. In this section we derive some formulas for Gaussian functions
that will be used later.

2.7.1. The Fourier transform of a Gaussian function

A Gaussian function on Rn is an exponential function of the form

f(x) = exp
(

−
n

∑

i=1

αix
2
i

)

, αi > 0. (2.96)

Because f can be written as a product of Gaussian functions on R, it follows
that the Fourier transform of f is a product of the Fourier transforms of
one-dimensional Gaussians. Thus, we only need to calculate the Fourier
transform of exp

(

−αx2
)

(see Fig. 2.5).
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Figure 2.5. Plot of the Gaussian function (1/π)1/4 exp(−x2/2).
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Fourier transform of a Gaussian:
The Fourier transform of the Gaussian function f(x) = exp

(

−αx2/2
)

,
α > 0, is given by

f̂(k) =
1√
α

exp
(

− k2

2α

)

. (2.97)

Proof. Obviously, the Gaussian function e−x2/2 on R is the unique
solution of the differential equation

d

dx
f(x) + x f(x) = 0, with f(0) = 1. (2.98)

We now perform a Fourier transformation on both sides of this equation. If
f is a Gaussian function, then f , its derivatives, and xf vanish rapidly, as
|x| → ∞, and are thus integrable functions. We can therefore use Eqs. (2.88)
and (2.89) in order to obtain

ik f̂(k) + i
d

dk
f̂(k) = 0. (2.99)

This is the same differential equation as in (2.98) above. In order to deter-
mine f̂ uniquely, we need the initial condition

f̂(0) =
1√
2π

∫

R

e−x2/2 dx. (2.100)

The value of the integral is easily determined with the help of Mathematica.
Using the following trick, it is easy to do the calculation by oneself. Setting
I =

∫

R
e−x2/2 dx, we calculate I2, which can be written as

I2 =
∫

R2
e−(x2+y2)/2 dx dy = 2π

∫ ∞

0
e−r2/2 r dr (2.101)

= 2π
∫ ∞

0
e−sds = −2πe−s∣

∣

∞
0 = 2π. (2.102)

Hence we find I =
√

2π. Hence f̂(0) = I/
√

2π = 1. Therefore, f̂ satisfies the
same differential equation as f , with the same initial condition. We conclude
that f̂(k) = f(k) = exp(−k2/2).

This proves Eq. (2.97) for α = 1. The general case now follows easily
with a scaling transformation according to Eq. (2.86).
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Gaussian functions and their translates in x- and k-space are investi-
gated in CD 2.7–CD 2.9. The movies CD 2.10–CD 2.17 show various
other examples of the Fourier transformation. These examples in-
clude oscillating and discontinuous functions and functions with a
nonintegrable Fourier transform.

2.7.2. Special topic: A dense set of Gaussian functions

In a certain sense the set of Gaussian functions is a very large subset of the
Hilbert space. Here you will learn that Gaussian functions and their trans-
lates span the whole Hilbert space L2(R). This should justify the predomi-
nant use of Gaussian initial functions in the movies of quantum-mechanical
wave functions.

Theorem 2.2. Define the functions

Gq(x) =
( 1
π

)1/4
exp

(

−x2

2
+ iqx

)

. (2.103)

Then the linear span (the set of all linear combinations) of the set {Gq|q ∈ R}
is a dense subspace of the Hilbert space L2(R). In other words, every vector
in the Hilbert space can be approximated by a finite linear combination of the
functions Gq.

Proof. You can use the criterion cited after Definition 2.4 to convince
yourself that the set of all Gq is dense. You only have to show that the
only vector which is orthogonal to all the functions Gq is the zero-vector.
Consider the scalar product

〈Gq, ψ〉 =
∫ ∞

−∞
e−iqx G0(x)ψ(x) dx =

√
2πF(G0ψ)(q). (2.104)

Hence if ψ is orthogonal to all Gq, we have

〈Gq, ψ〉 = 0 ⇔ F(G0ψ) = 0 ⇔ G0ψ = 0 ⇔ ψ = 0. (2.105)

The last step follows because G0(x) -= 0 for all x. This proves that only
ψ = 0 is orthogonal to the set {Gq|q ∈ R}. This set is not a linear subspace,
because the linear combination of two Gaussians Gq1 and Gq2 is not of the
same form. But the set of all possible linear combinations of the functions
Gq is a linear subspace that fulfills the density criterion.

In Fourier space, the functions Ĝq = FGq are just shifted Gaussian
functions. Hence the set of all linear combinations of

Ĝq(k) =
( 1
π

)1/4
exp

(

−(k − q)2

2

)

, q ∈ R, (2.106)

is also dense in the Hilbert space of square-integrable functions.
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2.8. Inequalities

In this section you will read about some inequalities related to Fourier anal-
ysis. Here you will find a proof of the famous uncertainty relation that has
been of great importance in the development of quantum mechanics and its
interpretation. But there are other inequalities sometimes even more useful
in the mathematical theory of quantum mechanics.

2.8.1. The uncertainty relation

The uncertainty relation is an inequality that relates the width of a function
ψ in position space with the width of the Fourier transform ψ̂ in momentum
space. A measure for the spread around x = 0 is, for example, the integral

∫

Rn
x2 |ψ(x)|2 dnx = ‖xψ‖2. (2.107)

Obviously, this integral is small if the function |ψ(x)|2 is well localized around
the origin in Rn. Conversely, the integral will be large if a significant part
of the function ψ is located at large values of x. In Fourier space, consider
the expression

∫

Rn
k2 |ψ̂(k)|2 dnx = ‖∇ψ‖2. (2.108)

Here we used the Fourier–Plancherel relation Eq. (2.64). Of course we had
to assume that (each component of) kψ̂(k) is square-integrable.

Heisenberg’s uncertainty relation:

For all square-integrable functions ψ for which |x|ψ(x) and |k| ψ̂(k) are
also square-integrable, we have the inequality

‖∇ψ‖ ‖xψ‖ ≥ n

2
‖ψ‖2. (2.109)

Equality holds if and only if ψ is a Gaussian function of the form

ψ(x) = N exp
(

−α
x2

2

)

(2.110)

with some α > 0.

Proof. The following proof holds for differentiable functions that van-
ish, as |x| → ∞. With the Cauchy–Schwarz inequality (2.33) you can see
that

‖∇ψ‖2‖xψ‖2 ≥ |〈∇ψ,xψ〉|2. (2.111)
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Equality holds if and only if ∇ψ = αxψ with some α ∈ C. This differential
equation already implies that in this case ψ must be a Gaussian function as
in Eq. (2.110), with Reα > 0, in order to be square-integrable.

For arbitrary ψ you can perform the following partial integration

〈∇ψ,xψ〉 =
∫ n

∑

i=1

∂

∂xi
ψ(x)xiψ(x) dnx

= −
∫ n

∑

i=1

ψ(x)
∂

∂xi
xiψ(x) dnx = −〈ψ,∇ · xψ〉.

(2.112)

Notice that the integrated terms ψ(x) xiψ(x) vanish at the boundaries ±∞.
Now

∇ · xψ = nψ + x · ∇ψ, (2.113)

and hence

〈ψ,∇ · xψ〉 = 〈xψ,∇ψ〉 + n‖ψ‖2 (2.114)

Put this together with Eq. (2.112) and you will find

2Re 〈∇ψ,xψ〉 = 〈xψ,∇ψ〉 + n‖ψ‖2, (2.115)

and hence

|〈∇ψ,xψ〉|2 = (Re 〈∇ψ,xψ〉)2 + (Im 〈∇ψ,xψ〉)2 ≥ n2

4
‖ψ‖2. (2.116)

Equality holds if Im 〈∇ψ,xψ〉 = 0. For the Gaussian function above this
means α ∈ R, hence α > 0.

One of the crucial steps in the calculation above was to observe that

[∇,x]ψ ≡ ∇ · xψ − x · ∇ψ = nψ, (2.117)

see Eq. (2.113). The expression [∇,x] is the commutator of ∇ and x; see
Section 2.5.

Because there is nothing special about the origin in Rn, you can do the
same calculation with respect to other points x0, resp. k0. This amounts to
replacing x by x−x0, and k by k−k0 (or ∇ by ∇+ik0) in the calculations
above. Note in particular that [∇+ik0,x−x0] = n. As a result one obtains
the inequality

‖(−i∇− k0)ψ‖ ‖(x − x0)ψ‖ ≥ n

2
‖ψ‖2. (2.118)

Equality holds for a Gaussian that is translated in position space by x0 and
in momentum space by k0. The translation in momentum space, of course,
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amounts to a phase shift in position space. Hence the Gaussian functions
that are optimal with respect to the above inequality are given by

ψ(x) = N exp
(

ik0 · x − α
(x − x0)2

2

)

, α > 0. (2.119)

Finally, we note that for a given function ψ the expressions ‖(x − x0)ψ‖
and ‖(−i∇−k0)ψ‖ can be minimized separately by choosing x0 = 〈x〉ψ and
k0 = 〈k〉ψ, where

〈x〉ψ ≡ 〈ψ,xψ〉 =
∫

Rn
x |ψ(x)|2 dnx, (2.120)

and

〈k〉ψ ≡ 〈ψ̂,kψ̂〉 =
∫

Rn
k |ψ̂(k)|2 dnk. (2.121)

In quantum mechanics, these quantities are called the expectation values of
position and momentum. The expressions

∆x ≡ ‖(x − 〈x〉ψ)ψ‖ =
√

〈(x − 〈x〉ψ)2〉ψ (2.122)

and

∆k ≡ ‖(−i∇− 〈k〉ψ)ψ‖ =
√

〈(k − 〈k〉ψ)2〉ψ (2.123)

are called the uncertainties in position and momentum. In terms of these
quantities the uncertainty relation has the following form:

Uncertainty relation:
With ∆x and ∆k defined as above for ψ with ‖ψ‖ = 1, the uncertainty
relation reads

∆x∆k ≥ n

2
. (2.124)

Equality holds for the Gaussian

ψ(x) = N exp
(

i〈k〉ψ · x − α
(x − 〈x〉ψ)2

2

)

, α > 0. (2.125)

In quantum mechanics, it is always assumed that ψ satisfies the nor-
malization condition ‖ψ‖ = 1. This allows us to consider the function
x → |ψ(x)|2 a probability distribution. The same is true for k → |ψ̂(k)|2
because of the Fourier–Plancherel relation. In that context the numbers 〈x〉ψ
and 〈k〉ψ are called the mean values of x and k. The uncertainties ∆x and
∆k are called standard deviations in the language of probability theory.
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Figure 2.6. This plot shows the square of the Gaussian
function ψ(x) = (1/π)1/4 exp(−x2/2). The expectation value
of the position is 〈x〉ψ = 0. The vertical lines are at 〈x〉ψ±∆x.
The shaded area is about 68% of the whole area below the
curve. About 95% of the total area is between the points
〈x〉ψ ± 2∆x.

Exercise 2.14. Calculate the expectation values of position and mo-
mentum and the uncertainties ∆x and ∆k for the Gaussian function in
Eq. (2.119).

Exercise 2.15. Show that the normalization constant N in Eq. (2.125)
is given by

N =
(α

π

)n/4
, (2.126)

where n is the space dimension.

2.8.2. Special topic: Sobolev and Hardy inequalities

For normalized functions in three dimensions, the uncertainty relation can
be written as

‖∇ψ‖ ≥ 3
2

1
‖xψ‖ , with ‖ψ‖ = 1. (2.127)

Here, for the sake of completeness, we mention some other inequalities which,
like the uncertainty relation, give an estimate from below of the norm of the
gradient of ψ.
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The movies CD 2.13, CD 2.15, and CD 2.16 illustrate that the spread
in position space is not always related to the spread in momentum
space. In these cases the following inequalities often give quantitative
better estimates than the uncertainty relation.

A first example is Hardy’s inequality which is also sometimes called the
uncertainty principle lemma,

‖∇ψ‖ ≥ 1
2

∥

∥

1
|x| ψ

∥

∥ (2.128)

(here ψ need not be normalized).
Another “uncertainty relation” is expressed by the following Sobolev

inequality,

‖∇ψ‖ ≥
√

3
(π

2

)2/3
‖ψ‖6. (2.129)

Here the q-norm of ψ is defined by

‖ψ‖q =
(

∫

R3
|ψ(x)|q d3x

)1/q
. (2.130)

Equality holds in Sobolev’s inequality (2.129) precisely for the functions

ψm(x) =
1√

x2 + m2
, with m > 0 arbitrary, (2.131)

as well as for all functions obtained from ψm by translations. (Sobolev’s
inequality—unlike the uncertainty relation (2.127)—is insensitive against
translations of the function ψ).

2.9. Special Topic: Dirac Delta Distribution

A formal manipulation with the formulas (2.57) and (2.58) gives

ψ(y) =
1

(2π)n/2

∫

Rn
eik·y

( 1
(2π)n/2

∫

Rn
e−ik·x ψ(x) dnx

)

dnk (2.132)

=
∫

( 1
(2π)n

∫

e−ik·(x−y) dnk
)

ψ(x) dnx. (2.133)

This calculation is formal and mathematically not justified because we have
interchanged the order of integration where nonintegrable functions are in-
volved. The manipulation above nevertheless may serve as a useful reminder
of some important mathematical results. We define the Dirac delta function

δ(x) =
1

(2π)n

∫

e−ik·x dnk. (2.134)
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It looks like the Fourier transform of the constant function 1/(2π)n/2 (which
is, of course, not integrable). From Eq. (2.133) we see that the delta function
must have the formal property

ψ(y) =
∫

δ(x − y)ψ(x) dnx. (2.135)

The expression δ(x) is a very strange object. If ψ is an arbitrary positive
function that vanishes at 0, we have

∫

δ(x)ψ(x) dnx = 0. Hence we must
have δ(x) = 0 for all x except for x = 0. Moreover, for functions ψ that are
equal to 1 in a neighborhood of x = 0, we find that ψ(0) = 1 =

∫

δ(x) dnx,
that is, the area below the “graph” of δ must be 1. Obviously, there exists no
(locally integrable) function with these properties. (By the usual definition
of the (Lebesgue) integral, the integral yields zero for any function that
vanishes almost everywhere, that is, except on a set of measure zero).

As long as the delta-function is only used “under the integral sign”, it
can be given a rigorous meaning “in the sense of distributions”. For suffi-
ciently smooth functions ψ, the operation described in Eq. (2.135) amounts
to assigning the number ψ(y) (the value of ψ at the point y) to the function
ψ. The mapping ψ → ψ(y) is a continuous linear mapping from a suitable
function space into the field of complex numbers C. Such a mapping is called
a linear functional or a distribution. Of particular importance are the Dirac
delta distributions

δ(ψ) = ψ(0), and δy(ψ) = ψ(y). (2.136)

Usually, distributions are applied to functions ψ that are infinitely differen-
tiable and go to zero, as |x| → ∞ (faster than |x|−n for arbitrary n). These
functions are called test functions.

Any distribution t can be differentiated using the rule

t′(ψ) = t(−ψ′). (2.137)

The Fourier transform of a distribution is defined as

t̂(ψ) = t(ψ̂). (2.138)

A distribution is said to be regular if there exists a (locally integrable) func-
tion t(·) such that

t(ψ) =
∫

t(x)ψ(x) dnx. (2.139)

If a distribution is regular, then the linear mapping t determines the function
t(x) uniquely (almost everywhere), and vice versa. Hence one usually does
not distinguish between the regular distribution and the function describing
it.
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Any square-integrable function ψ can also be interpreted as a regular
distribution. If the distributional derivative of ψ is again a regular distribu-
tion ψ′, and if ψ′ is square-integrable, then the distributional derivative ψ′

coincides with the generalized derivative defined in (2.90) with the help of a
Fourier transform.

The Dirac-delta-distribution is not regular because according to our dis-
cussion above, δ(x) is not well defined as a function. Nevertheless, one often
writes

∫

δ(x)ψ(x) dnx instead of δ(ψ) because this is, after all, a convenient
and well-established notation.

According to the definition (2.138), the Fourier transform of δ is a regular
distribution,

δ̂(ψ) = δ(ψ̂) = ψ̂(0) =
∫ 1

(2π)n/2
ψ(x) dnx, (2.140)

that is, δ̂ is the regular distribution given by the constant function 1/(2π)n/2.
The distributional Fourier transform of the constant function 1 is given by

1̂(ψ) = 1(ψ̂) =
∫

ψ̂(k) dnk = (2π)n/2ψ(0) = (2π)n/2 δ(ψ). (2.141)

This result gives a rigorous meaning to Eq. (2.134).
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Chapter 3

Free Particles

Chapter summary: We start our exposition of quantum mechanics with a “deriva-
tion” of the Schrödinger equation for free particles. This is just a first step. In
realistic situations, particles interact with force fields and other particles and can
only be detected through their interaction with some measurement device. Never-
theless, a good understanding of the free motion is important, for example, for the
asymptotic description of interacting particles in scattering experiments.

The (time-dependent) free Schrödinger equation will be obtained as the differen-
tial equation for de Broglie’s plane waves. The plane waves have been introduced to
describe the wavelike behavior of a beam of particles, thereby relating the wave num-
ber to the momentum and the frequency to the energy of the particles. However, the
property of being localized in some region—which is typical for particles—cannot
be described by plane waves. Therefore, we exploit the linearity of the Schrödinger
equation to form (continuous) superpositions of plane waves. This process can be
described as a Fourier transform and leads to wave packets corresponding to fairly
localized phenomena. In this way, the problem of solving the Schrödinger equation
with an arbitrary initial function can be reduced to the calculation of a Fourier
integral.

Unlike classical particles, wave packets can neither have a sharp position nor a
sharp momentum. The extension of the wave packets in position and momentum
space can be described by the uncertainties ∆x and ∆k, which satisfy Heisenberg’s
uncertainty relation.

The wave function is usually interpreted statistically. The square of the absolute
value of the complex-valued wave packet describes a position probability distribu-
tion. The Fourier transform of the wave packet is related in the same way to the
distribution of momenta. According to the statistical interpretation, the predictions
of quantum mechanics concern the probability distributions of measurement results.
This is rather a theory of statistical ensembles than of individual particles. The sta-
tus of individual systems within quantum theory depends on the interpretation of
the measuring process. In this context we mention the paradox with Schrödinger’s
cat which occurs whenever quantum systems are in a superposition of rather distinct
wave functions.

The chapter ends with a description of the asymptotic form of the free time
evolution and a discussion of the energy representation. Both will be important for
the formulation of scattering theory in Chapter 9.

49
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3.1. The Free Schrödinger Equation

3.1.1. Particles and waves

According to the classical physical theories the basic entities of the physical
world are either particles moving through space as well-localized chunks of
matter, or fields that are spread out in space and propagate as waves. This
picture had to be revised when the availability of new experimental methods
allowed to investigate phenomena on very small scales, which are normally
beyond the reach of our senses. At the beginning of the development of
modern quantum mechanics in the 1920s it was clear that many physical
phenomena exhibit an inherent wave–particle dualism. For example, the ex-
planation of the photoelectric effect (see below) seemed to indicate that the
propagation of light, which has been considered a classical wave phenome-
non, also has the characteristics of a beam of particles (photons). On the
other hand, under certain circumstances material particles such as electrons
showed wave properties.

Speaking of wave phenomena, it is perhaps a good time to review some
basic definitions.

Wave phenomena: In the simplest case a wave phenomenon is described
by a plane wave. It describes some quantity that varies periodically in space
and time and is characterized by a wavelength λ and an oscillation period
T . We define the wave number k and frequency ω, respectively, as

k =
2π
λ

and ω =
2π
T

. (3.1)

The plane wave with wave number k is the complex-valued function

u(x, t) = exp(ikx − iωt) . (3.2)

The stationary plane wave in Color Plate 4 is a snapshot of uk (with k = 1)
at t = 0. The frequency ω may depend on k and ω = ω(k) is called the
dispersion relation of the wave phenomenon. The function

φ(x, t) = kx − ωt (3.3)

is called the phase of the plane wave. A point where the phase has a fixed
value moves with the phase velocity

v =
λ

T
=

ω

k
. (3.4)

For wave phenomena in higher dimensions we define the wave vector k, which
has the magnitude 2π/λ and points into the direction of wave propagation.
The plane wave is the function

u(x, t) = exp(ik · x − iωt). (3.5)
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For a fixed time t, the points x with a fixed value of the phase are charac-
terized by k ·x = const. These points form a plane that is orthogonal to the
wave vector k. The phase planes move with the phase velocity ω/|k| in the
direction of k.

CD 1.18 visualizes the time dependence of a plane wave propagating
in two space dimensions. In this case the phase planes appear as
lines of a certain color.

In order to describe the photoelectric effect, Albert Einstein introduced
in the year 1905 the relations

E = !ω, p = !k, (3.6)

between the energy E of the photons in the beam and the frequency ω of
the light wave (resp. between momentum p of photons and wave vector k).
The constant ! is known as Planck’s constant. It has the value

! = 1.0546 · 10−34 Joule · sec. (3.7)

The physical dimension energy × time is called action. It can also be inter-
preted as momentum × length or as angular momentum × angle.

Photoelectric effect: If light shines on a metal, electrons are set free.
The energy of the released electrons depends linearly on the frequency of
the light wave (not on the intensity, as one might have expected). Einstein
described the photo effect by assuming that the electrons are knocked out by
light particles (photons). During this scattering process, the energy of the
photons is transferred to the electrons. If the energy of the photons is large
enough, the electrons are emitted with a kinetic energy Ekin = E−W , where
W is the work needed to release an electron and E is the energy received from
a photon. Because of the observed linear relationship between the kinetic
energy of the electrons and the frequency ω of the beam of light, Einstein
concluded that the energy of a photon in the beam must be proportional to
the frequency, that is, E = !ω. Because photons move with the velocity of
light, they must have the rest mass m = 0. For particles with vanishing rest
mass the relativistic relation between energy and momentum becomes

E =
√

c2p2 + m2c4 = cp (c = velocity of light) (3.8)

and hence the photons must have the momentum p = E/c = !ω/c = !k.

Matter waves: In 1924, Louis de Broglie postulated a wave phenomenon to
be associated with a beam of particles. He assumed that a beam of electrons
can be described by a complex plane wave function

u(x, t) = eik·x−iωt, (3.9)
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where again the wave vector k and the frequency ω are determined by the
momentum and energy of the particles in the beam as in Eq. (3.6). These re-
lations make a connection between wave and particle properties and therefore
have no obvious interpretation. An experimental verification of de Broglie’s
assumptions can be seen in the experiments of Davisson and Germer in 1927,
where a beam of electrons scattered from a crystal showed the interference
pattern of a wave phenomenon.

Scattering from a crystal: Light waves sent through a crystal are scat-
tered by the atoms in the crystal. Every atom becomes the origin of a
scattered wave which is sent into all directions. But because the atoms are
arranged in a regular grid, there are only a few directions where all scat-
tered waves are in phase and get amplified by constructive interference. The
intensity of the scattered wave therefore shows sharp maxima in certain di-
rections. The condition for a maximum at an angle θ according to Bragg
is 2d sin θ = nλ, where n is an arbitrary integer, d is the lattice constant of
the crystal, and λ is the wavelength of the incident light. In this way, the
german physicist Max von Laue was able to prove the wave nature of x-rays.
If the wavelength is known, the interference pattern of the scattered wave
can be used to analyze the structure of the crystal with the help of the Bragg
condition. Essentially the same interference phenomena can be observed for
the scattering of electrons at thin metal foils. If the lattice constant of the
material is known, the Bragg condition allows to determine the wavelength
in a beam of electrons. The experimentally measured intensity maxima are
obtained if one assumes that electrons with energy E = p2/2m have the
wavelength λ = 2π!/p.

3.1.2. The Schrödinger equation

The equations (3.6) and (3.9) are a common starting point for motivating
the Schrödinger equation. The nonrelativistic relation between energy and
momentum of free particles with mass m,

E =
p2

2m
, (3.10)

corresponds via Eq. (3.6) to the dispersion relation

ω = !k2/2m. (3.11)

Hence it is easy to verify that the function u must be a solution of the
following partial differential equation:

i!
∂

∂t
ψ(x, t) = − !2

2m
∆ψ(x, t). (3.12)
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Here ∆ is the Laplace operator

∆ = ∇ · ∇ =
∂2

∂x2
1

+ · · · + ∂2

∂x2
n
, (3.13)

and n is the dimension of the configuration space (also called position space).
Usually we have n = 1, 2, or 3. Eq. (3.12) is the famous Schrödinger equa-
tion for free particles which was introduced by the Austrian physicist Erwin
Schrödinger in 1926.

Exercise 3.1. Replace Eq. (3.11) by the dispersion relation for light and
use the ansatz v(x, t) = cos(k ·x−ωt) to obtain a partial differential equation
for light waves.

Exercise 3.2. It is not so good to use the real-valued function v(x, t) =
cos(k ·x−ωt) instead of Eq. (3.9) in the description of electrons. Assuming
the relation Eq. (3.11), show that the wave equation for v would depend on
k and hence on the momentum of the electrons to be described.

Exercise 3.3. Write down a relativistic wave equation assuming that
the particles have nonvanishing rest mass m and satisfy the relativistic energy-
momentum relation

E =
√

c2p2 + m2c4 (3.14)

instead of Eq. (3.10).

3.1.3. Scaling the unit of length

For the purpose of theoretical considerations and in order to standardize
image scales, we apply a little trick that allows us to get rid of the physical
constants ! and m in the free Schrödinger equation. This simplification
can be achieved by a suitable scaling transformation. We simply change
the length unit such that 1 meter corresponds to

√

m/! new length units.
The position vector with respect to the new length unit will be denoted
temporarily by x̃. Obviously, we have

x = x̃
√

!/m. (3.15)

Inserting this into ψ(x, t), we can define a new function ψ̃, which depends
on x̃ by

ψ̃(x̃, t) = ψ(x̃
√

!/m, t). (3.16)

The new function satisfies the differential equation

i
∂

∂t
ψ̃(x̃, t) = −1

2
∆x̃ ψ̃(x̃, t), (3.17)
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where ∆x̃ is the Laplacian with respect to the new coordinates. Because we
could have used the new units from the very beginning, we will omit the
“∼” from now on and consider the Schrödinger equation in the form

i
∂

∂t
ψ(x, t) = −1

2
∆ψ(x, t). (3.18)

Exercise 3.4. Verify that the function ψ̃ defined in Eq. (3.16) indeed
satisfies the differential equation (3.17), whenever ψ is a solution of (3.12).

Exercise 3.5. For λ ∈ C define the scaling transformation Uλ by
(

Uλ ψ
)

(x) = (λ)n/2ψ(λx). (3.19)

Calculate Uλ∇ψ, ∇Uλψ, Uλ∆ψ, ∆Uλψ.

3.1.4. Plane waves

It is clear from our considerations in Section 3.1.1 that a set of smooth
solutions of the Schrödinger equation Eq. (3.12) is given by the plane waves

exp
( i

!
p · x − i

!

p2

2m
t
)

, all p ∈ R
n. (3.20)

These solutions describe a beam of particles with momentum p. The tran-
sition to the scaled units can be performed by substituting x

√

!/m for x.
This gives the plane wave solutions of Eq. (3.18),

uk(x, t) = exp
(

ik · x − i
k2

2
t
)

, with k = p/
√

!m. (3.21)

The wave vector k describes the momentum of the plane wave in the new
units. Hence the vector space Rn of all possible k is called the momentum
space.

Exercise 3.6. The phase velocity c of light waves in vacuum is inde-
pendent of the wavelength. For massive particles the phase velocity depends
on the wavelength. Calculate the phase velocity of the plane wave uk with
wave vector k.

Exercise 3.7. How would the momentum of a classical mechanical par-
ticle change under a scaling transformation x → λx? Show that after the
coordinate transformation x → x

√

!/m the momentum of the particle is
given by !k.

Plane waves are often used to model a beam of particles. Obviously a
plane wave has the same absolute value all over space and time. A localized
particle cannot be described in this way.
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CD 3.1 visualizes plane waves using different methods. Also shown
is the motion of a sum of three plane waves with different momenta.
If the momenta are commensurable, the resulting motion is periodic
in both space and time. (Two real numbers a and b are called com-
mensurable if a/b is a rational number). The sum of plane waves
with incommensurable momenta is a nonperiodic function.

It should be clear that such a complicated thing as the interaction of
the particles in the beam cannot be described in this simple way. Therefore,
the description in terms of plane waves will only be good for beams of low
intensity where the particles are separated far enough so that they may be
considered independent physical objects.

3.2. Wave Packets

In Chapter 2, we constructed almost arbitrary functions as superpositions
of stationary plane waves exp(ikx). Here we are going to do the same with
the time-dependent plane waves. The linearity of the Schrödinger equation
guarantees that superpositions of the plane waves are again solutions. Hence
the analysis of solutions of the Schrödinger equation essentially amounts to
a time-dependent Fourier analysis.

3.2.1. Superpositions of plane waves

The wavelike behavior of particles manifests itself in the experimentally ob-
served interference patterns. Similar to the case of optical interference, the
interference patterns produced by particles can be described by a linear
superposition of two or more plane waves. This leads to the principle of
superposition: For any two wave functions ψ1(x, t) and ψ2(x, t) the sum
ψ1(x, t) + ψ2(x, t) again describes a possible physical situation. Indeed, the
Schrödinger equation

i
∂

∂t
ψ(x, t) = −1

2
∆ψ(x, t) (3.22)

is in accordance with the principle of superposition because it is linear in ψ
(i.e., it does not contain powers of ψ or products of ψ with its derivatives).
Hence, because the derivative of a sum is the sum of the derivatives, the
sum of two solutions is again a solution. More precisely, if ψ1 and ψ2 are
any two solutions of the Schrödinger equation, then also any superposition
or linear combination ψ = aψ1 + bψ2, where a ∈ C and b ∈ C, is a solution.
This observation can be easily generalized to superpositions of an arbitrary
number of solutions:
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Figure 3.1. A linear combination (superposition) of sine-
functions generates a new wave form (see also CD 3.2). Sim-
ilarly, superpositions of the complex-valued plane waves give
new solutions of the Schrödinger equation.

Linearity of the Schrödinger equation:
Any finite linear combination

ψ =
n

∑

i=1

ai ψi with ai ∈ C (3.23)

of solutions ψi is again a solution of the Schrödinger equation.

In particular, we can obtain new waveforms by combining plane waves
uk with different momenta. For example, any time-dependent Fourier series

ψ(x, t) =
∑

i

ai uki(x, t) (3.24)

is a solution. The coefficient ai is the amplitude of the plane wave with wave
number ki.

CD 3.2 shows how the superposition of several plane waves can gen-
erate solutions of the Schrödinger equation that—at least in cer-
tain regions—look more localized than single plane waves. See also
Fig. 3.1. Because each of the constituent plane waves has a different
phase velocity, the superposition pattern changes with time. Note,
however, that any finite linear combination of periodic functions is
a quasi-periodic function. One cannot describe a truly localized,
aperiodic phenomenon in this way.
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3.2.2. Continuous superposition

A finite superposition of plane waves is not sufficient if one wants to obtain
a localized function. It turns out that one has to use a superposition of
uncountably many plane waves with different momenta k. Such a continuous
superposition is the integral

ψ(x, t) =
∫

Rn
φ(k) uk(x, t) dnk. (3.25)

Here the plane wave uk is multiplied by the scalar factor φ(k). Like the ai’s
in the discrete linear combination in Eq. (3.24) the coefficients φ(k) may be
complex numbers. Hence we will allow the amplitude function φ to be a
complex-valued function of the real variable k.

Now a natural question arises: Assume that a certain function ψ is given.
How can one find an amplitude function φ such that ψ can be written as
a continuous superposition of plane waves as in Eq (3.25)? Put differently:
How can one determine the distribution of momenta within ψ?

3.2.3. Fourier transformation

For simplicity we first consider the situation at time t = 0. The plane wave
with momentum k at time t = 0 is the function exp(ik · x). The continuous
summation of plane waves with different momenta at t = 0 is given by the
following integral:

ψ(x, t)
∣

∣

∣

t=0
= ψ0(x) =

∫

Rn
eik·x φ(k) dnk. (3.26)

From our considerations in Chapter 2 we know how to determine the ampli-
tude function φ for a given function ψ0.

Recall that any integrable function ψ0 with an integrable Fourier trans-
form ψ̂0 can be written as

ψ0(x) =
1

(2π)n/2

∫

Rn
eik·x ψ̂0(k) dnk, (3.27)

where

ψ̂0(k) =
1

(2π)n/2

∫

Rn
e−ik·x ψ0(x) dnx. (3.28)

If you compare Eq. (3.26) with Eq. (3.27), you can see that the continuous
superposition of plane waves can be interpreted as an inverse Fourier trans-
form. The amplitude function φ is just the Fourier transform of the wave
function.
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Momentum distribution of a wave function:
Any wave function ψ0 at time t = 0 can be understood as a continuous
superposition of plane waves exp(ik · x), where the plane wave with
momentum k has the amplitude

φ(k) =
1

(2π)n/2
ψ̂0(x). (3.29)

Hence the momentum distribution in ψ is given by its Fourier transform
ψ̂.

A localized wave packet ψ consists of plain waves exp(ik ·x) with various
momenta. The contribution of a particular momentum k is not in any way
localized in position space because the plane wave has everywhere the same
absolute value. We cannot point at particular parts of a wave packet and say:
“This part has momentum k1 and that part has momentum k2”. The part
with momentum k in a wave packet extends to every point of space-time.

3.2.4. Example: Gaussian amplitude function

In one dimension the Gaussian amplitude function

φ(k) =
1√
2π

( 1
απ

)1/4
exp

(

− k2

2α

)

, Reα > 0, (3.30)

belongs to the wave packet

ψ0(x) =
(α

π

)1/4
exp

(

−α
x2

2

)

. (3.31)

The calculation leading to the result (3.31) is shown in Section 2.7. Here we
want to emphasize the following points:

1. The function ψ defined in Eq. (3.31) is reasonably localized inside
the interval (−

√

1/2α,
√

1/2α) and decreases very rapidly outside.
Nevertheless, a physical system described by ψ does not have a sharp
(i.e., pointlike) position.

2. ψ has no sharp momentum either because many plane waves with
different momenta k are necessary to build ψ. The momentum distri-
bution of the constituent plane waves is given by Eq. (3.30).

3. By choosing α very large, we see that ψ becomes very well localized
in position space, but less localized in momentum space. The main
contributions to the momenta come from the interval (−

√

α/2,
√

α/2)
in momentum space.



3.3. THE FREE TIME EVOLUTION 59

CD 3.3.1 shows a Gaussian wave packet corresponding to a particle
at rest. Here “at rest” means that the average momentum of the
particle is zero, as it is the case for the amplitude function (3.30).
Because the Gaussian consists of plane waves with many different
momenta, the wave packet spreads with time in all directions.

3.3. The Free Time Evolution

3.3.1. Solution of the Schrödinger equation

Having described the function ψ0 as the inverse Fourier transform of a func-
tion ψ̂0, we can easily determine a solution ψ(x, t) of the Schrödinger equa-
tion which at time t = 0 is equal to ψ0(x). We can do this because we know
the time evolution of the plane wave functions exp(ik·x) whose superposition
forms the initial function ψ0. We only have to insert this time dependence
into Eq. (3.26). Then we obtain the formula

ψ(x, t) =
1

(2π)n/2

∫

Rn
eik·x−i k2 t/2 ψ̂0(k) dnk. (3.32)

We can verify in a formal way that this function is indeed a solution by
inserting it into the Schrödinger equation and then interchanging the order of
differentiation and integration. (In order to make this argument rigorous, the
function ψ̂0 has to be sufficiently well behaved. The mathematical condition
allowing the interchange of differentiation and integration is that ψ̂0 and
k2ψ̂0 be integrable).

Eq. (3.32) just states that the solution ψ(x, t) of the Schrödinger equation
at time t is the inverse Fourier transform of the function

ψ̂(k, t) = exp(−ik2t/2) ψ̂0(k). (3.33)

Hence we have solved the initial-value problem: Given a suitable initial
function ψ0, determine a solution ψ(x, t) of the Schrödinger equation such
that ψ(x, 0) = ψ0(x). The procedure can be summarized as follows:

Solution of the initial-value problem for free particles:

1. Determine the Fourier transform ψ̂0 of the initial function ψ0.
2. Determine the inverse Fourier transform of exp(−ik2t/2) ψ̂0(k).

For a few initial functions this procedure can indeed be carried through
by an explicit calculation. We give an example in the next section.
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CD 3.7 shows the time evolution of a wave packet in momen-
tum space. The time dependence is described by the phase factor
exp(−ik2t/2). The absolute value of the function does not change
with time. This reflects the fact that for the free time evolution the
momentum is a conserved quantity.

Ψ The procedure above works for every initial function ψ0 in the Hilbert
space L2, because the Fourier transform can be defined for all square-

integrable functions (see Section 2.5.4). Hence we can define a time evolution
ψ(x, t) even if the initial function ψ0(x) is not differentiable.

CD 3.13 shows a solution of the Schrödinger equation with a non-
differentiable initial function.

3.3.2. Example: Gaussian function

We calculate the time evolution of the initial function

ψ0(x) := e−αx2/2 eipx, x ∈ R, (3.34)

for arbitrary α > 0 and p ∈ R. The result for p = 2 is shown in Color
Plate 11.

First Step: The Fourier transform of this function is given by

ψ̂0(k) =
1√
α

exp
(

−(k − p)2

2α

)

. (3.35)

Note that the momenta k in ψ0 are distributed around the average momen-
tum p. If you compare this with the example in Section 3.2.4 you will see
that the Fourier transform has just been shifted by p to the right. The shift
in momentum space is caused by the phase factor eipx in position space.

Second Step: The solution at time t of the initial-value problem is given
by

ψ(x, t) =
1√
α

1√
2π

∫

eikxe−ik2t/2e−(k−p)2/2α dk (3.36)

=
1√
α

e−
p2

2α
1√
2π

∫

e−(it+1/α)k2/2+k(ix+p/α) dk. (3.37)

The exponent in the last integral can be written as

− it + 1/α

2
q(k)2 +

(ix + p/α)2

2(it + 1/α)
(3.38)

with

q(k) = k − ix + p/α

it + 1/α
(3.39)
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from which we obtain

ψ(x, t) =
1√
α

exp
(

− p2

2α
+

(ix + p/α)2

2(it + 1/α)

)

1√
2π

∫

e−(it+1/α)q(k)2/2 dk.

(3.40)

We find
∫

e−(it+1/α)q(k)2/2 dk =
∫

e−(it+1/α)k2/2 dk =
√

2π
√

it + 1/α
(3.41)

and hence

ψ(x, t) =
1√

1 + iαt
exp

(

−αx2 − 2ixp + ip2t

2(1 + iαt)

)

. (3.42)

CD 3.3.2 and CD 3.4 show Gaussian wave packets with various av-
erage momenta. The complex phase of the wave function is deter-
mined by the imaginary part of the exponent in Eq. (3.42). The
local wavelength is shorter in front of the maximum at pt and longer
behind the maximum (see also Color Plate 11). This can be easily
explained because the Gaussian consists of components with many
different momenta moving with different velocities. The parts with
higher momenta (shorter wavelength) are faster and are therefore
found in front of the average position. The slower parts with longer
wavelength clearly accumulate behind the maximum, which moves
precisely with the average velocity corresponding to the momentum
distribution of the Gaussian.

Discussion: A little calculation shows that the real part of the exponent in
Eq. (3.42) is given by

− α

2(1 + α2t2)
(x − pt)2. (3.43)

Hence the absolute value of the Gaussian wave function at time t is again a
Gaussian function,

|ψ(x, t)| = (1 + α2t2)(−1/4) exp
(

−α(t)
2

(x − pt)2
)

, (3.44)

where

α(t) =
α

1 + α2t2
. (3.45)

The Gaussian function |ψ(x, t)| is centered around x(t) = pt which is just
the position at time t of a free classical particle with mass 1 and momentum
p and initial condition x(0) = 0. The width of the Gaussian at time t is
given by 1/

√

α(t) and increases roughly like t. This is called the spreading
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of the wave packet. At the same time the maximum value of the wave packet
decreases like 1/

√
t.

The spreading is a consequence of the distribution of momenta in
the wave packet. For the slow wave packet in CD 3.3 the momentum
uncertainty ∆k cannot be neglected in comparison with the average
momentum 〈k〉. Faster wave packets have a lower relative uncer-
tainty ∆k/〈k〉 of the momentum. As a consequence, very fast wave
packets can move over large distances without notable spreading and
thus behave in a more classical way (see CD 3.4).

The decay rate of the wave function depends on the dimension of the
configuration space. In n dimensions, the modulus of the wave function
decreases like t−(n/2).

CD 3.5 and CD 3.6 show the motion of Gaussian wave packets with
various average momenta in two space dimensions. CD 3.7 shows the
motion of a Gaussian wave packet in Fourier space. The free motion
in phase space is visualized by CD 3.8.

3.3.3. Conservation of the norm

The spreading of the wave packet ψ and the simultaneous decreasing of its
absolute value leads to the conservation of the norm

‖ψ(t)‖2 =
∫

Rn
‖ψ(x, t)‖2 dnx.

Time-invariance of the norm:
For any square-integrable solution ψ(x, t) of the Schrödinger equation
the norm is independent of time,

‖ψ(t)‖2 = ‖ψ(0)‖2. (3.46)

Proof. In momentum space, the time evolution is described by the
phase factor exp(−ik2t/2), which has absolute value 1. Hence the norm of
the wave function in momentum space,

∫

|ψ̂(k, t)|2 dnk =
∫

|ψ̂(k, 0)|2 dnk, (3.47)

is independent of time. By the Fourier–Plancherel relation (2.64), the same
is true for the wave function in position space.
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3.3.4. The propagator

Here we derive a formula that allows us to calculate the free time evolution
of an arbitrary initial state. Let us assume that the initial state is given by
a wave function ψ0(x). We know already that the wave function at time t is
given by

ψ(x, t) =
1

(2π)n/2

∫

eik·x−ik2t/2 ψ̂0(k) dnk (3.48)

=
1

(2π)n/2

∫

eik·x−ik2t/2
{ 1

(2π)n/2

∫

e−ik·y ψ0(y) dny
}

dnk (3.49)

If we formally interchange the order of the k and y integration, we obtain

ψ(x, t) =
∫

K(x − y, t)ψ(y) dny (3.50)

where we introduced the symbol

K(x − y, t) =
1

(2π)n

∫

eik·(x−y)−ik2t/2 dnk (3.51)

Hence K(x, t) is the inverse Fourier transformation of the function
1

(2π)n/2
exp

(

−ik2t/2
)

. (3.52)

This function is not integrable. If we still apply Eq. (2.97) (with complex
α = 1/it) we obtain formally

K(x − y, t) =
1

(2πit)n/2
exp

{

i
(x − y)2

2t

}

. (3.53)

Although the steps leading to this result are mathematically not justified,
the final formula is nevertheless correct and can be proved rigorously by an
approximation argument.

3.4. The Physical Meaning of a Wave Function

3.4.1. Interpretation of the wave function

What does a wave function describe? What is its physical meaning? The
discussion so far relates the wave function ψ to the position smeared over
some region and the Fourier transform ψ̂ to the contributions of the various
momenta.

As we have seen, wave packets tend to spread over larger and larger
regions of space during their time evolution. But no matter how large the
region occupied by the wave function, it has never been observed that the
mass or charge of a single particle is actually spread over that region. On
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the contrary, elementary particles like electrons are always detected as point-
like quantities. If many detectors are distributed over some region, we can
observe that the particle is found in one and only one of the detectors and
that it arrives there as a whole. The connection between the detection of a
particle and the wave function is a statistical one. If one repeats the same
experiment over and over again, the particle will be found most frequently
in regions where the wave function is large. For the regions where the wave
function is small, the probability to detect the particle is very small.

Thus, a wave packet does not describe a matter wave, that is, a contin-
uous distribution of mass or charge over some region of space. Instead, the
spreading of a wave function describes an uncertainty in the precise posi-
tion at which the particle will be detected. Most physicists would agree on
the following statistical interpretation, which was suggested by Max Born in
1926.

Statistical interpretation of the wave function:
Let us assume that a particle is described by a wave function ψ(x) sat-
isfying the normalization condition

∫

Rn
|ψ(x)|2 dnx = 1 (3.54)

Then the expression

p(B) =
∫

B
|ψ(x)|2 dnx (3.55)

is the probability of finding the particle in the region B of the configu-
ration space Rn. Similarly,

∫

G
|ψ̂(k)|2 dnk (3.56)

is the probability that the momentum of the particle is found in the
subset G of the momentum space Rn.

The wave function contains information about the position and—via
Fourier transformation—about the momentum at the same time. Note that
the position probability |ψ(x)|2 alone does not tell you how the Fourier
transformed wave packet looks like, see Fig. 3.2. In order to describe the
dynamical state of the particle, we need the information contained in the
phase of the wave function. For example, the wave packets shown in the
movies CD 3.3 and CD 3.4 all have the same position distribution at t = 0,
but nevertheless move with different velocities. Hence it is necessary to
visualize the complex-values of a wave function and not just the associated
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Figure 3.2. Every wave function contains information
about both the position and the momentum of a particle.
Here we see the position distribution |ψ(x)|2 (left) and the
momentum distribution |ψ̂(k)|2 (right) of some wave func-
tion ψ.
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Figure 3.3. Comparison of a (real-valued) wave function
(thin line) with its absolute value (dashed line), and with
the square of the absolute value (thick solid line). It is only
the square of the absolute value that has immediate physical
significance as a position probability density.

position probability density. The visualizations in the book and on the CD-
ROM usually show the absolute value of the wave function with a color
code for the phase. You should always remember that it is the square of
the absolute value that has a physical significance as a position probability
density. With a little experience, it is not difficult to imagine the position
probability density when looking at an image of the absolute value, see
Figs. 3.3 and 3.4.

In order to apply the statistical interpretation to a square-integrable
wave function, it has to be normalized first. The normalization procedure
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Figure 3.4. The left picture shows the absolute value of
the wave function; the right picture displays the associated
position probability density. The lower part in each picture
visualizes the function as a density graph.

runs as follows. Calculate

‖ψ‖ =
(

∫

Rn
|ψ(x)| dnx

)1/2

(3.57)

and whenever ‖ψ‖ -= 1 replace ψ by ψ/‖ψ‖.
The normalization condition (3.54) means that the probability of finding

the particle somewhere is 1. This probability is independent of time if the
wave function depends on time according to the Schrödinger equation. The
Fourier–Plancherel relation Eq. (2.64) implies that the same normalization
condition holds for the momentum distribution.

How does a particle get from one region in space to another? Quantum-
mechanically, this is described as a change in the position probabilities asso-
ciated to these regions. The mechanism behind this change is the motion of
a wave packet according to the Schrödinger equation. But the interpretation
rule says nothing about how the particle actually moves. There is no such
thing as a classical trajectory.

Wave–particle dualism: It is an experimental fact that the wavelike be-
havior of particles can only be observed by recording the statistical distri-
bution of position measurements. Whenever the particle is detected, then
it is detected as a whole and it appears as a pointlike particle. There is no
need to assume that the particle itself is spread over large regions of space.
The statistical interpretation, however, is minimal in the sense that it makes
no statement about the nature of a quantum object. It does not exclude
the possibility that a quantum particle is wavelike and that the statistical
distribution of sharp positions is a result of the observation procedure.
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3.4.2. Elementary measurements

According to the statistical interpretation, it makes no sense to speak of the
wave function of an individual particle. A quantum-mechanical experiment
can only verify the probability distributions predicted by the formalism. This
can only be done by repeating some measurement many times under identical
conditions. A quantum-mechanical experiment thus consists of many single
experiments (elementary measurements). In order to determine, for example,
the position probability for a region B, one has to perform many position
measurements. In each elementary experiment, a particle is prepared in the
same initial state and after the time t a position measurement is carried out
in B to see if the particle has arrived there. The probability is determined by
counting the number n(B) of experiments in which the particle is detected
in B and dividing this number by the total number n of experiments, that
is,

p(B) = lim
n→∞

n(B)
n

. (3.58)

We want to stress the following: An elementary experiment usually does
not yield a reproducible result (except in the case where the probability for
some result is 1). The quantum-mechanical formalism makes no predictions
about the result of a single measurement. The outcome of a single experi-
ment is therefore not the subject of quantum mechanics. Only probability
distributions can be predicted and can be checked by repeating the same
state preparation and the same measurement many times. According to the
statistical interpretation, quantum mechanics is a theory of statistical ensem-
bles and not a theory of individuals. The wave function does not describe
an individual particle, but represents a conceptual infinite set of identically
prepared particles. If we speak of the wave function of a single particle, we
mean, in fact, the ensemble of all single particles that have undergone some
state preparation procedure.

It is necessary to make a clear distinction between the preparation of a
state and the measurement which finally determines the value of an observ-
able. The preparation—generally achieved by interaction with a suitable
apparatus—has to guarantee that repeated measurements are always per-
formed under the same conditions. Due to unavoidable experimental errors,
it will not always be possible to repeat the preparation with perfect accu-
racy. In general, the best we can say is that after the preparation the system
has a random state in a certain subset of all possible states. A state that
can actually be realized will thus be a mixed state, that is, a statistical mix-
ture of wave functions. This is the subject of statistical quantum mechanics.
Here we only deal with pure states that can be described by a single wave
function.
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The statistical interpretation has been the source of many discussions
which have not been finished up to now. Some physicists have argued that
the theory cannot be complete physically, because it makes no statements
about individual systems. Does quantum mechanics already describe the
objective reality in the most complete possible way? Is it just our lacking
knowledge that lets us make predictions of limited accuracy? Is it possi-
ble to speak of the value of a physical observable prior to measurement?
However, the search for hidden variables, which should provide a more com-
plete description of individual systems, has not yet produced testable conse-
quences. The unpredictability appears as a fundamental property of nature.
Therefore, most physicists stick with the statistical interpretation, which has
proved to be perfectly consistent with experimental tests.

3.4.3. Expectation value

Let ψ(x) be a normalized wave function. Because the function |ψ(x)|2 de-
scribes a position probability density, we can calculate the mean value (or
expectation value) of the results of many position measurements. It is given
by

〈x〉ψ =
∫

Rn
x |ψ(x)|2 dnx. (3.59)

Similarly, the expectation value of the momentum p in a state ψ follows from
the interpretation of the Fourier transform ψ̂ as a momentum probability
density,

〈p〉ψ =
∫

Rn
k |ψ̂(k)|2 dnk. (3.60)

The results of many measurements will be scattered around the mean values.
The width of the distribution of the measured values are the uncertainties
∆x and ∆k introduced earlier. As we know from Section 2.8.1, they satisfy
Heisenberg’s uncertainty relation

∆x∆k ≥ n

2
. (3.61)

The uncertainty relation states that a sharp position distribution corre-
sponds to a wide momentum distribution, and vice versa. There are no
states where both position and momentum have sharp distributions.

In principle, there is no limit to the accuracy of either the position or
the momentum in a wave function. However, there exists no wave function
with a perfectly sharp momentum. Plane waves do have a sharp momentum,
but they cannot be normalized. Hence the plane waves have no probabilistic
interpretation and are not admissible as quantum-mechanical wave func-
tions. Hence it is not possible to prepare a particle such that a momentum
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measurement gives some value with certainty. Similarly, there is no wave
function with a perfectly sharp position. Such a wave function would have
to be like a Dirac-delta function (see Section 2.9). But the delta function is
not square-integrable and hence cannot be normalized.

3.4.4. The measurement process

The measurement of a physical observable involves the interaction of a quan-
tum system with a measuring apparatus. This interaction can be quite com-
plicated and might change the state in an uncontrolled way or even destroy
the system under consideration. For example, the position of a photon can
be measured by a photographic plate. But after the absorption the photon
is gone and it is not reasonable to speak of its wave function any longer. We
call this type of experiment a determinative measurement. It is designed to
analyze a given state or to verify a probability distribution predicted by the
quantum-mechanical formalism.

B too fast

too slow

p
0

S

S

1

2

source

Figure 3.5. A monochromator prepares particles with mo-
mentum sharply concentrated around p0. A constant mag-
netic field between the screens S1 and S2 deflects the charged
particles emitted by the source. The classical trajectories in
a constant magnetic field are circles with a radius depending
on the velocity. Therefore, only particles with a certain mo-
mentum p0 can emerge from the hole in the second screen S2.
This arrangement can be used for determinative experiments
by replacing the hole with a detector.
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If the measurement is not destructive, how do we describe the state of
the particle after the measurement? The answer to this question certainly
depends on the details of the interaction with the measurement device. Here
we only consider a very simple model of a nondestructive measurement: a
filtering procedure. For example, we can set up a momentum measurement
in such a way that only particles with momentum p0 can pass the mea-
surement device while all other particles are absorbed (see Fig. 3.5). The
particles surviving this measurement all have the momentum p0 with an
uncertainty depending on the quality of the apparatus. We can say that the
apparatus prepares particles in a state with average momentum p0, and it
is reasonable to assume that the ensemble of particles leaving the measure-
ment device is described by a wave function which has a narrow peak at p0

in momentum space (whereas the particles entering the device might have
had a wide momentum distribution or even might have been in a statistical
mixture of states).

The effect of a measurement of this type is to prepare the system in such a
way that it has certain properties. This is called a preparatory measurement
or preparation of the state.

We note that the uncertainty relation refers to preparatory rather than
determinative measurements. According to the uncertainty relation, it is
not possible to perform simultaneous preparatory measurements of position
and momentum. We say that the observables position and momentum are
not compatible.

In order to verify the uncertainty relation, one conducts determinative
measurements of position and momentum. According to the statistical inter-
pretation, one has to perform many measurements of position and momen-
tum on identically prepared systems. A priori it is not forbidden by quantum
mechanics, to determine the values of x and p in a single experiment, but
the simultaneous measurements of position and momentum tend to disturb
each other. Fortunately, there is no need to determine position and mo-
mentum of the individual systems in simultaneous measurements. We may
perform separate measurements of position and momentum in the course of
many elementary experiments with identical systems. Quantum mechanics
predicts that the values will be scattered around their mean values so that
the uncertainty relation ∆x∆k ≥ n/2 is satisfied.

3.5. Continuity Equation

The wave function ψ(x, t) at a certain time t contains the complete informa-
tion about the state of motion of the particle. Hence it should be possible
to predict the future time evolution just by looking at a picture of the wave
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function at time t. Here we show how this can be done at least for a few
time-steps.

Assume that ψ is a smooth solution of the Schrödinger equation. Let us
calculate the time derivative of the position probability density |ψ|2:

∂

∂t
|ψ|2 =

∂ψ

∂t
ψ + ψ

∂ψ

∂t
= (using the Schrödinger equation)

= − i
2

(∆ψ)ψ +
i
2
ψ (∆ψ)

= − i
2
∇ ·

(

(∇ψ)ψ − ψ (∇ψ)
)

.

If we define the current vector

(j =
i
2

(

(∇ψ)ψ − ψ (∇ψ)
)

, (3.62)

we obtain the continuity equation
∂

∂t
|ψ(x, t)|2 = −∇ ·(j(x, t), (3.63)

which states that a change in the position probability density is related to
the divergence of a vector field (j(x, t). Integrating Eq. (3.63) over a volume
V ⊂ R3 and using the divergence theorem of Gauss we find

d

dt

∫

V
|ψ(x, t)|2 d3x = −

∫

V
∇ ·(j(x, t) d3x = −

∫

∂V

(j · (n df, (3.64)

where (n is the unit vector normal to the surface element df and points in
the positive (outside) direction. The change of the position probability in V
is equal to the flux of (j through the boundary ∂V of V .

Using the polar form of complex numbers we write

ψ(x, t) = |ψ(x, t)| exp
(

iϕ(x, t)
)

. (3.65)

The phase function ϕ(x, t) is well defined up to multiples of 2π at all points
(x, t) where |ψ(x, t)| -= 0. A little calculation shows that

(j = |ψ|2 ∇ϕ. (3.66)

We learn from this that in a wave packet there is always a flow in the direction
of increasing phase.

While the current vector (j is useful to describe a local change of the
position probability density of a wave function, it does not correspond to the
flow of a physical density (such as matter or charge density). The definition
of (j is not at all unique. If (v is the curl of any differentiable vector field, then
∇ · (v = 0 and the current (j1 = (j + (v also satisfies the continuity equation
(3.63). The “flow of probability” through a closed surface, see Eq. (3.64), is
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independent of the choice of the current vector. But the flow of (j through a
surface element (j ·(n df depends on the choice of (j and is hence not observable.

If a wave function is plotted using the standard color map to indicate its
phase, then the direction of increasing phase is the counterclockwise direction
in the color circle. For example, the wave packet always flows from red to
yellow. Hence if a yellow region is surrounded by red, then the wave function
will increase in the yellow region. If red is surrounded by yellow, then the
wave packet will decrease in the red region. (Of course, a similar observation
can be made with other colors that are neighbors in the color circle).

CD 3.11 illustrates the flow from red to yellow using special initial
functions; see also Color Plate 12. The animations show how peaks
are formed in the yellow regions of the initial wave function. As
soon as the yellow peaks emerge, they start to decay again, thereby
forming a more complicated interference pattern.

Bohm’s quantum mechanics: In D. Bohm’s pilot wave theory a particle
is described by a wave function ψ(x, t) and by a position vector r(t). The
wave function (a solution of Schrödinger’s equation) is regarded as a sort of
force field influencing the pointlike particle. By assuming that the motion
of the position vector is described by the condition

d

dt
r(t) =

1
|ψ(r(t), t)|

(j(r(t), t) = ∇ϕ(r(t), t) (3.67)

one arrives at a theory with a hidden variable r that is compatible with
quantum mechanics. In Bohm’s interpretation the position has a classical
meaning and it makes sense to speak of a particle’s trajectory. But the
classical equation for the motion of the position variable is replaced by an
ad hoc law with the quantum wave function serving as a pilot wave for the
particle. There appear to be no experimental consequences of Bohm’s inter-
pretation. Therefore, many physicists prefer the probabilistic interpretation,
which contains no unproven additional hypotheses. Moreover, the transition
to quantum field theory is not straightforward within this framework. Nev-
ertheless, Bohm’s theory is important, because it has long been thought that
a hidden variable theory was impossible.

3.6. Special Topic: Asymptotic Time Evolution

While the short-time behavior of wave packets can be guessed by analyzing
the current as described in the previous section, the long-time behavior of a
free particle can be predicted from the Fourier transform of the initial wave
packet.
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Using the explicit form (3.53) of the time evolution kernel K, we may
rewrite Eq. (3.50) as

ψ(x, t) =
1

(it)n/2
exp

(

i
x2

2t

) 1
(2π)n/2

∫

exp
(

−iy · x
t

)

exp
(

i
y2

2t

)

ψ0(y) dny

=
1

(it)n/2
exp

(

i
x2

2t

) (

Fφt

)(x
t

)

,

where

φt(y) = exp
(

i
y2

2t

)

ψ0(y). (3.68)

Now, given an initial state ψ0, we define the function

ξ(x, t) =
1

(it)n/2
exp

(

i
x2

2t

)

ψ̂0

(x
t

)

(3.69)

and calculate

‖ψ(·, t) − ξ(·, t)‖2 =
∫

|ψ(x, t) − ξ(x, t)|2dnx

=
∫

∣

∣

∣

(

Fφt

)(x

t

)

−
(

Fψ0

)(x

t

)∣

∣

∣

2 dnx

tn

=
∫

∣

∣

(

Fφt
)

(y) −
(

Fψ0
)

(y)
∣

∣

2
dny

=
∫

|φt(y) − ψ0(y)| dny

=
∫

∣

∣

∣exp
(

i
y2

2t

)

− 1
∣

∣

∣

2
|ψ0(y)|2 dny.

Here we used the variable substitution y = x/t, dny = dnx/tn, and the
Fourier–Plancherel relation. But the last expression tends to zero, as t →
±∞ (the integrand tends to zero, and because the integrand is bounded by
4|ψ0(y)|2, the integral and the limit can be exchanged).

Hence, asymptotically in time, the wave function ψ(x, t) can be replaced
by the much simpler expression ξ(x, t). Equation (3.69) shows that the
modulus of ψ asymptotically decays like t−n/2; see also the discussion in
Section 3.3.2.
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Wave functions for |t| → ∞:

Let ψ(t) be any solution of the free Schrödinger equation. Let ψ̂0 be the
Fourier transform of the initial function and define ξ(t) as in Eq. (3.69).
Then

ψ(t) − ξ(t)−→0, as |t| → ∞, (3.70)

where the limit is approached in the quadratic mean (i.e., with respect
to the norm in the Hilbert space). An equivalent way of writing (3.70)
is

lim
t→0

∫

|ψ(x, t) − ξ(x, t)|2dnx = 0. (3.71)

The asymptotic position probability density described by ξ has the fol-
lowing property:

∫

Bt
|ξ(x, t)|2dnx =

∫

Bt
|Fψ0(x/t)|2 dnx/tn =

∫

B
|ψ̂0(k)|2 dnk. (3.72)

This result can be used to justify our interpretation of the Fourier transform
as a momentum probability amplitude. In principle, the momentum of a
particle can be determined by measuring the distance the particle moves
within a certain time. Assuming that the particle is localized initially near
x = 0, we perform a position measurement after a time t. If we find the
particle at x we would say that the particle had the momentum p = v ≈ x/t
(for particles with mass m -= 1 the momentum is p = mv). This momentum
measurement by the time of flight method will have an uncertainty caused by
the uncertainty of the initial position. This uncertainty can be made small
by waiting long enough because (x − x0)/t ≈ x/t for |t| large. The prob-
ability for finding the position in a small volume ∆nx = ∆x1∆x2 · · ·∆xn

around x ∈ Rn is therefore equal asymptotically to the probability for find-
ing the momentum in the volume ∆np = ∆nx/tn around p = x/t. From
the asymptotic form of the wave function we conclude that this probability
is given by

|ψ(x, t)|2 ∆
nx

tn
= |ψ̂0(x/t)|2 ∆

nx

tn
. (3.73)

The momentum probability amplitude is thus given by the Fourier transform
of the wave function.

The result (3.72) simply describes the following fact:
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Asymptotic time evolution of free particles:
The probability of finding the particle in a region Bt = {xt | x ∈ B} ⊂
Rn is asymptotically for |t| → ∞ equal to the probability of finding the
momentum of the particle in B ⊂ Rn.

If B is a cone with apex at the origin, then Bt is the same cone. Hence
the probability that a particle is finally found in a cone is equal to the
probability that its momentum lies in that cone.

In this sense the momentum distribution of the initial function deter-
mines the asymptotic distribution of the wave packet in position space. The
function ξ describes a classical behavior of the wave function at large times
because the wave packet is asymptotically where we expect it to be according
to its momentum distribution.

At large times the distribution of the wave packet in position space
is determined by the distribution of momenta in the initial func-
tion. CD 3.13 gives a particularly striking example; see also Color
Plates 13 and 14.

3.7. Schrödinger Cat States

3.7.1. Superposition of two Gaussian functions

Here we apply the results of the previous section to a superposition of two
Gaussian wave functions which are localized in different regions of space.
We consider the one-dimensional case and assume that the two Gaussians
have the same average momentum p. The wave function at the initial time
t = 0 is thus given by

ψ(x) = N eipx (

e−(x−x1)2/2 + e−(x−x2)2/2). (3.74)

We assume that the distance d = |x1 − x2| between the Gaussians is much
larger than the spread of the Gaussians. Therefore, the position probability
density has the shape shown in Fig. 3.6a.

Exercise 3.8. Assuming that the distance between the two Gaussian
wave packets in Eq. (3.74) is large, derive an approximate expression for
the normalization constant N such that ‖ψ‖ = 1. Why do you need the
assumption on the distance between the Gaussians?

Let us calculate the long-time behavior of the wave function. First we
need the Fourier transform of ψ, which can be calculated easily. The two
parts of the wave function in momentum space are both Gaussian functions
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centered at the average momentum p. The shift to xi in position space
corresponds to the multiplication by a phase factor exp(ikxi) in momentum
space. Hence the Fourier transform of ψ is obtained as

ψ̂(k) = N e−ikx1 exp
(

−(k − p)2

2

)

+ N e−ikx2 exp
(

−(k − p)2

2

)

= 2N exp
(

−ik
x1 + x2

2

)

cos
(

k
x2 − x1

2

)

exp
(

−(k − p)2

2

)

.

The momentum distribution |ψ̂(k)|2 (which is constant in time) is shown in
Fig. 3.6b. According to the results of the previous section, the wave function
in the distant future can be approximated by

ψ(x, t) ≈ 1√
it

exp
(

i
x2

2t

)

ψ̂
(x

t

)

. (3.75)

Apart from a phase factor, this expression is just a scaled version of the
wave function in momentum space. The corresponding position distribution
is plotted in Fig 3.7.

It is tempting to interpret the two parts of the wave function at t = 0 as
two pieces of a particle or even as two separate particles. But according to
the statistical interpretation of Section 3.4, wave functions always describe
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Figure 3.6. (a) Position probability density of a Schrödin-
ger cat state consisting of two separated Gaussian peaks at
x1 = −5 and x2 = 5; see Eq. (3.74). (b) Momentum dis-
tribution of the Schrödinger cat state. The two parts of the
wave packet have the same average momentum p = 10, that
is, they are located in the same region of momentum space.
This causes the interference pattern in the momentum distri-
bution.
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Figure 3.7. The position probability density of the Schrö-
dinger cat state at some late time (here t = 100) is a scaled
copy of the momentum distribution.

the states of one single particle.1 The two peaks of the position probability
density describe two distinct possibilities for the location of the particle.
Quantum mechanics and the Schrödinger equation cannot predict which of
these possibilities will actually be realized in an experiment. If we perform
many measurements of the position in this state, then half of the results will
show a position near x1, while the other half locates the particle near x2.

It is also tempting to assume that the particle is in fact either near x1 or
near x2, and that we just don’t know where it actually is until we perform a
position measurement revealing the true position. In this interpretation the
wave function describes primarily the state of knowledge of the observer and
not so much a property of the system under observation. But this point of
view does not take into account that the two possibilities described by the
wave function can interfere at some later time.

In our case the interference is visible in Fig 3.7 and prevents that the
particle can reach certain locations in the future. If the true initial position
of the particle would be near x1, an observer with a better knowledge would
describe it by a wave function localized near x1, and no interference pattern
would show up in the asymptotic wave function. Hence in the future it
would be possible to detect the particle in places where it cannot be found
if the initial state also contains a possibility to find it near x2. Thus, the
“interference of possibilities” may lead to observable consequences that make
it difficult to maintain the subjective interpretation of the wave function as
a description of the knowledge of the observer.

1States of two or more particles are described in a more complicated way by wave
functions depending on the position coordinates of all particles.
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In this context it is interesting that the state Eq. (3.74) can be realized
in neutron interference experiments. In a neutron interferometer a beam
of neutrons can be split into two macroscopically (= a few centimeters)
separated parts which are then brought together again to observe the self-
interference. This interference pattern changes whenever one of the partial
beams is manipulated. Here the density of neutrons in the beam is so low
that this is actually a repeated experiment with single neutrons. (When a
neutron is detected, the next is still confined in the nucleus of a radioactive
atom in the radiation source). The observation of an interference pattern
for beams of such low density proves that in the interferometer the wave
function of a single neutron is indeed split into two parts. Now the wave
packet in one of the partial beams can be shifted (delayed) so that after
the reunion of the beams the state is described by two separated Gaussian
peaks as above. The modulation of the momentum distribution exhibited in
Fig. 3.6(b) has also been observed experimentally.

A state which is a superposition of two very distinct states is often called
a Schrödinger cat state.

3.7.2. Schrödinger’s cat

E. Schrödinger pointed out a possible paradox provoked by superpositions
of states that are different on a macroscopic scale. He wanted to show that
the wave function cannot be a complete description of nature. In order
to illustrate his point by a thought experiment, Schrödinger suggested the
following malicious arrangement: A poor little cat is locked into a dark cage
with opaque walls. The cage also contains an apparatus with one atom of
a radioactive material, a Geiger counter, and some poisonous substance. It
is assumed that the atom decays with a probability of one half within an
hour. If a decay occurs, it will be detected by the Geiger counter and the
apparatus will set free the poison, killing the cat immediately.

In this arrangement the quantum uncertainty is transferred to a macro-
scopic system. The radioactive decay of an atom is a quantum-mechanical
process. In the quantum-mechanical description the state of the atom after
one hour will be a superposition of two possibilities: the intact atom and the
atom after the decay. If quantum mechanics is a fundamental theory, then it
should be possible to describe everything inside the cage in the language of
quantum mechanics. The quantum-mechanical wave function of the whole
system would describe the state of the atom, the apparatus, and the cat.
The experimental setup lets the state of the atom interact with the state
of the whole macroscopic system. Therefore, after an hour, the wave func-
tion of the whole system will be in a superposition of the two very distinct
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possibilities: cat dead or cat alive, that is,

ψ =
1√
2

(ψdead + ψalive). (3.76)

We can make a measurement of the state of the cat simply by opening
the cage and looking into it. Of course, one never experiences a superposition
of states in the macroscopical world. So the cat will be either dead or alive.
As soon as we notice the state of the cat, we cannot say that the state is a
superposition any longer. So the wave function of the cat “collapses” to one
of the two possibilities. After the measurement, we either have ψ = ψdead or
ψ = ψalive. We can carry the reasoning even further: The physicist A who
performs the experiment is a quantum-mechanical system himself. What
is his state after an hour? As long as nobody opens the door of the lab,
a fellow physicist B outside the lab would have to describe the physicist
A by a superposition of two states: One state describes a sad physicist,
the other shows him happy. In fact, if quantum mechanics would be a
complete description of nature, every alternative of two quantum-mechanical
events happening with comparable probability would put the whole universe
in a superposition corresponding to these alternatives. The universe and
everything in it would remain in that superposition until a hypothetical
final observer looks to see which state is actually realized.

From the point of view of the statistical interpretation, the situation in
itself is not paradoxical. Quantum mechanics predicts a probability distri-
bution. Looking into the cage is an elementary experiment. One has to
perform this experiment very often and will certainly find half of the cats
dead, which is precisely the prediction of quantum mechanics. The problem
is how to interpret the superposition state of the cat. One cannot say that
the cat is either dead or alive at any time prior to the opening of the cage.
The cat is in a superposition state and, in principle, the simultaneous pres-
ence of the two possibilities could produce some interference later (as it was
the case with the superposition of the Gaussian wave packets). For example,
it could be prohibited by interference that the surviving cat is found to be in
a state where it wants to drink milk, while this state could well be reached
without the poison in the cage.

Moreover, Schrödinger’s paradox raises the question what a measurement
of a state really is. It has been proposed that a measurement consists in
the interaction of a quantum-mechanical system with a classical system.
A classical system is some device which can be described with reasonable
accuracy within the framework of classical (i.e., nonquantum) physics. In
particular, different states of a classical system cannot interfere with each
other. In Schrödinger’s example, the cat could be interpreted as a classical
system that is incapable of getting in a superposition of states with the



80 3. FREE PARTICLES

possibility of self-interference. The interaction of the radioactive atom with
the cat is a measurement process that changes the state of the cat. The
presence of a human observer is irrelevant in this context. The cat as a
classical system is either dead or alive (not both) and the task of the observer
is just to read off the result of the measurement. In this interpretation of
the measurement process it is not clearly stated under which conditions a
system can be regarded as classical. Also, it seems curious that a quantum-
mechanical theory, which is assumed to generalize the classical theory, should
need the classical theory for its justification.

In the case of the superposition (3.74) of Gaussian functions, the ex-
perimental results also indicate that the coherence of the two parts of the
wave packet (i.e., the ability of self-interference) is very sensitive against
perturbations and decreases with the separation of the parts. This could be
a possible explanation of what is meant by a classical system: For superpo-
sitions of macroscopically separated states the perturbations and quantum
fluctuations will dominate, and the possibility to observe any interference
of the partial states is negligible. Such a system would appear as a classi-
cal system for which we can assume that one of the possibilities is actually
realized.

A more complete investigation of the quantum measurement process
would involve the interaction of a quantum system with a macroscopic
(many-body) quantum system, the measurement device. The close correla-
tion between the system and the measurement device after the measurement
is called quantum entanglement. A careful analysis of the flow of information
between an entangled system and the observer will be necessary to achieve a
satisfactory description of the measurement process. These discussions are
still going on and are beyond the scope of this book.

3.8. Special Topic: Energy Representation

This final section concludes our examination of the free motion with a more
mathematical topic. You will need to know about the energy representation
when you read Chapter 9 about scattering theory.

A wave packet in one space dimension can be written as an integral over
the momentum space

ψ(x) =
1√
2π

∫ ∞

−∞
eikx ψ̂(k) dk, (3.77)

where ψ̂ is the Fourier transform of ψ. It is sometimes useful to write this
as an integral over the energies of the system. This can be achieved by a
variable substitution. We use the fact that energy and momentum of a free
particle are related by E = k2/2. In one dimension each value of the energy
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gives two possible values of the momentum,

k = ±k(E), k(E) =
√

2E, 0 ≤ E < ∞. (3.78)

Hence we split the integral in Eq. (3.77) into two parts,

ψ(x) =
1√
2π

∫ 0

−∞
eikx ψ̂(k) dk +

1√
2π

∫ ∞

0
eikx ψ̂(k) dk.

With the substitution k → −k, the first integral can be rewritten as
1√
2π

∫ ∞

0
e−ikx ψ̂(−k) dk.

Now we write k =
√

2E = k(E), dk = dE/k(E), and obtain

ψ(x) =
1√
2π

∫ ∞

0

1
√

k(E)

(

e−ik(E)x g−(E) + eik(E)x g+(E)
)

dE, (3.79)

where we defined the functions

g±(E) =
ψ̂(±k(E))

√

k(E)
=

1√
2π

∫ ∞

−∞

1
√

k(E)
e∓ik(E)x ψ(x) dx. (3.80)

We combine the functions g+ and g− into a two-component wave function

g =
(

g+

g−

)

, (3.81)

which is called the energy representation of the quantum-mechanical state,
or simply the wave function in energy space. The transformation (3.80)
mapping a wave function ψ to g is one-to-one. (The inverse transformation
which expresses ψ in terms of g is given by Eq. (3.79)).

CD 3.9 shows the energy representation of a Gaussian wave packet.
The first animation shows how the components g+ and g− depend
on the average momentum of the wave packet, the second animation
visualizes the free time evolution in energy space.

The set of all two-component wave functions g with square-integrable
components g± forms a Hilbert space if we define the scalar product

〈g(1), g(2)〉 =
∫ ∞

0

(

g(1)
+ (E) g(2)

+ (E) + g(1)
− (E) g(2)

− (E)
)

dE. (3.82)

If g is the energy representation of a state ψ, then

‖ψ‖2 =
∫ 0

−∞
|ψ̂(k)|2 dk +

∫ ∞

0
|ψ̂(k)|2 dk

=
∫ ∞

0
|ψ̂(k(E))|2 1

k(E)
dE +

∫ ∞

0
|ψ̂(−k(E))|2 1

k(E)
dE

= 〈g, g〉 = ‖g‖2. (3.83)
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Indeed, the transition to the energy representation preserves the scalar prod-
uct, that is,

〈ψ(1), ψ(2)〉 = 〈g(1), g(2)〉. (3.84)
The time evolution in the energy representation is simply given by

g(E, t) = g(E) e−iEt =
(

g+(E) e−iEt

g−(E) e−iEt

)

. (3.85)

Here g(E) is the initial wave function in the energy space.
The components g+ and g− of a state in the energy representation de-

scribe a decomposition according to the direction of motion. In position
space,

ψ+(x, t) =
1√
2π

∫ ∞

0

1
√

k(E)
eik(E)x−iEt g+(E) dE (3.86)

is a wave packet which moves to the right because only positive momenta
are used in the superposition. Similarly, the part

ψ−(x, t) =
1√
2π

∫ ∞

0

1
√

k(E)
e−ik(E)x−iEt g−(E) dE (3.87)

describes a wave packet moving to the left. Obviously,
ψ(x, t) = ψ+(x, t) + ψ−(x, t) (3.88)

is a decomposition of a wave packet ψ into two orthogonal parts,

〈ψ+, ψ−〉 =
〈

(

g+

0

)

,
(

0
g−

)

〉

= 0. (3.89)

For a Gaussian wave packet at rest and for a slowly moving Gaussian,
CD 3.10 shows the decomposition into a part that moves to the right
and another part that moves to the left.

Exercise 3.9. What happens in the energy representation when the wave
function in position space is differentiated twice?



Chapter 4

States and Observables

Chapter summary: This chapter describes the basic structure of any quantum-
mechanical theory. The first step in the mathematical formulation is to associate
a suitable Hilbert space with a physical system. The vectors in that Hilbert space
(or rather the one-dimensional subspaces spanned by these vectors) describe the
possible states of the system. Certain linear operators correspond to the physically
observable quantities. The expectation value of an observable defines the link be-
tween the mathematical quantities and physical experiments. It is interpreted as
the mean value of many measurements of that observable.

For the single-particle systems described in this book, the Hilbert space is always
represented as a set of square-integrable functions. You will learn how to find the
operators corresponding to the classical observables, and you will learn how to
predict the probability for measuring certain values of an observable in a given
state.

The transition from classical to quantum mechanics can be formally achieved
by replacing the classical observables with linear operators according to the follow-
ing substitution rule. Always replace the position variable x with the operator of
multiplication by x and the momentum p by the differential operator −i!∇. Unlike
the classical quantities, the quantum-mechanical operators of position and momen-
tum do not commute. Instead, they satisfy canonical commutation relations, where
the commutator replaces the classical Poisson brackets. A pair of noncommuting
operators leads to a generalized uncertainty relation and limits the accuracy with
which the values of incompatible observables can be predicted simultaneously.

The quantum-mechanical observable corresponding to the kinetic energy of a
particle is the Laplace operator in the Schrödinger equation. We can obtain the
Schrödinger equation in an electromagnetic field by replacing the Laplace operator
with the operator describing the energy of a particle in an electromagnetic field.
The classical energy is described by the Hamiltonian function, which expresses the
energy in terms of the position and momentum variables. An application of the
substitution rule leads to the Hamiltonian operator of quantum mechanics. We
describe this process for electric and magnetic fields and discuss the gauge freedom
related to the nonuniqueness of the electromagnetic potentials. Finally, projection
operators are introduced to describe properties of a physical system. They are used
to determine the probability that the measured value of an observable is found
within a given set of possible values.

83
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4.1. The Hilbert Space of Wave Functions

4.1.1. State vectors

In classical mechanics, the state of a particle at time t is described by its
position x(t) and momentum p(t), that is, by a point in phase space. A
quantum-mechanical particle occupies a certain region in phase space whose
minimal size is determined by the uncertainty relation (see CD 3.9). What
is the state according to quantum mechanics?

Quite generally, the state of a physical system is meant to be a collec-
tion of properties giving a complete description of the system. The set of
informations that constitutes a complete description depends on which as-
pects of the system one is interested in. In any case, the information should
be complete in the sense that the state at any future time can be obtained
from the description of the state at the initial time. The time development
of the state is usually given by a dynamical law—the evolution equation or
equation of motion. In classical mechanics, the dynamical law is given by
the Hamiltonian equations.

In quantum mechanics, the wave function contains all informations about
the position and momentum distributions of the particle. The information
provided by the wave function is also complete in the sense that if we know
the wave function at time t = 0, then the wave function at any future time
is completely determined by the Schrödinger equation. Hence the quantum-
mechanical state of a particle is usually associated with its wave function,
and the Schrödinger equation is the evolution equation.

There are physical quantities such as mass and electric charge which
affect the behavior of the particle but which are usually not considered part of
the state. These quantities remain unchanged in a whole set of experiments,
hence they are characteristic for the system itself rather than for its state. In
the formalism, these quantities appear as parameters whose numerical value
is usually kept constant.

Sometimes it may happen that refined experiments reveal important
properties that have been forgotten in the description of the state. For
example, the spin is a property of electrons that cannot be described by
complex-valued wave functions. In order to take into account the spin, our
description of states in terms of wave functions will have to be modified.
These problems will be discussed in Book Two.

It may also turn out that the evolution equation has to be modified to
describe the temporal behavior of states in extreme situations. For example,
if the velocity of particles is close to the velocity of light, the Schrödinger
equation becomes inaccurate and has to be replaced by some relativistically
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invariant equation of motion—which might also require a change in the con-
cept of a state. For example, the Dirac equation of relativistic quantum
mechanics requires C4-valued functions to describe the state of an electron.

In nonrelativistic quantum mechanics, the state of a (spinless) particle at
time t is described by a nonzero, square-integrable wave function ψ(·, t).

The correspondence between the states and the wave functions is not
one-to-one. For example, if we multiply a wave function by a real number,
it would nevertheless describe the same state. The real number would go
away when normalizing the wave function in order to apply the probabilistic
interpretation (Section 3.4.1). Moreover, the equations (3.55) and (3.56)
describing the physical content of the wave function are insensitive against
a multiplication of the wave function by a phase factor. (A phase factor is
a complex number with absolute value 1). Hence we may conclude: After
normalization, a wave function ψ and its scalar multiple cψ (with arbitrary
c ∈ C, c -= 0) only differ by a phase factor and therefore lead to the same
physical predictions, for example, about probabilities of finding the particle
somewhere in position or momentum space. In this sense, ψ and cψ both
describe the same state.

In principle, any square-integrable nonzero function could be used to
define a quantum-mechanical state. The set of all square-integrable wave
functions forms the Hilbert space L2(Rn) (see Section 2.2). Obviously, this
Hilbert space is associated with an elementary particle moving in an n-
dimensional configuration space.

It is one of the basic assumptions of the quantum-mechanical formalism
that the states of every physical system are given by vectors in a suitable
Hilbert space, and that two vectors describe the same state if one is a scalar
multiple of the other. We formulate this assumption in the following box.

States of a physical system:
The states of a quantum-mechanical system can be described by vectors
in a suitable Hilbert space. Two vectors ψ and φ describe the same state
if and only if φ = cψ. Therefore, the physical states correspond precisely
to the one-dimensional subspaces

[ψ] = {cψ | c ∈ C}, ψ -= 0, (4.1)
of the Hilbert space. Any nonzero element ψ of this subspace can be
used to represent the state [ψ], physical predictions do not depend on
the choice of ψ.
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The state of a system is best represented by a normalized wave function
ψ, ‖ψ‖ = 1. This allows a direct application of the interpretation rules.
Fortunately, the time evolution generated by the Schrödinger equation has
the property that the norm of the solution is left invariant, ‖ψ(·, t)‖ = ‖ψ0‖;
thus, it is sufficient to normalize the initial state.

4.1.2. Superposition principle

Given two wave functions ψ1 and ψ2, any linear combination φ = c1ψ1+c2ψ2

defines a new possible state of the system. This superposition principle just
expresses the linearity of the Hilbert space. Here we would like to add the
following remarks:

1: Although the wave functions ψ and cψ describe the same state, this
is not true for the wave functions ψ1 + ψ2 and c1ψ1 + c2ψ2, unless c1 = c2,

[ψ1 + ψ2] -= [c1ψ1 + c2ψ2]. (4.2)

2: For two wave functions ψ1 and ψ2 the position probability density
of the sum ψ1 + ψ2 is different from the sum of the individual densities
(interference),

|ψ1(x) + ψ2(x)|2 -= |ψ1(x)|2 + |ψ2(x)|2. (4.3)

4.2. Observables and Linear Operators

Observables are physical quantities such as position, momentum, and energy
that one might want to measure in order to learn about the state of the
system. In quantum mechanics, observables are described as linear operators
in the Hilbert space of the physical system. Linear operators are rather
abstract mathematical objects (see Section 2.5). We will have to specify
how to extract the experimentally verifiable information from the operators.
We start by considering some examples.

4.2.1. The position operator

A quantity that is related to the position and that (at least in principle) can
be determined experimentally is the expectation value of the position. For
a particle moving in one space dimension, it can be written as

〈x〉ψ =
∫ ∞

−∞
x |ψ(x)|2 dx = 〈ψ, xψ〉; (4.4)

see Sections 2.8.1 and 3.4.3. Here and in the following it is always assumed
that the wave function is normalized, ‖ψ‖ = 1. From a mathematical point
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of view this expression is the scalar product between ψ and the wave function
ξ given by

ξ(x) = xψ(x). (4.5)

The mapping between ψ and ξ is a linear operator in the Hilbert space of
square-integrable functions. Obviously, we just need this linear operator to
extract the information about the position from the state of the particle.
Hence we choose this linear operator to represent the observable quantity
position in the formalism of quantum mechanics.

Position operator:
The position observable for a particle in one dimension is represented
by the position operator x, which is defined as the linear operator that
multiplies the wave function ψ with the variable x.

We will follow the dangerous but usual convention of denoting both the
linear operator and the position variable by the letter x.

Ψ Domain of definition: The definition of a linear operator would not
be complete without specifying its domain. The domain of the multipli-

cation operator x is the linear subspace of all ψ ∈ H with
∫

x2|ψ(x)|2 dx < ∞.
The operator x can only be applied to the functions in this subspace because
otherwise the image xψ is not in the Hilbert space.

How does a wave function look like, if it is not in the domain of the po-
sition operator x? Such a wave function vanishes rather slowly, as |x| → ∞,
because the function xψ(x) is not square-integrable. It may even happen
that the position has no finite expectation value (if

√
xψ(x) is not square-

integrable). Still, as long as ψ belongs to the Hilbert space of square-
integrable functions, we can maintain the interpretation of |ψ(x)|2 as a po-
sition probability density.

Position operator in n dimensions: For particles in an n-dimensional
configuration space, the position observables are represented by an n-tuple
of linear operators which are written as a vector,

x = (x1, . . . , xn). (4.6)

When we speak of the position operator for a particle in R3 we mean in fact
the triple formed by the three operators of multiplication by xi, i = 1, 2, 3.
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4.2.2. Momentum operator

For a particle in one dimension the expectation value of the momentum is
given by

〈p〉ψ =
∫ ∞

−∞
k |ψ̂(k)|2 dk. (4.7)

Again, it is possible to write this as a scalar product in the form

〈p〉ψ = 〈ψ, pψ〉 (4.8)

with a linear operator p. Just recall the following property of the Fourier
transformation F :

F(−iψ′) = kFψ = k ψ̂, (4.9)

with ψ′ = d
dxψ. Using this and the Fourier–Plancherel relation (2.64) we

obtain

〈p〉ψ =
∫ ∞

−∞
ψ(x) (−i)ψ′(x) dx = 〈ψ,−iψ′〉. (4.10)

Hence it is meaningful to define the momentum operator as the linear oper-
ator p with

pψ = −i
d

dx
ψ. (4.11)

The derivative is understood as a generalized derivative in the sense of
Eq. (2.90). The momentum operator is thus defined on the domain of square-
integrable functions ψ for which kψ̂(k) is also square-integrable.

Notation: For particles in an n-dimensional configuration space, we form a
vector p from the components of the momentum in the coordinate directions
and write the momentum operator as

p = −i(∂1, . . . , ∂n), with ∂k =
∂

∂xk
. (4.12)

4.2.3. Kinetic energy

The Laplace operator −∆ which appears in the Schrödinger equation can
be written as

−∆ = p · p = −
n

∑

i=1

∂2
i . (4.13)

Because p · p/2 = p2/2 is just the classical expression for the kinetic energy
in terms of the momentum of a particle (with mass m = 1), we regard the
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linear operator

H0 = −1
2
∆ (4.14)

as the operator representing the observable kinetic energy.

Ψ The domain of H0: The operator H0 has to be defined in the Hilbert
space L2(Rn). We could choose a domain for H0 that consists of twice

differentiable functions ψ for which ∆ψ is again square-integrable, but it
is more appropriate to understand differentiability in the general sense dis-
cussed in the chapter on the Fourier transform (Section 2.6.2). Thus, a
square-integrable function ψ belongs to D(H0) = D(∆) if and only if the
function k → k2ψ̂(k) is square-integrable. For ψ ∈ D(∆), the action of H0

is given by

H0ψ = F−1 k2

2
F ψ. (4.15)

The action of H0 on a wave function ψ takes its simplest form in the energy
representation (Section 3.8). The transition from momentum space to energy
space is performed with the help of the variable substitution k →

√
2E.

In momentum space, the action of H0 amounts to the multiplication by
k2/2, which becomes just multiplication by E in the energy space. Hence, if
g(E) = (g−(E), g+(E)) is the energy representation of a wave function ψ(x),
then E g(E) = (E g−(E), E g+(E)) is the energy representation of the wave
function H0 ψ.

4.3. Expectation Value of an Observable

In quantum mechanics, any observable of a physical system is represented by
a suitable operator in the Hilbert space of the system. The expectation value
of an arbitrary observable is defined in complete analogy to the expectation
values of position and momentum:

Expectation value:
For any linear operator A that represents a physical observable, the
expectation value of A in the state ψ (with ‖ψ‖ = 1) is

〈A〉ψ = 〈ψ, Aψ〉. (4.16)
This is interpreted as the mean value of many measurements performed
on identically prepared copies of the physical system.
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Only those operators can represent observables for which the expectation
value is a real number because physical measurements should always produce
real numbers. These operators are called symmetric.

Definition 4.1. A densely defined linear operator is called symmetric
or Hermitian if all expectation values are real:
A is symmetric if and only if 〈ψ, Aψ〉 ∈ R for all ψ ∈ D(A).

There are more restrictions on the class of operators describing observ-
ables. An operator that is useful as a candidate for an observable must
be self-adjoint. The self-adjoint operators are a subset of the symmetric
operators. We will return to this question in Chapter 6.

Example 4.3.1. In the energy representation the operator of kinetic en-
ergy H0 is just multiplication by E. Using Eq. (3.84) we find for the expec-
tation value of the energy the expression

〈H0〉ψ = 〈ψ, H0ψ〉 = 〈g, Eg〉

=
∫ ∞

0
E(|g+(E)|2 + |g−(E)|2) dE.

The function |g+(E)|2 + |g−(E)|2 is therefore interpreted as an energy prob-
ability density: Let G be a subset of the positive real numbers. The integral

∫

G
(|g+(E)|2 + |g−(E)|2) dE

is the probability that the kinetic energy is found in G if a measurement is
performed in the state ψ.

Uncertainty:
For an observable A the quantity

∆ψA ≡ ‖(A − 〈A〉ψ)ψ‖ =
√

〈(A − 〈A〉ψ)2〉ψ (4.17)

is called the uncertainty of A in the state ψ (which is assumed to be
normalized). The uncertainty describes the dispersion of the actually
measured values of the observable A around the mean value 〈A〉ψ.

We note that in general the expectation value and the uncertainty of an
observable A are not defined for every ψ in the Hilbert space, but only for
those ψ that are in the domain of the operator A.
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Exercise 4.1. Show the formula

(∆ψA)2 = 〈A2〉ψ − 〈A〉2ψ. (4.18)

4.4. Other Observables

4.4.1. The substitution rule

Up to now, we have only known linear operators for the observables position,
momentum, and kinetic energy. We want to find the operators corresponding
to other observables (e.g., angular momentum, potential energy, etc.) In
many cases the following procedure has proved to be a successful way to
guess the right operators.

Classically, an observable is a function of the position and the momen-
tum, that is, a function on the phase space. Very often (but not always), it
is possible to obtain a suitable quantum-mechanical operator by simply re-
placing in the classical expression each component of p by the corresponding
differential operator

pk → −i
∂

∂xk
, k = 1, . . . , n, (4.19)

and each component of x by the corresponding multiplication operator,

xk → multiplication by xk, k = 1, . . . , n. (4.20)

(Here n is the dimension of the configuration space). If we use units where
! is not equal to 1, then the substitution rule for the momentum observable
has to be changed into

pk → i!
∂

∂xk
, or p → −i!∇. (4.21)

4.4.2. Functions of x

If V (x) is a real-valued function of the position x, then the corresponding
quantum-mechanical observable is the operator of multiplication by V (x),

V : ψ(x) → φ(x) = V (x)ψ(x). (4.22)

Very often, the operator V represents the potential energy of a particle.

The domain of V : If V (x) is an unbounded function (e.g., V (x) = |x|2),
then the domain of the multiplication operator V (x) consists only of those
square-integrable functions, for which the integral

∫

|V (x)ψ(x)|2 dnx
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is finite. If the function V is bounded (i.e., there exists a constant M such
that V (x) ≤ M for all x), then the operator V is defined everywhere. In
this case,

∫

|V (x)ψ(x)|2 dnx ≤ M2‖ψ‖2 < ∞, for all ψ,

and the domain of the multiplication operator V (x) is the entire Hilbert
space L2(Rn). The reader may check that the expectation value of this
operator is always a real number.

4.4.3. Functions of p

If we apply the substitution rule p → −i∇ to a function f(p), we have to give
a meaning to the expression f(−i∇). At first sight it might appear difficult to
define a function of a differential operator, but as we learned in Section 2.6.2,
this is actually quite straightforward. A function of the momentum operator
can easily be defined with the help of the Fourier transform:

f(−i∇)ψ(x) =
1

(2π)n/2

∫

eik·x f(k) ψ̂(k) dnk. (4.23)

Exercise 4.2. Try to describe the domain of definition of the linear op-
erator f(−i∇).

4.4.4. Angular momentum

For a classical particle in three dimensions the angular momentum in z-
direction is a function of the position and momentum coordinates,

L3 = x1 p2 − x2 p1. (4.24)

The other components of the angular momentum are defined in a similar
way,

L1 = x2 p3 − x3 p2, L2 = x3 p1 − x1 p3. (4.25)

This is usually shortly written in vector form as

L = x × p. (4.26)

(× is the vector product or cross product of the two vectors).
Now, let us apply the substitution rule to the angular momentum. In

that way we obtain the angular momentum operator L = (L1, L2, L3) of a
particle in three dimensions,

Lj = −i
(

xk
∂

∂xl
− xl

∂

∂xk

)

, (4.27)

where (j, k, l) is a cyclic permutation of (1, 2, 3).
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Exercise 4.3. Calculate the commutators of the components of the an-
gular momentum operator: [L1, L2], [L2, L3], and [L3, L1].

It was easy to translate the angular momentum operator to quantum
mechanics, but how do we proceed for more general functions of the position
and momentum observables?

4.5. The Commutator of x and p

The application of the substitution rule for the transition to quantum me-
chanics becomes ambiguous for functions involving products of the position
and momentum coordinates. The origin of this problem is that the momen-
tum and position operators do not commute.

Let us calculate, in one dimension, the composition of the linear op-
erators p = −id/dx and x. Using the product rule for differentiation we
find

p xψ(x) = −i
d

dx
xψ(x) = −iψ(x) − i x

d

dx
ψ(x) (4.28)

= −iψ(x) + x pψ(x). (4.29)

Hence we find for the commutator of x and p,

[x, p]ψ(x) = x pψ(x) − p xψ(x) = iψ(x). (4.30)

In higher dimensions, the corresponding relations are as follows.

Commutation relations for position and momentum:
The components of the position and the momentum operators in L2(Rn)
satisfy the relations

[xj , xk] = [pj , pk] = 0, [xj , pk] = i δjk 1. (4.31)

These relations are very similar to the Poisson bracket relations for the
positions and momenta of a classical mechanical system. This has led to
the conjecture that the transition from classical to quantum mechanics can
be achieved by replacing any classical observable (i.e., any function on the
classical phase space) by an operator in such a way that the Poisson bracket
of two classical observables is i times the commutator of the corresponding
operators. Unfortunately, this program cannot be carried through in that
generality because it leads to inconsistencies in the algebra of observables.
Moreover, a quantum analog to an observable f(x, p) need not exist due to
the lack of a suitable domain of definition.
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The noncommutativity of the position and momentum operators means
that the classically identical observables xp or px would correspond to dif-
ferent operators in quantum mechanics.

Exercise 4.4. Show that the operator xp = −ix d/dx is not suitable as
a quantum-mechanical observable because for certain states its expectation
value is not a real number.

The exercise above suggests to replace the classical expression xp by the
symmetrized expression (xp + px)/2. Performing the transition to quantum
mechanics on the symmetric expression gives the operator

D = − i
2

(x · ∇ + ∇ · x) (4.32)

which has only real expectation values.
For the definition of the angular momentum operator L the noncommu-

tativity of x and p is not a problem because Li contains only products of the
commuting operators xj and pk (j -= k).

4.6. Electromagnetic Fields

The transition from classical to quantum mechanics by substitution of op-
erators for classical functions on phase space can be used to motivate the
form of the Schrödinger equation in the presence of electromagnetic fields.
The first step is to consider the classical Hamiltonian function H(x,p),
that is, the total energy of a classical particle in an electromagnetic field
as a function of position and momentum. For the energy operator of the
corresponding quantum-mechanical system one usually tries the expression
H = H(x,−i!∇) according to the substitution rule described in Section 4.4.
One postulates that the operator of total energy H determines the time
evolution of particles in an electric field in the same way as the free kinetic
energy operator determines the time evolution of free particles. Thus, the
Schrödinger equation for an electromagnetic field has the general form of an
initial-value problem

i!
d

dt
ψ = H ψ, ψ(t = 0) = ψ0, (4.33)

where ψ0 is some initial state in the Hilbert space of the system. Because
the energy operator H corresponds to the classical Hamiltonian function, it
is usually called the Hamiltonian operator or simply the Hamiltonian of the
system.
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4.6.1. Electric potentials

In the presence of an electric field (E(x), a charged particle at the point x
feels a force

(F (x) = −q (E(x), (4.34)

where q is the charge of the particle. The electric field (E(x) can be described
in terms of a scalar potential field V (x),

(E(x) = −∇V (x). (4.35)

The quantity q V (x) is just the potential energy of the charged particle at
the point x. If we add the potential energy to the kinetic energy p2/2m
we obtain the Hamiltonian function which describes the total energy as a
function of the position and momentum variables,

H(x,p) =
p2

2m
+ q V (x). (4.36)

The Hamiltonian function is a function on the classical phase space. We
may now apply the substitution rule

x −→ multiplication by x,

p −→ −i!∇,

which also works for functions of x and p as described in Section 4.4, as
long as these functions do not contain products of the position and momen-
tum variables. In that way the potential energy is replaced by the operator
V (x) of multiplication by the function V (x), and the kinetic energy p2/2m
is replaced by the Laplace operator −(!2/2m)∆. Hence the Hamiltonian
function H(x,p) can be translated into the Hamiltonian operator

H = − !2

2m
∆+ q V (x). (4.37)

The operator H is the observable of total energy for a quantum-mechanical
particle in an electric field. It replaces the kinetic energy operator H0 in the
Schrödinger equation for free particles.

Schrödinger equation in an electric field:
The Schrödinger equation for a particle with charge q in an electric field
(E(x) = −∇V (x) is given by

i!
∂

∂t
ψ(x, t) = − !2

2m
∆ψ(x, t) + q V (x)ψ(x, t). (4.38)
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Differential operators of the form −∆+V are usually called Schrödinger
operators by mathematicians. In the second half of the twentieth century a
great deal of effort has been spent on investigating the properties of these
operators for general classes of potentials. The interested reader will find
more information on this subject in the many excellent books on Schrödinger
operators listed in the bibliography.

4.6.2. Magnetic fields

For particles in magnetic fields, the transition to quantum mechanics is
achieved by the same heuristic procedure.

A magnetic field (B(x) can be described by a magnetic vector potential
(A(x). In three dimensions we have

(B(x) = curl (A(x), x = (x1, x2, x3) ∈ R
3. (4.39)

Hence any magnetic field automatically satisfies the condition

div (B(x) = 0. (4.40)

The vector potential is needed in order to define the classical Hamiltonian
function for a particle in a magnetic field,

H(p,x) =
1

2m

(

p − q

c
(A(x)

)2
. (4.41)

With the help of the formal analogy described in Section 4.4, we define the
Hamiltonian operator as

H =
1
2

(

−i∇− q

c
(A(x)

)2
, (4.42)

thereby returning to the habit of setting !/m = 1.
The formal substitution rule p → −i∇, x → (multiplication by) x is

ambiguous for this situation. This becomes obvious if we expand the square
in Eq (4.41). We find that the classical Hamiltonian function contains a
product of (A(x) and p:

(

p − q

c
(A(x)

)2
= p2 − 2

q

c
p · (A(x) + (A(x)2. (4.43)

The expressions

2p · (A(x), 2 (A(x) · p, and p · (A(x) + (A(x) · p (4.44)

all represent the same function of the classical variables x and p. After
applying the formal substitution rule they correspond to different operators
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because

p · (A(x)ψ(x) = −i∇ · (A(x)ψ(x)

= −i
(

∇ · (A(x)
)

ψ(x) − i (A(x) · ∇ψ(x)

=
(

−i div (A(x) + (A(x) · p
)

ψ(x)

-= (A(x) · pψ(x) (unless div (A = 0).

(4.45)

If we expand the square in the quantum-mechanical Hamiltonian (4.42) we
have to take into account that the product of the operators p = −i∇ and
(A(x) is not commutative. The expression (4.42) is thus equivalent with

H = −1
2
∆ + i

q

c
(∇ · (A(x) + (A(x) · ∇) +

q2

c2
(A(x)2. (4.46)

The Hamiltonian operator (4.42) thus corresponds to the choice of the sym-
metric classical expression p · (A(x) + (A(x) · p. Unsymmetric operators
f(x)g(p) do not represent observables because they may lead to complex
expectation values (see Exercise 4.4).

In principle, there is no problem with defining the Hamiltonian for a
charged particle in a time-dependent electromagnetic field. By analogy, we
obtain the time-dependent Hamiltonian

H(t) =
1
2

(

−i∇− q

c
(A(x, t)

)2
+ q V (x, t). (4.47)

4.7. Gauge Fields

4.7.1. Nonuniqueness of the wave function

The description of quantum-mechanical states in terms of wave functions is
not unique. This nonuniqueness is partly due to our interpretation.

Recall the discussion in Section 4.1.1: Wave functions have to be normal-
ized before applying the interpretation rules, but a normalized wave function
ψ is still not unique. It can be multiplied with a phase factor,

ψ −→ eiλψ (with some real number λ),

without changing the interpretation. The phase factor eiλ drops out of all
formulas related to the physical interpretation of the wave function (e.g., the
position probability density, expectation values, etc.).

In our method of visualization the presence of a phase factor eiλ changes
the color of the wave function. All colors of the colored plane (Color Plate 3)
are rotated through an angle λ.
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4.7.2. Nonuniqueness of the Schrödinger equation

Another ambiguity in the quantum-mechanical formalism stems from the
nonuniqueness of the electromagnetic potentials. A gauge transformation
of the potentials changes the classical Hamiltonian function and thus the
Schrödinger equation without changing the physics of the system.

The simplest example of the so-called gauge freedom is given by the
Schrödinger equation in a constant electric potential. A constant electric
potential, say qV (x) = K, describes a zero electric field (E(x) = ∇V (x) = 0
(for all x). Hence the motion of a particle in a constant electric potential
should be physically indistinguishable from the free motion. If ψ is a solution
of the free Schrödinger equation

i
∂

∂t
ψ(x, t) = −1

2
∆ψ(x, t), (4.48)

then the function

φ(x, t) = e−iKtψ(x, t) (4.49)

is a solution of

i
∂

∂t
φ(x, t) = −1

2
∆φ(x, t) + K φ(x, t). (4.50)

The function φ obviously describes the same physical state as the original
function ψ. From a physical point of view the two descriptions are completely
equivalent.

The presence of a phase factor e−iKt changes the phase velocity of the
wave packet. Hence the phase velocity of a wave function is not gauge
invariant. It cannot represent an observable quantity because it depends on
the chosen description.

CD 3.19 shows the motion of a Gaussian wave packet in a constant
potential V (x) = K and compares the phase velocities for different
values of K.

4.7.3. Gauge transformations of magnetic fields

A more interesting example of the gauge freedom occurs for a particle in a
magnetic field. The choice of the vector potential for a magnetic field is by
no means unique. For any differentiable function g we have curl∇g = 0.
Hence, changing the vector potential (A to (A′ = (A + ∇g does not change
the magnetic field. The two vector potentials (A and (A′ describe the same
physical situation. One says that the two vector potentials are related by a
gauge transformation.
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The freedom of choosing the vector potential can sometimes be used to
simplify the mathematical description. It is always possible to choose the
vector potential

(A(x) =
∫ 1

0
s (B(xs) × x ds (in three dimensions). (4.51)

(Here ”×” denotes the vector product.) This vector potential (A is said to be
in the Poincaré gauge. The Poincaré gauge is characterized by the property

(A(x) · x = 0. (4.52)

Another possible choice of gauge is the Coulomb gauge characterized by

div (A(x) = 0. (4.53)

If the vector potential (A has this property, then the calculation (4.45) shows
that the order of the operators p and (A obviously does not matter:

p · (A(x) = (A(x) · p if div (A = 0. (4.54)

4.7.4. Gauge transformation of the Schrödinger equation

The quantum-mechanical description of particles in a magnetic field involves
the vector potential and has to be changed after a gauge transformation. For
example, the Hamiltonian

H =
1
2

(

−i∇− (∇g)
)2

, (4.55)

also describes the free motion because the vector potential (∇g) corresponds
to a field strength zero. Let us assume that ψ is a solution of the free Schrö-
dinger equation (4.48). Consider the function

φ(x, t) = eig(x)ψ(x, t). (4.56)

It is easy to see that
(

−i∇− (∇g)
)

φ = eig(−i∇ψ),
(

−i∇− (∇g)
)2
φ = −eig(∆ψ), (4.57)

and therefore,

i
∂

∂t
φ = i eig ∂

∂t
ψ = −1

2
eig ∆ψ =

1
2

(

−i∇− (∇g)
)2
φ. (4.58)

Hence φ is a solution of the Schrödinger equation with the pure gauge field
∇g. Both ψ and φ describe the same physical state of the free particle, but
they are solutions of different equations.
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Gauge freedom:

If a vector potential (A(x) is replaced by
(A′(x) = (A(x) + ∇g(x), (4.59)

then every wave function ψ has to be multiplied by a phase factor,

ψ(x, t) −→ φ(x, t) = eig(x)ψ(x, t). (4.60)

If ψ is a solution of the Schrödinger equation with vector potential (A,
then φ is the corresponding solution (describing the same physical state)
of the Schrödinger equation with vector potential (A′.

We see that the complex-valued wave function does not describe the
quantum-mechanical process in a unique way. In particular the effects visible
in the complex phase can only be interpreted correctly if a particular gauge
has been fixed. For example, we will always assume that in the force-free
case the electromagnetic potentials are given by V (x) = 0 and A(x) = 0.

CD 3.20 shows the motion of Gaussian wave packets in pure gauge
fields in one and two dimensions. The effect of the gauge potential
is only visible in the phase of the wave function.

4.8. Projection Operators

4.8.1. An example

Let I = (a, b) be an interval of real numbers. Consider the linear operator
PI which multiplies wave functions by the characteristic function of I,

χI(x) =
{

1, x ∈ I,

0, x -∈ I.
(4.61)

It can be defined everywhere in the Hilbert space of square-integrable func-
tions,

PI : ψ → χIψ all ψ ∈ L2(R3), (4.62)

and since PI is multiplication by a real-valued function, it is a symmetric
operator (in the sense of Definition 4.1). It is easy to see that the operator
PI satisfies

P 2
I = PI , (4.63)

that is, PI is idempotent. The expectation value

〈PI〉ψ =
∫ ∞

−∞
ψ(x)χI(x)ψ(x) dx =

∫ b

a
|ψ(x)|2 dx
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gives just the probability of finding the particle in the interval I.
What physical observable is represented by PI? Let us have a look on

the expectation value. In order to determine this quantity experimentally,
one has to perform many elementary experiments (Section 3.4.4). 〈PI〉ψ is
(approximately) given by the fraction of events where the particle is found
in I. The point is that in every elementary experiment one only has to de-
termine whether the particle is in I and to record the answer “yes” (particle
is in I) or “no” (particle is elsewhere). Obviously, the observable quantity
that is measured is the property of being localized in I.

Definition 4.2. An everywhere defined, symmetric, and idempotent
operator is called a projection operator. Projection operators are ob-
servables describing properties. A property is a physical quantity whose
measurement gives either the result “yes” or “no” (thus, respectively,
“true” or “false”, “1” or “0”.)

In Section 3.8 we considered the decomposition of a one-dimensional
wave packet according to the direction of motion. The mapping
from ψ onto the part ψ+ is a projection operator (likewise ψ →
ψ−). Hence the movie CD 3.10 visualizes the action of a projection
operator on the wave packet.

4.8.2. Measurements

A projection operator can be used to describe the effect of a (preparatory)
measurement on a physical state. Let us discuss this for position measure-
ments.

As before, we denote by PI the operator of multiplication by the charac-
teristic function of the region I ⊂ R. This projection operator corresponds
to the observable property of being localized in I. A measurement apparatus
for this property is a device that gives a signal whenever it detects a particle
within I ⊂ R. It is possible to detect the particle in I whenever the wave
function ψ has the property that 〈PI〉ψ -= 0.

If the measurement is nondestructive, it seems reasonable to say that
right after the measurement the particle is in a state that is in harmony with
the outcome of the measurement. Hence the measurement device performs
a state preparation in the sense discussed in Sect 3.4.4. The particles that
leave the measuring device with result “yes” have the property of being
localized within I. Hence their state is described by a wave function ψ1, for
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which we must have

〈PI〉ψ1 = 1. (4.64)

This implies (since ψ1 is normalized)
∫

R

|ψ1(x)|2 dx =
∫

I
|ψ1(x)|2 dx, (4.65)

and hence ψ1 vanishes outside I. The wave function ψ1 is thus in the range
of the projection PI , i.e, ψ1 = PIψ1.

Usually one goes even further by assuming the following projection pos-
tulate, which describes the wave function ψ1 more precisely. This postulate
assumes that a measurement detecting the particle in I does not change the
part of the wave function inside I.

Projection postulate for position measurements:
An ideal measurement device for the property “the particle is in I” acts
as a black box with one input and two outputs: If the result is “yes”,
the measurement changes the state from ψ to cPIψ, if the result is “no”,
the state after the measurement is described by c′(1−PI)ψ. (Here c and
c′ are appropriate normalization constants.)

Exercise 4.5. Show that for any projection operator P , the operator
1 − P is again a projection operator. For the projection PI defined above,
show that

1 − PI = PR\I . (4.66)

Hence 1 − PI describes the property “the particle is not in I.”

Collapse of the wave packet: While the Schrödinger equation describes
a continuous time-evolution, the projection postulate introduces a radically
different method to change the state of a physical system. The observation
of a property prepares individual systems into a state that is in harmony
with the outcome (“yes” or “no”) of the measurement. This state prepa-
ration procedure is probabilistic (one cannot say when it will happen) and
discontinuous—it influences the wave function of the particle instantaneously
(collapse). This is not only typical for position measurements, but for all
observations in quantum mechanics, as you can see from our discussion of
Schrödinger’s cat in Section 3.7.

You should be aware that during the observation the particle is by no
means an isolated system. In fact, it undergoes a very complex interaction
with a (ususally macroscopic) measurement device. The description of the
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state preparation by projection is thus a simple model for a complicated pro-
cess that takes place in a large combined quantum system. The projection
postulate just describes the total change of a partial system after its separa-
tion from the large system. We obtain just one bit of information about the
change of the state of the measurement device. A very simple model indeed.
At this stage we cannot go into further details because we don’t yet have
the background to describe composite quantum systems.

4.8.3. The general projection postulate

Let A be a physical observable. Because a physical observable can only have
real values, we can ask whether in a given state the observable has a value in
an interval I ⊂ R, that is, whether the property “A has a value in I” is true.
The operator representing this property is a projection operator denoted by
PI(A). A measuring apparatus for PI(A) is a detector which gives a signal
whenever it finds the value of A in I, and another signal if it finds that the
value of A is not in I. The general projection postulate is often formulated
as follows.

The general projection postulate:
For any observable A we can define a projection operator PI(A), which
measures the property “the value of A is in a subset I of the real num-
bers.” If the state of the particle entering the measurement device is ψ
(with ‖ψ‖ = 1), then the probability for the result “yes” is

‖PI(A)ψ‖2 = 〈ψ, PI(A)ψ〉 (4.67)

and the probability for the result “no” is ‖(1 − PI(A))ψ‖2. Right after
the measurement, the particle is in the state cPI(A)ψ if the result has
been “yes,” and in the state c′(1 − PI(A))ψ if the result has been “no”
(with suitable normalization constants c and c′).

Exercise 4.6. Define the projection operator which measures the prop-
erty: “The particle has a momentum p in the interval I ⊂ R.” Do the same
for the kinetic energy.

You have learned that measurements can serve to prepare particles with
well defined properties for further experiments. The measurement of a prop-
erty (that is, the application of a projection operator P ) filters the particles
in two output channels. If we block the output channel for which the re-
sult is “no,” all particles emerging from the measurement device are in the
subspace Ran P (the range of the projection operator).
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Usually, one does not know much about the state of the particles prior
to this preparatory measurement. After the measurement the particles still
don’t have a well defined state, because all we can say is that their wave
function is in the range of P . But eventually, it is possible to find a property
for that RanP is one-dimensional. In this case, the state preparation pro-
cedure leads to a pure state that is described by a wavefunction ψ (unique
up to a multiplicative constant). I am going to discuss the corresponding
projection operator in the next section.

4.9. Transition Probability

For any normalized vector ψ in a Hilbert space you can verify that

Pψ = 〈ψ, · 〉ψ (4.68)

is a projection operator. In this notation, the dot is a placeholder for the
vector to which Pψ is applied. The action of Pψ on a vector φ is thus obtained
by calculating the scalar product of ψ with φ and by forming the vector
〈ψ, φ〉ψ. If the states ψ and φ are normalized, the projection operator Pψ

just calculates the component of φ in the direction of ψ. This is done in the
same way you would calculate the component of a vector x in the direction
of a given vector y in the three-dimensional space R3. Obviously, the range
of Pψ is the one-dimensional subspace generated by (scalar multiples of) ψ.

Quantum-mechanically, the projection operator Pψ describes the prop-
erty of being in the state ψ. A preparatory measurement of this property
in a state φ is described by the application of the projection operator. This
changes the wave function from φ to cψ, where c is the scalar product be-
tween ψ and φ.

We may calculate the expectation value of Pψ in the state φ,

〈Pψ〉φ = 〈φ, Pψ φ〉
=

〈

φ, 〈ψ, φ〉ψ
〉

= 〈ψ, φ〉 〈φ, ψ〉 = |〈ψ, φ〉|2. (4.69)

This quantity describes the probability that a state φ is in the state ψ. It
is called the transition probability from φ to ψ. According to the statistical
interpretation, the transition probability describes the fraction of elementary
experiments in which a system is prepared in the state φ and detected in the
state ψ. The transition probability from ψ to ψ is ‖ψ‖2 = 1.
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Transition probability:
The transition probability between two states φ and ψ is given by

pφ→ψ =
∣

∣〈ψ, φ〉
∣

∣

2
. (4.70)

Here it is assumed that ψ and φ are normalized to 1. The transition
probability from φ to ψ is the same as the transition probability from ψ
to φ.

If the vectors representing the physical states are not normalized, the
expression for the transition probability between the two states has to be
replaced by

pφ→ψ =
∣

∣〈ψ, φ〉
∣

∣

2

‖ψ‖2 ‖φ‖2
. (4.71)

At first sight it seems paradox that a state ψ should have a certain probability
to be in another state φ. Indeed, this can only happen in quantum mechanics.
Classically, a particle which is in one state cannot be in any other state. But
in quantum mechanics, only orthogonal states are different enough to exclude
each other.

If two states are orthogonal, 〈ψ, φ〉 = 0, then the transition probability
between φ and ψ is zero.
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Chapter 5

Boundary Conditions

Chapter summary: In this chapter we describe the elastic reflection of particles
in the presence of impenetrable obstacles. Instead of describing walls and obstacles
by electrostatic forces (which would have to be infinitely strong and concentrated
on the surface of the obstacle), it is more appropriate to interpret an impenetrable
barrier as a boundary condition. Starting with the simplest example—a solid wall
in one dimension—we discuss Dirichlet boundary conditions, which exert a strongly
repulsive influence, and Neumann boundary conditions, which are more neutral
toward the particle.

A very interesting problem is the description of particles in a box. The sur-
rounding walls confine the particle for all times to a finite region. Thus, the be-
havior of a particle in a box is quite different from the free motion. Instead of
propagating wave packets we find an orthonormal basis of stationary states, which
can be described as eigenvectors of the Hamiltonian operator. As a consequence,
the quantum-mechanical energy of a particle in a box cannot have arbitrary val-
ues. The only possible energies are given by a discrete set of eigenvalues of the
Hamiltonian operator—a fact that cannot be understood by classical mechanics. In
particular, the lowest possible energy (the energy of the ground state) is greater
than zero, that is, a confined particle is never really at rest. By forming superpo-
sitions of eigenstates, we can describe the motion of arbitrary initial states. The
motion is always periodic in time and can be very complicated, as illustrated by the
mathematically interesting example showing the unit function in a Dirichlet box.

The accompanying CD-ROM contains many movies of wave packets hitting
walls and obstacles in various geometric configurations. Of particular interest is the
double slit—a wall with two holes through which the particle can reach the other
side. Behind the wall, the wave function shows a nice interference pattern which
vanishes as soon as one of the slits is closed. More generally, one can say that the
interference vanishes as soon as one attempts to determine through which of the
holes the particle actually goes. We use this behavior to illustrate once more how
quantum mechanics contradicts the classical picture of localized particles.

107
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5.1. Impenetrable Barrier

5.1.1. Dirichlet boundary conditions

A very simple way to influence the motion of free particles in a way that
cannot be described by electromagnetic potentials (Section 4.6) is to impose
boundary conditions on the wave function. As a first example we describe
in this section the behavior of a quantum-mechanical particle hitting a solid
wall.

We can assume that a solid wall is an impenetrable barrier to the particle.
In classical terms this corresponds to an infinitely strong repulsive force
acting at a single point. In quantum mechanics this can be described by
requiring that the wave function of the particle is identically zero behind the
wall (and, assuming continuity, on the wall). Hence an impenetrable barrier
can be interpreted as a boundary condition.

Consider the following example in one dimension: Let there be a solid
wall at x = 0 and assume that the particle is on the left side (x < 0). We
use the free Schrödinger equation to describe the motion of the particle in
the domain x < 0 and impose the following boundary condition (Dirichlet
boundary condition) at x = 0,

ψ(0, t) = 0, for all t. (5.1)

The Hilbert space of this system is L2((−∞, 0]), that is, the set of complex-
valued functions that are square-integrable on the interval −∞ < x ≤ 0.
The Hamiltonian of the system is a linear operator that acts like the free
Schrödinger operator

H = −1
2

d2

dx2
, (5.2)

but which is defined on a domain restricted by the boundary condition. The
domain of H consists of all square-integrable functions, for which k2ψ̂(k) is
also square-integrable, and which satisfy the boundary condition ψ(0) = 0.

CD 4.1 shows the time evolution of various Gaussian wave packets
near a Dirichlet boundary condition. CD 4.2 shows the behavior
of these wave packets in momentum space. The motion is best de-
scribed as an elastic reflection at a wall. This process turns the
average momentum of the wave packet into its negative. During the
collision with the wall the shape of the wave packet is distorted by
complex oscillations, but soon after the impact the Gaussian shape
is restored.
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5.1.2. Plane waves

Any solution of the free equation can be described as a superposition of
plane waves. But none of the plane waves satisfies the boundary condition
at x = 0! However, it is easy to find a linear combination of two plane waves
that does satisfy the boundary condition:

vk(x, t) =
{

eikx−ik2t/2 − e−ikx−ik2t/2 = 2i sin(kx)e−ik2t/2, x < 0,

0, x ≥ 0.
(5.3)

Obviously, vk is (for all k ∈ R) a solution of the free Schrödinger equation
that satisfies the boundary condition vk(0, t) = 0.

The solution vk is a linear combination of the free plane waves uk(x, t)
and −u−k(x, t); see Eq. (3.21). If k > 0, then uk(x, t) moves to the right
(because it has positive momentum = velocity), and −u−k(x, t) moves to
the left. We may also think of an incoming wave which moves toward the
wall and a reflected wave which moves away from it.

5.1.3. Wave packets

The function vk is not square-integrable and hence has no probability inter-
pretation in quantum mechanics. In the same way, as we used the solution
uk(x, t) of the free equation to form wave packets in the Hilbert space of
the system, we can now form superpositions of the vk’s in order to obtain
square-integrable solutions of the equation with boundary condition. We
write this superposition in the form

ψ(x, t) =
1√
2π

∫ ∞

−∞
vk(x, t) ψ̃(k) dk, (5.4)

where ψ̃ is a suitable complex-valued function (we assume that ψ̃ is integrable
and square-integrable). Defining

φ(x, t) =
1√
2π

∫ ∞

−∞
eikx e−ik2t/2 ψ̃(k) dk, (5.5)

we find that

ψ(x, t) =
{

φ(x, t) − φ(−x, t), x < 0,

0, x ≥ 0.
(5.6)

This method of constructing a solution ψ of the Schrödinger equation with
boundary condition from a solution φ of the free Schrödinger equation will
be referred to as the method of mirrors.

CD 4.3 explains the method of mirrors by showing the wave packet
φ(x, t) together with the mirror function −φ(−x, t). The superposi-
tion fulfills the Dirichlet boundary condition at x = 0.
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5.1.4. Reflection of a Gaussian wave packet

As an example, we consider the amplitude function

ψ̃(k) = N eika e−(k−p0)2/2. (5.7)

Let us assume that a > 0 is sufficiently large. Then

φ(x, 0) = N e−(x+a)2/2 eixp0 (5.8)

is a Gaussian wave packet that is well localized around x = −a in the physical
region (in the half-interval (−∞, 0]). The contribution of the summand
−φ(−x, 0) to the wave function ψ(x, 0) in that region is very small and can
be neglected.

Let us choose the average momentum p0 to be positive and large enough,
so that mostly positive momenta are used to build the wave packet. Hence
the initial function ψ(x, 0) ≈ φ(x+ a) will start moving to the right (toward
the wall) with average momentum p0. The function

φ(−x, 0) = N e−(x−a)2/2 e−ixp0 (5.9)

is a Gaussian with center at x = a behind the wall. It will move to the
left with average momentum −p0 and will finally enter the physical region.
The rather complicated shape of the wave function that emerges during the
collision with the wall thus has a very simple explanation. It is just the
interference pattern of a Gaussian function and a mirror Gaussian. Far in
the future, the part of the function φ(x, t) in the interval (∞, 0] becomes
more and more negligible and only the summand −φ(−x, t) that moves to
the left will contribute to ψ(x, t). The motion of ψ(x, t) in the physical region
(−∞, 0] obviously describes the behavior of a particle that hits the wall at
x = 0 and gets elastically reflected.

5.2. Other Boundary Conditions

Another type of boundary condition is the Neumann boundary condition

ψ′(0) =
d

dx
ψ(x)

∣

∣

∣

x=0
= 0. (5.10)

Here the wave function ψ itself is not forced to vanish at the wall. Instead,
it is required that the derivative ψ′ of the wave function be zero at x = 0.

For any solution φ(x, t) of the free Schrödinger equation we can obtain
a solution that satisfies a Neumann boundary condition at x = 0,

ψ(x, t) =
{

φ(x, t) + φ(−x, t), for x ≤ 0,

0, for x > 0.
(5.11)
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CD 4.4 shows the behavior of Gaussian wave packets near a barrier
represented by a Neumann boundary condition. The Neumann wall
is more neutral in comparison to the strongly repulsive Dirichlet
wall. The probability of finding the particle very close to the wall
is much larger than in the case of a Dirichlet boundary condition.
Nevertheless, the wall is impenetrable in both cases and causes a
total reflection of the particle at x = 0.

Dirichlet and Neumann boundary conditions have natural generaliza-
tions for higher dimensions. Let S be a sufficiently smooth surface in three
dimensions (or curve in two dimensions). A Dirichlet boundary condition
consists in the specification of certain boundary values (usually zero) of the
wave function ψ(x, t) for x ∈ S. A Neumann boundary condition prescribes
the values of the normal derivative ∇ψ(x) · (n(x) at S. Here (n(x) is the unit
vector normal to the surface S at the point x ∈ S. Unfortunately, the theory
of higher-dimensional boundary value problems is beyond the scope of this
text.

Beginning with CD 4.14 we present several movies showing the re-
flection of wave packets at walls and obstacles in two dimensions.
The walls and obstacles are realized by Dirichlet boundary condi-
tions on certain curves. The scattering at obstacles is described by
the free Schrödinger equation in the region outside a closed curve
with a boundary condition on the curve.

5.3. Particle in a Box

5.3.1. Gaussian wave packet between two walls

Let us put walls on both sides of a localized initial state and see what hap-
pens.

CD 4.6 shows the one-dimensional motion of a Gaussian wave packet
between two walls (Dirichlet boundary conditions). After a few re-
flections the wave function occupies the whole available space and
shows complicated oscillations. This behavior can be investigated
with several methods. CD 4.5 illustrates the method of mirrors for
this situation. This will be described next.

We assume that the walls are situated at x = 0 and x = L (with L > 0).
In the Schrödinger equation the presence of the walls is described by the
Dirichlet boundary conditions

ψ(0, t) = ψ(L, t) = 0, for all t. (5.12)

We can try to explain the motion of a Gaussian wave packet between two
walls using the method of mirrors as described previously (Section 5.1.3). Let
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us start with a Gaussian function that is well localized between the walls
at an average initial position x0 near L/2. In order to satisfy the boundary
condition at x = L, we have to assume a mirror Gaussian centered at 2L−x0.
Another mirror Gaussian at −x0 will take care of the boundary condition
at 0. The superposition of the original Gaussian with its mirror at 2L − x0

would now destroy the boundary condition at 0, unless we introduce a new
mirror Gaussian at −2L+x0. Likewise, we need a mirror Gaussian at 2L+x0

that cancels the value at L of the Gaussian located at −x0. By the same
argument every new mirror Gaussian again needs a mirror Gaussian with
respect to the opposite wall. Hence we end up with an infinite number of
mirror wave packets (imagine the situation of a person standing between two
parallel optical mirrors). The physical state is described as the infinite sum
of the original Gaussian and all its mirror images. Of course, only the part of
the wave function within the interval [0, L] has physical relevance. Because
of the exponential decay of each Gaussian function, the contribution of the
infinite sum of mirror Gaussians in the original interval is very small.

The time evolution is now described easily by the time evolution of the
infinite sum of Gaussians. The first reflections perhaps can be described with
sufficient accuracy as the interference pattern arising from the superposition
of a Gaussian with its respective mirror image. But as soon as the wave
packet has spread over a region larger than the interval [0, L], more and more
Gaussians will contribute significantly to the interference pattern, which will
hence become more and more complicated.

5.3.2. Method of mirrors

In a more formal way the motion of a particle in a box can be described
as follows. Take an initial function φ(x), 0 ≤ x ≤ L, which satisfies the
Dirichlet boundary conditions at 0 and L. Let ϕ(x, t) be the solution of the
free Schrödinger equation on the whole line with initial value

ϕ(x, 0) =
{

φ(x), 0,≤ x ≤ L,

0, elsewhere.
(5.13)

Step 1: Define an odd function ψ on the interval [−L, L] by setting

ψ(x) =
{

−φ(−x), for −L ≤ x ≤ 0,
φ(x), for 0 ≤ x ≤ L.

(5.14)

Step 2: Extend this definition to the whole real axis by periodic continua-
tion:

ψ(2jL + x) = ψ(x), j = ±1,±2,±3, . . . . (5.15)
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In terms of the function ϕ we can write ψ as

ψ(x) =
∑

j=±1,±2,...

(

ϕ(2jL + x, 0) − ϕ(2jL − x, 0)
)

. (5.16)

Step 3: The time evolution of the initial state φ according to the Schrödin-
ger equation with boundary conditions is now given by

ψ(x, t) =
∑

j=±1,±2,...

(

ϕ(2jL + x, t) − ϕ(2jL − x, t)
)

, for x ∈ [0, L]. (5.17)

Formally, ψ(x, t) is a solution of the free Schrödinger equation that satisfies
the boundary conditions at 0 and L for all t.

An example of a solution obtained by the method of mirrors is shown in
Color Plate 5. This method is useful in particular for small times, as long as
only a few mirror waves contribute to the solution inside the physical region
0 ≤ x ≤ L.

5.3.3. A special set of solutions

Now we try something different. We want to satisfy the boundary condi-
tions (5.12) by superpositions of plane waves. As in Eq. (5.3), the following
superposition of two plane waves (with momenta ±k),

sin(kx) exp
(

−i
k2

2
t
)

, (5.18)

automatically satisfies the boundary condition at 0, but it will not satisfy
the boundary condition at L for all k. At least there are some k for which
the boundary conditions at 0 and at L can be fulfilled. This is the case for
the wave numbers

k(L)
n = n

π

L
, n = 1, 2, . . . , (5.19)

for which sin(k(L)
n x) = 0 not only at x = 0 but also at x = L. Using the

function (5.18) with k = k(L)
n we find an exact solution of the Schrödinger

equation for a particle in a box:

ψ(L)
n (x, t) =







√

2
L sin

(

k(L)
n x

)

exp(−iE(L)
n t), 0 ≤ x ≤ L,

0, x ≤ 0, or x ≥ L,
(5.20)

where

E(L)
n =

1
2

(k(L)
n )2 =

π2

2L2
n2, n = 1, 2, . . . . (5.21)

The functions ψ(L)
n , n = 1, 2, . . . , form an infinite set of solutions. Moreover,

any linear combination of these functions is again a solution because the
Schrödinger equation (together with the boundary conditions) is linear.
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In our investigation of the free Schrödinger equation we had to form wave
packets by integrating the plane waves over a continuum of k-values. Only by
this continuous superposition were we able to obtain square-integrable wave
functions, which could be interpreted as states of a single quantum particle.
For the particle in a box, only a discrete number of k-values is at our disposal
and it is impossible to form continuous superpositions. Fortunately, we don’t
have to, because all the functions ψ(L)

n are already square-integrable.
Because the particle can only exist between the walls at 0 and L, the

behavior of the wave function in the region outside the box is not of in-
terest. Hence we will simply ignore this part of the solution (which is zero
anyway) and consider only functions defined on the interval [0, L] and square-
integrable. This amounts to choosing the Hilbert space L2([0, L]) as the state
space for this system. The norm of a wave function in this Hilbert space is

‖ψ‖ =
(

∫ L

0
|ψ(x)|2 dx

)1/2
. (5.22)

The factor (2/L)1/2 in the definition of ψ(L)
n makes this norm equal to 1,

‖ψ(L)
n (·, t)‖ = 1, for all n and all t. (5.23)

This means that the particle is inside the box at any time with certainty
(with probability 1).

The initial functions

ψ(L)
n (x) ≡ ψ(L)

n (x, 0) =
√

2
L

sin
(

k(L)
n x

)

, x ∈ [0, L], (5.24)

are a set of so-called eigenfunctions of the Hamiltonian H for the particle in
the box. Eigenfunctions are of central importance to quantum mechanics.
So it is worthwhile explaining this concept in some detail. This will be done
in the next section.

5.4. Eigenvalues and Eigenfunctions

5.4.1. Eigenvectors of linear operators

The following definition is perhaps familiar from linear algebra, but there
is a difference. The linear operators in finite-dimensional vector spaces are
usually defined everywhere. In function spaces, however, the action of linear
operators often cannot be defined for every vector in the vector space. One
has to restrict its domain of definition to a suitable subspace.

Definition 5.1. Let A be a linear operator, defined on a domain D(A)
which is a linear subspace of a vector space H. A vector φ ∈ D(A), φ -= 0,
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is called an eigenvector if there exists a (possibly complex) number λ such
that

Aφ = λφ. (5.25)

The number λ is called eigenvalue of A. If the underlying vector space is a
function space, then the eigenvectors are also called eigenfunctions of A.

Assume that the linear operator A represents an observable of a physical
system. If the state of the system is given by an eigenvector φ of A belonging
to an eigenvalue λ ∈ R, then the expectation value of A is equal to λ and
the uncertainty is zero.

〈A〉φ = λ, ∆φA = 0, if and only if Aφ = λφ. (5.26)

We leave the proof of this result as an exercise to the reader. According
to the statistical interpretation, this means that whenever the state of the
system is an eigenvector of A, a measurement of A yields the eigenvalue λ
with certainty. We say, the observable A has the value λ.

Value of an observable in an eigenstate:
If the state φ of a physical system is described by an eigenvector of an
observable A,

Aφ = λφ, (5.27)
then any measurement of A gives the value λ.

Ψ There are linear operators which have no eigenvalue at all. Indeed,
this is the case for the position and momentum operators (and hence

also for the kinetic energy of free particles). An eigenvector of the position
must have uncertainty zero, which is not possible in the Hilbert space of
square integrable wave functions. The Dirac delta function δ(x) is sort of a
“generalized eigenfunction” of the operator x, but δ(x) is not in the domain
of x, not even in the Hilbert space of the system. Similarly, the plane waves
uk(x) = exp(ikx) formally satisfy the eigenvalue equation p uk(x) = k uk(x)
with the momentum operator p = −id/dx. But the plane waves are not
square-integrable and do not belong to the Hilbert space either. We note
that the generalized eigenvectors can be given a rigorous meaning in the
framework of distribution theory.

It is possible that several eigenvectors belong to the same eigenvalue.

Definition 5.2. The linear subspace spanned by all linear combinations
of eigenvectors belonging to the same eigenvalue λ is called the eigenspace of
λ. The dimension of the eigenspace is called the multiplicity or degeneracy
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of that eigenvalue. An eigenvalue is called degenerate if its multiplicity is
greater than one, otherwise it is called nondegenerate.

The multiplicity counts how many mutually orthogonal eigenvectors be-
long to some eigenvalue.

Exercise 5.1. Let P be a projection operator. What are its eigenvalues?
What is their multiplicity?

Exercise 5.2. Show that the uncertainty ∆φA of an observable A is
zero, whenever φ is an eigenvector of A.

5.4.2. Eigenfunctions in a box

For the particle in a box we have to deal with a differential operator in the
Hilbert space L2([0, L]). The Hamiltonian HD of this system is the operator
of kinetic energy

HDψ(x) = −1
2

d2

dx2
ψ(x). (5.28)

Here we added the subscript D in order to indicate that HD is defined on a
subspace of functions that satisfy the Dirichlet boundary conditions (5.12).
The functions in the domain of HD also must be twice differentiable (in a
generalized sense) such that the derivatives are again functions in L2([0, L]),

D(HD) = {ψ ∈ L2 | ψ′, ψ′′ ∈ L2, ψ(0) = ψ(L) = 0}. (5.29)

Thus, the functions ψ(L)
n defined in Eq. (5.24) are obviously in the domain

of H. Moreover, for all n,

HDψ
(L)
n = E(L)

n ψ(L)
n , E(L)

n =
π2

2L2
n2, n = 1, 2, . . . . (5.30)

Hence the functions ψ(L)
n form a set of eigenfunctions of HD.

I would like to stress once again that the boundary conditions describe
the domain of the operator HD. The eigenvalues of HD depend very much
on these domain properties. The choice of other boundary conditions would
lead to a different set of eigenvalues (see, e.g., Section 5.6 below).

Exercise 5.3. Find the eigenfunctions and eigenvalues of the operator
HN which is the operator of kinetic energy on a domain with Neumann
boundary conditions in the Hilbert space L2([0, L]).
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5.4.3. Time dependence of eigenfunctions

In quantum mechanics, the eigenfunctions of the Hamiltonian are of partic-
ular importance. If H is the Hamiltonian of a quantum-mechanical system,
then the eigenvalue equation Hφ = Eφ is called the stationary Schrödinger
equation. When you know a solution of the stationary Schrödinger equation
(an eigenvector of H), you can obtain a corresponding solution of the time-
dependent Schrödinger equation quite easily. The time-dependent equation
is an initial-value problem of the form

i
d

dt
ψ(t) = H ψ(t), ψ(0) = φ. (5.31)

If Hφ = Eφ, then you can verify by differentiation that

ψ(t) = φ e−iEt (5.32)

is a solution of Eq. (5.31). Note that if ψ(0) = φ is an eigenstate of H, then
ψ(t) is an eigenstate of H with the same eigenvalue for all times.

CD 4.9 shows the first eigenfunctions for a Dirichlet box. The time
dependence of these states is only visible in the phase of the wave
function. Also shown are oscillating states formed by superpositions
of two eigenstates.

The time dependence of an eigenstate is rather trivial. It is completely
described by the phase factor exp(−iEt). The wave function at a time
t1 differs only by a phase factor from the wave function at another time
t2. Hence, according to our quantum-mechanical interpretation, the wave
functions at different times represent the same physical state. When in an
eigenstate, the system remains in that eigenstate forever. Therefore, the
eigenfunctions of the Hamiltonian are also called stationary states of the
physical system.

Stationary states:
If the state of a quantum-mechanical system is initially described by an
eigenvector of the Hamiltonian H, then the system remains in that state
forever.

All physically measurable quantities that can be calculated from the
stationary states do not depend on time. For example, the position and
momentum distributions remain stationary:

|ψn(x, t)|2 = |φ(x)|2, |ψ̂n(p, t)|2 = |φ̂n(p)|2. (5.33)

An eigenstate of H that sits in some region of space has to stay there forever.
This behavior is very different from the propagation of free wave packets.
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Therefore the eigenstates of the Hamiltonian (and their linear combinations)
are often called bound states.

5.4.4. Eigenfunction expansion

Because of the linearity of the time-dependent Schrödinger equation (5.31) it
is easy to obtain the solution for any initial state that is a linear combination
of the eigenvectors.

Solution of the time-dependent Schrödinger equation:
Let ψn be a set of eigenvectors belonging to eigenvalues En of the Hamil-
tonian H. Let φ be an initial state that can be written as a linear
combination of the ψn, that is,

φ =
∑

n

cnψn, (5.34)

with suitable (complex) constants cn. Then the unique solution of the
initial-value problem

i
d

dt
ψ(t) = H ψ(t), ψ(0) = φ, (5.35)

is given by

ψ(t) =
∑

n

cnψne−iEnt. (5.36)

How large is the set of initial functions that are linear combinations of
eigenfunctions? For the particle in a box we can give a very convenient
answer: It turns out that the eigenfunctions ψ(L)

n form an orthonormal basis
in the Hilbert space L2([0, L]).

This can be seen as follows. Let us extend each function f in L2([0, L]) to
an odd function on the larger interval [−L, L] just by setting f(−x) = −f(x).
In that way the subspace of odd functions of L2([−L, L]) can be identified
with L2([0, L]). According to our considerations in the chapter about Fourier
analysis this subspace is spanned by the functions sin(k(L)

n x).
Using the fact that the eigenfunctions ψ(L)

n form a basis of the Hilbert
space, we can obtain a complete solution of the initial-value problem for the
particle in a box. Let φ be an arbitrary initial state. First we expand the
wave function φ in the orthonormal basis. This is just a Fourier expansion.

φ =
∞
∑

n=1

cnψ
(L)
n (5.37)
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Here the coefficients of the linear combination are given by

cn = 〈ψ(L)
n , φ〉 =

∫ L

0
ψ(L)

n (x)φ(x) dx, (5.38)

and the convergence of the sum is meant with respect to the topology of
the Hilbert space L2([0, L]) (convergence in the mean). The reader should
remember that the formula for the coefficients cn is just a consequence of
the fact that the ψ(L)

n form an orthonormal basis. Another consequence is

‖φ‖2 =
∞
∑

n=1

|cn|2. (5.39)

The time evolution of the initial state φ is described by the formula

φ =
∞
∑

n=1

cn exp(−iE(L)
n t)ψ(L)

n . (5.40)

Ψ Note that we can describe the time evolution of any square-integrable
initial state in this way. We can even consider initial states φ that do

not satisfy the boundary conditions or that are not differentiable (i.e., wave
functions that are not in the domain of the Hamiltonian H). For these initial
states the solution ψ(t) will not be differentiable at t = 0 and the differential
equation is not satisfied in a pointwise sense. The next section presents an
example.

5.5. Special Topic: Unit Function in a Dirichlet
Box

As an example of the eigenfunction expansion we consider again the particle
in a box, which is described by the Hamiltonian HD with Dirichlet boundary
conditions at x = 0 and x = 1. As we have seen we can define a time
evolution for any initial function that is square-integrable. For L = 1 the
eigenvalues of HD are

En =
n2π2

2
, (5.41)

and the functions ψn(x) =
√

2 sin(nπx) form an orthonormal basis of eigen-
functions. The Schrödinger equation gives the time evolution

ψ(x, t) =
√

2
∞
∑

n=0

cn sin(nπx) exp
(

−i
n2π2

2
t
)

, (5.42)

where the constants cn are the coefficients of the Fourier expansion of the
initial function.
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It is evident from Eq. (5.42) that ψ(x, t) is periodic in time. For t = 4/π
we find

exp
(

−i
n2π2

2
4
π

)

= exp
(

−i n22π
)

= 1, for n = 1, 2, 3, . . . (5.43)

and hence ψ(x, t + 4/π) = ψ(x, t).

Periodicity in time:
Every state of a particle in a Dirichlet box depends periodically on time
with period T = 4/π.

Exercise 5.4. What is the period for the motion of a particle in a box
of length L?

Here we want to stress that Eq. (5.42) can be used to define a time
evolution for any square-integrable initial function—even for a function that
does not fulfill the boundary conditions. We illustrate this observation by
determining the time evolution of the initial function

ψ(x, t= 0) = 1, for all x ∈ [0, 1]. (5.44)

This initial state describes a particle with a uniform position probability
density in the interval [0, 1]. We are going to prove the following astonishing
fact about ψ(x, t) (see also Color Plate 16):

Time evolution of the unit function:
If ψ(x, 0) = 1, then ψ(x, t) is a step function at every time t for which
t/T is a rational number.

CD 4.11 shows the spectacular behavior of the unit function sub-
jected to Dirichlet boundary conditions. The wave function is not
differentiable, neither with respect to x nor with respect to t.

The first step toward a solution of the initial-value problem is to deter-
mine the Fourier expansion of the initial function ψ = 1. We first note that
in Eq. (5.42) only the summands with n odd can be nonzero because of the
symmetry properties of the initial function. Indeed, according to Eq. (5.38)
the Fourier coefficients are

cn =
√

2
∫ 1

0
sin(nπx) dx =

{

2
√

2/(nπ), for n = 1, 3, 5, . . . ,

0, for n = 2, 4, 6, . . . .
(5.45)
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Hence we have the Fourier representation

ψ(x, 0) = 1 =
4
π

∞
∑

k=1

1
2k − 1

sin
(

(2k − 1)πx
)

. (5.46)

Of course, the Fourier series does not converge to 1 at x = 0 and x = 1
(where every summand is zero). But all that is required is convergence in
the topology of the Hilbert space.

Inserting the time dependence of the eigenfunctions in the Fourier ex-
pansion of the initial state we obtain

ψ(x, t) =
4
π

∞
∑

k=1

1
2k − 1

exp
(

−i
(2k − 1)2π2

2
t
)

sin
(

(2k − 1)πx
)

. (5.47)

Exercise 5.5. We can use this result to show that it is sufficient to
know the time evolution of ψ for t in the interval [0, 1/(4π)]. Replace t by
t + 1/(2π) in Eq. (5.47) in order to prove

ψ
(

x, t +
1
2π

)

= exp
(

−i
π

4

)

ψ(x, t). (5.48)

Replace t by 1/(2π) − t and deduce

ψ
(

x,
1
2π

− t
)

= exp
(

−i
π

4

)

ψ(x, t). (5.49)

What is special about t/T (or equivalently tπ) being a rational number?
Let us write

t =
q

pπ
(5.50)

in Eq. (5.47), where we assume that q and p are integers. We obtain

ψ(x, t) =
4
π

∞
∑

k=1

ak

2k − 1
sin

(

(2k − 1)πx
)

. (5.51)

with

ak = exp
(

−2πi
(2k − 1)2

4
q

p

)

, k = 1, 2, . . . . (5.52)

We can check that the sequence (ak) is periodic in k. If
(2(k + r) − 1)2

4
q

p
=

(2k − 1)2

4
q

p
+ n (5.53)

holds for some integer n, then (using the 2π-periodicity of the exponential
function) the numbers ak and ak+r are equal. Equation (5.53) is fulfilled for
all integers q if we choose r = p. Hence we obtain

ak = ak+p, for all k = 1, 2, . . . . (5.54)
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Moreover, we have the relation

ar = ap−r+1, for r = 1, 2, . . . , p. (5.55)

Hence the solution at time t = q/(pπ) is uniquely determined by the phase
factors

{

ar

∣

∣

∣ r = 1, 2, . . . ,
[

p + 1
2

]

}

. (5.56)

Here [x] is the greatest integer less than or equal to x.
We are going to prove the following fact:

Theorem 5.1. An expression of the form (5.51) with coefficients satis-
fying (5.54) and (5.55) is the Fourier series of a step function t. The step
function is symmetric in the interval [0, 1] and has at most p steps of equal
length, that is, t is of the form

t(x) =
[ p+1

2 ]
∑

r=1

cr

(

χ[ r−1
p , r

p ](x) + χ[1− r
p ,1− r−1

p ](x)
)

, (5.57)

with suitable constants cr ∈ C. (Here χI(x) is the characteristic function of
the interval I ).

Proof. We first investigate the Fourier series of especially simple step
functions. Given the integer p, we denote

pm =
[

p + 1
2

]

. (5.58)

For r = 1, 2, . . . , pm we define

tr(x) = χ[ r−1
p ,1− r−1

p ](x) =
{

1, for r−1
p ≤ x ≤ 1 − r−1

p ,

0, elsewhere.
(5.59)

Obviously, t1(x) = 1 and every tr is a simple example of a step function of
the type (5.57). Moreover, the pm functions tr are linearly independent and
every symmetric step function of the form (5.57) can be written as a linear
combination of the tr. It is easy to calculate explicitly the Fourier series of
tr. Because each tr is symmetric in the interval [0, 1], the Fourier series is of
the form

tr(x) =
√

2
∞
∑

k=1

cr,k sin
(

(2k − 1)πx
)

. (5.60)
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The Fourier coefficients are given by

cr,k =
√

2
∫ 1− r−1

p

r−1
p

sin
(

(2k − 1)πx
)

dx (5.61)

=
2
√

2
π

1
2k − 1

cos
(

(2k − 1)π
r − 1

p

)

. (5.62)

We finally obtain

tr(x) =
4
π

∞
∑

k=1

dr,k

2k − 1
sin

(

(2k − 1)πx
)

, (5.63)

where we introduced the abbreviation

dr,k = cos
(

(2k − 1)π
r − 1

p

)

. (5.64)

It is easy to see that the constants dr,k have the property

dr,k+p = dr,k, for all k = 1, 2, . . . , (5.65)
dr,j = dr,p−j+1, for all j = 1, 2, . . . , pm.. (5.66)

Hence the step function tr can be represented in a unique way by the vector

dr = (dr,1, dr,2, . . . , dr,pm) ∈ R
pm . (5.67)

There are pm different vectors dr corresponding to the pm different step
functions tr. By the uniqueness of the Fourier series, the linear independence
of the tr carries over to the coefficient vectors dr. Hence every vector in
a ∈ Cpm can be written as a (complex) linear combination of the vectors dr,

ak =
pm
∑

r=1

brdr,k. (5.68)

The coefficients (b1, . . . , bpm) can be determined by multiplying the row vec-
tor a with the inverse of the matrix D = (dr,k), that is, b = aD−1. The
matrix D is invertible because its rows are the linearly independent vectors
dr. But the pm-dimensional vector a can be used to represent any sequence
(ak) of coefficients with the properties (5.54) and (5.55). This shows that
the Fourier series (5.51) is a linear combination of the functions tr,

4
π

∞
∑

k=1

ak

2k − 1
sin

(

(2k − 1)πx
)

=
pm
∑

r=1

brtr(x), (5.69)

and hence it is a step function with the required properties.
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5.6. Particle on a Circle

We consider a free particle on an interval [0, L] described by the Hamiltonian

Hp = −1
2

d2

dx2
. (5.70)

The domain of Hp consists of differentiable functions and we assume that
they satisfy the boundary conditions

ψ(0) = ψ(L), ψ′(0) = ψ′(L). (5.71)

A function ψ that is defined on an interval and that satisfies these boundary
conditions can easily be continued to the whole real axis by setting ψ(x +
nL) = ψ(x). In this way we obtain a periodic function with period L.
Therefore, boundary conditions of this type are called periodic boundary
conditions.

The periodic boundary conditions lead to an identification of the end
points 0 and L of the interval. This identification allows us to treat the
variable ϕ = 2πx/L as an angle coordinate. Hence it appears to be natural
to visualize the configuration space as a circle. (Topologically, a circle is
indeed defined as an interval [0, L] with end points glued together).

The operator Hp on [0, L] with periodic boundary conditions has the
eigenfunctions

ψ(L)
n (x) =

1√
L

exp
(

i n
2π
L

x
)

, n = 0,±1,±2, . . . . (5.72)

These eigenfunctions belong to the energy eigenvalues

E(L)
n =

1
2

n2
(2π

L

)2
= 2(k(L)

n )2, where k(L)
n =

nπ

L
. (5.73)

Because the energy E(L)
n does not depend on the sign of the quantum number

n, there are two orthogonal eigenvectors ψn and ψ−n for each energy eigen-
value, except for E(L)

0 . In quantum mechanics, the lowest possible energy is
always nondegenerate, that is, there is (up to multiplication by a constant)
only one eigenfunction. The unique state with the lowest possible energy is
called the ground state. For the particle on a circle, all other energies (with
quantum numbers n -= 0) are eigenvalues with multiplicity 2 (the eigenspace
is two-dimensional). In each eigenspace we can form the linear combinations

1√
2

(

ψ(L)
n (x) + ψ(L)

−n (x)
)

=
√

2
L

cos k(L)
n x, n = 0, 1, 2, . . . , (5.74)

which also satisfy the Neumann boundary conditions, and

−i√
2

(

ψ(L)
n (x) − ψ(L)

−n (x)
)

=
√

2
L

sin k(L)
n x, n = 1, 2, 3, . . . , (5.75)
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which are the eigenfunctions satisfying Dirichlet boundary conditions (see
Section 5.4.2).

Exercise 5.6. Show that the ψ(L)
n form an orthonormal basis.

Exercise 5.7. Prove that every state on a circle is periodic in time with
period T = L2/π.

Because the eigenfunctions form a basis in the Hilbert space of the
system, we can form arbitrary wave packets from the eigenfunctions.
CD 4.12 shows Gaussian wave packets moving on a circle. The pe-
riodic boundary condition has the effect that a wave packet that
leaves the interval on one side reenters the interval from the other
side. The natural spreading of wave packets according to the free
time evolution soon leads to self-interference on the circle. From the
interference pattern localized states reemerge after certain fractions
of the period T . You can watch the formation of a Schrödinger cat
state at T/2.

Exercise 5.8. Consider the angular momentum operator for a particle
moving on a circle. Assume that the circle is in the x1x2-plane with center at
the origin. Thus, it is sufficient to consider only the third component of the
angular momentum, L3 = x1p2 − x2p1. Using the angle ϕ with the x1-axis
as the position coordinate, describe the action of L3 on functions of ϕ.

5.7. The Double Slit Experiment

The movies CD 4.16–4.19 show wave packets partially penetrating
a screen with one or several slits. The screen is an obstacle realized
by a Dirichlet boundary condition in the Schrödinger equation. The
interference pattern that is visible behind the screen is often used to
explain the mysteries of quantum mechanics.

Very often, people feel dissatisfied with quantum mechanics because in
general it makes only probabilistic statements and one obtains no predictions
about individual experiments. Moreover, some results of quantum mechan-
ics seem to contradict our conception of the nature of reality. Usually, the
double slit experiment is considered as a simple example where all these diffi-
culties can be explained in a most transparent way. In his book [19], Richard
Feynman introduces the chapter about the double slit experiment with the
following words: “In this chapter we shall tackle immediately the basic el-
ement of the mysterious behavior in its most strange form. We choose to
examine a phenomenon which is impossible, absolutely impossible, to explain
in any classical way, and which has in it the heart of quantum mechanics.”
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Figure 5.1. The double-slit experiment

5.7.1. The experimental setup

A particle source Q, a screen S, and a detector D are arranged as in Fig. 5.1.
The screen is assumed to be an impenetrable barrier except that it has
two narrow slits or holes that are denoted by H1 and H2. The detector is
positioned far behind the screen. It has a circular opening R and gives a
signal whenever a particle enters the detector through R.

In an elementary experiment, a particle is emitted from the source at time
t = 0 and the physicist waits to see whether the particle is finally detected
at R. The goal is to determine the probability for finding the particle at
R. Thus, we have to perform the elementary experiment many times. By
moving the detector around we can determine how the probability of finding
the particle depends on the position of the detector.

Until very recently, the experiment described here has been considered
an idealized thought experiment. Meanwhile very similar experiments have
been actually performed and the predictions of quantum mechanics have
been confirmed. We also note that the special realization of the experiment
is not so crucial for what we want to point out. The double slit experiment
is just a concrete example of a type of experiments where the particle goes
through an intermediate state which is a superposition of two (or more)
orthogonal states.

Now we proceed to make a quantum-mechanical model of this experi-
ment.
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5.7.2. Quantum-mechanical description

In order to simplify the analysis, it is assumed that the source Q always gen-
erates a particle in the same quantum-mechanical initial state ψ0. In Color
Plate 18 we show a typical situation. The initial state has an uncertainty
in position that is larger than the distance of the two holes. The average
momentum points toward the screen.

For the Hamiltonian we choose the operator of kinetic energy with Dirich-
let boundary conditions on the surface of the screen. Thus, the wave function
cannot enter the material of the screen, but it may enter the region behind
the screen through the two holes. Let ψ(t) be the unique solution of the
Schrödinger equation with ψ(0) = ψ0. What quantity should represent the
probability that the particle enters the detector through the surface R?

Let us assume that the detector is sufficiently far away and points toward
the origin (which is situated somewhere near the two holes). Consider the
cone C formed by all straight lines from the origin through the disk R.
Essentially all the particles scattered into the cone C will go through R and
will thus be collected by the detector. The probability p(C) that the particle
is finally found in the cone C is given by

p(C) = lim
t→∞

∫

C
|ψ(x, t)|2 d3x. (5.76)

Notice that we do not speak about the probability p(R) that the particle
goes through the opening R. Instead, we consider the probability p(C) that
the particle can be found asymptotically in a cone. The reason is that the
quantity p(R) is somewhat ill defined in quantum mechanics. In quantum
mechanics, the motion of a particle from one region in space to another is
described by a change of the position probability for these regions. Nothing
is said about the actual motion between the regions. Therefore, it is not clear
what it means if we say that a particle goes through a surface R. For smooth
wave functions one might nevertheless try to define p(R) as the expression

∫ ∞

0

(

∫

R

(j(x, t) · (n(x) df
)

dt. (5.77)

Here (j is the probability current defined in Section 3.5, (n is a unit normal
vector to the surface R, pointing into the detector, and df is a surface element
of R. Equation (5.77) describes the time-integrated flux of the position
probability density through the surface R. But in general this quantity does
not have the properties of a probability. For an arbitrary surface it might
be larger than one if some interaction causes the wave packet to go through
the surface R several times. Or it might be negative if the wave packet goes
through the surface from the wrong direction.
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The movie CD 4.17 shows the time evolution of the initial state ψ0

shown in Color Plate 18. Two frames from this movie are shown
in Color Plate 19. We see how a part of the wave function gets
reflected at the screen while another part penetrates the holes. The
parts of the wave function recombine behind the screen to form an
interference pattern In certain directions, the probability of finding
the particle is very small.

5.7.3. Comparing theory with experiment

Experimentally, the probability p(C) is determined by counting the number
n(C) of experiments where the particle is scattered into the cone C and
dividing this number by the total number n of experiments. This quotient
is the relative frequency

n(C)
n

=
number of particles finally entering C

number of particles emitted from Q
. (5.78)

It is believed that for very large n the relative frequency approximates the
probability p(C).

According to the best of our knowledge, quantum mechanics seems to
make correct predictions about the outcome of this or similar experiments.
But as discussed earlier, quantum mechanics gives no information about the
path of the particle between source and detector. There is no mathematical
quantity representing the probability that the quantum particle goes through
one of the holes in the screen.

But how did the particle get from the source Q to the region C? Did
the particle go through H1 or through H2? These questions are of course
motivated by our classical understanding of particles and their propagation
through space. Can we understand the results of quantum mechanics in
terms of these classical ideas?

There is one situation where it makes sense to say that the particle goes
through one of the holes, say through H1. Namely, if the other hole is closed
and the only way to go to the region behind the screen is by passing the
hole H1. In this case we may identify the probability of going through the
hole with the probability of finding the particle asymptotically (for t → ∞)
behind the screen.

Therefore, when we want to determine quantum-mechanically the prob-
abilities of going through one of the holes, we must modify our experiment.
We assume that the holes in the screen can be closed or opened individually
and consider the following variants of our experimental setup:

Situation 1: H1 is open; H2 is closed.
Situation 2: H2 is open; H1 is closed.
Situation 3: Both holes open.
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5.7.4. The predictions of quantum mechanics

Let ψ1, ψ2, and ψ denote the solutions of the Schrödinger equation for the
situations 1, 2, and 3, respectively, each with the same initial condition
(see Color Plate 20). Because the propagation of waves according to the
Schrödinger equation is a linear and local phenomenon, we are led to the
conjecture that in the region behind the screen (and sufficiently far away
from the holes) the wave function ψ is very well approximated by the sum
of the solutions ψ1 and ψ2:

ψ(x, t) ≈ ψ1(x, t) + ψ2(x, t) behind the screen. (5.79)

Thus, we regard the wave function behind the screen simply as the sum of
the two approximately spherical waves emerging from the individual holes.
(This is essentially an application of Huygens’ principle). Indeed, the nu-
merical solution of the corresponding Schrödinger equations confirms this
assumption. Hence

|ψ(x, t)|2 ≈ |ψ1(x, t) + ψ2(x, t)|2. (5.80)

We want to compare the quantity

p(C) = lim
t→∞

∫

C
|ψ(x, t)|2 d3x (5.81)

with the expression

p1(C) + p2(C) = lim
t→∞

∫

C
(|ψ1(x, t)|2 + |ψ2(x, t)|2) d3x. (5.82)

But the interference of the two wave functions will cause the sum ψ1 + ψ2

to vanish in certain directions where the individual summands are equal in
size but have opposite phases. In these regions, |ψ1|2 + |ψ2|2 will be large,
while the summands in |ψ1 + ψ2|2 cancel out. Hence in general,

p(C) -= p1(C) + p1(C) (5.83)

and the difference between the expressions p(C) and p1(C) + p2(C) is not
small or negligible.

Because of the interference of the two wave functions in (5.80) the out-
come of the theory (which is in agreement with the experiment) is very
strange. In some directions the probability of finding the particle increases
if one of the holes is closed. With both holes open, there are more possibili-
ties to go from the source to the detector, but in certain directions, we find
no particles at all!
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CD 4.17.2 shows the solution with one hole closed. It is approxi-
mately a spherical wave behind the screen; see also Color Plate 20.
CD 4.17.3 shows the superposition of two spherical waves. The com-
parison with the interference pattern in the double-slit experiment
justifies the assumption (5.79).

5.8. Special Topic: Analysis of the Double Slit
Experiment

5.8.1. Events and probability

In the present context, an elementary experiment (see Section 3.4.2) is just
the emission of a particle by the source Q. Eventually, the particle will be
detected somewhere behind the screen. In a single experiment it cannot be
predicted where the particle goes, no matter how much care we invest in
preparing or knowing the initial state. According to the statistical inter-
pretation, elementary experiments are not reproducible and therefore not
the subject of quantum mechanics. What can be predicted are the proba-
bility distributions of certain observables, which have to be determined by
repeating the elementary experiment many times.

Perhaps it is possible to refine the theory, so that it gives more informa-
tion about the outcome of a single experiment? Can we assume that at least
the particle itself knows where it goes?

Whenever probability theory is applied, it is essential to describe the
events very precisely. First we define a probability space X , the set of all
elementary experiments. The subsets of the probability space are usually
simply called events in probability theory. Here we are interested mainly in
the following events (set of experiments):

• X—the set of all experiments where the particle is emitted by Q. This
is our probability space.

• C—the set of all experiments where the particle is emitted by Q and
is finally detected in the cone C.

The main result of quantum mechanics is to associate a probability to
the event C. (The probability of the event X is 1.)

We are conducting experiments in different setups or situations, as de-
scribed in Section 5.7.3. A priori, the probability spaces of different situ-
ations have nothing to do with each other. We append an index—Xj , Cj ,
(j = 1, 2, 3)—in order to distinguish between the situations. The reader
should always remember that these are collections of experiments in differ-
ent situations and are therefore different sets.
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In probability theory, a probability is associated to each event. The
probability of being scattered into the cone C in Situation j (i.e., the prob-
ability of the event Cj) will be simply called pj(C). According to our earlier
notation, we write p(C) for p3(C).

One might also wish to consider the following events:
• H1—the set of all experiments where the particle goes through H1.
• H2—the set of all experiments where the particle goes through H2.
• X>—the set of all experiments where the particle finally gets behind

the screen.
According to the conditions of the experimental setup, it is reasonable

to identify

(X>)j = (Hj)j (j = 1, 2). (5.84)

As discussed earlier, in quantum mechanics it is difficult to define the prob-
ability of going through a surface, and hence this identification may be con-
sidered a definition. Hence we define the probability of going through the
screen as the probability of finding the particle asymptotically somewhere
behind the screen. The latter can be expressed quantum-mechanically as

pj(Hj) = lim
t→∞

∫

R>

|ψj(x, t)|2 d3x, j = 1, 2, (5.85)

where ψj is the solution of the Schrödinger equation in Situation j and R>

is the half space behind the screen. In principle, we can determine the
probabilities pj(Hj) by positioning the detector R directly behind (or even
inside) the corresponding hole.

It makes sense to define the event H2 even for Situation 1 where the hole
H2 is closed (there, it is just the empty set ∅, that is, an impossible event).
Hence we write

(H1)2 = (H2)1 = ∅ (5.86)

and the corresponding probabilities are zero.
A priori it is not allowed to speak of (Hi)3 because in Situation 3 no

attempt is made to determine whether the particle goes through one of
the holes. Any assumption about the event Hj in Situation 3 makes an
identification of events in different experimental setups. All we can say a
priori (as a consequence of the geometric setup of the experiment) is that
a particle can only reach the cone C if it reaches the half-space behind the
screen. As a formula this statement reads

C3 = (X>)3 ∩ C3, (5.87)

which just states that the event C3 is a subset of (X>)3.
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The Situations 1 and 2 are designed to make sure through which hole
the particle has passed when it is finally detected. In these situations every
particle that is detected in C must have passed the open hole. This is
expressed in

Cj = (Hj)j ∩ Cj or equivalently, Cj ⊂ (Hj)j , j = 1, 2. (5.88)

One has tried to design other situations in order to determine where the par-
ticle goes without closing one of the holes. For example, one might think of
a measuring apparatus that detects flying particles through their interaction
with photons (i.e., just by looking at the particle). But it has been shown
that (as a consequence of the disturbing influence of the measurement) any
such attempt to obtain a “which-way” information has essentially the same
effect as closing one of the holes altogether: It destroys the interference
pattern of the wave function behind the screen.

5.8.2. Classical consideration

The spreading of the wave function over a large region of space reflects the
uncertainty of position. But the particle itself is never seen to be smeared
out. An electron is always detected as a mass point containing the whole of
its mass and charge. No matter how small the opening R or how narrow the
cone C, a particle is always detected as a whole. Thus, it seems reasonable
to assume that the particle remains pointlike in the time between emission
and detection. If the particle is indeed pointlike, then it makes sense to
assume that it actually has passed through one and only one of the holes
before it arrives in the region behind the screen. Even if the physicist does
not (or cannot) know through which of the holes the particle goes, let us
assume that at least the particle itself knows. (This amounts to saying that
the spreading of the wave function just reflects the incomplete knowledge of
the observer and is not a fundamental property of the particle itself).

Addition of probabilities:
The assumption

(A) “Whenever a particle is detected behind the screen, then it has
passed through one and only one of the two holes”

and the elementary rules of logic, set theory, and probability theory
imply

p(C) = p1(C) + p2(C). (5.89)
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The assumption (A) stated above is about the behavior of an individual
particle during an elementary experiment. Quantum mechanics makes no
statement about the validity of this assumption. The location of the particle
when it penetrates the screen may be regarded as a hidden variable.

In quantum mechanics, the relation (5.89) is replaced by Eq. (5.83). For
those who believe in the classical rules of logic and probability theory, the
experimentally confirmed violation of (5.89) just shows that this type of
hidden variables is prohibited in a quantum theory.

Historically, there have been various attempts to change the rules of
logic or probability theory in order to be able to keep the assumption (A).
In order to see which of these rules are involved, we try to give a proof
of (5.89) based on assumption (A). The derivation given below might seem
difficult—in fact, it is very elementary. What makes it difficult is to list all
subconscious assumptions about reality and logic involved in this derivation.

We split the derivation of Eq. (5.89) into several steps. Because this
relation is violated by quantum mechanics, see Eq. (5.83), and because the
quantum-mechanical result is confirmed experimentally, either the assump-
tion or one of the following steps is wrong.

1. We make the following assumption: When the particle is detected
behind the screen in Situation 3, then it has passed through one or
both of the holes H1 and H2. Written as a formula, this assumption
means

(H1)3 ∪ (H2)3 = (X>)3. (5.90)

This contains the implicit assumption that it makes sense to speak of
the events H1 and H2 even in Situation 3.

2. We use elementary set algebra and (5.87) to deduce from step 1:
(

(H1)3 ∩ C3
)

∪
(

(H2)3 ∩ C3
)

= C3. (5.91)

This, of course, just says that the particle can reach C only through
one or both of the holes in the screen.

3. The next assumption is: When the particle goes through the hole
H1, it does not matter, whether the hole H2 is open or closed (and
similarly with H2 and H1 exchanged). This assumption makes an
identification of events in Situation 1 or 2 with events in Situation 3.
More explicitly,

(H1)3 = (H1)1, (H2)3 = (H2)2 (5.92)

and

(H1)3 ∩ C3 = (H1)1 ∩ C1, (H2)3 ∩ C3 = (H2)2 ∩ C2. (5.93)
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4. This is crucial: We assume that in Situation 3 a particle can go
through only one of the holes at a time. (The particle does not split
or divide itself). Hence

(H1)3 ∩ (H2)3 = ∅. (5.94)
5. Using elementary set algebra, the previous step implies

(

(H1)3 ∩ C3
)

∩
(

(H2)3 ∩ C3
)

= ∅, (5.95)

6. From (5.91), (5.93), and (5.88) we obtain
C1 ∪ C2 = C3, (5.96)

and with (5.95)
C1 ∩ C2 = ∅. (5.97)

Thus, C3 is the union of two disjoint subsets C1 and C2. Disjoint events
are called independent.

7. The event C1 in Situation 1 has the same probability as in Situation 3
(where it has been identified with (H1)3 ∩ C3), that is, we assume

p1(C1) = p3(C1), p2(C2) = p3(C2). (5.98)
8. In probability theory, one associates probabilities to events according

to certain rules. One of these rules states that the joint probability
of independent events (which are disjoint sets of experiments) is the
sum of the individual probabilities. Thus, step 6 implies that

p3(C3) = p3(C1) + p3(C2). (5.99)

Using the previous step and the notation pi(Ci) = pi(C), p3(C) =
p(C), we obtain the result (5.89).

Because this result is not in agreement with experiments, one of the above
steps must be false. The quantum logic point of view rejects the use of the
tertium non datur from classical logic when thinking about the quantum-
physical reality.

In Bohm’s quantum mechanics (Section 3.5) one would reject step 3,
because the particle’s pilot wave is changed by opening or closing the second
slit.

If one thinks that the wave function is a property of an individual parti-
cle, then—considering the movies CD 4.17 and 4.18—one would reject both
steps 3 and 4.

In view of our discussion in Section 5.8.1 we can already reject the first
step, which puts events from the probability space of Situations 1 or 2 into
the probability space of Situation 3.

Which of the steps above would you like to reject?



Chapter 6

Linear Operators in Hilbert
Spaces

Chapter summary: Having had some experience working with quantum-mechan-
ical formalism in various situations, it is now time to investigate more deeply its
mathematical properties. In particular, we are going to describe the time evolution
and, more generally, symmetry transformations and their generators.

Time evolution according to the Schrödinger equation has the property that it
conserves the norm of wave packets. In mathematical terms, the relation between
the initial state (at time t = 0) and the state at time t can be described as the
action of a unitary operator U(t). The set of operators U(t) is called the unitary
group generated by the Hamiltonian operator H. In the same way all self-adjoint
operators generate unitary groups. For example, the momentum operator generates
the unitary group of translations and the angular momentum operator generates
rotations. For self-adjoint operators satisfying the canonical commutation relations,
the corresponding unitary groups satisfy the Weyl relations. We shall have occasion
to use the Weyl relations for calculating the time evolution of harmonic oscillator
states in the next chapter.

A system is said to be symmetric with respect to a certain group of transfor-
mations, if these transformations commute with the time evolution. Equivalently,
the generator of the symmetry transformation commutes with the Hamiltonian of
the system. An immediate consequence is Noether’s theorem. If the Schrödinger
equation has a symmetry, then any physical observable corresponding to the gener-
ator of the symmetry is a conserved quantity (a constant of motion). For example,
momentum is conserved in a system with translational symmetry.

6.1. Hamiltonian and Time Evolution

The Schrödinger equation has the general form

i
d

dt
ψ(t) = H ψ(t) (6.1)

where H is a linear operator in a Hilbert space H (usually called the Hamil-
tonian operator or simply the Hamiltonian of the system).

135
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If H were just a number, then a solution would be a function t → ψ(t)
with complex values. Given an initial value ψ0, the solution can be deter-
mined explicitly as exp(−iHt)ψ0.

But in our case H is a linear operator in H and hence the solution must
be a function t → ψ(t) with values in H!

Ψ Strict solutions. What other properties must a solution have? In
order to give a meaning to the time derivative in Eq. (6.1) we have to

assume that the limit

lim
h→0

ψ(t + h) − ψ(t)
h

exists for all t. (6.2)

Of course, the limit is meant with respect to the topology of the Hilbert
space. If it exists, the limit is called dψ(t)/dt. It should be stressed that
d/dt is not a linear operator in the Hilbert space of the system, instead it
acts on functions t → ψ(t) with values in the Hilbert space.

If you want to apply H to ψ(t) on the right-hand side of (6.1) you have
to make sure that the solution at time t is in the domain of definition of H.
Hence a solution must also have the property

ψ(t) ∈ D(H), for all t. (6.3)

What we have described here is called a strict solution, that is, a solution in
the literal sense. It is sometimes useful to consider more general solutions of
the initial-value problem. But before we proceed with the abstract nonsense,
let us consider the free time evolution.

Free time evolution: As you learned in Section 3.3.1, the solution of the
free Schödinger equation with initial function ψ0 can be expressed as

ψ(·, t) = F−1 exp
(

−i
k2

2
t
)

Fψ0. (6.4)

The free time evolution can therefore be described as the action of a linear
operator on the initial function ψ0. This operator is just the exponential
function of the free Schrödinger operator H0 = p2/2, that is,

e−iH0t = F−1 exp
(

−i
k2

2
t
)

F . (6.5)

Hence the free time evolution is the inverse Fourier transform of a bounded
multiplication operator in momentum space.

We want to stress that it is not at all obvious how to define exp(−iH0t)
in terms of the familiar power series of the exponential function. The power
series would be an infinite sum of unbounded operators. Moreover, for all
positive integers n the domain of Hn+1

0 is strictly smaller than the domain
of Hn

0 .
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You know from Section 3.3.4 that the free time evolution is an integral
operator,

(

e−iH0tφ
)

(x) =
∫

Rn
K(x − y, t)φ(y) dny, (6.6)

with an integral kernel K given by Eq. (3.53).
The free time evolution has the following properties:

Some properties of exp(−iH0t):
1. The domain of exp(−iH0t) consists of the entire Hilbert space.
2. ‖ exp(−iH0t)ψ‖ = ‖ψ‖ for all ψ.
3. If ψ ∈ D(H0), then ψ(t) = exp(−iH0t)ψ is a strict solution of the

Schrödinger equation.

These results can be proved with the help of Eq. (6.5).
The first property states that we can define a time evolution for any

initial state in the Hilbert space.

CD 3.12 shows a solution ψ(x, t) = exp(−iH0t)ψ0(x) of the free
Schrödinger equation where ψ0 is the characteristic function of an
interval. Hence the initial function is not differentiable with respect
to x, not even in the weak sense described in Section 2.6.2. (Obvi-
ously, ψ0 is not in the domain of the operator d2/dx2). Hence ψ(x, t)
is not a strict solution of the Schrödinger equation. This becomes
apparent in the movie. The function ψ(x, t) does not evolve continu-
ously (in a pointwise sense) from ψ(x, 0). Instead, rapid oscillations
are present after an arbitrary short time. Nevertheless, ψ(·, t) tends
to ψ0, as t → 0, in the norm of L2.

The second property states that the time evolution operator is for all
t a bounded (hence continuous) operator with norm 1. Hence the norm
of ψ(t) is independent of t, which is essential for our interpretation of wave
functions. This property also implies that the solution depends on the initial
condition in a continuous way. If we compare two time evolutions ψ(t) and
φ(t) corresponding to two different initial states ψ0 and φ0, then

‖ψ(t) − φ(t)‖ = ‖ exp(−iH0t) (ψ0 − φ0)‖ = ‖ψ0 − φ0‖. (6.7)

If the initial states are close together, then the states at time t are also close
together. The separation of the initial states remains constant in time.

The third property means that the domain of H0 is invariant under the
time evolution. If the initial state belongs to D(H0), so does the state at
time t. Moreover, the mapping t → ψ(t) is differentiable with respect to t
in the sense of Eq. (6.2).
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Ψ There are wave functions ψ in L2(Rn) that do not belong to the do-
main of H0 (any discontinuous function). The operator exp(−iH0t)

nevertheless defines a time evolution for these initial states, and in a strict
sense this does not give a solution of the Schrödinger equation (see CD 3.12).
But it does give a solution that for all times is arbitrarily close to a strict
solution. This follows from the fact that the domain of H0 is dense in the
Hilbert space. In functional analysis, a solution that is arbitrarily close to a
strict solution (uniformly in time on compact time intervals) is called a mild
solution.

6.2. Unitary Operators

The following definition is motivated by the properties 1 and 2 of the time
evolution operator, which are stated in the previous section.

Definition 6.1. A linear operator U defined everywhere in a Hilbert
space H is called isometric if

‖Uψ‖ = ‖ψ‖, for all ψ ∈ H. (6.8)

U is called unitary if it maps onto all of H (i.e., if the range of U equals H,
or UH = H).

The most important property of isometric and unitary operators is the
following:

An isometric operator U leaves the scalar product invariant,
〈Uψ, Uφ〉 = 〈ψ, φ〉. (6.9)

Proof. Because ‖ψ‖2 = 〈ψ,ψ〉 for all ψ, you can see that

〈U(ψ + φ), U(ψ + φ)〉 = 〈ψ + φ, ψ + φ〉,

hence

‖Uψ‖2 + 〈Uψ, Uφ〉 + 〈Uφ, Uψ〉 + ‖Uφ‖2 = ‖ψ‖2 + 〈ψ, φ〉 + 〈φ, ψ〉 + ‖φ‖2,

and therefore, using 〈ψ, φ〉 = 〈φ, ψ〉 and Eq. (6.8),

Re 〈Uψ, Uφ〉 = Re 〈ψ, φ〉.

If you repeat the same calculation with ψ + iψ you will obtain

Im 〈Uψ, Uφ〉 = Im 〈ψ, φ〉,

and the result (6.9) follows immediately.
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Example 6.2.1. The Fourier transform F is a unitary operator on the
Hilbert space L2(Rn). This follows from the Fourier–Plancherel relation
(2.64), and the fact that F and F−1 can be defined on all of L2(Rn) (Sec-
tion 2.5.4).

Example 6.2.2. The time evolution operator exp(−iH0t) defined in (6.5)
is unitary for all t. This can be seen from the unitarity of the Fourier trans-
form, and the unitarity of the multiplication by the phase factor exp(−ik2t/2)
in momentum space.

Example 6.2.3. The relation (3.84) shows that the transition from ψ(x)
to the energy representation g(E) is a unitary transformation.

Exercise 6.1. Show that the gauge transformation defined in Eq. (4.60)
is a unitary transformation.

Exercise 6.2. Show that for arbitrary λ > 0 the scaling transformation

Uλ : ψ −→ Uλψ, where
(

Uλ ψ
)

(x) =
√
λψ(λx). (6.10)

is a unitary operator in L2(R).

6.3. Unitary Time Evolution and Unitary Groups

The quantum-mechanical time evolution leads to the definition of a linear
time evolution operator U(t).

Definition 6.2. A one-parameter unitary group is a function t → U(t)
from the real numbers t ∈ R into the set of bounded operators on a Hilbert
space H with the following properties:

1. U(t) is a unitary operator (for all t). (unitarity)
2. U(0) = 1, U(t)U(s) = U(t + s) (for all s, t). (group property)
3. limt→0 U(t)ψ = ψ, (for all ψ ∈ H). (strong continuity)

The time evolution has a generator, which appears in the evolution equa-
tion. The generator can be obtained from U(t) by taking the derivative at
t = 0. This is the content of the following definition:

Definition 6.3. Let U(t) be a one-parameter unitary group in a Hilbert
space H. The infinitesimal generator H of the unitary group is the linear
operator given by

H ψ = i lim
t→0

U(t) − 1
t

ψ (6.11)

on a domain consisting of all vectors ψ for which this limit exists.
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It can be shown that the domain D(H) of the infinitesimal generator is
dense in H. (See Definition 2.4).

We can draw some immediate conclusions from these definitions. The
most important one states that the unitary group gives a solution of an
appropriate Schrödinger equation.

Time evolution equation:
Let U(t) be a unitary group with generator H and write

ψ(t) = U(t)ψ. (6.12)

Then for all ψ in the domain of the generator, ψ(t) is a solution of the
initial-value problem

i
d

dt
ψ(t) = H ψ(t), ψ(0) = ψ. (6.13)

This statement includes the invariance of the domain D(H) under the
time evolution. More precisely, we have

U(t)D(H) ⊂ D(H), H U(t) − U(t) H = 0 on D(H). (6.14)

Proof. If ψ is in the domain D(H), then the limit (6.11) exists. Because U(t)
is bounded and defined everywhere in H, you can interchange the action of the
operator U(t) with the limit,

U(t) lim
h→0

U(h) − 1
t

ψ = lim
h→0

U(t)
U(h) − 1

t
ψ (6.15)

= lim
h→0

U(t + h) − U(t)
t

ψ (6.16)

= lim
h→0

U(h) − 1
t

U(t)ψ. (6.17)

Hence U(t)ψ is also in the domain of H and U(t)Hψ = HU(t)ψ. For the second line
in this calculation, Eq. (6.16), the group property from the definition of a unitary
group is used. With U(t)ψ = ψ(t) this expression is just the derivative of ψ(t),

lim
h→0

U(t + h) − U(t)
t

ψ =
d

dt
ψ(t), (6.18)

and hence the result (6.13) follows immediately from (6.16) and (6.17).

The unitarity of the time evolution operator U(t) states that the scalar
product of two states ψ and φ (and hence the transition probability) is
independent of time,

〈ψ(t), φ(t)〉 = 〈ψ, φ〉, for all t. (6.19)
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A little calculation shows that for ψ and φ ∈ D(H)

i
d

dt
〈ψ(t), φ(t)〉 = 〈ψ(t), H φ(t)〉 − 〈Hψ(t), φ(t)〉. (6.20)

Hence for U(t) to be unitary it is necessary that

〈ψ, H φ〉 = 〈Hψ, φ〉, for all φ, ψ ∈ D(H). (6.21)

This property of H is equivalent to the symmetry (see Definition 4.1).

6.4. Symmetric Operators

In Section 4.3, a symmetric operator was defined as an operator with only
real expectation values. Let me now give another definition which is equiv-
alent to the earlier definition.

Definition 6.4. A linear operator H in a Hilbert space H is said to be
symmetric if H has a dense domain and

〈ψ, H φ〉 = 〈H ψ, φ〉 (6.22)

holds for all vectors φ and ψ in the domain of H.

As an example, we will show that the operator HD = −1
2

d2

dx2 in the
Hilbert space L2([0, L]) is symmetric on the domain D(HD) consisting of
twice differentiable functions satisfying Dirichlet boundary conditions. Using
partial integrations we find

〈φ, HD ψ〉 = −
∫ L

0
φ(x)ψ′′(x) dx (6.23)

= −φ(x)ψ′(x)
∣

∣

∣

L

0
+

∫ L

0
φ′(x)ψ′(x) dx (6.24)

= −φ(x)ψ′(x)
∣

∣

∣

L

0
+ φ′(x)ψ(x)

∣

∣

∣

L

0
−

∫ L

0
φ′′(x)ψ(x) dx (6.25)

= −φ(x)ψ′(x)
∣

∣

∣

L

0
+ φ′(x)ψ(x)

∣

∣

∣

L

0
+ 〈HD φ, ψ〉. (6.26)

(6.27)

This calculation holds for all twice differentiable functions φ and ψ. If,
moreover, both φ and ψ are in the domain D(HD), they satisfy Dirichlet
boundary conditions and therefore the boundary terms in the calculation
above vanish. This proves that HD is symmetric on D(HD).

Exercise 6.3. Define a suitable domain such that the momentum oper-
ator p = −id/dx is symmetric in the Hilbert space L2(R). Do the same for
the position operator x and the kinetic energy p2/2
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The following result is one of the main reasons for our talking about
symmetric operators.

Theorem 6.1. A symmetric operator has only real eigenvalues. If ψ1

and ψ2 are eigenvectors of a symmetric operator H belonging to different
eigenvalues E1 and E2, then ψ1 is orthogonal to ψ2,

〈ψ1, ψ2〉 = 0. (6.28)

Proof. The proof is very simple. A scalar product in a Hilbert space has
the property that exchanging the factors amounts to a complex conjugation

〈ψ, φ〉 = 〈φ, ψ〉. (6.29)

Therefore, using the symmetry of H, we find that

〈H〉ψ = 〈ψ, Hψ〉 = 〈ψ, Hψ〉. (6.30)

This means that the expectation value of a symmetric operator is always a
real number. But if ψ is an eigenvector of H with eigenvalue E, then the
expectation value of H is given by (assuming ‖ψ‖ = 1)

〈H〉ψ = 〈ψ, Hψ〉 = E〈ψ,ψ〉 = E‖ψ‖2 = E. (6.31)

Now consider two eigenvectors of H, that is, Hψi = Eiψi, i = 1, 2. The
symmetry of H,

〈ψ1, Hψ2〉 = 〈Hψ1, ψ2〉, (6.32)

implies immediately that

(E2 − E1)〈ψ1, ψ2〉 = 0. (6.33)

By assumption, E2 − E1 -= 0, and we finally obtain 〈ψ1, ψ2〉 = 0.

Exercise 6.4. Assume that ψ is a superposition of eigenfunctions φi of
H, that is,

ψ =
∑

ci φi, Hφi = Eiφi. (6.34)

Find the expectation value of H in the state ψ.
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6.5. The Adjoint Operator

6.5.1. Adjoint of a bounded operator

If T is a bounded linear operator defined everywhere in a Hilbert space H,
then the adjoint of T , denoted1 by T †, is the operator for which

〈φ, Tψ〉 = 〈T †φ, ψ〉, all φ, ψ ∈ H. (6.35)

By taking the adjoint, we can move an operator to the other side in a scalar
product.

It can be shown that T † is uniquely defined, bounded, and defined ev-
erywhere on H. The norm of T † equals the norm of T ,

‖T †‖ = ‖T‖. (6.36)

The double-adjoint (T †)†, which is usually written as T ††, is equal to T . If
S and T are two bounded operators, then

(ST )† = T †S†. (6.37)

By taking the complex conjugate in (6.35), we find that

〈Tφ, ψ〉 = 〈φ, T †ψ〉, all φ, ψ ∈ H. (6.38)

6.5.2. Adjoint of a unitary operator

For a unitary operator, we have

〈φ, ψ〉 = 〈Uφ, Uψ〉 = 〈U †Uφ, ψ〉, all φ, ψ ∈ H, (6.39)

hence U †Uφ = φ for all φ, which means U †U = 1. Because the range of U
is all of H, and U † is defined everywhere, we have U † = U−1. This leads to
an equivalent definition of unitarity

Unitarity (equivalent definition):
A linear operator that is bounded and defined everywhere on H is unitary
if and only if

U † = U−1 (i.e., U †U = 1 and UU † = 1). (6.40)

1In the mathematical literature, the adjoint of T is usually denoted by T ∗.
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6.5.3. Special Topic: Adjoint of an unbounded operator

Typically, the operators that represent physical observables are unbounded.
This requires a slightly modified definition of the adjoint operator.

Definition 6.5. Let T be a linear operator with domain D(T ) dense in
H. The adjoint operator is a linear operator T † with the property

〈φ, Tψ〉 = 〈T †φ, ψ〉 for all ψ ∈ D(T ) and all φ ∈ D(T †). (6.41)

Here the domain of T † is defined as follows: φ is in D(T †) if and only if there
is a vector ξ ∈ H such that

〈ξ, ψ〉 = 〈φ, Tψ〉 for all ψ ∈ D(T ). (6.42)

The condition that D(T ) be dense guarantees that the vector ξ in (6.42)
is determined uniquely by φ. Hence T † can be defined by setting T †φ = ξ.

The double adjoint exists if D(T †) is dense. In this case, T †† is an
extension of T (i.e., an operator defined on a larger domain, which on the
domain of T coincides with T ).

6.6. Self-Adjointness and Stone’s Theorem

Self-adjoint operators are symmetric operators with a domain that is maxi-
mal in a certain sense. The distinction between self-adjoint and symmetric
operators is subtle, but nevertheless important. The self-adjointness of the
Hamiltonian operator is equivalent to the existence of a quantum-mechanical
(unitary) time evolution.

Definition 6.6. A linear operator T is self-adjoint if

T † = T. (6.43)

The definition of self-adjointness requires in particular the equality of the
domains of T and T †. If T is only symmetric, then (by definition)

〈φ, Tψ〉 = 〈Tφ, ψ〉, for all φ, ψ ∈ D(T ). (6.44)

Recalling the definition of the domain of the adjoint operator, we conclude
that any φ in D(T ) belongs to the domain of T †, and that

T †φ = Tφ, for all φ ∈ D(T ). (6.45)

This still does not imply that the operators T and T † are the same be-
cause the domain of T † could be larger than D(T ). Hence the symmetry
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property just means that T † is an extension of T to a larger domain. The
self-adjointness requires much more:

T symmetric : T = T † on D(T ) ⊂ D(T †), (6.46)

T self-adjoint : T = T † on D(T ) = D(T †). (6.47)

Example 6.6.1. Consider the momentum operator on an interval [0, 1]
with Dirichlet boundary conditions, that is,

Tψ = −iψ′ (6.48)

for ψ in the domain

D(T ) = {ψ ∈ L2([0, 1]) | ψ′ ∈ L2, ψ(0) = ψ(1) = 0}. (6.49)

Here ψ′ ∈ L2 means that ψ is differentiable (in a generalized sense) with a
square-integrable derivative. Using a partial integration, we find

〈φ,−iψ′〉 = −i
∫ 1

0
φ(x)ψ′(x) dx (6.50)

= −iφ(x)ψ(x)
∣

∣

∣

1

0
+ i

∫ 1

0

(

φ(x)
)′
ψ(x) dx (6.51)

=
∫ 1

0
−iφ′(x)ψ(x) dx = 〈−iφ′, ψ〉. (6.52)

The calculation above holds for all ψ ∈ D(T ) and all φ in the domain

D(T †) = {ψ ∈ L2([0, 1]) | ψ′ ∈ L2([0, 1])}. (6.53)

The boundary condition on ψ is sufficient for the vanishing of the boundary
term in (6.51), no additional conditions are required for φ. The domain
D(T †) is strictly larger than D(T ). Hence the adjoint operator T † is a
nontrivial extension of T . We conclude that T is symmetric, but not self-
adjoint.

Example 6.6.2. The operator HD = −1
2

d2

dx2 on the domain of twice
differentiable functions with Dirichlet boundary conditions is symmetric, as
was shown by the calculation in the previous section. Here the partial inte-
gration introduces boundary terms in (6.26) which vanish only if both φ and
ψ satisfy the Dirichlet boundary condition. Hence in this case the domain
of H†

D is exactly the same as D(HD) and therefore HD is self-adjoint on this
domain.

Example 6.6.3. The operator of multiplication by a real-valued function
f(x),

(Tψ)(x) = f(x)ψ(x), (6.54)
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is self-adjoint on the domain

D(T ) =
{

ψ ∈ L2(Rn)
∣

∣

∣

∫

|f(x)ψ(x)| dnx < ∞
}

. (6.55)

This example includes the position operator and the operator of potential
energy.

If T is symmetric but not self-adjoint, then it may happen that T † is not
symmetric. In this case the operator T † may even have complex eigenval-
ues, as it is the case for the momentum operator with Dirichlet boundary
conditions (Example 6.6.1). The function φ(x) = ex is differentiable on [0, 1]
and

T †φ = −iφ′ = −iφ (6.56)

shows that φ is an eigenfunction of T † with eigenvalue −i.
If the adjoint operator T † is also symmetric, then one can show that T †

is in fact self-adjoint (i.e., T †† = T †). In this case the operator T is called
essentially self-adjoint.

One of the reasons why the self-adjoint operators are so important is
Stone’s theorem, which states that the one-parameter unitary groups are in
one-to-one correspondence with the self-adjoint operators.

Theorem 6.2. If U(t) is a one-parameter unitary group, then the gener-
ator H is a self-adjoint operator. Conversely, if H is a self-adjoint operator,
then H is the generator of is a unique one-parameter unitary group U(t).

Proof. A mathematically rigorous proof of Stone’s theorem is beyond
the scope of this book. We refer the reader to books on functional analysis
or mathematical physics.

Usually, one writes the unitary group generated by H as

U(t) = e−iHt. (6.57)
We found already that this notation is meaningful in the case of the free
Schrödinger operator. For arbitrary self-adjoint operators, U(t) can be de-
fined as the exponential function of H with the help of the spectral theorem.
The notation also makes sense in view of the evolution equation associated
to U(t), which is just a differentiation rule for the exponential function of
H:

i
d

dt
e−iHt ψ = H e−iHt ψ, for all ψ ∈ D(H). (6.58)

If ψ is an eigenfunction of H belonging to the eigenvalue E, then

e−iHt ψ = e−iEt ψ. (6.59)
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6.7. Translation Group

The energy observable H generates the time evolution. The unitary groups
generated by other observables are of similar importance.

6.7.1. Translations

For a one-dimensional wave function ψ and for real numbers a,

ψa(x) = ψ(x − a) (6.60)

is a function obtained from ψ by a translation (if a > 0, the function is
shifted to the right). The mapping

τa : ψ → ψa translation by a (6.61)

is unitary. In fact, a → τa is a one-parameter unitary group in the sense of
Definition 6.2.

We now calculate the generator of this group. To this purpose we con-
sider a differentiable wave function and form the expression

i
τaψ(x) − ψ(x)

a
= i

ψ(x − a) − ψ(x)
a

−→ −i
d

dx
ψ(x). (6.62)

Thus, the generator of translations is the momentum operator p and we may
write

τa = e−ipa. (6.63)

If the function ψ can be differentiated infinitely often, we can expand ψ(x−a)
in a Taylor series around x:

ψ(x − a) = ψ(x) − aψ′(x) +
a2

2
ψ′′(x) − · · ·

=
∞
∑

n=0

an

n!

(

− d

dx

)n
ψ(x)

=
∞
∑

n=0

an

n!
(−ip)nψ(x).

This is just the power series of the exponential function exp(−ipa). Of
course, the unitary translation group τa can be applied to all functions in
the Hilbert space, while the power series is meaningless for functions which
are not differentiable. Nevertheless, this consideration indicates that the
power series

e−ipaψ =
∞
∑

n=0

(−ian)
n!

pnψ (6.64)

does make sense on suitable (dense) linear subsets of the Hilbert space.
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Ψ A wave function ψ is differentiable (in the ordinary way) if the limit in
Eq. (6.62) exists in a pointwise sense for each x (as a limit of complex

numbers). The momentum operator has a larger domain. For ψ in this
domain it is only required that the limit exists in L2: This simply means
that there is a φ ∈ L2 such that

lim
a→0

∫

|ψ(x − a) − ψ(x)
a

− φ(x)|2 dx = 0. (6.65)

The momentum operator has been defined in Section 4.2.2 as the inverse
Fourier transform of the multiplication operator in momentum space,

p = −i
d

dx
= F−1kF . (6.66)

Because the multiplication operator is self-adjoint on the maximal domain
(Example 6.6.3), and because the Fourier transform is unitary, the momen-
tum operator is self-adjoint on the domain of functions ψ for which kψ̂(k) is
square-integrable. These are functions that are differentiable in the gener-
alized sense of Eq. (2.90). The calculation above suggests that equivalently
the generalized derivative can be defined by the limit in (6.65).

The relation between multiplication operator and momentum operator
is a special case of the following useful theorem:

Theorem 6.3. If U is unitary and T is self-adjoint on D(T ), then the
operator S = UTU † is self-adjoint on D(S) = UD(T ). Moreover, the unitary
groups are related by

Ue−iTtU † = e−iSt. (6.67)

6.7.2. Translations in momentum space

For a real number b we define the operator of multiplication by exp(ixb),

µb ψ(x) = eixb ψ(x). (6.68)

The operators µb form a unitary group with parameter b. The generator of
this group is −x. We already know (see Section 2.6.1) that µb describes a
translation in momentum space,

eixbψ(x) ←→ ψ̂(k − b). (6.69)

Thus, the unitary groups τa and µb are related by a Fourier transform,

F eixb F−1 = e−ipb. (6.70)
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We finally note that the unitary groups exp(−ipa) and exp(ixb) have straight-
forward generalizations to higher dimensions,

e−ip·a = e−i(p1a1+p2a2+...+pnan) = e−ip1a1e−ip2a2 · · · e−ipnan (6.71)

eix·b = ei(x1b1+x2b2+...+xnbn) = eix1b1eix2b2 · · · eixnbn (6.72)

CD 2.7 lets you play with the translations in position space and
momentum space. You may change the parameters a and b manually
and watch the effect on the wave functions both in position and
momentum space.

6.8. Weyl Relations

Two bounded linear operators A and B are said to commute if

ABψ = BAψ, for all ψ ∈ H. (6.73)

It is easy to see that the translations in position space do not commute with
the translations in momentum space,

τa µb ψ(x) = τa eibx ψ(x) = eib(x−a) ψ(x − a), (6.74)

µb τa ψ(x) = µb ψ(x − a) = eibx ψ(x − a). (6.75)

This implies the Weyl relations.

Weyl relations:
The unitary groups τa (translations in position space) and µb (transla-
tions in momentum space) satisfy the relations

τa µb = e−iab µb τa, for all a and b in R, (6.76)
that is,

e−ipa eixb = e−iab eixb e−ipa for all a and b in R. (6.77)

The noncommutativity of the translations in position and momen-
tum space is visualized in CD 2.8. A wave packet is first translated
by a in position space, then shifted by b in position space. After
that the inverse operations are applied, first the translation by −a,
then the momentum shift by −b. It can be seen that the final result
differs from the original wave packet by a phase factor.
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We may deduce from this a formula which will be useful later on. First
we show that the operators

W (s) = τs µs eis2/2 (6.78)

form a one-parameter unitary group. Using the Weyl relations, it is easy to
prove the group property

W (s)W (t) = τs µs τt µt ei(s2+t2)/2 (6.79)

= τs eist τt µs µt ei(s2+t2)/2 (6.80)

= τs+t µs+t ei(s2+2st+t2)/2 = W (s + t) (6.81)

and the unitarity

W (s)† = µ−s τ−s e−is2/2 = eis2
τ−s µ−s e−is2/2 = W (−s). (6.82)

The generator of W (s) can be determined by a differentiation. Because the
groups τa and µb are generated by p and x,

i
d

ds
τsψ = p τsψ, i

d

ds
µsψ = (−x) µsψ, (6.83)

we find (using the product rule for the differentiation) that

i
d

ds
W (s)ψ = p τs µs eis2/2ψ − τs x µs eis2/2ψ + τs x µs (−s) eis2/2ψ. (6.84)

With τs x = (x − s)τs this simplifies to

i
d

ds
W (s)ψ = (p − x) W (s)ψ. (6.85)

Hence we find that the infinitesimal generator of the unitary group W (s)
is the operator p − x (which is self-adjoint on a suitable domain). We may
write

e−i(p−x)s = e−ips eixs eis2/2 = eixs e−ips eis2/2. (6.86)

A slight generalization of the calculation above proves the following useful
formula.

Another form of the Weyl relations:

e−i(ap−bx) = e−ipa eixb eiab/2 = eixb e−ipa e−iab/2. (6.87)
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6.9. Canonical Commutation Relations

Two self-adjoint operators P and X are said to satisfy the canonical com-
mutation relations if

[P, X] = PX − XP = −i1 (6.88)

holds on a suitable (dense) domain. You have learned in Section 4.5 that
the position and momentum operators satisfy the canonical commutation
relations.

The Weyl relations imply the canonical commutation relations. Let
exp(−iAt) and exp(−iBs) be unitary groups satisfying the Weyl relations

e−iAt e−iBs = e−iBs e−iAt eist. (6.89)

Then the infinitesimal generators satisfy the canonical commutation rela-
tions,

[A, B] = −i. (6.90)

This can be shown by applying d2/dsdt to both sides of Eq. (6.89) and then
setting s = t = 0.

If two operators P and X satisfy the canonical commutation relations,
then they cannot both be bounded. Indeed, the momentum and position
operators are both unbounded. In particular, the relation [P, X] = −i1
cannot hold for matrices in a finite dimensional vector space. This can be
seen by taking the trace on both sides of this equation, which leads to a
contradiction.

Ψ The canonical commutation relations follow from the Weyl relations,
but the converse is not true: The canonical commutation relations do

not imply the Weyl relations. There are examples of self-adjoint operators
A and B, that satisfy the canonical commutation relations on an invariant
dense domain D. (The invariance means that A : D → D and B : D → D, so
that the products AB and BA and the commutator are well defined on D.)
The operators A and B in these examples are both essentially self-adjoint
on D, and still the unitary groups do not fulfill the Weyl relations. An
additional condition (A2 +B2 be essentially self-adjoint on D) is required in
order to derive the Weyl relations from the canonical commutation relations.
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CD 3.8 shows the quantum-mechanical motion of a free particle in
phase space (the space formed by position and momentum coordi-
nates of a particle). The animation shows the function f(x, k, t) =
ψ(x, t)ψ̂(k, t) with the position coordinate on the horizontal axis and
the momentum coordinate on the vertical axis. In classical mechan-
ics, the state would be described by a point in phase space that
moves in horizontal direction with constant velocity. The quantum
particle is only approximately localized around the classical position
in phase space and spreads with time in the horizontal direction.

6.10. Commutator and Uncertainty Relation

You know already that the uncertainty of an observable A in a state ψ (with
‖ψ‖ = 1) is defined as

∆ψA = ‖(A − 〈A〉ψ)ψ‖ =
√

〈(A − 〈A〉ψ)2〉ψ. (6.91)

It describes how the measured values of A are scattered around their mean
value 〈A〉ψ = 〈ψ, Aψ〉. In Section 2.8.1 Heisenberg’s uncertainty relation
was derived by making use of the fact that the commutator of momentum
and position operators is i[(−i∇),x] = n (see Eq. (2.117)). It is a quite
general observation that the commutator [A, B] poses a restriction on the
uncertainties of the two observables A and B for the same state ψ.

General uncertainty relation:
Suppose A and B are self-adjoint operator, and let ψ be in the domain
of the commutator i[A, B]. Then

∆ψA ∆ψB ≥ 1
2

∣

∣ 〈[A, B] 〉ψ
∣

∣. (6.92)
Thus, if the observables A and B do not commute, the uncertainties of
A and B cannot both be small simultaneously.

Proof. For an arbitrary real number x consider the quantity

‖(A − ixB)ψ‖2 = ‖Bψ‖2x2 − x 〈ψ, i[A, B]ψ〉 + ‖Aψ‖2 (6.93)

which is always non-negative. The well-known condition for ax2 +bx+c ≥ 0
is b2 − 4ac ≤ 0. Hence we must have

〈ψ, i[A, B]ψ〉2 ≤ 4 ‖Bψ‖2 ‖Aψ‖2. (6.94)

If you replace A by A − 〈A〉ψ and B by B − 〈B〉ψ, you will find that the
commutator is not changed because

[A − a, B − b] = [A, B], for arbitrary real numbers a and b. (6.95)
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Notice that for A and B self-adjoint, the expression i[A, B] is symmetric and
has only real expectation values. Therefore, we obtain

‖(A − 〈A〉ψ)ψ‖2 ‖(B − 〈B〉ψ)ψ‖2 ≥ 1
4

∣

∣ 〈ψ, [A, B]ψ〉
∣

∣

2
, (6.96)

which in view of Eq (6.91) is equivalent with the general uncertainty relation.

Exercise 6.5. For symmetric operators A and B the expression i [A, B]
is also symmetric.

Exercise 6.6. The function f(λ) = ‖(A − λ)ψ‖2 is minimal for λ =
〈A〉ψ.

6.11. Symmetries and Conservation Laws

Two (possibly unbounded) operators A and B are said to commute, if the
corresponding unitary groups commute,2that is, if

[e−isA, e−itB] = 0, for all s and t. (6.97)

The observables corresponding to commuting operators are called compati-
ble. For compatible observables there is no a priori bound on the accuracy
of simultaneously determined values.

When the Hamiltonian H of a physical system commutes with some
self-adjoint operator T , then the Schrödinger equation has the following
invariance property: For any solution ψ(t) = exp(−iHt)ψ0, the expression
φa(t) = exp(−iTa)ψ(t) (for arbitrary a ∈ R) is again a solution. The proof
is very simple:

φa(t) = e−iTa ψ(t) = e−iTa e−iHt ψ0 = e−iHt e−iTa ψ0.

This shows that φa(t) is the solution corresponding to the initial condition
φa(0) = exp(−iTa)ψ0. A unitary group that commutes with the time evo-
lution is called a symmetry or invariance of the Schrödinger equation.

The compatibility of the Hamiltonian with the observable T means that
the transformation generated by T commutes with the time evolution. Under
certain conditions it follows that T is a conserved quantity, a constant of

2Notice that the definition of commutativity in terms of the unitary groups avoids
domain questions because the unitary groups are bounded and defined everywhere in the
Hilbert space. If A and B are bounded, then (6.97) is equivalent to (6.73).
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motion. Formally (i.e., without worrying about domains) we can differentiate
the commutator of the commuting groups,

0 =
d

da

(

e−iTa e−iHt − e−iHt e−iTa
)

= (−iT ) e−iTa e−iHt − e−iHt (−iT ) e−iTa

= −i e−iTa
(

T e−iHt − e−iHt T
)

(6.98)

and obtain
T e−iHt = e−iHt T. (6.99)

This relation says in particular that the expectation values of T are constant
in time:

〈T 〉ψ(t) = 〈ψ(t) , T ψ(t)〉 = 〈e−iHtψ0 , T e−iHtψ0〉
= 〈e−iHtψ0 , e−iHt T ψ0〉 = 〈ψ0 , T ψ0〉 = 〈T 〉ψ0 .

(6.100)

Probably you know Noether’s theorem from classical mechanics. It states
that a symmetry of the system is related to a conservation law. Here we
have obtained the quantum-mechanical version.

Noether’s theorem:
If the Schrödinger equation has a symmetry with respect to some unitary
group, then the observable corresponding to the self-adjoint generator of
the group is a constant of motion.

Example 6.11.1. The free Schrödinger equation is invariant with re-
spect to translations. If ψ(x, t) is the solution belonging to some initial
function ψ0(x), then the translated function ψ(x − a, t) is a solution corre-
sponding to the translated initial state ψ0(x−a). The generator p = −id/dx
of the translations is the momentum operator. For free particles, the mo-
mentum is a constant of motion.

Another important point is the connection between symmetry and degen-
eracy of eigenvalues. Consider a system that has a symmetry with respect to
some unitary group exp(−iTa). Assume that the system is in an eigenstate
ψ of the Hamiltonian, that is, Hψ = Eψ, where E is the eigenvalue. Because
H commutes with the unitary group, you can see that ψa = exp(−iTa)ψ is
also an eigenvector of H belonging to the same eigenvalue E:

H ψa = H e−iTa ψ = e−iTa H ψ = e−iTa E ψ = E ψa. (6.101)
Hence, if you have found an eigenvector ψ of H, the symmetry will allow
you to find many other eigenvectors ψa, a ∈ R, all belonging to the same
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eigenvalue. If the newly found eigenvectors are orthogonal to the first one,
the multiplicity of the eigenvalue will be greater than one, and one could
say that symmetry implies degeneracy. But this need not always be the
case. Consider a situation where ψ is not only an eigenvector of H, but
also an eigenvector of T , the generator of the symmetry transformation. We
have Tψ = λψ with some real number λ. Then the transformed eigenvector
ψa = exp(−iλa)ψ differs only by a phase factor from ψ, that is, ψ and ψa

are the same state and the degeneracy is not increased by the symmetry.

Ψ When you write down Eq. (6.100) you have to assume that both the
initial value ψ0 and the corresponding solution ψ(t) are in the domain

of T . Assuming that H and T commute, see Eq. (6.97), one can indeed prove
that there is a dense invariant subspace D contained in the domains of the
operators H and T , which is invariant with respect to the unitary groups,

e−iHt D ⊂ D, e−iTaD ⊂ D, for all real numbers a and t. (6.102)

Here, for example, the set exp(−iHt)D is defined as {exp(−iHt)ψ | ψ ∈
D}. On the invariant domain D the commutator of the operators H and T
vanishes,

[H, T ] = 0 on D, (6.103)
and it makes sense to write

T e−iHt = e−iHt T on D. (6.104)

However, the converse is not true. The vanishing of the commutator [H, T ]
on some dense domain does not imply that the operators H and T commute
in the sense of Eq. (6.97) (there are counterexamples). For this reason, the
vanishing of the commutator [H, T ] and the commutativity of the operators
H and T are not synonymous in the mathematical literature.
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Chapter 7

Harmonic Oscillator

Chapter summary: The harmonic oscillator is among the most important ex-
amples of explicitly solvable problems, whether in classical or quantum mechanics.
It appears in every textbook in order to demonstrate some general principles by
explicit calculations. In some respect, the classical and quantum properties of the
harmonic oscillator are similar. For example, the classical observation that the os-
cillation frequency does not depend on the amplitude corresponds to the fact that
all quantum states are periodic in time with the same period.

Like the particle in a box, the harmonic oscillator is a system that has only
bound states. There is a discrete set of allowed energies and an associated basis
of energy eigenfunctions. All energy eigenstates can be generated from the ground
state by repeated application of a creation operator A†. This approach to the
solution of the eigenvalue problem is related to the supersymmetry of the harmonic
oscillator.

It is rewarding to calculate the time dependence of position and momentum
observables, which leads to the conclusion that their expectation values always
follow the laws of classical mechanics. Moreover, all eigenstates of the harmonic
oscillator are also eigenstates of the Fourier transformation F , hence the motion in
momentum space looks exactly like the motion in position space. If the initial state
is a translated eigenstate, then the position and momentum distributions oscillate
back and forth without changing their shape.

Among the more mathematical results obtained in this chapter is a proof of
the completeness of the eigenfunctions and the calculation of the integral kernel of
the unitary time-evolution operator (Mehler kernel). As a result, the Schrödinger
equation for an arbitrary initial function can be solved with an integration. Of
particular interest is the behavior of Gaussian wave packets, because their motion
is very similar to the motion of a classical particle. The most particlelike states are
the coherent states—Gaussian functions that optimize the uncertainy relation for
all times. The corresponding initial state is a translated ground state and can also
be defined as an eigenvector of the annihilation operator A.

157
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Figure 7.1. The harmonic oscillator potential in one and
two space dimensions with spring constant k = 1.

7.1. Basic Definitions and Properties

7.1.1. Classical mechanics

The harmonic oscillator is defined as a particle subject to a linear force field.
In classical mechanics, the harmonic oscillator can be pictured as a pointlike
mass attached to a spring. The spring is idealized in the sense that it has
no mass and can be stretched infinitely in both directions. The force of
the spring is directed toward the equilibrium point and is proportional to
the distance of the particle from the equilibrium position and to a material
constant k.

The force F can be expressed in terms of a potential function V ,

F (x) = −kx = − d

dx
V (x), V (x) =

kx2

2
. (7.1)

In classical mechanics, the constant k is called the spring constant. It de-
scribes the stiffness of the spring.

The generalization to higher dimensions is straightforward. With x =
(x1, . . . , xn) we have (see Fig. 7.1)

F (x) = −kx = −∇V (x), V (x) = k
x · x

2
. (7.2)

The spring constant k determines the oscillator frequency ω,

ω =

√

k

m
, k = mω2. (7.3)

The motion of a classical particle in a harmonic oscillator potential is given
by

x(t) = a sin(ωt − b), p(t) = m ẋ(t) = mωa cos(ωt − b), (7.4)
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where the constants a and b have to be determined from given initial condi-
tions x(0) = x0 and p(0) = p0. Hence the classical motion is an oscillation
with frequency ν = ω/2π, which is independent of the amplitude. The mo-
tion takes place between the classical turning points x = ±a. The interval
[−a, a] will be called the classically allowed region.

CD 5.1 investigates the classical motion of a harmonic oscillator.

The Hamiltonian function of the harmonic oscillator in classical mechanics
is the sum of the kinetic energy (expressed as a function of the momentum)
and the potential energy V (x), that is,

H(x, p) =
p2

2m
+

kx2

2
. (7.5)

7.1.2. Quantum mechanics

We can now apply the substitution rule p → −i! d/dx, x → multiplication by
x, to the classical Hamiltonian function. We obtain the quantum-mechanical
Hamiltonian operator

H = − !2

2m

d2

dx2
+

kx2

2
, (7.6)

which acts on square-integrable wave functions ψ in the Hilbert space L2(R).
The time evolution of a state of a quantum harmonic oscillator is then de-
scribed by a solution of the (time-dependent) Schrödinger equation

i !
d

dt
ψ(x, t) = H ψ(x, t). (7.7)

The harmonic oscillator is the prototypical case of a system that has only
bound states: All states remain under the influence of the force field for all
times; no state can escape toward infinity. Although such a system does
not exist in nature, the harmonic oscillator is often used to approximate the
motion of more realistic systems in the neighborhood of a stable equilibrium
point (see Fig. 7.2).

A system has a stable equilibrium at x = x0 if the potential function V (x)
of the system has a minimum at x = x0. If the minimum is characterized by
V ′(x0) = 0 and V ′′(x0) > 0, we can approximate the potential near x = x0

by the first coefficients of its Taylor series:

V (x) = V (x0) +
(x − x0)2

2
V ′′(x0) + O((x − x0)3). (7.8)

The harmonic oscillator potential of Eq. (7.1) is obtained if we set x0 =
0, V (0) = 0, and V ′′(0) = k. (Counterexample: The potential function
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Figure 7.2. Approximation of a potential function near an
equilibrium by a harmonic oscillator potential

V (x) = x4 cannot be approximated by an oscillator potential). If the local
minimum of the potential is sufficiently deep, some solutions of the Schrödin-
ger equation with potential V can be approximated (at least for some time)
by the motion in a harmonic oscillator potential. In this sense, for example,
the motion of a pendulum near the equilibrium is described by a harmonic
oscillator. It should be noted, however, that many mathematical properties
of the Schrödinger equation depend on the global rather than local behavior
of the potential function.

Exercise 7.1. Investigate the classical motion of the harmonic oscil-
lator for various initial conditions. The initial condition x0 = 0, p0 = 0
corresponds to the stable equilibrium: The particle remains at rest at the
minimum of the harmonic oscillator potential. Find the solution (x(t), p(t))
corresponding to the initial condition (x0, p0). Describe the classical motion
of the harmonic oscillator in two dimensions.

Exercise 7.2. Describe the classical motion in the potential

V (x) = k
(x − x0)2

2
+ V0. (7.9)

Exercise 7.3. Show that H(x(t), p(t)) = E is a constant of motion. It
is a unique feature of the harmonic oscillator that the oscillation frequency
of the motion is independent of the energy E of the oscillator. But the
amplitude a of the classical motion does depend on the energy. Show that
the amplitude is given by

a =
√

2E/k. (7.10)

7.1.3. Scaling transformation of the Hamiltonian

For the graphical representation as well as for the mathematical investiga-
tion it is useful to change the units of length, time, and energy in order
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to simplify the expressions. This can be done using an appropriate scaling
transformation.

We consider a scaling transformation x → x̃ = λx with some λ > 0.
Given a scalar function ψ(x), the scaled function ψ̃ is defined by

ψ̃(x̃) = ψ(x). (7.11)

The derivative of ψ̃ with respect to x̃ can be calculated as
d

dx
ψ(x) =

d

dx
ψ̃(x̃) =

d

dx̃
ψ̃(x̃)

dx̃

dx
= λ

d

dx̃
ψ̃(x̃). (7.12)

For the second derivative (operator of kinetic energy) we get

d2

dx2
ψ(x) = λ2 d2

dx̃2
ψ̃(x̃). (7.13)

The behavior of the position operator under a scaling transformation is given
by

xψ(x) =
x̃

λ
ψ̃(x̃), x2 ψ(x) =

x̃2

λ2
ψ̃(x̃). (7.14)

The action of the Schrödinger operator on the scaled function can thus be
described as follows.

Hψ(x) =
(

− !2

2m
λ2 d2

dx̃2
+

k

2
1
λ2

x̃2
)

ψ̃(x̃). (7.15)

7.1.4. Dimensionless units

Because of the opposite scaling behavior of the two summands in Eq. (7.15)
we can choose the scaling parameter λ = λ0 such that

!2

2m
λ2

0 =
k

2
1
λ2

0
, (7.16)

that is,

λ2
0 =

√

km

!2
or λ0 =

√

mω

!
, (7.17)

where ω is the oscillator frequency defined in Eq. (7.3). Thus, we define the
new position variable by

x̃ = x

√

mω

!
. (7.18)

This means that the displacement will be measured in multiples of the length
√

!/mω. According to Eq. (7.15) the Schrödinger operator becomes

Hψ(x) =
!ω

2

(

− d2

dx̃2
+ x̃2

)

ψ̃(x̃). (7.19)
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The Schrödinger equation (7.7) can be further simplified if we also scale the
time variable and define t̃ = ωt such that

ω
d

dt̃
ψ̃(x̃, t̃) =

d

dt
ψ(x, t). (7.20)

The Schrödinger equation in the new units finally reads (after division by
!ω)

i
d

dt̃
ψ̃(x̃, t̃) =

1
2

(

− d2

dx̃2
+ x̃2

)

ψ̃(x̃, t̃). (7.21)

If we redefine the scale of the energy such that Ẽ = E/!ω, then the Hamil-
tonian operator

H̃ = −1
2

d2

dx̃2
+

x̃2

2
(7.22)

is the operator for the energy of the harmonic oscillator measured in the new
units.

The new variables t̃ = ωt and x̃ = (mω/!)(1/2)x have dimensionless units
because ω =

√

k/m has dimension 1/[time], and ! has the dimension of an
action (= [energy]×[time] = [mass]×[length]2/[time]).

From now on, the tilde on the symbols for quantities in dimensionless
units will be omitted.

7.1.5. Orders of magnitude

In order to estimate the expected order of magnitude of the phenomena
encountered here, it is useful to insert the actual values for the physical
constants. We assume that m is the mass of an electron moving in an
oscillator potential with spring constant k = 1. The numerical values of the
physical constants are

m = 0.9109 · 10−30kg, ! = 1.0546 · 10−34Joule · sec, (7.23)

and the scales for time, length, and energy are set by

ω = 1.048 · 1015/sec,
√

mω

!
= 3.008 · 109/meter, (7.24)

1
!ω

= 9.050 · 1018/Joule. (7.25)

In the following we shall use the dimensionless units. This should be
remembered in particular when viewing the pictures: For electrons in the
field of a harmonic oscillator with spring constant k = 1 the connection
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of the dimensionless units with the units of the international system is as
follows:

length unit ∼= 3.324 · 10−10 meters, (7.26)
time unit ∼= 0.954 · 10−15 seconds, (7.27)

energy unit ∼= 1.105 · 10−19 Joule. (7.28)

Bohr’s radius of a hydrogen atom (r0 = 0.53 · 10−10 meters) is 0.16 length
units. The speed of light (c = 2.9979 · 108 meters/second) has the value 861
in dimensionless units.

Exercise 7.4. Assume that the spring constant k is equal to the elec-
tromagnetic coupling constant e (the elementary charge). Find the relations
between the dimensionless units of length, time, and energy and the corre-
sponding units of the international system.

7.2. Eigenfunction Expansion

It can be expected from the classical mechanical analogy that the quantum
time evolution of the harmonic oscillator will be more similar to the motion
of a particle bouncing between two walls than to the free motion on the
line R. Therefore, our strategy to solve the Schrödinger equation for the
harmonic oscillator will follow the method of Section 5.4.2. Hence the first
step toward a solution of the initial-value problem is to solve the eigenvalue
problem.

7.2.1. Eigenvalues of the Hamiltonian

The eigenvalue problem for the energy operator

H = −1
2

d2

dx2
+

x2

2
. (7.29)

consists in finding all numbers E (eigenvalues) for which the stationary
Schrödinger equation

Hψ = Eψ (7.30)

has a nonzero square-integrable solution ψ(x). For the one-dimensional sit-
uation considered here, Eq. (7.30) is an ordinary differential equation for a
function ψ depending only on the space variable x.

CD 5.2 lets you explore the first few energy-eigenstates of the
quantum-mechanical harmonic oscillator.
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When an eigenvalue E is known together with a square-integrable so-
lution φ(x) of the stationary Schrödinger equation, a solution ψ(x, t) of
Eq. (7.48) with initial value φ is given by

ψ(t, x) = e−iEtφ(x). (7.31)

In fact, this is the unique solution, which is equal to φ(x) at t = 0.
For the harmonic oscillator the complete solution of the eigenvalue prob-

lem is given in the box below. The mathematically interested reader will
learn in Section 7.7 below how this solution can be derived. Here we discuss
only the result and its implications.

Eigenvalue problem for the harmonic oscillator:
The equation

(

−1
2

d2

dx2
+

x2

2

)

φ(x) = E φ(x) (7.32)

has square-integrable solutions only for E = En, where

En = n +
1
2
, n = 0, 1, 2, 3, . . . . (7.33)

The unique solution belonging to En is given by

φn(x) =
( 1
π

)1/4 1√
2n n!

Hn(x) e−x2/2, (7.34)

where Hn(x) is the Hermite polynomial of order n. The Hermite func-
tions φn, n = 0, 1, 2, . . . , form an orthonormal basis in the Hilbert space
L2(R).

The Hermite polynomials are defined as

Hn(x) ≡
[n/2]
∑

j=0

(−1)j n!
(n − 2j)! j!

(2x)n−2j , n = 0, 1, 2, 3, . . . (7.35)

(the symbol [n/2] denotes the greatest integer ≤ n/2). For example,

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, . . . . (7.36)

Figure 7.3 shows plots of |φn(x)|2 and the eigenvalues En.

Exercise 7.5. Verify that the Hermite polynomials have the property

Hn+1(x) = − d

dx
Hn(x) + 2x Hn(x). (7.37)
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Figure 7.3. The position probability densities |φn(x)|2 of
the lowest oscillator eigenstates drawn at a height correspond-
ing to their energy. The horizontal lines show the values of
the energy of the eigenstates. The part of a horizontal line
inside the potential curve is the classically allowed region for
a classical particle with that energy.

Exercise 7.6. The Hermite polynomials can also be defined by

Hn(x) = (−1)n exp(x2)
dn

dxn
exp(−x2). (7.38)

Compare this formula with Eq. (7.35).

7.2.2. Expansion into eigenfunctions

Every square-integrable wave function φ can be written as a linear combi-
nation

φ(x) =
∞
∑

n=0

cnφn, (7.39)

because the eigenfunctions φn of the harmonic oscillator form an orthonormal
basis in the Hilbert space; see Section 5.4.4. The coefficients are given by

cn = 〈φn, φ〉 =
∫ ∞

−∞
φn(x)φ(x) dx. (7.40)
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The sum in Eq. (7.39) converges with respect to the norm in the Hilbert
space L2(R), that is,

∫ ∞

−∞
|φ(x) −

N
∑

n=0

cnφn(x)|2 dx → 0, as N → ∞. (7.41)

CD 5.9 lets you build a shifted Gaussian function by adding oscillator
eigenfunctions one after another.

7.2.3. Comparison with the classical motion

The main difference between the quantum-mechanical time evolution and
the classical motion concerns the allowed energies of the system. While
classically the energy of a particle in a harmonic oscillator could be any non-
negative number E ≥ 0, the energy of a quantum particle can only be one of
the numbers En. The lowest energy accessible to the quantum oscillator is
E0 = 1/2. This can be understood with the help of the uncertainty relation:
In order to have a small kinetic energy, the wave function of the ground
state has to be well localized near p = 0 in momentum space. The potential
energy can only be made small by concentrating the wave packet near the
minimum of the potential. But, according to the uncertainty relation, this
would extend the momentum distribution and thus increase the average
kinetic energy. Hence the sum of kinetic and potential energy cannot be
made arbitrarily small—even if the ground state minimizes the uncertainty
relation, as it is the case for the harmonic oscillator. Indeed, the expectation
value of the energy of a harmonic oscillator is

〈H〉φ = 〈φ, Hφ〉

=
〈

φ,−1
2

d2

dx2
φ
〉

+
〈

φ,
x2

2
φ
〉

=
1
2

〈

−i
d

dx
φ,−i

d

dx
φ
〉

+
1
2
〈xφ, x φ〉

=
1
2

∥

∥

∥−i
d

dx
φ
∥

∥

∥

2
+

1
2
‖xφ‖2 (7.42)

Using the relation a2 + b2 ≥ 2ab (for all a, b ∈ R), and the uncertainty
principle (2.109), we can estimate this further as

〈H〉φ ≥
∥

∥

∥−i
d

dx
φ
∥

∥

∥ ‖xφ‖ ≥ 1
2
‖φ‖2. (7.43)

Hence for a normalized state φ the expectation value of the energy must
always be ≥ 1/2 = E0.
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For all eigenstates φn of H the expectation values of position and mo-
mentum are zero because the densities |φn(x)|2 and |φ̂n(k)|2 are symmetric
with respect to the origin,

〈x〉φn = 0, 〈k〉φn = 0. (7.44)

This is also true for the classical motion, if we interpret the expectation
value as the time average. We can evaluate a classical position probability by
computing the fraction dt/π of time per semi-period spent in an infinitesimal
region dx around x. From x(t) = x0 sin(t) we find

dx

dt
= x0 cos(t) = x0

√

1 − sin2(t) =
√

x2
0 − x(t)2, (7.45)

and hence (with T = 2π)

dt

π
=

dx

π
√

x2
0 − x2

= ρ(x) dx. (7.46)

The classical density has singularities at x = ±x0, that is, at the classical
turning points. For a classical state with energy En we have x2

0 = 2En.
Plotting the quantum probability density |ψn(x)|2 together with the clas-

sical probability density

ρ(x) =
1

π
√

2En − x2
, (7.47)

we find that the quantum density oscillates around the classical density (see
Fig. 7.4).

CD 5.2 contains a comparison between the classical and quantum-
mechanical position probability densities for the eigenfunctions
φ0, . . . , φ20.

7.3. Solution of the Initial-Value Problem

7.3.1. The time evolution

We want to solve the time-dependent Schrödinger equation (in dimensionless
units) for a given initial function ψ(0)

i
d

dt
ψ(x, t) =

1
2

(

− d2

dx2
+ x2

)

ψ(x, t), ψ(x, t = 0) = ψ(0)(x). (7.48)

At every instance of time t the solution ψ(x, t) has to be a square-integrable
function of the space variable x ∈ R in order to have a useful interpretation
(see Section 3.4).
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Figure 7.4. The classical probability density versus the
quantum probability density for the state φ30. The vertical
lines indicate the position of the classical turning points.

The time evolution of an arbitrary initial state ψ follows from the time
dependence of the eigenstates φn,

φn(x, t) = e−iEnt φn(x). (7.49)

Expanding the initial state ψ into oscillator eigenfunctions we get the rep-
resentation

ψ(0)(x) =
∞
∑

n=0

cnφn(x) (7.50)

with suitable coefficients cn. Inserting the time evolution of the eigenstates
we obtain immediately the solution

ψ(x, t) =
∞
∑

n=0

cn e−iEnt φn(x) = e−it/2
∞
∑

n=0

cn e−int φn(x). (7.51)

The superposition of two or more eigenstates depends on time in
a nontrivial way. See CD 5.3–CD 5.9 for a few typical examples.
These movies show oscillating states which are obtained from super-
positions of only a few eigenstates. See also Color Plate 21.
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7.3.2. Periodic time dependence

From Eq. (7.51) above we obtain the following result.

Periodic time dependence of oscillating states:
For every initial state φ the solution ψ(x, t) of Eq. (7.48) is periodic
with period T = 4π. But while the wave function ψ has period 4π,
the quantum-mechanical state (and in particular the position probability
density |ψ(x, t)|2) has period 2π (which is the period of the corresponding
classical system in dimensionless units).

Exercise 7.7. Prove the statement above.

In fact, it is only necessary to know the wave function in the time interval
from 0 to π. From this, the time evolution for other times follows easily:

ψ(x, t + π) = e−iπ/2 e−it/2
∞
∑

n=0

cn e−int e−inπ φn(x)

= e−iπ/2 e−it/2
∞
∑

n=0

cn e−int (−1)n φn(x).

Now we use the following symmetry property of the oscillator eigenfunctions,

φn(−x) = (−1)n φn(x), (7.52)

which follows from the explicit form of the Hermite polynomials, Eq. (7.35).
Hence

ψ(x, t + π) = e−iπ/2 e−it/2
∞
∑

n=0

cn e−int φn(−x) = e−iπ/2 ψ(−x, t).

Time symmetry of oscillating states:
Any solution of the Schrödinger equation with a harmonic oscillator po-
tential has the property

ψ(x, t + π) = e−iπ/2 ψ(−x, t), (7.53)
and hence

ψ(x, t + 2π) = −ψ(x, t). (7.54)
In addition, whenever the initial function is real-valued, we find

ψ(x, π − t) = e−iπ/2 ψ(−x, t) (ψ(0) real-valued). (7.55)
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Proof. The result Eq. (7.53) has been shown above. For Eq. (7.55) we
observe that

ψ(x, π − t) = e−iπ/2 ψ(−x,−t). (7.56)

Now, Eq. (7.51) shows that

ψ(x, t) = eit/2
∞
∑

n=0

cn eint φn(x).

But for a real-valued initial function also the expansion coefficients cn are
real-valued, see Eq. (7.40). Hence ψ(x, t) = ψ(x,−t) and Eq. (7.56) implies
the result Eq. (7.55).

For real-valued initial functions it is thus sufficient to know the time evolution
for the interval [0, π/2].

Exercise 7.8. The time period of the wave function is not gauge-invar-
iant. Show that the time evolution in the potential V (x) = 1

2x2 − 1
2 has the

property

ψ(x, t + 2π) = ψ(x, t). (7.57)

7.3.3. Fourier transform of oscillator states

If you remember Section 2.6.2, you will have no difficulties to calculate the
Fourier transform of the eigenvalue equation

1
2

(

− d2

dx2
+ x2

)

φn(x) = En φn(x). (7.58)

You will obtain the stationary Schrödinger equation in momentum space

1
2

(

k2 − d2

dk2

)

φ̂n(k) = En φ̂n(k), (7.59)

which is identical with the Schrödinger equation in position space. The os-
cillator eigenfunction φn(x) and its Fourier transform φ̂n(k) are both eigen-
functions of the oscillator Hamiltonian. You can see that φ̂n(k) = αφn(k)
with some constant α ∈ C because the oscillator eigenfunctions belonging to
the same eigenvalue are unique up to a constant factor. From the unitarity
of the Fourier transform it follows that α is a phase factor. Indeed, one finds

φ̂n(k) = (−i)n φn(k). (7.60)

This result can be verified by a direct calculation: φn(x) is a polynomial in
x times exp(−x2/2). Under a Fourier transform, xn exp(−x2/2) is mapped
onto (id/dk)n exp(−k2/2) which is equal to a polynomial in k times the
exponential function exp(−k2/2). The explicit calculation gives Eq. (7.60).
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From Eqs. (7.51) and (7.60) we find the time evolution of an oscillator
state in momentum space,

ψ̂(k, t) = e−it/2
∞
∑

n=0

cn e−int (−i)n φn(k) (7.61)

= eiπ/4 exp
{

− i
2

(

t +
π

2

)}

∞
∑

n=0

cn e−in(t+π/2) φn(k) (7.62)

= eiπ/4 ψ
(

k, t +
π

2
)

. (7.63)

Time evolution and Fourier transform:
In the field of a harmonic oscillator, the time evolution by π/2 amounts
to a Fourier transform. We have

ψ(x, t + π/2) = e−iπ/4 ψ̂(x, t). (7.64)

Apart from the phase factor exp(iπ/4) = i1/2 the motion in momentum
space looks like the motion in position space shifted in time by π/2.

CD 5.3–CD 5.6 contain animations of oscillating states in momentum
space. It can be seen that the wave function in momentum space is
(apart from the phase factor described above) a quarter of a classical
period ahead of the wave function in position space. See also Color
Plate 21.

Exercise 7.9. Let (x(t), p(t)) be any solution of the classical harmonic
oscillator (in dimensionless units). Prove that

p(t) = x(t + π/2). (7.65)

7.4. Time Evolution of Observables

7.4.1. Time-dependence of operators

Important properties of the motion can be learned by considering the time
evolution of certain observables like the position and momentum operators.
We define the time evolution of an arbitrary observable A by

A(t) = eiHt A e−iHt. (7.66)
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If one knows the operator A(t), one can determine the time evolution of the
expectation value of A for every initial state ψ. The expectation value at
time t is given by

〈A〉ψ(t) = 〈ψ(t), Aψ(t)〉 = 〈ψ, A(t)ψ〉. (7.67)

Here we used ψ(t) = exp(−iHt)ψ and the fact that exp(iHt) is adjoint to
exp(−iHt).

The time evolution of an operator A obeys a differential equation. From
Eq. (7.66) it follows immediately that

d

dt
A(t) =

( d

dt
eiHt

)

A e−iHt + eiHt A
( d

dt
e−iHt

)

= eiHt (

iH A − A iH
)

e−iHt

= eiHt i[H, A] e−iHt.

We collect these results in the following box.

Time evolution of an observable:
The time-dependent operator

A(t) = eiHt A e−iHt (7.68)
is a solution of the Heisenberg equation

d

dt
A(t) = i [H, A(t)] (7.69)

with the initial condition A(0) = A. When you know the solution A(t)
you can calculate the expectation value of the observable A at time t by
taking the expectation value of A(t) with the initial state ψ:

〈A〉ψ(t) = 〈A(t)〉ψ. (7.70)

In particular, if an observable commutes with the Hamiltonian H, then
the Heisenberg equation has the trivial solution A(t) = A(0) = A. Such an
observable A is called a constant of motion, see Section 6.11.

7.4.2. Position and momentum observables

For H = harmonic oscillator and A = position or momentum, the time
evolution can be calculated explicitly. According to Eq. (7.69) we have to
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calculate

i[H, p] = i
2 [x2, p]

= i
2

(

x [x, p] + [x, p] x
)

= −x,

i[H, x] = i
2 [p2, x] = p,

from which we obtain
d

dt
p(t) = −x(t),

d

dt
x(t) = p(t). (7.71)

It can be verified easily by differentiating that the following families of op-
erators form a solution of Eq. (7.71).

Time evolution of position and momentum:
In the field of a harmonic oscillator, the observables of position and
momentum fulfill

x(t) = (sin t) p + (cos t)x, (7.72)
p(t) = (cos t) p − (sin t)x. (7.73)

This is identical to the classical time dependence of position and momen-
tum for a particle that starts at x with momentum p (in dimensionless
units). It follows in particular that for every quantum-mechanical ini-
tial state the expectation values of position and momentum perform a
classical motion.

Exercise 7.10. The classical motion t → ( 〈x(t)〉ψ, 〈p(t)〉ψ ) of the ex-
pectation values (with respect to an arbitrary state ψ) has a classical energy
which is strictly less than the quantum-mechanical expectation value of the
energy of ψ. Prove the following inequality:

1
2

(

〈p〉2ψ + 〈x〉2ψ
)

<
〈1

2

(

p2 + x2
)〉

ψ
. (7.74)

Can you estimate the difference between these expressions?
Hint: Use Exercise 4.1 to show that the difference can be written as

1
2

[

(∆ψp)2 + (∆ψx)2
]

. (7.75)

7.4.3. Time evolution and translation

The relation

eiHt p e−iHt = p(t) (7.76)
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can be written for the unitary groups in the form

eiHt e−ix0p e−iHt = e−ix0p(t). (7.77)

Here x0 is an arbitrary real number. The unitary operator exp(−ix0p) de-
scribes a translation by x0,

e−ix0p ψ(x) = ψ(x − x0). (7.78)

Now we have occasion to use the Weyl relation for the operators x and p,

ei(ax+bp) = eiax eibp eiab/2, all a, b ∈ R. (7.79)

(see Section 6.8). With the explicit form of p(t) obtained in the previous
section we calculate

e−ix0p(t) = e−ix0

(

−(sin t) x+(cos t) p
)

= ei(x0 sin t) x e−i(x0 cos t) p exp
(

−i
x2

0

4
sin 2t

)

.

In this formula we may substitute t → −t and apply the result to a state
φ(x, t) = exp(−iHt)φ(x). Then, using (7.77) with t → −t, we finally obtain
the following formula:

e−iHt e−ix0p φ(x) = exp
(

i
x2

0

4
sin 2t

)

e−i(x0 sin t) x e−i(x0 cos t) p e−iHtφ(x).
(7.80)

This formula has a very nice interpretation: It describes the time evolution
of an initial state obtained from φ by a translation in terms of the time
evolution of the original φ. The action of the various operators on the right-
hand side can be described as follows.

1. exp(−i(x0 cos t) p): The state φ at time t is shifted by x0 cos t in
position space.

2. exp(−i(x0 sin t)x): Shift in momentum space by −x0 sin t.
3. Finally, the result is multiplied by a phase factor.

Exercise 7.11. Show that the first two steps described above also have to
be performed on a state (x(t), p(t)) in classical mechanics, when we calculate
the time evolution of a shifted initial state in terms of the original state.
The time-dependent phase factor (step 3) apparently has a purely quantum-
theoretical origin.
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Time evolution of a shifted initial state:
Let φ(x, t) be the time evolution of an initial function φ(x) in the field
of the harmonic oscillator. For x0 ∈ R define the shifted function by
φx0(x) = φ(x − x0). Its time evolution is given by

φx0(x, t) = exp
(

i
x2

0

4
sin 2t

)

e−i(x0 sin t) x φ(x − x0 cos t, t) (7.81)

We can draw some interesting conclusions from this result: Assume that
φ = φn is an eigenstate of the harmonic oscillator. The eigenstates have a
trivial time evolution, they always remain centered at the origin, the expec-
tation values of the position x and momentum p are zero for all times. Now,
lets shift the eigenfunction to a new position x0, that is, the new initial state
is given by

ψ(x, 0) = φn(x − x0). (7.82)

Equation (7.81) gives the following result for the time evolution of the trans-
lated eigenstate:

ψ(x, t) = exp
(

i
x2

0

4
sin 2t − iEnt − i(x0 sin t) x

)

φn(x − x0 cos t). (7.83)

In particular, the position probability density is just given by

|ψ(x, t)|2 = |φn(x − x0 cos t)|2. (7.84)

Time evolution does not change the shape of |φn|2, it just translates the
function to its classical position x0 cos t.

CD 5.19 shows the motion of the initially translated eigenstates φ1,
φ2, and their superposition. The evolution of the shifted initial state
shows the motion of φ1 + φ2 as in CD 5.5, while the center of the
wave packet performs the oscillation x0 cos t.

7.5. Motion of Gaussian Wave Packets

7.5.1. Coherent states

Here we apply the results of the previous section to the ground state φ0(x) =
π(−1/4) exp(−1

2 x2). Among the eigenstates it is distinguished also by the
property that it is optimal with respect to the uncertainty relation

∆x∆p ≥ 1
2 . (7.85)

The ground state satisfies

∆x∆p = 1
2 . (7.86)
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For the time evolution of the initially translated ground state we can apply
the results obtained in the previous section. We obtain

ψ(x, t) =
( 1
π

)1/4
exp

(

i
x2

0

4
sin 2t − i

t

2

)

exp
(

i pt x − (x − xt)2

2

)

, (7.87)

with xt = x0 cos t and pt = −x0 sin t. This is a normalized Gaussian function
centered at the average position xt and with average momentum pt. Here
(xt, pt) describes the classical oscillation of a particle with initial position x0

(in dimensionless units).

CD 5.10 contains movies of a coherent state in position space, mo-
mentum space, and in the energy representation. See also Color
Plate Fi:HOcoh.

We know already that the function ψ(x, t) is again optimal with respect
to the uncertainty relation (see Section 2.8.1). The state ψ(x, t) hence satis-
fies Eq. (7.86) for all times. The states with minimal uncertainty are called
coherent states. Their motion is most similar to the oscillation of a particle
in classical mechanics. We collect these observations in the following box.

Coherent states of a harmonic oscillator:
The coherent states (states with minimal uncertainty) of a harmonic
oscillator are shifted Gaussian functions, initially localized at x0, which
have the shape of the ground state. The maximum of a coherent state
always follows the trajectory of a classical-mechanical particle that starts
at x0 with zero initial momentum. The wavelength of the phase always
corresponds to the momentum of the classical particle. During its time
evolution a coherent state retains its shape (the shape of the ground
state) without spreading.

It is a consequence of Exercise 7.10 that the coherent states minimize the
difference between the mean energy and the energy of the classical motion
of 〈x(t)〉ψ and 〈p(t)〉ψ because the coherent states have minimal uncertainty.
One even has the following result: ψ is a coherent state if and only if

1
2

(

〈p〉2ψ(t) + 〈x〉2ψ(t)

)

= 1
2〈p

2 + x2〉ψ(t). (7.88)

7.5.2. Arbitrary Gaussian function

For the harmonic oscillator potential, the Schrödinger equation with the
Gaussian initial function

φ(x) =
(a

π

)1/4
exp

(

−a
x2

2

)

(7.89)
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has the solution

ψ(x, t) =
(a

π

)1/4
(

cos t + ia sin t
)−1/2 exp

(

−a(t)
x2

2

)

, (7.90)

where

a(t) =
a cos t + i sin t

cos t + ia sin t
. (7.91)

This result can be obtained using the explicitly known integral kernel of the
time evolution. This integral kernel (Mehler’s kernel) will be obtained in a
later section.

One has to be careful with the definition of the square root
(

cos t + ia sin t
)−1/2 (7.92)

in Eq. (7.90). It is necessary to take that branch of the square root that
gives a continuous dependence on t. Hence for a = 1 this expression will
simply become exp(−it/2).

By combining Eq. (7.90) with Eq. (7.81) one can easily find an expression
for the time evolution of a translated Gaussian function.

7.6. Harmonic Oscillator in Two and More
Dimensions

The wave function of a particle in two dimensions depends on a two-dimensional
position variable x = (x1, x2). The Hamiltonian operator for the harmonic
oscillator in two dimensions can be written as a sum of one-dimensional
Hamiltonians

H = −1
2
∆ +

x · x
2

= −1
2

d2

dx2
1

+
x2

1

2
− 1

2
d2

dx2
2

+
x2

2

2
= Hx1 + Hx2 ,

where Hxi (i = 1, 2) acts only on the variable xi. Hence we can make the
same observations as in the case of free particles: The Schrödinger equation
in two space dimensions can be solved by a product ansatz

ψ(x, t) = ψ1(x1, t)ψ2(x2, t), (7.93)
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where each ψi is a solution of the one-dimensional harmonic oscillator equa-
tion.

i
d

dt
ψ = i

dψ1

dt
ψ2 + iψ1

dψ2

dt
= (Hx1ψ1)ψ2 + ψ1 (Hx2ψ2)
= (Hx1 + Hx2)ψ1ψ2 = Hψ.

If ψn,m is a product of two eigenfunctions φn and φm of the one-dimensional
Hamiltonian,

ψn,m(x) = φn(x1)φm(x2), (7.94)

then ψn,m(x) is an eigenfunction of H belonging to the eigenvalue En,m

En,m = Em + En = m + n + 1, H ψn,m = En,m ψn,m. (7.95)

Hence it is clear that

ψn,m(x, t) = ψn,m(x) e−iEn,mt = φn(x1, t)φm(x2, t) (7.96)

is a solution of the time-dependent Schrödinger equation. This solution is a
product of solutions of one-dimensional equations for x1- and x2-coordinates,
respectively. Of course, this does not mean that every solution of the two-
dimensional oscillator is a product of one-dimensional solutions. Neverthe-
less, any solution can be written as an (infinite) linear combination of prod-
ucts as follows.

As a consequence of the fact that the functions φn form an orthonormal
basis in the Hilbert space L2(R) it can be shown that the product functions
ψn,m form an orthonormal basis in L2(R2) (this is a property of the tensor
product of Hilbert spaces). Hence every initial function φ ∈ L2(R2) can be
expanded as

φ(x) =
∞
∑

n=0

∞
∑

m=0

cn,m ψn,m(x), (7.97)

and the unique solution of the Schrödinger equation with initial condition
ψ(x, t) = φ(x) is given by

ψ(x, t) =
∞
∑

n=0

∞
∑

m=0

cn,m e−i(n+m+1) t ψn,m(x). (7.98)

The ground-state energy is E0 + E0 = 1 and every solution is periodic with
period 2π.

Exercise 7.12. Generalize the above considerations to n-dimensions.

If ψ(x, t) is the time evolution of a one-dimensional harmonic oscillator,
then its Fourier transform, the function ψ̂(k, t), is also a solution of the
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Schrödinger equation of the harmonic oscillator in one dimension. Hence
the wave function in phase space,

Ψ(x, k, t) = ψ(x, t) ψ̂(k, t) (7.99)

is a solution of the two-dimensional oscillator equation.

CD 5.14–5.18 show solutions of the two-dimensional harmonic oscil-
lator. Among the various Gaussian wave packets, the coherent and
squeezed states are of particular interest.

7.7. Theory of the Harmonic Oscillator

7.7.1. Supersymmetry

Define the operators

A =
1√
2

(

x + ip
)

=
1√
2

( d

dx
+ x

)

, (7.100)

A† =
1√
2

(

x − ip
)

=
1√
2

(

− d

dx
+ x

)

. (7.101)

Here p = −id/dx is the momentum operator, and x denotes the position
operator (the operator of multiplication of ψ(x) by x). For suitable (differ-
entiable) wave functions you can see by a partial integration that

〈φ, Aψ〉 = 〈A†φ, ψ〉. (7.102)

Therefore, the operators A and A† are formally adjoint to each other.

Ψ Schwartz space. For the mathematical investigation it is necessary
to have a dense domain in the Hilbert space L2(R), which is invariant

under the action of the operators A and A†. Such a domain is the Schwartz
space S = S(R). The set S consists of infinitely differentiable functions. The
functions (and all their derivatives) are required to go to zero faster than
any inverse power of |x|, as |x| tends to infinity. More precisely,

S =
{

f ∈ C∞(R)
∣

∣

∣ for all integers k, l: sup
x∈R

∣

∣

∣xk dl

dxl
f(x)

∣

∣

∣ < ∞
}

. (7.103)

Typical examples of functions in S are Gauss functions exp(−ax2), and
all the oscillator eigenfunctions. Because all finite linear combinations of
functions in S are again contained in S, the set S is a linear subspace of
the Hilbert space L2(R). Theorem 2.2 in Section 2.7 states that the linear
subspace spanned by the functions

Gq(x) =
( 1
π

)1/4
eiqx exp

(

−x2

2

)

(7.104)
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is dense in the Hilbert space. Because this subspace is contained in S you
will be convinced that also S is a dense subspace of L2(R). As you probably
know, this means that for every square-integrable function ψ and for every
ε > 0 there is a function f ∈ S such that ‖ψ − f‖ < ε.

Moreover, the operators A and A† leave S invariant, that is, with f ∈ S
also Af ∈ S, and similarly for A†. The invariance implies that one can
define arbitrary powers of the operators A and A† on the domain S. All the
operators and commutators considered below are well defined on the domain
S.

By the way, another important property of the domain S is that the
Fourier transform F maps S one-to-one onto itself. For any smooth, fast
decaying function the Fourier transform is also smooth and fast decaying.

The supersymmetric structure: The canonical commutation relation

[x, p] = xp − px = i (7.105)

implies immediately

[A, A†] = 1 or AA† = A†A + 1. (7.106)

The Hamiltonian of the harmonic oscillator has a very special structure. It
can be written in terms of the operators A and A† as

H =
1
2

(

p2 + x2) = A†A +
1
2
. (7.107)

Hence, in order to find the eigenvalues of H, it is sufficient to determine the
eigenvalues of A†A. (E is an eigenvalue of H if and only if E − 1/2 is an
eigenvalue of A†A). In the following section, you will see that finding the
eigenvalues of A†A is made easy by the following observation.

Spectral supersymmetry:
The operators A†A and AA† have the same eigenvalues (except 0).
Whenever E is a nonzero eigenvalue of A†A with eigenvector ψ, then
Aψ is an eigenvector of AA† belonging to the same eigenvalue. Simi-
larly, if φ is an eigenvector of AA† belonging to the nonzero eigenvalue
E′, then also A†A has E′ as eigenvalue. The corresponding eigenvector
of A†A is given by A†φ.

Proof. The proof is very simple and holds quite generally for any two
operators: Assume that E -= 0 and

A†Aψ = Eψ. (7.108)

Define φ = Aψ. Then

AA†φ = AA†(Aψ) = A(A†Aψ) = A(Eψ) = E(Aψ) = Eφ. (7.109)
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The proof of the second part is quite similar and is left to the reader.

Possible violation of spectral supersymmetry at E = 0: We first note
that A†Aψ = 0 implies Aψ = 0. In order to see this, let φ be any vector in
the kernel of A†, that is, A†φ = 0. Then

〈φ, Aψ〉 = 〈A†φ, ψ〉 = 0 (7.110)

for all ψ in the (dense) domain of A. But this can only hold if φ is orthogonal
to the range of A. (Thus, we have shown: For any densely defined linear
operator A the kernel Ker A† is orthogonal to the range RanA.) Hence
φ = Aψ can only belong to the kernel of A† if it is at the same time orthogonal
to the range of A. This implies immediately that Aψ = 0. Now, if E = 0 in
the proof of the spectral supersymmetry, then φ = Aψ = 0 and hence one
cannot know whether AA† has the eigenvalue zero or not. (Remember that
AA† has the eigenvalue zero if and only if there is a nonzero vector φ such
that AA†φ = 0).

In the case that A∗A has zero among its eigenvalues while AA∗ has not
(or vice versa), we speak of a violation of the spectral supersymmetry at
E = 0. You will learn in the next section that this indeed happens for the
Hamiltonian of the harmonic oscillator.

Exercise 7.13. Consider the classical motion of the harmonic oscillator
H(x, p) = 1

2 (p2 + x2). (7.111)
Define the quantity

a(t) =
1√
2

(

x(t) + i p(t)
)

. (7.112)

Express the Hamiltonian function H(x, p) in terms of a(t) and a(t). Find
the evolution equation for a(t) and solve it.

Exercise 7.14. Using the canonical commutation relation [A, A†] = 1
and the rule (2.73), reduce the expression [A, (A†)n] to the simplest possible
form. (Here (A†)n is the product of n A†s.)

7.7.2. The Spectrum of Eigenvalues

The spectral supersymmetry for E -= 0 together with the relation

H = A†A + 1
2 = AA† − 1

2 (7.113)
allows us to solve the eigenvalue problem of the harmonic oscillator almost
without any calculation! We first note that all eigenvalues of A†A must be
non-negative. If A†Aψ = Eψ then

〈ψ, A†Aψ〉 = E‖ψ‖2. (7.114)
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The non-negativity of E now follows from

〈ψ, A†Aψ〉 = 〈Aψ, Aψ〉 = ‖Aψ‖2 ≥ 0. (7.115)

Ground state and eigenvalues:
If there is a state Ω -= 0 that is square-integrable and satisfies AΩ = 0,
then all the integers n = 0, 1, 2, . . . are eigenvalues of A†A, and En =
n + 1

2 are eigenvalues of the harmonic oscillator Hamiltonian H. The
corresponding eigenvectors are given by (A†)nΩ. The state Ω is called
the ground state.

Proof. The proof of this statement is obvious: If AΩ = 0, and Ω -= 0,
then Ω is an eigenvector of A†A with eigenvalue 0. But because AA† =
A†A + 1, the state Ω is at the same time an eigenstate of AA† belonging to
the eigenvalue 1. Because of the spectral supersymmetry, 1 is also an eigen-
value of A†A, the corresponding eigenvector is given by A†Ω. But then A†Ω
must be eigenvector of AA† belonging to the eigenvalue 2. Repeating this
argument, we find that n is an eigenvalue of A†A with associated eigenvector
(A†)nΩ.

Everything depends on whether there is a nonzero solution of AΩ = 0.
By the definition of A, the equation AΩ = 0 is a simple first-order differential
equation,

d

dx
Ω = −xΩ, (7.116)

which is obviously solved by

Ω(x) = C exp
(

−x2

2

)

. (7.117)

The constant C is arbitrary, we choose

C =
( 1
π

)1/4
(7.118)

in order to fulfill the normalization condition ‖Ω‖ = 1.
We note that A† and hence AA† cannot have a zero eigenvalue, because

then A†A = AA† − 1 would have the eigenvalue −1 in contradiction to the
non-negativity of A†A stated earlier. Indeed, the equation A†f = 0, that is,
f ′(x) = xf(x), has the solution exp(x2/2) which is not square-integrable.

So far, it has been shown that the numbers En = n+1/2 are eigenvalues
of H. It has not been shown that these are the only eigenvalues. This is
related to the completeness of the eigenfunctions, which will be discussed
briefly in Section 7.8.2 below.
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7.7.3. The eigenvectors

Starting with the ground state Ω you can obtain the eigenvectors belonging
to En, n = 1, 2, . . . , by repeatedly applying the operator A†. If φn is a
normalized eigenvector,

A†Aφn = nφn, ‖φn‖ = 1, (7.119)

then
‖A†φn‖2 = 〈A†φn, A†φn〉 = 〈φn, AA†φn〉

= 〈φn, (A†A + 1)φn〉 = (n + 1) 〈φn, φn〉 = (n + 1) ‖φn‖2

= n + 1.

(7.120)

Hence the normalized eigenvector for the next eigenvalue is given by

φn+1 =
1√

n + 1
A†φn. (7.121)

Starting with the normalized ground state, you will find by induction
φ0 = Ω,

φn =
1√
n!

(A†)nΩ.
(7.122)

Exercise 7.15. Calculate the first few eigenfunctions of the harmonic
oscillator using the explicit expressions for Ω and A†. Compare the result
with the Hermite functions in Eq. (7.34).

Exercise 7.16. Let φn be the (normalized) nth eigenstate of the har-
monic oscillator. Prove that for n ≥ 1,

φn−1 =
1√
n

Aφn. (7.123)

Because the operators A† and A serve to jump up and down the ladder
of oscillator eigenstates, they are sometimes called ladder operators. The
operator A† generates the eigenstates out of the ground state. Each appli-
cation of A† creates a quantum of energy. Hence this operator is also called
a creation operator. Correspondingly, A is called an annihilation operator.

Ψ Concluding this section we give a general proof for the fact that the
nth eigenvector φn of the harmonic oscillator is given by the Hermite

functions Eq. (7.34). This statement can be reformulated as

(A†)nΩ(x) =
1√
2n

Hn(x)Ω(x). (7.124)
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Proof. Probably you tried Exercise 7.5, which asks you to verify the equation

Hn+1(x) = − d

dx
Hn(x) + 2x Hn(x) (7.125)

for Hermite polynomials. This relation is needed for the proof. The proof is best
done with induction: Eq. (7.124) is true for n = 0 because H0(x) = 1. Assuming
that it is valid for n = k, let us prove the validity for n = k + 1.

(A†)k+1 Ω(x) = A† (A†)k Ω(x)

= A† 1√
2k

Hk(x) Ω(x) by the assumption for k,

=
1√
2k

1√
2

(

− d

dx
+ x

)

Hn(x)Ω(x)

=
1√

2k+1

(

−H ′
k Ω− Hk Ω′ + x Hk Ω

)

=
1√

2k+1

(

−H ′
k Ω+ 2x Hk Ω

)

by Eq. (7.116),

=
1√

2k+1
Hk+1 Ω(x) by Eq. (7.125).

This completes the proof of the assertion.

7.8. Special Topic: More About Coherent States

The aim of the sections in the rest of this chapter is to prove some of the
results mentioned above. These sections contain mathematically advanced
material and may be omitted at first reading. The completeness of the
eigenfunctions as well as some results about coherent states will be proved.
In the next section, Mehler’s formula, which gives the explicit form of the
propagator (integral kernel of the time evolution), will be derived.

7.8.1. Coherent states

A useful dense subspace of the Hilbert space is the set D consisting of all
finite linear combinations of oscillator eigenstates.

φ ∈ D if and only if φ =
N

∑

n=0

cnφn, (7.126)

for some integer N and suitable constants cn ∈ C, n = 0, 1, . . . , N .
The operators (A†)n and An are obviously well defined on D. Also the

exponential operators

ezA =
∞
∑

n=0

zn

n!
An, ezA†

=
∞
∑

n=0

zn

n!
(A†)n, z ∈ C, (7.127)
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are well defined on D even for arbitrary complex parameters z. Because the
operators A and A† satisfy the canonical commutation relations [A, A†] = 1,
the exponential operators satisfy the Weyl relations

eaA†+bA = eaA†
ebA eab/2 = ebA eaA†

e−ab/2. (7.128)

Here, a and b may be arbitrary complex numbers. Let us calculate the action
of the exponential operators on the ground state Ω. We have

ezAΩ = Ω (because AnΩ = 0 for n = 1, 2, . . . ), (7.129)

ezA†
Ω =

∞
∑

n=0

zn

n!
(A†)nΩ =

∞
∑

n=0

zn

√
n!

φn. (7.130)

Exercise 7.17. Using the result of Exercise 7.14, find the simplest pos-
sible form for the commutator [A, ezA† ].

Exercise 7.18. Use the result of the previous exercise to prove that

A
(

ezA†
Ω

)

= z
(

ezA†
Ω

)

. (7.131)

Equation (7.131) states that

Ψz = ezA†
Ω =

∞
∑

n=0

zn

√
n!

φn (7.132)

is an eigenvector of the operator A belonging to the eigenvalue z. So the
vector Ψz is interesting enough to deserve further investigation. Let us first
calculate its norm. This is done easily because it has an expansion in the
orthonormal set of the oscillator eigenfunctions:

‖Ψz‖2 =
∞
∑

n=0

∣

∣

∣

zn

√
n!

∣

∣

∣

2
=

∞
∑

n=0

(|z|2)n

n!
= e|z|

2
, (7.133)

and hence

‖Ψz‖ = exp
( |z|2

2

)

. (7.134)

Next, we calculate Ψz(x) for real indices z ∈ R. This can be done with a
little trick. Remember that the momentum operator is given by

p =
i√
2

(

A† − A
)

(7.135)
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and hence, using the Weyl relation,

e−ip(z
√

2)Ω(x) = ezA†−zAΩ(x)

= e−z2/2 ezA†
e−zAΩ(x)

= e−z2/2 ezA†
Ω(x)

= ez2
Ψz(x).

(7.136)

On the other hand, for z ∈ R, we have

e−ip(z
√

2)Ω(x) = Ω(x − z
√

2), (7.137)

because p is the generator of translations. Put this together to obtain

Ψz(x) = ez2/2Ω(x − z
√

2), z ∈ R. (7.138)

We see that Ψz is (up to normalization) just a shifted ground state. The
time evolution of translated ground states has been investigated earlier in
Section 7.5.1. These states have been called coherent states.

Coherent states:
The functions

φ(a)(x) = e−a2/4Ψa/
√

2(x)

=
( 1
π

)1/4
exp

(

−(x − a)2

2

)

, a ∈ R,
(7.139)

are just the coherent states of the harmonic oscillator. In the oscillator
basis they have the expansion (Glauber form)

φ(a)(x) =
∞
∑

n=0

cn φn(x), with cn = e−a2/4 an

√
2n n!

. (7.140)

Moreover, the coherent states are eigenstates of the operator A belonging
to the eigenvalue a/

√
2.

7.8.2. Completeness of oscillator eigenfunctions

We can use the result above to show that the orthonormal set of oscilla-
tor eigenfunctions is a basis of the Hilbert space L2(R). Remember that
an orthonormal set is a basis if every vector in the Hilbert space can be
approximated by a (finite) linear combination of vectors from that set.

The set of all coherent states φ(a) is not a linear subspace of the Hilbert
space, because the sum φ(a) + φ(b) (with a -= b) is not a coherent state. But
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we can form the set G of all finite linear combinations of coherent states.

ψ ∈ G if and only if ψ =
N

∑

n=0

cnφ
(an), (7.141)

for some integer N and suitable numbers cn ∈ C, an ∈ R, n = 0, 1, . . . , N .
Clearly, the set G is a linear subspace of the Hilbert space. It has been shown
earlier that G is even a dense linear subspace of L2(R) (see the remark after
Theorem 2.2 and note that the φ(a) are just Gaussian functions of the type
(2.106)).

The result (7.140) means that all shifted Gaussian functions φ(a) can
be approximated by finite linear combinations of the φn. In mathematical
terms this means that G is a subset of the closure D of the span of oscillator
eigenfunctions. Because the closed set D contains a subset which is dense in
the Hilbert space, it must be identical to the Hilbert space. (The closure of
any dense set is the whole space). Hence every vector in the Hilbert space
belongs to the closure of the span of the oscillator eigenfunctions, that is,
every vector φ can be approximated by a linear combination of the φn. This
proves that the set of oscillator eigenfunctions is a basis.

The harmonic oscillator thus has a complete orthonormal basis of eigen-
functions. The basis vectors can all be obtained from the ground state Ω by
repeated application of the creation operator An.

The completeness property also proves that the set of eigenvalues

{En = n + 1/2 | n = 0, 1, 2, . . . } (7.142)

found by the simple algebraic argument in Section 7.7.2 indeed contains all
eigenvalues of the harmonic oscillator, for if there were an eigenvalue E′ that
is different from all the En, then the symmetry of H would imply that the
corresponding (nonzero) eigenfunction is orthogonal to all φn. But this is
impossible because the φn form a basis!

7.9. Special Topic: Mehler Kernel

We want to determine the action of the unitary time evolution

exp(−iHt) = exp
(

− i
2

(p2 + x2) t
)

= exp
(

−i
(

A†A +
1
2

)

t
)

(7.143)

on wave functions. It is sufficient to do this calculation on a dense set of wave
functions because the action of a unitary operator can always be extended
by continuity to the whole Hilbert space (as described in Section 2.5.3).
We choose the dense set spanned by the (finite) linear combinations of the
functions (see Theorem 2.2)

Gq(x) = eiqxΩ(x), q ∈ R. (7.144)
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For an arbitrary function in this set we obtain, using the known temporal
behavior of the position observable,

e−iHt Gq = e−iHt eiqx eiHt e−iHtΩ

= eiqx(−t) e−it/2Ω

= eiq(x cos t−p sin t) e−it/2Ω.

With x cos t−p sin t = (e−it A†+eit A)/
√

2 and the Weyl relations we obtain

e−iHt Gq = e−it/2 exp
( iq√

2
e−it A†

)

exp
( iq√

2
eit A

)

exp
(

−q2

4

)

Ω

= e−it/2 exp
(

−q2

4

)

exp
( iq√

2
e−it A†

)

exp
( iq√

2
e−it A

)

Ω

Here we changed the factor in the exponential of function A, which does not
matter because it is only applied to Ω; see (7.129). Now we can apply the
Weyl relation again to conclude

e−iHt Gq = e−it/2 exp
(

−q2

4

)

exp
(q2

4
e−2it

)

exp
( iq√

2
e−it (A† + A)

)

Ω

= e−it/2 exp
(

−q2

4
(

1 − e−2it)
)

exp
(

iqe−itx
)

Ω.

On the other hand, comparison with the ansatz

e−iHt Gq(x) =
∫ ∞

−∞
Kosc(x, y, t) Gq(y) dy (7.145)

leads to the relation
∫ ∞

−∞
Kosc(x, y, t) e−y2/2 eiqy dy

= exp
(

−i
t

2
− q2

4
(

1 − e−2it) + iqe−itx − x2

2

)

.

(7.146)

From this we can determine Kosc(x, y, t) by an inverse Fourier transformation
with respect to y:

Kosc(x, y, t) e−y2/2 =
1
2π

exp
(

−i
t

2
− x2

2

)

×
∫ ∞

−∞
e−iqy exp

(

−q2

4
(

1 − e−2it) + iqe−itx
)

dq.

(7.147)

Because this is an integral over a Gaussian function, it can be calculated
explicitly. One obtains

Kosc(x, y, t) =
1√
π

e−it/2

(1 − e−2it)1/2
exp

(

−(e−itx − y)2

1 − e−2it
− x2

2
+

y2

2

)

. (7.148)
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A little trigonometric exercise converts this expression into

Kosc(x, y, t) =
1√

2πi sin t
exp

(

i
x2 + y2

2
cot t − i

xy

sin t

)

. (7.149)

A similar expression has been derived by Mehler in a different context in
the 19th century. Therefore, the time evolution kernel for the harmonic
oscillator is called the Mehler kernel.

As stated in Section 7.3.2, it is sufficient to know the time evolution for
the time interval (0, π) from which the rest follows by temporal symmetry.
The Mehler kernel is well defined for t ∈ (0, π), but singular at the borders
of this interval. As you probably remember, any solution ψ(x, t) of the har-
monic oscillator is proportional to ψ(±x, 0) at the times t = 0,±π,±2π, . . . .
For these times the integral kernel must behave like a delta distribution. For
example, at t = 0,

ψ(x) =
∫ ∞

−∞
Kosc(x, y, 0)ψ(y) dy (7.150)

and hence Kosc(x, y, 0) is the Dirac delta function
Kosc(x, y, 0) = δ(x − y). (7.151)
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Chapter 8

Special Systems

Chapter summary: In some rare cases we can find a complete and explicit so-
lution of the Schrödinger equation without having to use numerical methods. Our
collection of analytically solvable problems so far includes only the free particle, the
particle in a box, and the harmonic oscillator. In this chapter we add the free fall
in a linear potential and the motion in a constant magnetic field.

The linear potential describes a constant force field, like the homogeneous gravi-
tational field near the earth’s surface. Whenever the free time evolution of the initial
wave packet is known, the free fall can also be calculated exactly. The solution de-
scribes a uniformly accelerated motion and the expectation values of position and
momentum behave in a classical way. Next we add a reflecting boundary condition
in order to describe the quantum analog of a steel ball dancing on a horizontal
pane of glass. In quantum mechanics this system has only discrete energies. The
motion of wave packets in this situation is not periodic, because the frequencies of
the eigenfunctions are incommensurable.

A charged particle in a constant magnetic field feels a force that is always per-
pendicular to its velocity. It is sufficient to treat this problem in the two-dimensional
plane orthogonal to the direction of the magnetic field. The trajectories of clas-
sical particles are circles in that plane and the solutions of the two-dimensional
Schrödinger equation all describe bound states. We determine the eigenvalues of
the Hamiltonian operator by exploiting an analogy between the components of the
velocity operator (which do not commute with each other) and the position and
momentum observables for a harmonic oscillator. By this analogy we obtain results
about the motion of arbitrary Gaussian wave packets and derive the integral kernel
of the time evolution.

In quantum mechanics, the magnetic field has to be described by a (gauge-
dependent) vector potential, but we expect that physical predictions should be
independent of the chosen gauge. Thus, the interpretation of wave packets in mag-
netic fields becomes a tricky business, and one has to take into account the fact
that the canonical momentum has no simple (gauge-invariant) relation with the
velocity. For example, the Schrödinger equation in a constant magnetic field is not
invariant under translations. Nevertheless, any translation can be compensated for
by a gauge transformation, and therefore the system has a translational symmetry.
As a consequence, the energy eigenvalues have an infinite multiplicity.

191
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The constant magnetic field has a rotational symmetry, because the Hamil-
tonian commutes with the angular momentum operator. This leads us to an in-
vestigation of systems with sperical symmetry in two dimensions, which—after a
transition to polar coordinates—can be solved in a basis of angular momentum
eigenstates. The Schrödinger equation for the eigenvalues is thus reduced to an
ordinary differential equation in the radial variable. This treatment prepares the
ground for the more complicated reduction to angular momentum eigenspaces for
three-dimensional systems in Book Two.

8.1. The Free Fall in a Constant Force Field

It is remarkable how great are the mathematical difficulties of this
problem which, in classical mechanics, is one of the most basic and
simple ones.

—S. Flügge

8.1.1. Classical mechanics

The homogeneous gravitational field near the earth’s surface is usually de-
scribed by a linear potential

V (x) = λz, x = (x, y, z) ∈ R
3. (8.1)

The force

F = −∇V (x) = −λ(0, 0, 1) (8.2)

is independent of the position x. Here λ = mg, where m is the mass of the
particle and g is the gravitational acceleration. Of course, the linear potential
also describes other situations with constant force fields—for example, the
accelerated motion of an electron in a homogeneous electric field. In this
case λ = eE, where e is the charge of the electron, and E describes the
electric field strength.

The solution of the equations of motion in classical mechanics is indeed
elementary. The resulting motion is the free fall. With the initial position
x(0) = x0 and initial momentum p(0) = p0, the solution is given by

x(t) = x0 +
p0

m
t +

F
2m

t2,

p(t) = p0 + F t.
(8.3)

It describes a free motion x0 + p0
m t where the position is translated in the

direction of F by an amount proportional to t2 and the momentum is trans-
lated by F t. In the next section you will see that essentially the same
observation can be made in the quantum-mechanical case.
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8.1.2. The quantum time evolution

A particle in a linear potential belongs to the rare special systems for which
the equations of motion can be solved both classically and quantum-mechanically.

CD 6.1 shows the quantum-mechanical free fall of a Gaussian wave
packet in one dimension.

The main result of this section is the following:

The Avron–Herbst formula:
The Schrödinger equation for a particle under the influence of a constant
force F,

i
d

dt
ψ = H ψ, with H = − 1

2m
∆− F · x, (8.4)

is solved by

ψ(x, t) = exp
(

−i
F2

6m
t3

)

exp(itF · x) exp
( i
2m

∆ t
)

ψ0

(

x − F
2m

t2
)

,

(8.5)

where ψ(x, 0) = ψ0(x) is an arbitrary initial state.

This formula allows us to determine the time evolution in a linear poten-
tial whenever we know the free time evolution. Before proving this result,
let us have a closer look at it. According to Eq. (8.5), the solution at time t
can be obtained by the following procedure.

1. Take the initial function ψ0 and perform a translation of its argument
in the direction of F and by an amount proportional to t2.

2. Let the resulting function evolve according to the free time evolution.
This is described by the operator exp(i∆t/2m), which in momentum
space is just multiplication by exp(−ip2t/2m).

3. Next, multiply the wave function with the phase factor exp(itF · x),
which in momentum space describes a translation by the vector Ft.

4. Finally, multiply the result with a time-dependent phase factor (which
does not depend on x).

We see that the quantum motion of a particle in a linear potential can be
described in close analogy to the classical motion. The origin of the phase
factor exp(−iF2t3/6m) is, of course, purely quantum mechanical.
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CD 6.2 visualizes the Avron–Herbst formula. Here we can see the
action of the four operations described above.

Exercise 8.1. Why is the term Ft2/2m subtracted from x in the argu-
ment of ψ0 in Eq. (8.5) while it is added to x in Eq. (8.3)?

Exercise 8.2. Use the results in Section 3.3.2 together with the Avron–
Herbst formula in order to determine the time evolution of a Gaussian wave
packet under the influence of a constant force.

CD 6.3 and 6.4 show the free fall of Gaussian wave packets in two
dimensions. The movies allow the comparison with the classical me-
chanical motion.

Ψ For the proof of the Avron–Herbst formula, it is assumed that the
constant field points in the z-direction, so that V (x) = −F · x = λz.

Then the Hamiltonian splits into a part H⊥, which describes the free motion
in the xy-plane, and a part

Hz := − 1
2m

d2

dz2
+ λz, (8.6)

which describes the free fall in the z-direction. It is easy to see that the
operators H⊥ and Hz commute. Hence the time evolution can be separated
as

e−iHt = e−iH⊥t e−iHzt. (8.7)

It is sufficient to consider the nontrivial part describing the free fall. For
simplicity, we write the Hamiltonian Hz in the form

Hz =
p2

2m
+ V, p = −i

d

dz
, V = λz. (8.8)

Here the operator p is just the component of the momentum in the z-
direction. If we perform a Fourier transform with respect to z, then p is
just the multiplication by k in Fourier space and the potential V corre-
sponds to the differential operator iλd/dk, according to Eq. (2.89). Thus,
you can certainly verify the formula

Hz = exp
(

i
p3

6λm

)

V exp
(

−i
p3

6λm

)

, (8.9)

because in momentum space this is just identity

k2

2m
+ iλ

d

dk
= exp

(

i
k3

6λm

)

iλ
d

dk
exp

(

−i
k3

6λm

)

, (8.10)
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which can be obtained by an elementary differentiation. Hence you can see
that the operators V and Hz are related by a unitary transformation. The
corresponding time evolutions exp(−iV t) and exp(−iHzt) must therefore
have the same relation,

exp(−iHzt) = exp
(

i
p3

6λm

)

exp(−iV t) exp
(

−i
p3

6λm

)

. (8.11)

Because the multiplication by the phase factor exp(−iV t) = exp(−iλtz)
amounts to a translation by λt in momentum space (see Section 2.6.1), we
obtain

exp(−iHzt) = exp(−iλzt) exp
(

i
(p + λt)3

6λm

)

exp
(

−i
p3

6λm

)

. (8.12)

Expanding the term (p + λt)3 and rearranging the expressions finally yields

exp(−iHzt) = exp
(

−i
λ2

6m
t3

)

exp(−iλzt) exp
(

−i
p2

2m
t
)

exp
(

i
λt2

2m
p
)

.

(8.13)

Notice that the last factor describes a translation z → z+λt2/2m in position
space. Multiplying Eq. (8.13) by exp(−iH⊥t) finally gives the Avron–Herbst
formula.

8.1.3. Position and momentum operators

Let us determine the time evolution of the position and momentum observ-
ables,

x(t) = eiHt x e−iHt, p(t) = eiHt p e−iHt. (8.14)

As mentioned earlier (Section 7.4.1), the knowledge of the time evolution of
an observable allows to calculate its expectation value at any time t from
the initial wave function. We determine the time evolution of x and p by
solving the Heisenberg equations. First we need the commutators with the
Hamiltonian

H =
1

2m
p2 − F · x. (8.15)

A little calculation gives the following commutation relations

i [H, xj ] =
i

2m

∑

k

[p2
k, xj ]

=
i

2m

∑

k

(−2i) δkj pk =
1
m

pj ,
(8.16)
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and

i [H, pj ] = i
∑

k

(−Fk) [xk, pj ]

= i
∑

k

(−Fk) i δkj = Fj .
(8.17)

Hence the evolution equations for the time-dependent operators are

d

dt
x(t) =

1
m

p(t),
d

dt
p(t) = F(t). (8.18)

These equations look exactly like the corresponding equations in classical
mechanics. The expressions corresponding to the classical solutions are

x(t) = x +
1
m

p t +
F
2m

t2, p(t) = p + F t. (8.19)

As we are now dealing with operators you may wish to verify by differen-
tiation that these expressions are indeed solutions of the Heisenberg equa-
tions (8.18). As a consequence of these observations we find that for any
initial state the expectation values of position and momentum obey the laws
of classical physics.

Exercise 8.3. Compare the energy of the classical motion of the expec-
tation values with the quantum-mechanical expectation value of the energy
〈H〉ψ.

8.2. Free Fall with Elastic Reflection at the
Ground

In this section we describe a freely falling quantum particle that hits the
earth’s surface and is reflected elastically. This corresponds to the classical
situation of a bouncing ball. The earth’s surface is modeled by an infinite
potential barrier, giving rise to a boundary condition at z = 0. In one-
dimension we obtain (after a suitable scaling transformation) the stationary
Schrödinger equation

− d2

dz2
ψ(z) + z ψ(z) = E ψ(z) (8.20)

in the region z ≥ 0. We look for the eigenvalues and square-integrable
eigenfunctions of the Hamiltonian

H = − d2

dz2
+ z (8.21)
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Figure 8.1. The Airy function Ai(x) gives all the eigenfunc-
tions of the bouncing ball.

on a suitable domain in the Hilbert space L2([0,∞)). The domain of defini-
tion of H consists of functions that are twice differentiable (in a generalized
sense) and satisfy Dirichlet boundary conditions at z = 0, that is,

ψ(0) = 0, for all ψ ∈ D(H). (8.22)

The eigenvalue equation ψ′′ − (z − E)ψ = 0 is solved by the Airy functions
Ai(z − E) and Bi(z − E). The Airy functions are well known and, for
example, built into Mathematica. They can be expressed in terms of linear
combinations of Bessel functions of order ±1/3. Only the function Ai is
square-integrable on [0,∞), while Bi(z) diverges as z → ∞. Figure 8.1
shows a plot of the function z → Ai(z) for real z.

The eigenvalues of the problem (8.20) with boundary conditions can thus
be determined by finding all those values of E for which Ai(z − E) has a
zero at z = 0. We have

Ai(−En) = 0 (8.23)

for an infinite ordered set of numbers En, n = 0, 1, 2, . . . , all satisfying
En > 0. There is no simple formula for the zeros of Airy functions, but the
zeros can be found numerically (e.g., with the help of Mathematica). The
results are given in the box below.
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Figure 8.2. The normalized eigenfunctions of the bouncing
ball problem and the corresponding position probability den-
sities.

Bouncing ball:
The Schrödinger operator H given by Eq. (8.21) with Dirichlet boundary
condition at z = 0 has a basis of eigenfunctions ψn in the Hilbert space
L2([0,∞)) which are shifted Airy functions. We have

ψn(z) = cnAi(z − En), (8.24)

where cn are suitable normalization constants (see Fig. 8.2). The positive
real numbers En have to be determined from the condition Ai(−En) =
0. The first zeros of the Airy function Ai thus determine the energy
eigenvalues as

E0 = 2.338108, E5 = 9.022651,

E1 = 4.087949, E6 = 10.04017,

E2 = 5.520560, E7 = 11.00852,

E3 = 6.786708, E8 = 11.93602,

E4 = 7.944134, E9 = 12.82878.

It is clear that the solutions of the time-dependent Schrödinger equation
can be obtained as linear combinations of the eigenfunctions,

ψ(z, t) =
∑

an ψn(z) e−iEnt, (8.25)
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where the coefficients an have to be determined from the expansion of the
initial function ψ(z, 0) = ψ0(z) into the basis of eigenfunctions, that is,

an = 〈ψn, ψ0〉 = cn

∫ ∞

0
Ai(z − En)ψ0(z) dz. (8.26)

Here the constants cn have to be determined such that
∫ ∞
0 |ψn(z)|2 dz = 1.

Because there is no simple relation between different energies, superpositions
of two or more eigenfunctions will not describe a periodic motion. (The time
dependence will only be quasi-periodic).

Exercise 8.4. (See Exercise 1.10.) Let ψ1 and ψ2 be two eigenstates
of a Hamiltonian H, belonging to eigenvalues E1 and E2, respectively. The
superposition aψ1 + bψ2 has a periodic time dependence if and only if the
eigenvalues are commensurable, that is,

E1

E2
=

n

m
for some integers n and m. (8.27)

Exercise 8.5. The position probability density for a superposition of two
eigenstates is always periodic in time with period T = π/|E2 − E1|.

Exercise 8.6. Consider again the superposition aψ1 +bψ2 of two eigen-
states with respective energies, E1 and E2. By adding a suitable constant
to the potential (gauge transformation) it is always possible to make this
superposition periodic in time.

Exercise 8.7. Find the eigenvalues and eigenfunctions of the operator

H = −1
2

d2

dz2
+ g z, (for some g ∈ R). (8.28)

Use a suitable scale transformation of the Schrödinger equation (8.20).

CD 6.5 and 6.6 show oscillating states of the bouncing ball problem,
which consist of superpositions of two eigenstates. Hence there is
a suitable gauge transformation that makes the time evolution pe-
riodic. Only CD 6.6.2 shows a nonperiodic superposition of three
eigenstates.

CD 6.7 shows the motion of wave packets that are initially Gaussian.
Figure 8.3 shows the expectation value of the position as a function
of time for the wave packet in CD 6.7.1 and 6.7.2. This illustrates
well that the motion is nonperiodic.
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Figure 8.3. The mean position for an initially Gaussian
wave packet in a linear potential with a Dirichlet boundary
condition at z = 0. When the oscillation is large, the wave
packet gets well localized near the classical turning points.
When the average position oscillates with a small amplitude,
the wave packet is distributed over the classically allowed re-
gion.

8.3. Magnetic Fields in Two Dimensions

Here we consider a particle in the presence of a magnetic field with con-
stant direction. This allows the reduction of the Schrödinger equation to an
equation in two spatial dimensions.

If the magnetic field strength (B(x) has a direction independent of x ∈ R3,
we choose the coordinate system in such a way that the x3-axis points in the
direction of the magnetic field, that is,

(B(x) = (0, 0, B(x)). (8.29)

The condition (see Eq. (4.40))

0 = div (B =
∂B1

∂x1
+

∂B2

∂x2
+

∂B3

∂x3
=

∂B

∂x3
(8.30)

implies immediately that B(x) does not depend on x3. Thus, the situation is
in fact two-dimensional, that is, invariant with respect to translations along
the x3-axis.
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The quantum-mechanical formalism requires the introduction of a non-
unique vector potential (A. We write

(A(x) = (A1(x1, x2), A2(x1, x2), 0) (8.31)

and find for the function B

B(x1, x2) =
∂

∂x1
A2(x1, x2) −

∂

∂x2
A1(x1, x2). (8.32)

For this situation the Schrödinger equation reads as follows

i
d

dt
ψ(x, t) =

(1
2

p2
3 +

1
2

(

p1 −
q

c
A1

)2
+

1
2

(

p2 −
q

c
A2

)2
)

ψ(x, t). (8.33)

It can be simplified by writing ψ as a product

ψ(x, t) = φ(x1, x2, t) ξ(x3, t). (8.34)

Inserting this product into the Schrödinger equation, we find that ψ is a
solution if ξ solves the free equation with respect to the variable x3,

i
d

dt
ξ(x3, t) = −1

2
d2

dx2
3
ξ(x3, t), (8.35)

and if φ solves the two-dimensional Schrödinger equation in the x1x2-plane:

i
d

dt
φ(x, t) =

1
2

(

−i∇− q

c
(A(x)

)2
φ(x, t), x = (x1, x2) ∈ R

2. (8.36)

(Here we switched to a two-dimensional notation: ∇ = (∂1, ∂2) is the two-
dimensional gradient and (A = (A1, A2)).

Magnetic field in two dimensions:
In two dimensions, the magnetic field strength B is a scalar function that
can be interpreted as the third component of a vector (0, 0, B). It can
be obtained from a vector potential (A = (A1, A2),

B(x) =
∂

∂x1
A2(x) − ∂

∂x2
A1(x), x = (x1, x2) ∈ R

2. (8.37)

The Schrödinger equation has the usual form,

i
d

dt
φ =

1
2

(

p − q

c
(A
)2
φ, p = −i∇ = −i (

∂

∂x1
,

∂

∂x2
). (8.38)

For the vector potential describing a magnetic field in two dimensions,
we may choose the expression

(A(x1, x2) = (−x2, x1)
∫ 1

0
s B(xs) ds. (8.39)
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This is the Poincaré gauge in two dimensions; see Eq. (4.51). It has the
property

(A(x) · x = 0. (8.40)

Usually, the magnetic vector potential is nonzero even in regions where the
magnetic field strength B(x) vanishes. Assume that the two-dimensional
magnetic field B(x) is nonzero only in some finite (bounded) region and
that it has a nonvanishing flux,

∫

B(x) d2x -= 0. (8.41)

From Stoke’s law we obtain
∮

(A(x) · d(s =
∫

curl (A(x) d2x =
∫

B(x) d2x, (8.42)

where the circulation is taken along a large circle outside the support of B.
Hence we see that the vector potential (A(x) cannot vanish everywhere on
the circle, no matter which gauge we choose. The vector potential keeps
influencing the wave function even in regions which are far away from the
support of B.

The preceding remark is best illustrated by the Aharonov–Bohm
effect. CD 6.20 shows the scattering of a wave packet at an infinitely
long solenoid. The magnetic field is confined to the interior of the
solenoid, which is modeled by a circular Dirichlet barrier. The vector
potential is nonzero outside the solenoid and produces interference
effects that depend on the flux of the magnetic field through the
solenoid. See also Color Plate 17. A more detailed explanation can
be found on the CD-ROM.

8.4. Constant Magnetic Field

8.4.1. The Schrödinger equation

We assume that the magnetic field is constant. The problem may be reduced
to two dimensions as described in the previous section. The field strength
of a constant field in two dimensions is given by a scalar constant B ∈ R,

B(x) = B, for all x = (x1, x2) ∈ R
2. (8.43)

For the vector potential we make the following choice (Poincaré gauge):

(A(x) =
B

2
(−x2, x1). (8.44)

In this case the Poincaré gauge coincides with the Coulomb gauge (Sec-
tion 4.7.3).
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CD 6.11 shows several views of the magnetic vector potential for the
constant field. The vectors (A(x) are always orthogonal to x, that is,
x · (A(x) = 0. Usually, we visualize a vector field in two dimensions
by arrows, although one could use the color map too.

The Schrödinger equation, which we want to discuss now, is

i
d

dt
ψ(x, t) =

(1
2

(

p1 +
B

2
x2

)2
+

1
2

(

p2 −
B

2
x1

)2
)

ψ(x, t). (8.45)

In order to simplify the notation, we have redefined q
cB → B.

Exercise 8.8. Show that the vector potential (A2(x) = (−Bx2, 0) also
describes the constant magnetic field (8.43). Find the gauge transformation
linking (A and (A2, that is, find a scalar function g such that

(A2(x) = (A(x) + ∇g(x). (8.46)

8.4.2. The velocity operators

Looking at the Schrödinger equation above it seems reasonable to introduce
the abbreviations

v1 := p1 +
B

2
x2, v2 := p2 −

B

2
x1. (8.47)

With this notation, the Hamiltonian of a particle in a constant magnetic
field in two dimensions becomes

H = 1
2

(

v2
1 + v2

2

)

. (8.48)

The operators vi are components of a velocity operator. This can be seen as
follows. If we define, as usual, the time-dependent position operator

x(t) = eiHt x e−iHt, (8.49)

we find

d

dt
xi(t) = eiHt i [H, xi] e−iHt = vi(t). (8.50)
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Here the commutators of the position operators xi with H can be calculated,
for example, as follows

i [H, x1] =
i
2

[v2
1, x1] (because [v2

2, x1] = 0)

=
i
2

(

v1 [v1, x1] + [v1, x1] v1
)

=
i
2

(

v1 [p1, x1] + [p1, x1] v1
)

=
i
2

(

v1 (−i) + (−i) v1
)

= v1.

A very peculiar feature of the velocity operator in the presence of a magnetic
field is the noncommutativity of its components. We find

[v1, v2] =
[

p1 +
B

2
x2 , p2 −

B

2
x1

]

= −B

2
[p1, x1] +

B

2
[x2, p2] = iB.

(8.51)

That means that the operators v1 and v2 are canonically conjugate variables.
We are going to explore the consequences of this observation in the following
sections.

Exercise 8.9. For a particle in an arbitrary magnetic field, the velocity
operator is given by

d

dt
x(t) = v(t) = p(t) − q

c
(A(x). (8.52)

In a magnetic field we cannot rely on our intuition about the time evolution
of wave packets (Section 3.5). The local wavelength in a wave packet gives
information about the canonical momentum which—in a magnetic field—
is usually different from the velocity. Therefore, looking at the phase tells
little about the dynamic properties of the state. In particular, it is not very
instructive to prepare a wave packet with a certain average momentum (as,
e.g., in Section 3.3.2) because the resulting motion would depend on the
chosen gauge. For example, if we put the Gaussian initial function

ψ(x) = N exp
(

−(x − x0)2

2

)

(8.53)

(which has average momentum 0) in a region where the magnetic vector
potential is (A(x) ≈ (A0, then the wave packet will start moving with the
approximate initial velocity − q

c
(A0. For an inhomogeneous vector potential
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the task of preparing a wave packet with a certain average initial velocity is
rather nontrivial.

8.5. Energy Spectrum in a Constant Magnetic
Field

There is a complete formal analogy between the Hamiltonian operator

H =
1
2

(v2
1 + v2

2), where [v1, v2] = iB, (8.54)

and the Hamiltonian of the one-dimensional harmonic oscillator

Hosc =
1
2

(p2 + x2), where [x, p] = i. (8.55)

Therefore, it is no surprise that the operators H and Hosc have essentially
the same spectrum of eigenvalues.

Energy eigenvalues in a constant magnetic field:
The two-dimensional Hamiltonian with a constant magnetic field

H =
1
2

(

p1 +
B

2
x2

)2
+

1
2

(

p2 −
B

2
x1

)2
(8.56)

has the eigenvalues

En = |B|
(

n +
1
2

)

, n = 0, 1, 2, 3, . . . . (8.57)

A normalized energy eigenstate with the lowest possible energy E0 =
|B|/2 is given by

φ0(x) =
( |B|

2π

)1/2
exp

(

−|B|
4

x2
)

. (8.58)

Proof. We define the operator

A =

√

1
2 |B| (v1 + i v2), (8.59)

and calculate the product

A†A =
1

2 |B| (v1 − i v2) (v1 + i v2)

=
1

2 |B|
(

v2
1 + v2

2 + i (v1 v2 − v2 v1)
)

=
1

2 |B| (v2
1 + v2

2 − B).
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and similarly,

AA† =
1

2 |B| (v2
1 + v2

2 + B).

Assuming B > 0, the Hamiltonian can be written as

H = B
(

A†A + 1
2

)

. (8.60)

Now the same argument that has been carried through for the harmonic
oscillator in Section 7.7.1 allows us to conclude that the operator H has the
eigenvalues

En = B
(

n + 1
2

)

, n = 0, 1, 2, 3, . . . , (8.61)

provided that the equation

Aφ0 = 0 (8.62)

has a nontrivial solution φ0. This equation is a first-order differential equa-
tion,

(

−i
∂

∂x1
+

B

2
x2 +

∂

∂x2
− i

B

2
x1

)

φ0(x) = 0. (8.63)

Because this equation consists of a sum of terms involving only x1 and of
terms involving only x2, we may use a product ansatz. Inserting

φ0(x) = ψ1(x1)ψ2(x2)

we obtain for the factors the equations

−i
( ∂

∂x1
+

B

2
x1

)

ψ1(x1) = 0,
( ∂

∂x2
+

B

2
x2

)

ψ2(x2) = 0.

These equations are identical and may be compared to the equation (7.116)
for the ground state of the harmonic oscillator. Hence we find, with ψ1(x) =
ψ2(x) = exp(−Bx2/4), that

φ0(x) = exp
(

−B

4
(x2

1 + x2
2)

)

(8.64)

is a solution of Aφ0 = 0 and hence of Hφ0 = (B/2)φ0. After normalization
this gives Eq. (8.58) for B > 0. For B < 0 an analogous reasoning can be
carried through with A and A† interchanged.

The harmonic oscillator and the constant magnetic field look very sim-
ilar on a formal level. The components of the velocity in a magnetic field
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correspond to the position and momentum of the harmonic oscillator.

magnetic field ←→ harmonic oscillator
in two dimensions in one dimension

v1 ←→ x
v2 ←→ p

Nevertheless, the two systems are quite different from a physical point of
view. The particle in a constant magnetic field has a symmetry under trans-
lations, which the harmonic oscillator in phase space does not. The harmonic
oscillator force distinguishes the coordinate origin as an equilibrium point,
but in the homogeneous magnetic field all points are the same. Although the
origin x = (0, 0) appears to be distinguished by the property (A(x) = (0, 0),
this is only due to our particular choice of (A and does not correspond to a
physical property of the system. A gauge transformation can shift the zero
of (A to any other place in R2. Because a gauge transformation leads to a
physically equivalent description, the origin is not different from any other
point.

Exercise 8.10. Find a gauge transformation that transforms our vector
potential (A = (B/2)(−x2, x1) into

(A′(x1, x2) =
B

2
(−x2 + a2, x1 − a1). (8.65)

The translational symmetry will bring us to the conclusion that all eigenval-
ues En in the constant magnetic field are infinitely degenerate.

8.6. Translational Symmetry in a Magnetic Field

8.6.1. Classical motion

A short look at the classical motion in the presence of a constant magnetic
field will be useful for comparison with the quantum-mechanical time evo-
lution. The classical Hamiltonian equations

ẋ1(t) =
∂

∂p1
H(x,p) = p1(t) +

B

2
x2(t)

ẋ2(t) =
∂

∂p2
H(x,p) = p2(t) −

B

2
x1(t)

ṗ1(t) = − ∂

∂x1
H(x,p) =

B

2

(

p2(t) −
B

2
x1

)

ṗ2(t) = − ∂

∂x2
H(x,p) = −B

2

(

p1(t) +
B

2
x2

)

(8.66)
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can be rewritten as
ẍ1(t) = B ẋ2(t),

ẍ2(t) = −B ẋ1(t),
(8.67)

which is the two-dimensional form of the Lorentz force equation ẍ = ẋ× (B.
In this form the equations of motion are manifestly invariant with respect
to translations.

The absolute value of the velocity is constant. This can be seen from

H(x,p) = 1
2(ẋ2

1 + ẋ2
2) (8.68)

and the fact that the Hamiltonian function is a constant of motion (con-
servation of the energy). The Lorentz force and hence the acceleration is
always orthogonal to the velocity and for a constant field it is independent
of the position. From this we infer that the classical particle performs a
circular motion with constant angular velocity. Indeed, you can verify that
the expressions

ẋ1(t) = v1 cos Bt + v2 sinBt

ẋ2(t) = v2 cos Bt − v1 sinBt
(8.69)

are solutions of Eq. (8.67) with initial velocity

(ẋ1(0), ẋ2(0)) = (v1, v2). (8.70)

For the position we obtain

x1(t) = x1 −
1
B

ẋ2(t),

x2(t) = x2 +
1
B

ẋ1(t).
(8.71)

The classical orbit t → (x1(t), x2(t)) of the particle is thus a circle with
center (x1, x2) and radius

R =
|v|
|B| =

√

v2
1 + v2

2

|B| . (8.72)

If we look at this circle from above, the motion of the particle will be counter-
clockwise for B < 0 (i.e., if we look in the direction of (B = (0, 0, B)), and
clockwise for B > 0.

Given the position and the velocity at any time, the center of the circle
(the classical center of motion) can be obtained from

(x1, x2) =
(

x1(t) +
1
B

ẋ2(t), x2(t) −
1
B

ẋ1(t)
)

. (8.73)

These quantities are therefore constants of motion.
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Figure 8.4. Classical motion of a particle in a constant mag-
netic field B = −1. The gray arrows indicate the vector po-
tential. The dashed circle is the classical path. The relation
between canonical momentum, velocity and vector potential
is p = v + (A(x).

CD 6.13 shows the classical motion in the field B = −1 (see also
Fig. 8.4). The particle moves counterclockwise on a circle. The ra-
dius of the circle depends on the absolute value of the initial velocity.
The animations also visualize the momentum, the velocity, and the
vector potential at the position of the particle.

8.6.2. Symmetry under translations

The quantum-mechanical operators that correspond to the center of the
classical orbit are

x1 = x1 +
1
B

v2 =
1
2

x1 +
1
B

p2, (8.74)

x2 = x2 −
1
B

v1 =
1
2

x2 −
1
B

p1. (8.75)

(As usual, we denote the quantum-mechanical operators by the same symbols
as the classical quantities). The operators xi commute with the operators
vj and hence with H. For example,

[v1, x1] = [p1 + B
2 x2,

1
2 x1 + 1

B p2] = 1
2 [p1, x1] + 1

2 [x2, p2] = 0, (8.76)
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and similarly,

[vi, xj ] = 0, [H, xj ] = 0, for i, j = 1, 2. (8.77)

Hence the observables xj are conserved quantities (constants of motion) also
under the quantum-mechanical time evolution

d

dt
xj(t) = 0, for j = 1, 2. (8.78)

Exercise 8.11. Verify that the operators x1 and x2 satisfy canonical
commutation relations

[x1, x2] = −i
1
B

. (8.79)

The canonical commutation relations imply that the unitary transformations
generated by x1 cause shifts in the values of the observable x2 (and vice
versa). What is the meaning of these transformations? In order to answer
this question, let us calculate the action of these transformations on any
state ψ(x1, x2). Because

exp(−iax1) = exp(−i a
2 x1 − i a

B p2) = exp(−i a
2 x1) exp(−i a

B p2) (8.80)

we find

exp(−iax1)ψ(x1, x2) = exp(−i a
2 x1) exp(−i a

B p2)ψ(x1, x2) (8.81)
= exp(−i a

2 x1)ψ(x1, x2 − a
B ). (8.82)

Hence the transformation generated by x1 is a shift in the variable x2 to-
gether with a multiplication by a phase factor. This phase factor changes
the momentum p1 of the particle, but not the state of motion. In particular,
because x1 commutes with v1, the value of the velocity in x1-direction is not
changed by this transformation.

Similarly, the transformation exp(−ibx2) is a translation by −b/2 in the
direction of x1:

exp(−ibx2)ψ(x1, x2) = exp(−i b
2 x2)ψ(x1 + b

B , x2). (8.83)

CD 6.14 presents interactive pictures and movies showing the trans-
lations generated by the operators x1 and x2. We show that vertical
and horizontal translations do not commute (because of the Weyl
relations). The animation of a translated ground state (8.58) shows
that this type of translations changes the momentum of the particle
(while it does not change the energy).
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Exercise 8.12. Show that the gauge transformation which shifts the vec-
tor potential to the point (0, a

B ) cancels the phase factor exp(−i a
2 x1) caused

by the translation exp(−iax1) (see Exercise 8.10).

Exercise 8.13. The unitary transformation

ψ −→ φ = exp(−iax1)ψ (8.84)

changes the expectation value of x2. Assuming ‖ψ‖ = 1, show that

〈x2〉φ = 〈x2〉ψ +
a

B
. (8.85)

Translations in a constant magnetic field:
The operator x = (x1, x2) defined in Eq. (8.74) generates translations in
the following sense. For arbitrary w = (w1, w2) ∈ R2 define the unitary
operator

exp(−iB x × w) = exp
(

−iB (x1w2 − x2w1)
)

. (8.86)
This operator shifts a wave packet by w in position space and at the
same time adds the vector (A(w) = B

2 (−w2, w1) to the momentum:

exp(−iB x × w)ψ(x) = exp(−i B
2 x × w)ψ(x − w)

= exp
(

−ix · (A(w)
)

ψ(x − w).
(8.87)

Proof. With the definition of x, the operator x×w can be written as

x × w =
1
2

x × w +
1
B

p · w, (8.88)

and the two summands commute,

[x × w,p · w] = 0. (8.89)

Hence we find

exp(−iB x × w)ψ(x) = exp(−i B
2 x × w) exp(−ip · w) (8.90)

from which the result Eq. (8.87) follows immediately.

The translation described above changes the wave packet, but it does not
change the velocity (because the generator x commutes with the velocity
operators vi). A pure shift in position space (generated by the operator
p = −i∇), whenever it is performed in the presence of a magnetic vector
potential, does change the dynamic state of the particle. Shifting the particle
from x0 to a new position x0 + w changes the velocity from p − (A(x0) to
p − (A(x0 + w). For the constant magnetic field we have (A(x0 + w) =
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(A(x0) + (A(w). On the other hand, the translation generated by x performs
a simultaneous shift by (A(w) in momentum space. This cancels precisely
the change of the velocity resulting from the pure shift in position space, so
that the velocity is not changed at all.

8.6.3. Infinite degeneracy of eigenvalues

The particle in a constant magnetic field is a system that is invariant under
translations. In the quantum-mechanical formalism, which involves a vector
potential that is not translationally invariant, this is only an invariance up to
a gauge transformation. Nevertheless, all physically measurable quantities
do not depend on the choice of the gauge. Hence, in particular, the energy
of a state is the same as that of a shifted state. Let ψ be an eigenstate of H,

H ψ = En ψ. (8.91)

Because the generators of translations x1 and x2 commute with H, we find
that

H e−iaxj ψ = e−iaxj H ψ = En e−iaxj ψ. (8.92)

Hence the shifted eigenstate is again an eigenstate with the same energy.
A Gaussian function (the ground state) and all its translations span an
infinite-dimensional subspace of H. Therefore, the ground state and hence
every eigenvalue has infinite multiplicity.

8.6.4. Translation preserving the center of motion

The velocity operators v1 and v2 also generate unitary transformations:

e−iav1 ψ(x1, x2) = e−iap1 e−iaBx2/2 ψ(x1, x2)

= e−iaBx2/2 ψ(x1 − a, x2).
(8.93)

We have used that the summands in v1 = p1 + Bx2/2 commute, and hence
the exponential function e−iav1 can be factorized. A similar calculation gives

e−iav2 ψ(x1, x2) = eiaBx1/2 ψ(x1, x2 − a). (8.94)

Hence the operators vi generate translations in the direction of the coordinate
xi. But because the operators vi do not commute with the Hamiltonian H,
this type of translation changes the dynamic state of the particle. The
operator v1 is canonically conjugate to v2 and therefore a transformation
generated by v1 changes the values of v2. This is done in such a way that
the classical centers xi remain unchanged (because vi commutes with xj).

Exercise 8.14. Combine the two types of translations (with generators
xj and vk, respectively) to obtain a Gaussian state with initial position x0

and velocity v0 from the centered Gaussian function exp(−a x2/2).
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CD 6.15 lets you experiment with the unitary translations generated
by the velocity operators v1 and v2. The noncommutativity of the
components of the velocity, Eq. (8.51), implies Weyl relations for the
unitary groups.

8.7. Time Evolution in a Constant Magnetic Field

8.7.1. Time-dependence of the quantum-mechanical operators

The solutions Eq. (8.71),

x1(t) = x1 +
1
B

v1 sinBt − 1
B

v2 cos Bt, (8.95)

x2(t) = x2 +
1
B

v1 cos Bt +
1
B

v2 sinBt, (8.96)

with xj and vj interpreted as quantum-mechanical observables are also so-
lutions of the quantum-mechanical evolution equation

d

dt
xj(t) = i [H, xj(t)] (8.97)

for the observables

xj(t) = eiHt xj e−iHt. (8.98)

This can easily be verified by calculating the time-derivative and comparing
it with the commutator. For example,

d

dt
x1(t) = −v1 cos Bt − v2 sinBt (8.99)

is the time-derivative of Eq (8.95). For the commutator we have

i [H, x1(t)] = − 1
B

i [H, v1] sin Bt +
1
B

i [H, v2] cos Bt. (8.100)

The equality of (8.99) and (8.100) follows immediately from the relations

i [H, v1] = B v2, i [H, v2] = −B v1. (8.101)

The quantum-mechanical time evolution of the velocity observables v1 and
v2 is given by

v1(t) = v1 cos Bt + v2 sinBt,

v2(t) = v2 cos Bt − v1 sinBt,
(8.102)

in agreement with the classical solution Eq. (8.69) and in complete analogy
with the corresponding result Eq. (7.72) for x(t) and p(t) in the field of a
harmonic oscillator.
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8.7.2. Motion on circles

As an example, let us calculate the time evolution of a state that is shifted by
exp(−iav1). This group of operators generates translations (in x2-direction)
leaving the center of motion (x1, x2) invariant. We consider an arbitrary
initial state ψ(x1, x2) and write, as usual,

ψ(x1, x2, t) = e−iHt ψ(x1, x2).

For the time evolution of the shifted initial state we obtain

e−iHt e−iav1 ψ(x1, x2) = e−iHt e−iav1 eiHt e−iHt ψ(x1, x2)

= e−iav1(−t) e−iHt ψ(x1, x2)

= e−ia(cos Bt)v1+ia(sin Bt)v2 ψ(x1, x2, t). (8.103)

Now we use the Weyl relation for the canonically conjugate operators v1 and
v2:

eia1v1+ia2v2 = eia1a2B/2 eia1v1 eia2v2 . (8.104)

Using this formula and the temporary abbreviation c = a cos Bt and s =
a sinBt in Eq. (8.103) gives

e−icv1+isv2 ψ(x1, x2, t) = e−istB/2 e−icv1 eisv2 ψ(x1, x2, t)

= e−istB/2 e−icBx2/2 e−icp1 e−isBx1/2 eisp2 ψ(x1, x2, t)

= e−icBx2/2 e−isBx1/2 e−icp1 eisp2 ψ(x1, x2, t)

= e−i(sBx1+cBx2)/2 ψ(x1 − c, x2 + s, t)

Example 8.7.1. Let the initial state ψ(x) be the centered ground state

ψ(x, t) = e−iBt/2 exp
(

−B

4
x2

)

. (8.105)

Then φ(x) is a Gaussian function centered at x0 = (a, 0). Let us con-
sider the corresponding classical situation: A particle that is initially at
rest at the origin gets shifted toward x0 in such a way that the center
of the orbit remains the same. Hence the shifted particle must have the
initial velocity v = (0,−Ba) and hence it performs the circular motion
x(t) = (a cos Bt,−a sinBt) = xt with velocity ẋ(t) = −Ba (sin Bt, cos Bt).
According to the classical equations of motion, the canonical momentum of
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the particle is

p(t) = ẋ(t) + (A(x(t)) =
B

2
(−x2, x1) +

1
2

ẋ(t)

=
1
2

ẋ(t) = −a
B

2
(sinBt, cos Bt)

= pt.

The quantum-mechanical solution describes a very similar behavior,

φ(x, t) = e−iBt/2 exp
(

ipt · x − B

4
(x − xt)2

)

, (8.106)

that is, a Gaussian function centered at xt with average momentum pt.

Let us collect our results in the following box:

Time evolution of a shifted initial state:
Let

ψ(x, t) = exp(−iHt)ψ(x) (8.107)
be the time evolution of an arbitrary initial state ψ in the constant
magnetic field in two dimensions. Then the time evolution of the shifted
initial state

φ(x) = e−iav1 ψ(x) = e−iaBx2/2 ψ(x1 − a, x2) (8.108)
is given by

φ(x, t) = exp(ipt · x)ψ(x − xt, t) (8.109)
where

xt = a(cos Bt,− sinBt) (8.110)

pt = −a
B

2
(sinBt, cos Bt). (8.111)

With the translation operators exp(−iaxi) and exp(−iavi) we can pre-
pare an initial state with an arbitrary velocity at an arbitrary position if we
start with a centered initial state with average velocity 0; see Exercise 8.14.

CD 6.16 shows the motion of various Gaussian initial states. The
states are shifted ground states and move (like the coherent states
of the harmonic oscillator) without changing the shape of their po-
sition probability density. The centers of the wave packets perform
a classical motion as indicated in the movies.
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8.7.3. Rotational symmetry

Consider again the Hamiltonian for a constant magnetic field in the Poincaré
gauge:

H =
1
2

(

p1 +
B

2
x2

)2
+

1
2

(

p2 −
B

2
x1

)2
. (8.112)

By expanding the squares we arrive at the following expression

H =
1
2

(

p2
1 + p2

2

)

+
1
2

(B

2

)2
(

x2
1 + x2

2

)

− B

2
(

x1p2 − x2p1
)

. (8.113)

In the last expression we recognize the angular momentum operator (Eq. (4.24)),

L = x1p2 − x2p1. (8.114)

The other summands represent the Hamiltonian of a two-dimensional har-
monic oscillator with oscillator frequency ω = B/2,

Hosc(ω) = 1
2

(

p2 + ω2 x2
)

. (8.115)

Hence the Hamiltonian operator in a constant magnetic field in two-dimensions
can be written as

H = Hosc

(B

2

)

− B

2
L. (8.116)

We also note that the Hamiltonian of the two-dimensional harmonic oscilla-
tor commutes with L,

[Hosc, L] = 0, and hence [H, L] = 0. (8.117)

This is related to the fact that the Hamiltonian Eq. (8.113) is spherically
symmetric, as will be discussed in the next chapter. As a consequence, the
canonical angular momentum L is a constant of motion.

For the vector potential (A(x) = B
2 (−x2, x1) the relation

p · (A(x) =
B

2
L (8.118)

shows that p · (A is a conserved quantity. For example, for a particle which
at t = 0 is located at the origin x = 0, the canonical angular momentum L is
zero and hence the canonical momentum is always orthogonal to the vector
potential.

8.7.4. Unitary time evolution

The Hamiltonian for a constant magnetic field in the Poincaré gauge is the
sum of two commuting operators Hosc and L. Hence the time evolution op-
erator exp(−iHt) can be written as a product of a rotation with a harmonic
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oscillator evolution,

e−iHt = ei(Bt/2)L e−iHosc(B/2)t. (8.119)

This allows us to determine the time evolution in a magnetic field simply by
calculating the time evolution in a harmonic oscillator potential and then
performing a rotation.

Exercise 8.15. Can you hit the origin with a wave packet? Prepare a
wave packet at some given point x0 ∈ R2 in such a way that the center
of the wave packet (the mean position) at some later time hits the origin
x = (0, 0). (Hint: Consider a Gaussian wave packet centered at x0 with
average momentum p = 0 in the Poincaré gauge.)

Ψ Because the motion in a constant magnetic field is an oscillation times a
rotation, it is easy to determine the integral kernel of the time evolution

from the Mehler kernel of the harmonic oscillator.

Propagator for the constant magnetic field:

Choosing the Poincaré gauge (A(x) = (B/2) (−x2, x1), the time evolution
in the constant magnetic field B in two dimensions can be written as an
integral operator

e−iHt ψ(x) =
∫

R2
K(x,y, t)ψ(y) d2y, (8.120)

where the integral kernel is given by

K(x,y, t) =
B

4πi sin(Bt/2)
exp

(

i(x − y)2
B

4
cot

Bt

2
− i

B

2
x × y

)

.

(8.121)

Proof. We start with the evolution kernel (propagator) of the one-
dimensional harmonic oscillator with oscillator frequency ω = B/2. This is
Mehler’s kernel

Kosc(x, y, t) =

√

B

2
1

√

2πi sin(Bt/2)

× exp
(

i(x2 + y2)
B

4
cot

Bt

2
− i

B

2
xy

sin(Bt/2)

)

.

(We applied a scaling transformation to Eq. (7.149) in order to take account
of the oscillator frequency B/2). We obtain the kernel of the two-dimensional
harmonic oscillator by forming a product of two Mehler kernels because the
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oscillator Hamiltonian in two dimensions is just the sum of one-dimensional
operators:

K2D
osc(x,y, t) = Kosc(x1, y1, t) Kosc(x2, y2, t)

=
B

4πi sin(Bt/2)
exp

(

i(x2 + y2)
B

4
cot

Bt

2
− i

B

2
x · y

sin(Bt/2)

)

.
(8.122)

The propagator in a magnetic field can be obtained from this by applying
the rotation corresponding to the operator exp(iBtL/2). This is a rotation
through an angle Bt/2 around the origin in R2 which leads to replacement

x1 −→ x1 cos
Bt

2
− x2 sin

Bt

2
,

x2 −→ x1 sin
Bt

2
+ x2 cos

Bt

2
,

in the argument of wave functions. In the argument of the exponential
function above the rotation leaves x2 invariant, while

x · y
sin(Bt/2)

−→ x · y cot
Bt

2
− x × y.

Substituting this into Eq. (8.122) finally gives the result Eq. (8.121).

With the results of this section we are able to calculate the motion
of arbitrary Gaussian wave packets in the constant magnetic field.
CD 6.17 shows the motion of several “squeezed” states. While the
centers of the wave packets perform the well-known circular motion,
the shape of the position probability density oscillates between a
sharp and a flat distribution. Like every motion in the constant
magnetic field, the time evolution is periodic in time.

CD 6.18 shows the time evolution of eigenstates of the harmonic
oscillator in a magnetic field. If the oscillator eigenstate is not ro-
tationally symmetric, then the additional rotation generated by the
term −BL/2 in the Hamiltonian becomes clearly visible. CD 6.19
does a similar visualization for oscillating states. In all cases the time
evolution is an oscillator motion (with oscillator frequency B/2) and
a simultaneous rotation through an angle Bt/2.

8.8. Systems with Rotational Symmetry in Two
Dimensions

8.8.1. Rotations

We consider a quantum-mechanical system that is described by wave func-
tions in the Hilbert space H = L2(R2). The rotations are generated by the
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angular momentum operator

L = x × p = x1 p2 − x2 p1. (8.123)

A rotation through an angle ϕ around the coordinate origin in two dimen-
sions is described by the rotation matrix

R(ϕ) =
(

cosϕ − sinϕ
sinϕ cosϕ

)

. (8.124)

This matrix rotates vectors in the positive (counterclockwise) direction. The
unitary group exp(−iLϕ) describes a rotation of a function ψ ∈ H as follows

e−iLϕψ(x) = ψ
(

R(−ϕ)x
)

, with x =
(

x1

x2

)

. (8.125)

Notice that in order to rotate a function counter-clockwise one has to perform
a clockwise rotation of its argument.

Ψ The formula (8.125) can be easily verified. First one notes that

U(ϕ) : ψ(x) −→ ψ
(

R(−ϕ)x
)

(8.126)

defines a unitary group. Then one calculates its generator by differentiating
with respect to ϕ. Using the chain rule one obtains

i
d

dϕ
ψ

(

R(−ϕ)x
)

∣

∣

∣

∣

ϕ=0
= i∇ψ

(

R(−ϕ)x
)

· d

dϕ
R(−ϕ)x

∣

∣

∣

∣

ϕ=0

=i∇ψ(x) ·
(

x2

−x1

)

= − i
(

x1
∂

∂x2
− x2

∂

∂x1

)

ψ(x)

=Lψ(x).

(8.127)

This shows that L is indeed the generator of the unitary group U(ϕ), that
is, U(ϕ) = exp(−iLϕ).

A physical system with Hamiltonian H is said to be rotationally invariant
or spherically symmetric if

eiLϕ H e−iLϕ = H. (8.128)

This implies in particular that H and L commute,

[H , L] = H L − L H = 0, (8.129)

and that the angular momentum is a conserved quantity (see Section 6.11),

L(t) = eiHt L e−iHt = L. (8.130)
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Exercise 8.16. Verify that the free Hamiltonian

H0 = − ∂2

∂x2
1
− ∂2

∂x2
2

is rotationally invariant.

Exercise 8.17. The Hamiltonian H = H0 + V with a spherically sym-
metric potential V (x) = V (r), r =

√

x2
1 + x2

2, is rotationally invariant.
The same is true for the Hamiltonian with a constant magnetic field in the
Poincaré gauge.

8.8.2. Polar coordinates

In order to treat spherically symmetric situations it is useful to introduce
polar coordinates. Polar coordinates (r, ϕ) specify a distance r from the
coordinate origin and an angle φ with a fixed direction (say, the x1-axis
of a Cartesian coordinate system). Hence the relation between Cartesian
coordinates (x1, x2) and polar coordinates (r, ϕ) is given by the following set
of equations:

x1(r, ϕ) = r cosϕ, r(x1, x2) = |x| =
√

x2
1 + x2

2,

x2(r, ϕ) = r sinϕ, ϕ(x1, x2) = arctan(x1, x2),
(8.131)

Here the arctan as a function of two arguments is defined by:

arctan(x1, x2) = arctan
(x2

x1

)

+















π, for x1 < 0, x2 ≥ 0,
−π, for x1 < 0, x2 < 0,
0, for x1 > 0.

(8.132)

Its values are always in the interval (−π, π]. This definition can be extended
by continuity to x1 = 0, as long as x2 -= 0. There is a discontinuity along the
negative x1-axis (the half-line with x1 < 0, x2 = 0): The value jumps from
π to −π when the point (x1, x2)—coming from the upper half-plane (x2 >
0)—crosses the negative x1-axis. Thus, the angular coordinate on a circle
cannot be defined globally in a continuous way. At the coordinate origin, the
function arctan(x1, x2) (and hence the angular coordinate) remains totally
undefined. There is no consistent way to extend the above definition in order
to include that point.

Any function ψ(x1, x2) can be transformed to polar coordinates by set-
ting

φ(r, ϕ) = ψ
(

x1(r, ϕ), x2(r, ϕ)
)

. (8.133)
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Next we define the unit vectors in the direction of the polar coordinate lines

er = (cosϕ, sinϕ) =
x
r
,

eϕ = (− sinϕ, cosϕ) =
der

dϕ
.

(8.134)

With the help of these expressions we can write the action of the gradient
operator on functions φ(r, ϕ) in polar coordinates as

∇ = er
∂

∂r
+

1
r
eϕ

∂

∂ϕ
. (8.135)

From this we may compute the expression in polar coordinates for the an-
gular momentum operator and the Laplacian:

L = −irer ×∇ = −i
∂

∂φ
, (8.136)

∆ = ∇ · ∇ =
∂2

∂r2
+

1
r

∂

∂r
− 1

r2
L2. (8.137)

Hence we obtain the Schrödinger operator with a rotationally symmetric
potential

H = −1
2
∆ + V (r)

=
1
2

(

− ∂2

∂r2
− 1

r

∂

∂r

)

+ V (r) − 1
2

1
r2

∂2

∂φ2
. (8.138)

8.8.3. Eigenvalue problem in polar coordinates

We want to solve the eigenvalue equation

H φ(r, ϕ) = E φ(r, ϕ). (8.139)

Because H is a sum of a term that contains only radial derivatives and a
term that contains the angular derivative L = −i∂/∂ϕ, we may try a product
ansatz

φ(r, ϕ) = f(r)χ(ϕ), (8.140)

where χ is an eigenfunction of the angular momentum L, that is,

Lχ(ϕ) = 4χ(ϕ). (8.141)

This is a differential equation in the variable ϕ with the solution

χ(ϕ) = exp(i4ϕ) (8.142)

for any 4 ∈ C. But the wave function φ = fχ should of course be in the
domain of the angular momentum operator L, which is originally defined as
−ix×∇ on R2. In order to be differentiable, the wave function in particular
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has to be continuous. For the representation in polar coordinates this means
that the wave function should depend on ϕ in such a way that

φ(r, ϕ) = φ(r, ϕ + 2π). (8.143)

Hence χ must be periodic with period 2π, which is only the case if 4 is an
integer:

4 = 0,±1,±2,±3, . . . . (8.144)

Inserting (8.140) into the eigenvalue equation we obtain for the function f
the equation

1
2

(

−f ′′ − 1
r

f ′ +
42

r2
f
)

+ V (r) f = E f (8.145)

(where the prime denotes the derivative with respect to r). This equation is
called the stationary radial Schrödinger equation.

8.9. Spherical Harmonic Oscillator

We treat the spherical harmonic oscillator in polar coordinates in two dimen-
sions. This will also be an important step in the treatment of the constant
magnetic field.

CD 5.20 lets you play with the eigenstates of the harmonic oscillator,
which are simultaneously eigenstates of the angular momentum op-
erator. In this section we are going to derive an analytic expression
for these states.

The potential of the spherical oscillator is

V (x) =
ω2

2
(

x2
1 + x2

2

)

=
ω2

2
r2 ≡ V (r). (8.146)

The radial Schrödinger equation for this system is
1
2

(

−f ′′ − 1
r

f ′ +
42

r2
f + ω2 r2 f

)

= E f. (8.147)

The substitution

s = |ω| r2, g(s) = f(r), λ =
2
|ω| E (8.148)

converts this equation into

−4s g′′ − 4 g′ +
(42

s
+ s

)

g = λ g. (8.149)

Using the ansatz

g(s) = e−s/2 s|*|/2 u(s) (8.150)
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we obtain (after a boring little calculation) a new equation for u:

−s u′′ + (s − |4| − 1) u′ +
( |4| + 1

2
− λ

4

)

u = 0. (8.151)

This is precisely Kummer’s equation

−s u′′ + (s − b) u′ + a u = 0, (8.152)

which has the two linearly independent solutions,

u(s) = 1F1(a, b, s), and u(s) = U(a, b, s). (8.153)

The confluent hypergeometric function 1F1 satisfies

1F1(a, b, 0) = 1,
d

ds
1F1(a, b, s)

∣

∣

∣

s=0
=

a

b
, (8.154)

while the second solution behaves in leading order for small s like s1−b (for
b > 1), and like − ln s (for b = 1). Hence we obtain the following solution of
the radial Schrödinger equation,

f(r) = e−|ω| r2/2 r|*| 1F1

( |4| + 1
2

− E

2 |ω| , |4| + 1, |ω| r2
)

, (8.155)

and a second solution with U instead of 1F1. However, the second solution
behaves asymptotically for small r like r−|*| and is therefore not square-
integrable for 4 -= 0. This solution has to be excluded because we can only
accept solutions that can be normalized. For 4 = 0, the second solution
is square-integrable because it has only a logarithmic divergence at r = 0.
Nevertheless, it has to be excluded because it can be shown that the domain
of the Hamiltonian operator contains only bounded functions.

The hypergeometric function 1F1 diverges exponentially, as τ → ∞, un-
less a = −n with n = 0, 1, 2 . . . , where it is a polynomial of degree n in s. In
this case the exponential factor in (8.155) makes f(r) square-integrable at
infinity. Hence we can only obtain square-integrable solutions, if we assume

|4| + 1
2

− E

2 |ω| = −n, where n = 1, 2, 3, . . . , (8.156)

or

E ≡ En,* = |ω|(2n + |4| + 1). (8.157)

We collect our results in the following box:
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Spherical harmonic oscillator:
The spherical harmonic oscillator in two dimensions,

Hosc(ω) = 1
2

(

−∆+ ω2 r2
)

, ω ∈ R, (8.158)
has the eigenvalues

En,* = |ω|(2n + |4| + 1), (8.159)
with n = 0, 1, 2, . . . and 4 = 0,±1,±2, . . . .
The corresponding eigenfunctions are

ψn,*(r, ϕ) = fn,*(r) ei*ϕ,

fn,*(r) = Nn,* e−|ω| r2/2 r|*| 1F1(−n, |4| + 1, |ω| r2).
(8.160)

(Nn,* is an appropriate normalization constant.) The eigenfunctions ψn,*

of the Hamiltonian are simultaneously eigenfunctions of the angular mo-
mentum operator L belonging to the eigenvalue 4.

Exercise 8.18. Compare the eigenvalues (8.159) with the result obtained
in Section 7.6.

8.10. Angular Momentum Eigenstates in a
Magnetic Field

The solution of the harmonic oscillator problem enables us to write down
the solution in case of the constant magnetic field. The eigenvectors of the
spherical harmonic oscillator are also eigenvectors of the angular momentum
operator L and hence eigenvectors of the operator

H = Hosc

(B

2

)

− B

2
L. (8.161)

With ψn,*(r, ϕ) as in Eq. (8.160) we have

H ψn,* =
( |B|

2
(

2n + |4| + 1
)

− B

2
4
)

ψn,*. (8.162)

The set of all possible energies (the energy spectrum) is thus given by the
set of all numbers

|B|
2

(

2n + 1 + |4| − (sgnB) 4
)

for which n = 0, 1, 2, . . . , 4 ∈ Z. (8.163)

This is just the set

σ(H) =
{

|B|
(

k + 1
2

)

∣

∣

∣ k = 0, 1, 2, . . .
}

. (8.164)
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Each of the eigenvalues in this set can be obtained by an infinite number of
combinations of n and 4. In this way we recover our result about the infinite
degeneracy of eigenvalues in a constant magnetic field (Section 8.6.3). For
example, the ground-state energy E = |B|/2 is obtained for n = 0 and all
4 ≥ 0 (if B < 0), respectively all 4 ≤ 0 (if B > 0). Because 1F1(0, b, s) = 1,
the eigenfunctions belonging to the ground-state energy are given by

N0,* e−|B| r2/2 r* ei*ϕ, with 4 =
{

0, 1, 2, . . . , for B < 0,
0,−1,−2, . . . , for B > 0.

(8.165)
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Chapter 9

One-Dimensional Scattering
Theory

Chapter summary: In classical as well as in quantum mechanics the motion of
particles in external fields falls into one of two categories: Either the motion stays
within an approximately finite region for all times or the particle escapes toward
infinity and behaves asymptotically like a free particle. Here we treat the latter
case.

We only consider the simplest case of a scattering process in one dimension. A
particle is shot toward a target which is represented by a force field with a finite
range. As usual, we are interested in the temporal behavior of wave packets (and
their Fourier transforms). As in the case of free particles, the wave packets are
formed as superpositions of solutions with a well-defined energy. These energy
eigenfunctions are not square-integrable. Asymptotically they are made of pieces
that represent incoming and outgoing plane waves to the left and to the right of the
target.

A wave packet hitting a target usually gets dispersed into all directions. In one
dimension, the particle can be either reflected or transmitted. The probabilities
for these events are determined by the reflection and transmission coefficients. We
use the energy representation derived in Section 3.8 to explain how these scattering
coefficients determine the asymptotic behavior of the wave packets. In a few cases,
explicit expressions for the scattering coefficients can be derived. The most common
examples are rectangular steps, barriers, and wells.

Again we have numerous opportunities to point out differences between classical
and quantum mechanics. A particularly striking phenomenon is the tunnel effect,
the ability of a quantum particle to pass through a repulsive barrier, even if the
energy is to low to allow a transition in classical mechanics. The tunnel effect is
used in the scanning tunneling microscope to obtain images of solid surfaces with
a resolution showing single atoms (see the gallery on the CD-ROM).

9.1. Asymptotic Behavior

In a typical scattering experiment, particles emerging from an accelerator are
shot toward a target, for example, a metal foil. Here you will learn about
the simplest case where the scattering takes place in one space dimension.

227
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It is assumed that the interaction of the particles with the target can be
described by an electrostatic potential V (x) that becomes asymptotically
constant,

lim
x→+∞

V (x) = V+, lim
x→−∞

V (x) = V−, (9.1)

so that the particles feel no force in regions far away from the target. Because
we can always perform a space reflection x → −x, we assume without loss
of generality that

V− ≤ V+. (9.2)

It is much easier to treat the case where the limits V± are approached suffi-
ciently fast. Usually, one requires something like

∫ ±∞

0
|V (x) − V±| dx < ∞, (9.3)

but most of our examples will even satisfy

V (x) =
{

V+, x ≥ R,

V−, x ≤ −R,
(9.4)

with some R ≥ 0.
As a first step in the solution of the time-dependent Schrödinger equa-

tion, let us investigate the stationary equation
(

−1
2

∂2

∂x2
+ V (x)

)

ψ(E, x) = E ψ(E, x). (9.5)

Depending on the numerical value of E, this equation may or may not have
square-integrable solutions. It will turn out that for certain ranges of the
energy the solutions ψ(E, x) behave similar to plane waves (they are bounded
and oscillate, but have no statistical interpretation). In order to describe
more localized phenomena you may then proceed by forming wave packets
as in the case of free particles: With a suitable amplitude function g(E)
describing the contribution of the energy E, a wave packet is defined by

ψ(x, t) =
∫

ψ(E, x) e−iEt g(E) dE. (9.6)

Under certain conditions we expect the function ψ to be a square-integrable
solution of the time-dependent Schrödinger equation.

For the following it is useful to define the function

k(E) =
{√

2E, for E ≥ 0,

i
√
−2E, for E ≤ 0.

(9.7)
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For E ≥ 0 this is just the momentum of a free particle with energy E. The
function k is either real and non-negative (E ≥ 0) or purely imaginary with
a positive imaginary part (E < 0).

Moreover, for E -= 0, we define the functions

ω−→(E, x) =
1

√

2πk(E)
exp

(

ik(E)x
)

, (9.8)

ω←−(E, x) =
1

√

2πk(E)
exp

(

−ik(E)x
)

, (9.9)

which are solutions of the stationary free Schrödinger equation.
For E > 0 these functions are normalized plane waves with a normaliza-

tion factor chosen to simplify the formulas of the energy representation (see,
e.g., Eq. (3.79)). The arrow indicates the direction of the phase velocity
which in one dimension is either to the left or to the right.

For E < 0 the behavior of these functions is radically different: The
function ω−→ decreases exponentially for x → ∞ (increases for x → −∞),
while ω←− increases exponentially for x → ∞ (decreases for x → −∞). Even
for negative energies the functions ω−→ and ω←− are solutions of the stationary
free Schrödinger equation. But due to their exponential increase toward one
direction they cannot be used to form square-integrable wave packets and
have to be rejected for the description of free particles. The Schrödinger
equation has no useful solutions for negative energies.

For a constant potential, V (x) = V0, the general solution of the station-
ary Schrödinger equation is a linear combination of the plane waves with
energies shifted by V0,

ψ(E, x) = a ω−→(E−V0, x) + b ω←−(E−V0, x). (9.10)

For potentials that are only asymptotically constant the functions ω−→ and
ω←− will be useful for describing the asymptotic behavior of the solutions at
large distances from the interaction region: If the potential approaches the
constant values V±, as x → ±∞, we expect the solutions of the stationary
Schrödinger equation to behave as follows:

ψ(E, x) →
{

a ω−→(E−V−, x) + b ω←−(E−V−, x), as x → −∞,
c ω−→(E−V+, x) + d ω←−(E−V+, x), as x → ∞.

(9.11)

One needs the assumption (9.3) in order to prove that all solutions of the
stationary Schrödinger equation have this asymptotic behavior.

The behavior of a classical particle with energy E suggests to distinguish
between the following cases:

1. E > V+ ≥ V−: Asymptotically for x → ±∞, the particle behaves like
a free particle (constant potential)
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2. V+ > E > V−: The particle behaves like a free particle for x → −∞,
but no propagation is possible in the asymptotic region x → ∞.

3. V− > E: The particle cannot escape to infinity, but it may exist in
regions where V (x) < E.

These cases also serve to classify the asymptotic behavior of the solutions of
the Schrödinger equation.

Case 1: In the first case, E > V+ ≥ V−, we have oscillating plane waves
on both sides. Far to the left, the plane wave with positive momentum,
ω−→(E−V−, x), corresponds to particles moving in the right direction, that
is, toward the interaction region, and is therefore called the incoming wave.
The term ω←−(E−V−, x) describes a plane wave with momenta pointing to
the left, away from the target. This is an outgoing wave. Far to the right
of the target these roles are reversed and it is the wave ω−→(E−V+, x) which
is outgoing, while the wave ω←−(E−V+, x), which moves in the left direction,
is incoming. It is the goal of scattering theory to determine the coefficients
b and c of the outgoing waves in terms of the coefficients a and d of the
incoming waves.

Case 2: In the case V+ > E > V− the particle will be asymptotically free
only for x → −∞. Hence we expect the asymptotic behavior

ψ(E, x) → a ω−→(E−V−, x) + b ω←−(E−V−, x), as x → −∞. (9.12)

For x → +∞, the asymptotic form (9.11) is a linear combination of an
exponentially increasing part ω←−(E−V+, x) and an exponentially decreasing
part ω−→(E−V+, x). The exponentially increasing function cannot be used to
form square-integrable wave packets. For a physically acceptable solution
we must require c = 0. The only useful asymptotic form for x → ∞ is

ψ(E, x) → d ω−→(E−V+, x), as x → ∞. (9.13)

Case 3: When the energy is less than V−, then all solutions of the station-
ary Schrödinger equation are either exponentially decaying or exponentially
increasing. A solution ψ(E, x) has a useful interpretation only if it has the
asymptotic form

ψ(E, x) →
{

a ω←−(E−V−, x), (x → ∞),
d ω−→(E−V+, x), (x → ∞).

(9.14)

This condition on the asymptotic behavior is very special. It will not be
possible to find such a solution for all values of E. If we can find, for
some value of E < V−, a solution ψ(E, x) with this behavior, then ψ(E, x)
is square-integrable and hence has a probability interpretation. E is an
eigenvalue of the Hamiltonian, and ψ the corresponding eigenfunction.
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Solutions that are asymptotically equal to a linear combination of oscil-
lating plane waves cannot be square-integrable. Hence we expect no energy
eigenvalues E with E > V−, as long as (9.12) describes the asymptotic form
of the solutions for x → −∞.

9.2. Example: Potential Step

9.2.1. Continuity condition

Here we illustrate the above considerations by a simple, exactly solvable
example — the potential step

V (x) =
{

V−, x < 0,

V+, x ≥ 0,
with V− < V+. (9.15)

A solution of the stationary Schrödinger equation for any value of E can be
obtained from the ansatz

ψ(E, x) =
{

a ω−→(E−V−, x) + b ω←−(E−V−, x), x < 0,

c ω−→(E−V+, x) + d ω←−(E−V+, x), x ≥ 0.
(9.16)

For arbitrary coefficients a, b, c, and d, the parts of this function are solutions
of the stationary Schrödinger equation in a constant potential V+ resp. V−.
In order to obtain a solution for all x, we have to choose the coefficients
in such a way that the pieces can be glued together at x = 0. Because
the Schrödinger equation is of second order, a solution ψ must be twice
differentiable (in a generalized sense). Hence the parts of the solution for
x > 0 and x < 0 must be glued together at x = 0 in a differentiable way. Let
us therefore require that ψ and ψ′ be continuous at x = 0. This assumption
leads to a system of linear equations for the coefficients a, b, c, and d. Using
the abbreviation

k± = k(E−V±), (9.17)

we obtain the linear system
√

k+ (a + b) =
√

k− (c + d) (continuity of ψ) (9.18)
√

k− (a − b) =
√

k+ (c − d) (continuity of ψ′) (9.19)

which enables us to compute the coefficients b, c of the outgoing waves in
terms of the coefficients a and d of the incident waves.
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9.2.2. Energies higher than the step size

For energies E > V+ the solution ψ(E, x) is a linear combination of plane
waves on both sides of the step. Let us first consider the situation where
a particle approaches the barrier from the left. Hence the solution ψ(E, x)
should have no incoming part in the region x > 0. We choose a = 1 and
d = 0 in Eq. (9.16) and write the solution in the form:

ψ(E, x) =







ω−→(E−V−, x) + R←−(E) ω←−(E−V−, x), x < 0,

T−→(E) ω−→(E−V+, x), x ≥ 0.
(9.20)

The linear system (9.18) can easily be solved for the coefficients b = R←−(E)
and c = T−→(E),

R←−(E) =
k− − k+

k− + k+
, T−→(E) =

2
√

k+k−
k+ + k−

. (9.21)

R←−(E) is called reflection coefficient, T−→(E) transmission coefficient at en-
ergy E for scattering from the left. The quantity | R←−(E)|2 is interpreted
as the reflection probability at energy E, and | T−→(E)|2 is the transmission
probability at energy E. We find

| R←−(E)|2 + | T−→(E)|2 = 1, for E ≥ V+ > 0. (9.22)

The interactive pictures in CD 7.1 show the reflection and transmis-
sion coefficients as functions of the energy and of the step size.

9.2.3. Total reflection

The ansatz (9.20) can also be used for energies V− < E ≤ V+. The solution
for x ≥ 0 consists only of an exponentially decaying part. Now the quan-
tity k+ = k(E−V+) = i

√

2(V+ − E) is purely imaginary and hence R←−(E)
becomes a complex number with absolute value 1,

| R←−(E)|2 =
k2
− + |k+|2

k2
− + |k+|2

= 1. (9.23)

Thus, the particle is reflected with probability 1.
Note that although the total energy is smaller than the potential energy

in the region x ≥ 0, there is a nonvanishing probability of finding the particle
in that region. This probability decays exponentially with the distance from
the step. There are no propagating particles in that region.
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If we let V+ tend to infinity, then k+ → ∞ and hence T−→(E) ω−→(E−V+, x)
tends to zero, that is, the part of the solution ψ(E, x) in the region x > 0
tends to zero. We find

R←−(E) → −1, for V+ → ∞, (9.24)

and therefore the solution in the limit V+ → ∞ becomes

ψ(E, x) =
{

ω−→(E−V−, x) − ω←−(E−V−, x), x < 0,

0, x ≥ 0.
(9.25)

This is the solution of the Schrödinger equation with a Dirichlet boundary
condition at x = 0. Hence the potential step in the limit of infinite step size
becomes a Dirichlet wall.

Finally, we note that for E < 0 the Schrödinger equation has no bounded
solution because the solution that decays exponentially in the region x ≥ 0
has an exponentially increasing part in the region x ≤ 0.

9.2.4. Scattering from the right

For E > V+ another type of solution can be obtained by writing

ψ(E, x) =







T←−(E) ω←−(E−V−, x), x < 0,

ω←−(E−V+, x) + R−→(E) ω−→(E−V+, x), x ≥ 0.
(9.26)

In the right region x ≥ 0 this solution describes a plane wave with momentum
−k+ (incoming wave), and an outgoing plane wave with momentum +k+

(reflected wave). In the region x < 0 there is only a transmitted plane wave
with momentum −k− (outgoing to the left). The step goes down and still
something is reflected.

The continuity of ψ and ψ′ at x = 0 implies (for E > V+)

R−→(E) =
k+ − k−
k+ + k−

= − R←−(E), (9.27)

T←−(E) =
2
√

k+k−
k+ + k−

= T−→(E). (9.28)

CD 7.2 presents several interactive pictures showing the plane wave
solution ψ(E, x) in the various situations described above.
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9.3. Wave Packets and Eigenfunction Expansion

The solutions ψ(E, x) for E > V− have a sharp energy, but they are not
square-integrable. In order to obtain solutions with a proper quantum-
mechanical interpretation we have to form wave packets. This is done as
in the case of free particles by a continuous superposition of solutions with
sharp energies.

9.3.1. Energy representation in a constant potential

For wave packets in a constant potential, the considerations of Section 3.8
can be carried through with only minor modifications. A wave packet ψ(x)
can be written as an integral over the plane waves

ψ(x) =
∫ ∞

V−

(

ω−→(E−V−, x) g−→(E) + ω←−(E−V−, x) g←−(E)
)

dE. (9.29)

with suitable functions g−→ and g←−, which are square-integrable in energy
space. Here the summand with “→” describes the part of the wave packet
moving in the right direction; the part with “←” moves in the left direc-
tion. You should be aware of the fact that only the energies E ≥ V− are
allowed in the constant potential V−, and hence the condition for the square-
integrability reads

‖ψ‖2 =
∫ ∞

V−

(

| g−→(E)|2 + | g←−(E)|2
)

dE. (9.30)

The energy representation of the wave packet is the following two-component
wave function in energy space:

g(E) =
(

g−→(E)
g←−(E)

)

, E > V−. (9.31)

For the following, it is instructive to express the Fourier transform of the
wave packet ψ(x) with the help of the energy representation.

At t = 0, the part of the wave packet that moves in the right direction
is given by

ψ−→(x) =
∫ ∞

V−
ω−→(E − V−, x) g−→(E) dE

=
∫ ∞

0
ω−→(E, x) g−→(E + V−) dE. (9.32)

Now we can perform the variable substitution E = k2/2 and assume k >
0 since the momenta of the right-moving part are positive. Inserting the
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definition of ω−→, we obtain

ψ−→(x) =
1√
2π

∫ ∞

0
eikx 1√

k
g−→

( k2

2
+ V−

)

dk. (9.33)

This can be extended to an integral from −∞ to +∞ if we assume that the
integrand is zero for k < 0. Hence we see immediately that the wave packet
ψ−→(x) has the Fourier transform

ψ̂−→(k) =
{

1√
k

g−→
(k2

2 + V−
)

, k ≥ 0,

0, k < 0.
(9.34)

For the left-moving part we find similarly

ψ←−(x) =
1√
2π

∫ ∞

0
e−ikx 1√

k
g←−

( k2

2
+ V−

)

dk

=
1√
2π

∫ 0

−∞
eikx 1√

k
g←−

( k2

2
+ V−

)

dk,

(9.35)

and hence

ψ̂←−(k) =
{

0, k ≥ 0,
1√
k

g←−
(k2

2 + V−
)

, k < 0.
(9.36)

9.3.2. Wave packets in a step potential

Let us now form a wave packet from the solutions ψ(E, x) in a step potential.
We take some energy distribution g(E) with support in the region E > V−
and define

ψ(x) =
∫ ∞

V−
ψ(E, x) g(E) dE. (9.37)

For ψ(E, x) as in Eq. (9.20) this wave packet consists of several parts. Let
us define the functions

ψ−→
in(x) =

∫ ∞

V−
ω−→(E−V−, x) g(E) dE, x < 0, (9.38)

ψ←−
r(x) =

∫ ∞

V−
ω←−(E−V−, x) R←−(E) g(E) dE, x < 0, (9.39)

ψ−→
t(x) =

∫ ∞

V−
ω−→(E−V+, x) T−→(E) g(E) dE, x ≥ 0. (9.40)

The wave packet ψ is given in terms of these functions by

ψ(x) =







ψ−→
in(x) + ψ←−

r(x), for x < 0,

ψ−→
t(x), for x ≥ 0.

(9.41)
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A solution of the time-dependent Schrödinger equation with the step poten-
tial is given by

ψ(x, t) =
∫ ∞

V+

ψ(E, x) e−iEt g(E) dE. (9.42)

As indicated by the arrows, the wave packets ψ−→
in and ψ−→

t move in the right
direction, while ψ←−

r moves in the left direction. It is now easy to describe a
wave packet that moves toward the potential step and splits into a reflected
and a transmitted part. You will read more about this in the next section.

CD 7.3 shows how the components ψ−→
in, ψ←−

r, and ψ−→
t can be added

to form a wave packet that describes the scattering at a potential
step. The section CD 7.4 contains several movies of Gaussian wave
packets hitting a potential step. Even if the energies are strictly
higher than the size of the step, the particle gets reflected with a
certain probability. The moment of reflection shows the interference
of the incoming and the reflected waves in the region x < 0.

9.4. Potential Step: Asymptotic Momentum
Distribution

Let us discuss the time evolution of the wave packet (9.42) at a potential
step, assuming for simplicity V− = 0. Figure 9.1 shows the typical behavior
of a wave packet with energies higher than V+. The illustration shows the
position and momentum distributions before, during, and after the scattering
at a potential step. The incoming wave packet moves toward the step and
has a rather wide distribution around its average position. Therefore, the
distribution of the momenta (and hence of the energies) is rather sharp, so
that all energies contributing to the incoming wave packet are well above
V+. (The illustration shows the energy E = k2

0/2 in relation to the size of
the potential step). As long as the wave packet does not hit the step, the
momentum distribution is stationary, but it starts to change as soon as the
wave packet feels the potential jump. The peak at k0 shifts to a lower average
momentum accounting for the energy necessary to pass the potential jump.
A small peak corresponding to the reflected part of the wave packet emerges
at −k0. Some ripples appear in the position probability density. They come
from the interference of the incoming and the reflected wave packets. After
the scattering, the wave packet has split into a large transmitted part and
a small reflected part, both moving away from the step. The momentum
distribution remains stationary from here on, because the propagation in a
constant potential is physically indistinguishable from the free motion.
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Figure 9.1. The position probability density |ψ(x)|2 (first
row) and the momentum probability density |ψ̂(k)|2 (second
row) for the scattering at a potential step. You can see the
wave packet before it hits the step, during the interaction
with the step, and after the scattering process. The energies
are strictly larger than the size of the step, hence the existence
of a reflected part is a pure quantum phenomenon.

CD 7.5 explains how to calculate the momentum distribution of the
scattered waves from the given initial wave packet and the scattering
coefficients.

In the following, this scattering process is described in a slightly more
quantitative way. The first task is to prepare an incoming wave packet.
Take, for simplicity, a Gaussian function. At t = 0, it should be located
sufficiently far to the left, so that it is negligibly small in the region of the
step. “Incoming” here means that the average momentum of the Gaussian
points to the right, that is, toward the step. Thus, the incoming wave packet
is something like

ψ−→
in(x) =

(a

π

)1/4
eik0x exp

(

−a (x − x0)2

2

)

(9.43)

with x0 : −1/
√

a < 0 (a describes the width of the position distribution).
The momentum representation of this wave packet is

ψ̂−→
in

(k) =
( 1
aπ

)1/4
e−ikx0 exp

(

−(k − k0)2

2a

)

. (9.44)
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This is a Gaussian function in momentum space that is centered around k0.
It is certainly clever to choose k0 ;

√
a because then—due to the rapid decay

of Gaussian functions—there is no big error in assuming that this function
is zero for negative k (i.e., the wave packet has no left-moving part). The
energy representation (see Section 3.8) of the incoming wave packet is

gin(E) =
(

g(E)
0

)

, g(E) =
1

√

k(E)
ψ̂−→

in(

k(E)
)

, k(E) =
√

2E. (9.45)

This gives immediately the reflected and transmitted wave packets in energy
space

gr(E) =
(

0
R←−(E) g(E)

)

, gt(E) =
(

T−→(E) g(E)
0

)

. (9.46)

How do these wave packets look like in position space? If the reflection
coefficient R were a constant independent of E, then the reflected wave
packet (9.39) would be obtained from the incoming wave packet (9.38) by
replacing ω−→ with ω←−. This amounts to a reflection at the origin because
it is just the substitution x → −x, which changes ω−→ into ω←−. Hence the
wave packet ψ←−

r would be a Gaussian centered at −x0 (i.e., far to the right)
with average momentum −k0 pointing to the left. The norm of the Gaussian
would be diminished by the value of R2 (which is less than 1). Now, in fact
R depends on E, and hence the reflected wave packet becomes distorted. (In
case of Fig. 9.1 the reflection coefficient varies only slightly with the energies
under consideration, hence the reflected wave packet still looks pretty much
like a Gaussian).

Similarly, the function ψ−→
t is a slightly distorted Gaussian-like wave

packet. Its total energy is about the same as the energy of the incoming
Gaussian, but because the transmitted wave packet moves in the potential
V+, the momentum distribution is shifted from k0 to

k′
0 =

√

k2
0 − 2V+. (9.47)

The wave packet ψ(x, t) in (9.42) initially consists only of the incoming part
because the reflected part is located in the region x > 0, and the transmitted
part in the region x < 0

ψ(x, t=0) ≈







ψ−→
in(x), x < 0,

0, x ≥ 0.
(9.48)

The incoming and reflected parts are going to exchange their positions during
the scattering process because they move into opposite directions. When the
incoming and reflected waves overlap, we see an interference pattern in the
region x < 0 (but there is no interference pattern in the region x > 0). Also,
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the transmitted part ψ−→
in(x, t) will sooner or later enter the region x > 0.

Much later, when the parts of the wave packet have left the vicinity of the
step, we have the following situation:

ψ(x, t) ≈







ψ←−
r(x), x < 0,

ψ−→
t(x), x ≥ 0,

≈ ψ←−
r(x) + ψ−→

t(x). (9.49)

This wave packet is outgoing. All parts move away from the potential step.
In the energy representation, the outgoing wave packet is simply given by

gout(E) =
(

T−→(E)g(E)
R←−(E)g(E)

)

. (9.50)

The time evolution in the energy representation is just a multiplication by
exp(−iEt), corresponding to a stationary energy distribution.

With the energy distribution, the momentum distribution also becomes
stationary as soon as the wave packet ψ(x, t) is sufficiently far away from
the interaction region and all its parts move freely. The momentum distri-
bution of the outgoing wave packet can be calculated easily from the energy
representation, as demonstrated in Section 9.3.1. Because the transmitted
part moves in the constant potential V+ and the reflected part moves freely,
we obtain

|ψ̂out(k)|2 = |k|







∣

∣ T−→
(k2

2 + V+
)

g
(k2

2 + V+
)∣

∣

2
, k ≥ 0,

∣

∣ R←−
(k2

2

)

g
(k2

2

)∣

∣

2
, k < 0.

(9.51)

This distribution shows a peak at −k0, which stems from the reflected wave
packet and a peak at k′

0 from the transmitted wave packet. From the asymp-
totic momentum distribution we can infer the asymptotic position probabil-
ity density of the scattered wave packet as in Section 3.6.

CD 7.6 contains several movies of wave packets at a potential step.
Position space and momentum space are shown simultaneously. You
can observe how the the wave packet in momentum space approaches
its asymptotic form when the scattered waves in position space move
away from the potential step.

9.5. Scattering Matrix

In scattering theory, we want to determine the relation between incoming
and outgoing wave packets. A general incoming wave packet with energies
greater than V+ is described by

ψin(x) =
∫ ∞

V+

(

ω−→(E−V−, x) g1(E) + ω←−(E−V+, x) g2(E)
)

dE. (9.52)
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It consists of a part describing a wave packet moving in the right direction
in the constant potential V−, and a part moving in the left direction in the
potential V+. The time evolution of ψin describes two incoming wave packets
which are initially (in the distant past) located far to the left, resp. far to
the right. The interaction with the potential converts the incoming wave
packet in an outgoing wave packet of the form

ψout(x) =
∫ ∞

V+

(

ω←−(E−V−, x)h1(E) + ω−→(E−V+, x) h2(E)
)

dE. (9.53)

The relation between the coefficients of the outgoing parts and the coeffi-
cients of the incident parts is given by the scattering matrix

S(E) =
(

T←−(E) R−→(E)
R←−(E) T−→(E)

)

. (9.54)

We have
(

h1(E)
h2(E)

)

= S(E)
(

g1(E)
g2(E)

)

. (9.55)

The outgoing wave packet depends linearly on the incoming wave,

ψout = S ψin. (9.56)

The linear operator S is called the scattering operator. The scattering matrix
is unitary, S(E)S(E)† = 12 (the 2×2 unit matrix). In particular, this implies

|h1(E)|2 + |h2(E)|2 = |g1(E)|2 + |g2(E)|2,

and hence

‖ψout‖2 =
∫ ∞

V+

(|h1(E)|2 + |h2(E)|2) dE

=
∫ ∞

V+

(|g1(E)|2 + |g2(E)|2) dE = ‖ψin‖2,

that is, the scattering operator S is unitary.

The considerations so far are not typical for the rectangular step.
CD 7.7 shows that the scattering at a smooth potential without
sudden jumps exhibits the same phenomena. The considerations
above are valid in this case too.
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9.6. Transition Matrix

9.6.1. Potential step

If the potential has a step at x = s, we can again use the ansatz

ψ(E, x) =
{

a ω−→(E−V−, x) + b ω←−(E−V−, x), x < s,

c ω−→(E−V+, x) + d ω←−(E−V+, x), x ≥ s.
(9.57)

The continuity of ψ and ψ′ at x = s leads to the linear system of equations
√

k+ (a eik−s + b e−ik−s) =
√

k− (c eik+s + d e−ik+s), (9.58)
√

k− (a eik−s − b e−ik−s) =
√

k+ (c eik+s − d e−ik+s). (9.59)

We can solve this system for c and d,
(

c
d

)

= T (V−, V+, s)
(

a
b

)

, (9.60)

where

T (V−, V+, s)

=
1

2
√

k+k−

(

(k− + k+) ei(k−−k+)s −(k− − k+) e−i(k−+k+)s

−(k− − k+) ei(k−+k+)s (k− + k+) e−i(k−−k+)s

)

(9.61)

is the transition matrix for scattering at a potential step from V− to V+ at
x = s. As usual, k± is the momentum at energy E with respect to the
potentials V±, that is, for E > V±,

k± = k(E − V±) =
√

2(E − V±). (9.62)

The transition matrix connects the coefficients c and d of the solution on
the right side of the step with the coefficients a and b on the left side. This
is particularly useful if one wants to calculate this relation in the case of
several steps.

9.6.2. Two potential steps

As an example, consider a potential V of the form

V (x) =















V−, for x < −r,
V0, for −r ≤ x < R,
V+, for R ≤ x.

(9.63)
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CD 7.9–7.14 show the scattering at a potential barrier that is defined
by V+ = V− = 0 and V0 > 0. The potential barrier can be regarded
as a succession of two potential steps. The movies treat this process
in close analogy to the scattering at a single step. It is shown how the
reflection and transmission coefficients determine the behavior of the
solutions in position space and in momentum space. Below you will
learn how to calculate the scattering coefficients for this situation.
Notice that the coefficients now depend on the energy, the height,
and the thickness of the barrier. Again, the considerations are not
typical for the rectangular barrier. CD 7.15 has several examples of
numerically calculated solutions at smoothed potential barriers.

We easily find the connection between the solutions in the asymptotic
regions x < −r and x ≥ R. The solution of the stationary Schrödinger
equation at energy E in the middle region −r ≤ x < R is given by a linear
combination of ω←− and ω−→ as

ψ(E, x) = c1 ω−→(E−V0, x) + c2 ω←−(E−V0, x), in −r ≤ x < R.

The coefficients c1 and c2 can be determined from the coefficients a and b
of the asymptotic solution to the left with the help of the corresponding
transition matrix,

(

c1

c2

)

= T (V−, V0,−r)
(

a
b

)

. (9.64)

Similarly, the solution in x ≥ R is determined by c1, c2 as

(

c
d

)

= T (V0, V+, R)
(

c1

c2

)

. (9.65)

Hence we find
(

c
d

)

= T (V0, V+, R)T (V−, V0,−r)
(

a
b

)

. (9.66)

For scattering from the left we use as before the ansatz a = 1, d = 0, and
write b = R←−(E) and c = T−→(E). The linear equation

(

T−→(E)
0

)

= T (V0, V+, R)T (V−, V0,−r)
(

1
R←−(E)

)

(9.67)
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can be solved for the reflection and transmission coefficients, R←−(E) and
T−→(E),

R←−(E) =
k0 (k−−k+) cos k0L + i (k2

0−k−k+) sin k0L

k0 (k−+k+) cos k0L − i (k2
0+k−k+) sin k0L

exp(−2ik−r), (9.68)

T−→(E) =
2 k0

√

k−k+ exp
(

−i(k−r + k+R)
)

k0 (k−+k+) cos k0L − i (k2
0+k−k+) sin k0L

, (9.69)

with the obvious abbreviations k± = k(E − V±), k0 = k(E − V0), L = r + R
(= distance between the two steps).

9.6.3. The potential barrier

Let us apply the results of the preceeding section to the scattering at a
potential barrier, which is a two-step potential with V± = 0 and V0 positive,

V (x) =
{

V0, for |x| < R,
0, for |x| ≥ R,

V0 > 0. (9.70)

Here we consider a scattering process with energies higher than the size V0 of
the barrier. The scattering coefficients R←− and T−→ for the scattering from the
left can be obtained from Eqs. (9.68) and (9.69). They depend not only on
the energy E, but also on the height V0 and the width R of the barrier. An
example is shown in Color Plate 23, which shows the scattering coefficients
as functions of the parameter V0. The energy and the width have the values
E = 18 and R = 1, respectively.

Color Plate 23 shows that the reflection coefficient is zero at certain
values of V0, for example, at V0 ≈ 16.8. The vanishing of the reflection
coefficient means that in this case there is no reflected wave at all. How
is this possible? It does not happen for a single-step potential. But in
the case of a two-step potential we can interpret the reflected wave as a
superposition of two parts. Each part comes from the reflection at one of
the steps. The two reflected parts have the same energy (wavelength) and
they interfere with each other in the region x < −R. A zero in the reflection
coefficient obviously means that the two parts cancel each other (destructive
interference). This can only happen if they have the same amplitude and
the phase difference π (so that one part is the negative of the other).

In the example of Color Plate 23 the reflection probability has a local
maximum, for example, at V0 ≈ 15. In this case, the two reflected waves
are approximately in phase so that they can interfere constructively. Color
Plate 24 shows the solutions of the Schrödinger equation with energy E = 18
for the two situations. You can see that the solution with V0 = 16.8 has no
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reflected part, because the incoming wave on the left-hand side has the same
amplitude as the transmitted wave on the right-hand side. Inside the barrier,
the wave function exhibits a remarkable resonance phenomenon, which does
not occur for the smaller value of V0. The solution belonging to V0 = 15 has
a large reflected part which interferes strongly with the incoming wave to
the left of the barrier.

The knowledge of the reflection and transmission coefficients helps us to
explain the behavior of wave packets. Color Plate 25 shows an incoming
wave packet (a Gaussian function) in the energy representation. It is cen-
tered around E = 18 in energy space (hence the maximum of the momentum
distribution is at k = 6). The energy representation has only one component
because the left-moving part of incoming wave packet is approximately zero.
In our example, the energy distribution is so narrow that essentially all ener-
gies in the wave packet are above V0 in both situations. Hence, according to
classical physics, we would expect no reflection at all. In quantum mechan-
ics, however, a significant part of the wave packet is reflected at the barrier.
Color Plate 25 also shows the scattering coefficients. They are plotted as
functions of the energy in the relevant region of the energy space. You can
see that the support of the wave packet in energy space is near a zero of
the reflection coefficient for V0 = 16.8, and near a maximum of reflection
coefficient for V0 = 16.8.

The energy representation of the reflected wave packet is given by the
product R←−(E) g(E); the transmitted part is T−→(E) g(E). From the energy
representation we can determine the Fourier transformation of the outgoing
wave essentially by a variable transformation (as described in Section 3.8).
The result is shown in Fig. 9.2.

The two situations (V0 = 16.8 and V0 = 15) produce quite different
momentum distributions in the reflected wave packet. First of all, there
is the seemingly paradoxical fact that a smaller barrier produces a larger
reflected part. For the larger value of V0, the energies of the wave packet are
near a zero of the reflection coefficient. Hence the reflected part R←−(E) g(E)
is rather small and has a zero. You can see this most clearly in Color Plate 25.

Color Plate 26 shows the scattering of our wave packet at the barrier.
You can see that for the larger value V0 = 16.8 the amplitude of the reflected
part is indeed smaller. The resonance that appears already in the plane wave
of Color Plate 24 implies that the probability of finding the particle inside
the barrier is quite large during the whole scattering process. As a result, the
transmitted wave is delayed in comparison with the nonresonant situation
(V0 = 15). The time delay is typical for resonance phenomena.
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Figure 9.2. Scattering at a potential barrier. Absolute val-
ues of the Fourier transforms of the reflected and transmitted
wave packets for two values of the parameter V0. The vertical
line at |k| =

√
2V0 indicates the size of V0.

CD 7.9 presents interactive versions of Color Plates 23 and 24. It
shows the dependence of scattering coefficients and sharp-energy
solutions on the parameters describing the potential barrier. In
CD 7.10 you can see movies showing the scattering of a wave packet
at barriers of varying height. Color Plate 26 shows snapshots from
these movies. CD 7.12 shows movies of the wave packet in both
position and momentum space. You can see how the momentum
distribution predicted by the scattering coefficients is approached by
the Fourier transform of the scattered wave packet. Finally, CD 7.13
allows you to investigate the asymptotic momentum distribution by
interactively changing the parameters R, V0, and the energy of the
incoming wave packet.

From the momentum distribution Fig. 9.2 we can obtain the asymptotic
behavior of the scattered wave packet in position space, because the asymp-
totic behavior is described by the free Schrödinger equation. You can verify
this statement by looking at Fig. 9.3.

CD 7.14 investigates the influence of the thickness of the barrier on
the scattering of a Gaussian wave packet. This is discussed along
the same lines as in this section. The reflection coefficient depends
periodically on the thickness R; see also Fig. 9.4.
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Figure 9.3. Scattering at a potential barrier with V0 = 16.8
and R = 1. (a) The scattered wave packet has left the re-
gion of the potential barrier. From now on the free evolution
governs the behavior, and the momentum distribution is con-
stant as in Fig. 9.2. The shape of the position distribution
is already similar to the asymptotic momentum distribution
shown in Fig. 9.4. (b) Reflected part of the wave packet at a
later time. The wave packet in position space is essentially a
scaled version of the wave packet in momentum space.

9.7. The Tunnel Effect

The formulas (9.68) and (9.69) for the reflection and transmission coeffi-
cients with a potential of the form (9.70) can be used to illustrate some
important quantum-mechanical effects. With positive energies E smaller
than the height V0 of the barrier, a classical particle would be reflected. A
quantum-mechanical particle has a certain chance to “tunnel” through the
barrier.

CD 7.11 shows that a wave packet has a certain chance to penetrate
a thin barrier, even if the barrier is much higher than all energies
contributing to the wave packet. The movies CD 7.12.3 and 7.12.4
visualize the same phenomenon also in momentum space. CD 7.16.2
is a movie of a Gaussian wave packet penetrating a rectangular bar-
rier in two dimensions; see also Color Plate 27.

Eqs. (9.68) and (9.69) remain true for E < V0, we only have to take into
account that k0 is now purely imaginary,

k0 = i
√

2(V0 − E) = iκ0, for 0 ≤ E ≤ V0. (9.71)
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Figure 9.4. (a) Reflection probability at a fixed energy
(E = 1) as a function of V0 with fixed R = 1. (b) Reflection
probability as a function of the thickness R, keeping V0 = 1/2
fixed.

The transmission coefficient (9.69) now becomes (with k− = k+ = k, r = R,
L = 2R)

T−→(E) =
2κ0 k exp(−ikL)

2κ0 k coshκ0L + i (κ2
0−k2) sinhκ0L

, (9.72)

and hence the transition probability | T−→(E)|2 does not vanish.
The exponentially decaying part of the wave function in the classically

forbidden region −R ≤ x < R is nonzero at x = R, and thus there is a
nonvanishing probability for the particle to penetrate the barrier (tunnel
effect). This is a pure quantum effect because classical particles would be
reflected at energies which are too low to traverse the obstacle.

Figure 9.4 shows the reflection probability | R←−(E)|2 at a fixed energy
(E = 1). It still depends on the thickness R and on the height V0 of the
potential barrier. The tunnel effect implies that the reflection probability
is less than 1 even for barriers higher than the energy (V0 > E). The
vanishing of the reflection probability for certain values of R is caused by
the destructive interference between waves reflected at the first step and
waves reflected at the second step.



248 9. ONE-DIMENSIONAL SCATTERING THEORY

The tunnel effect is used in the scanning tunneling microscope
(STM). CD 7.18 shows the tunneling of an electron through a narrow
vacuum gap between the tip of a sharp needle and a metal surface.
The STM works by scanning the surface with the needle. During
the scan the vertical position of the needle is adjusted in order to
keep the tunneling current constant. In that way one can obtain
images of single atoms on the surface. It is also possible to map the
average position probability of surface electrons. CD 7.19 explains
in somewhat more detail how the STM works and shows a gallery of
spectacular images.

9.8. Example: Potential Well

9.8.1. Bound-state energies

The rectangular potential well is a potential barrier with a negative middle
potential,

V (x) =
{

−V0, for |x| < R,
0, for |x| ≥ R,

V0 > 0. (9.73)

Now it makes sense to consider also the energy region −V0 < E < 0. The
relation (9.66) between the coefficients of the solution on the left-hand side
of the well and the coefficients on the right-hand side still remains correct,
that is,

(

c
d

)

= T (−V0, 0, R)T (0,−V0,−R)
(

a
b

)

. (9.74)

The coefficient a belongs to the solution ω−→ in the region x < −R, which
increases exponentially for x → −∞ if the energy is negative. A solution with
nonzero coefficient a thus cannot be used in quantum mechanics because it
does not belong to the Hilbert space of square-integrable functions. A similar
observation leads to the exclusion of the coefficient d because it belongs to
the exponentially increasing solution ω←− in the region x ≥ R. Therefore,
only a function satisfying the constraint

ψ(E, x) =







b ω←−(E, x), for x < 0,

c ω−→(E, x), for x ≥ R,
(9.75)

is acceptable as a solution of the stationary Schrödinger equation. We thus
arrive at the condition

(

c
0

)

= T (−V0, 0, R)T (0,−V0,−R)
(

0
b

)

. (9.76)



9.8. EXAMPLE: POTENTIAL WELL 249

-4 -3 -2 -1 0

-3

-2

-1

0

1

2

Figure 9.5. The condition (9.80) for a rectangular poten-
tial well with R = 1 and V0 = 4. The dashed line repre-
sents the left-hand side of Eq. (9.80); the solid line shows the
right-hand side. The condition is fulfilled where the lines in-
terSection For this example, there are two possible energies
which lead to a square-integrable solution of the Schrödinger
equation: E0 = −3.33702, and E1 = −1.50881.

If we evaluate the right-hand side of this equation we obtain
(

c
0

)

=
b e−2κR

2κ k0

(

e2κR (k2
0+κ2) sin 2k0R

2κ k0 cos 2k0R − (k2
0−κ2) sin 2k0R

)

. (9.77)

with

κ =
√
−2E, k0 =

√

2(E + V0), (−V0 < E < 0). (9.78)

The condition (9.77) can only be satisfied if

2κ k0 cos 2k0R − (k2
0−κ2) sin 2k0R = 0. (9.79)

Inserting the definitions of κ and k0 in the equation above gives

2
√

−E(V0+E) cos
(

2
√

2(V0+E) R
)

= (V0+2E) sin
(

2
√

2(V0+E)R
)

. (9.80)

This is a transcendental equation for E which is best solved numerically.
Figure 9.5 shows an example with two values of E satisfying the condition.

9.8.2. Energy spectrum for the potential well

As a second order equation the stationary Schrödinger equation in one di-
mension has always two linearly independent solutions. Which solutions can
be accepted from the quantum-mechanical point of view depends on the
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energy under consideration. For the potential well we have the following
situation:

(1) E < −V0: There are no solutions of the stationary Schrödinger equation
with a quantum-mechanical interpretation. All solutions have an exponential
increase toward at least one side.

(2) −V0 < E < 0: There may exist square-integrable solutions ψ(Ek, x) at
certain energies E1, E2, . . . , En (n finite) in the interval −V0 < E < 0. These
energies can be determined from Eq. (9.80). A square-integrable solution of
the stationary Schrödinger equation is an eigenvector of the Hamiltonian
operator,

H ψ(Ek, x) = Ek ψ(Ek, x). (9.81)

Solutions of the time-dependent Schrödinger equation are

ψ(Ek, x, t) = ψ(Ek, x) exp(−i Ek t), k = 1, . . . , n, (9.82)

and linear combinations (superpositions) of these functions. A particle de-
scribed by a linear combination of the stationary solutions ψ(Ek, x, t) re-
mains near the region of the potential well for all times. These are bound
states.

(3) E > 0: All energies E > 0 lead to two solutions, which outside the well
are given by plane waves. One has to form wave packets to obtain solutions
with a quantum-mechanical interpretation. These solutions are scattering
states.

9.8.3. The scattering matrix

The scattering matrix connects the incoming waves with the outgoing waves,
while the transition matrix

T = T (−V0, 0, R)T (0,−V0,−R) (9.83)

connects the waves on the left-hand side with the waves on the right-hand
side. From

(

c
d

)

= T
(

a
b

)

=
(

T11 T12

T21 T22

) (

a
b

)

, (9.84)

we can determine the relation between the coefficients of the incoming wave,
a, d, and the coefficients of the outgoing wave, b, c. We obtain

(

b
c

)

= S
(

a
d

)

, (9.85)
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where

S =
1

T22

(

− T21 1

det T T12

)

. (9.86)

The scattering matrix S is unitary for energies E > 0. The definition of the
transition matrix T can also be used for other values of the energy. The
explicit form of the matrix element T22 for the potential well is

T22 =
e−κR

2κ k0

(

2κ k0 cos k0R − (k2
0−κ2) sin k0R

)

. (9.87)

We see that the elements of the S-matrix become singular when E ap-
proaches the energy of a bound state because T22 = 0 is just the condi-
tion (9.79). Indeed, for a bound state, the coefficients a and d are both zero,
while the coefficients b and c of the exponentially decaying parts are nonzero.
Hence the relation (9.85) shows that the elements of S must be infinite for
any bound-state energy. Indeed, we have the following general fact: The
analytical continuation of the S-matrix as a function of the energy E > 0
to arbitrary complex values of E has poles of first order at the bound-state
energies of the system.

9.9. Parity

The rectangular well discussed in Section 9.8 has the symmetry property

V (x) = V (−x). (9.88)

Correspondingly, the eigenfunctions of the Schrödinger operator also have a
symmetry with respect to reflections, see Fig. 9.6.

The observation of symmetry properties of the potential is always helpful
for the solution of the Schrödinger equation. The following considerations
are not limited to one space dimension. They are valid for x ∈ Rn as well.

9.9.1. The parity transformation

In order to investigate the reflection symmetry we introduce a linear operator
P by defining

(Pψ)(x) = ψ(−x). (9.89)

The operator P is called the parity transformation. Changing the sign of the
argument of the wave function obviously has no influence on the norm of the
wave function. Thus, the parity transformation is unitary. It is easy to see
that P is symmetric and hence self-adjoint (because it is defined everywhere),

P † = P = P (−1), P 2 = 1. (9.90)
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Figure 9.6. The energy eigenfunctions for a rectangular po-
tential well are either even, ψ(x) = ψ(−x), or odd, ψ(x) =
−ψ(−x).

These properties imply that the operator P has at most two eigenvalues, +1
and −1. (Unitarity implies that the spectrum of P is on the unit circle in C,
self-adjointness implies that the spectrum is real). The projection operators
onto the (infinite-dimensional) eigenspaces are given by

Peven = 1
2 (1 + P ), Podd = 1

2 (1 − P ). (9.91)

If ψ is an arbitrary square-integrable function, we may define

ψeven = Pevenψ, ψodd = Poddψ. (9.92)

The function ψeven is an even function in the sense

ψeven(x) = ψeven(−x) or Pψeven = ψeven. (9.93)

(If ψeven -= 0, then it is an eigenfunction of P belonging to the eigenvalue
+1). Similarly, the odd function satisfies

ψodd(x) = −ψodd(−x) or Pψodd = −ψodd. (9.94)

The reflection symmetry (9.88) of the potential means that the parity
operator commutes with the operator of multiplication by V ,

PV (x)ψ(x) = V (−x)ψ(−x) = V (x)(Pψ)(x), (9.95)

for all ψ in the domain of V . We also note that P anticommutes with the
position and momentum operators,

Px = −xP, Pp = −pP. (9.96)
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The latter property is an immediate consequence of the fact that
d

dx
ψ(−x) = −ψ′(x). (9.97)

We conclude from (9.96) that the parity transform commutes with the free
Hamiltonian H0 = p2/2. If the potential has the reflection symmetry, then
P commutes with the Hamiltonian H = H0 + V ,

[H, P ] = HP − PH = 0, on the domain of H. (9.98)

This property has the important consequence that the eigenfunctions of the
energy operator H can always be chosen as eigenfunctions of the parity
operator P . Let ψ be an arbitrary eigenfunction of the energy, Hψ = Eψ.
Then the commutation property (9.98) implies that

Hψeven = H 1
2 (1 + P )ψ = 1

2 (1 + P ) Hψ = Eψeven

and similarly Hψodd = Eψodd. Because any function ψ can be written as
the orthogonal sum ψ = ψeven + ψodd, we find that the eigenspace of H
corresponding to E is spanned by even and odd functions.

Whenever an eigenvalue is nondegenerate, that is, if the eigenspace is
one-dimensional, then the even and odd parts of the eigenfunction must be
linearly independent. Because these parts are orthogonal, one of them must
vanish. A nondegenerate eigenvalue of a Hamiltonian that is parity invariant
has either an even or an odd eigenfunction.

It is a general property of the one-dimensional Schrödinger equation that
all its eigenvalues are nondegenerate.

9.9.2. Example: The rectangular well

The condition (9.79) can be simplified by exploiting the symmetry of the
system under a parity transformation. This symmetry implies that the
eigenfunctions are either even or odd functions. For an even function, the
coefficient c of ω←− to the left of the well must be equal to the coefficient b of
ω−→ on the right-hand side. The first line in Eq. (9.77) gives for this situation

2κk0 = (k2
0 + κ2) sin 2k0R.

Inserting this into (9.79) and simplifying the expressions involving doubled
arguments of trigonometric functions, we obtain the condition

k0 sin k0R − κ cos k0R = 0 (for an even eigenfunction). (9.99)

For odd eigenfunctions ψ(x) = −ψ(−x) we have c = −b in Eq. (9.77) and a
similar consideration leads to

κ sin k0R + k0 cos k0R = 0 (for an odd eigenfunction). (9.100)
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Figure 9.7. The energy eigenvalues for a rectangular po-
tential well with R = 2.5 and V0 = 8 are the zeros of these
curves. The solid line shows the left-hand side of Eq. (9.99)
as a function of the energy E, the dashed line represents the
left-hand side of Eq. (9.100). The solid line determines the
eigenvalues with even eigenfunctions, the dashed line corre-
sponds to the odd eigenfunctions.

Figure 9.7 plots the right-hand sides of the new eigenvalue conditions showing
that even and odd eigenfunctions alternate in the well, the eigenfunction with
the lowest energy (the ground state) being even.
The wave function inside the well is a superpositon of ω←−(E+V0, x) and
ω−→(E+V0, x). The only even superpositions are multiples of

ω−→(E+V0, x) + ω←−(E+V0, x) = 2 cos k0x, (9.101)

while the only odd superpositions that can be formed of plane waves are
multiples of

ω−→(E+V0, x) − ω←−(E+V0, x) = 2i sin k0x. (9.102)

Exercise 9.1. Solve the stationary Schrödinger equation with a well po-
tential using the ansatz

ψ(E, x) =
{

N cos k0x, for 0 ≤ x < R,
N (cos k0R expκR) exp(−κx), for R < x

(9.103)

for an even eigenfunction, and a similar ansatz for an odd eigenfunction.
Show that the condition of continuity of ψ′ at x = R is equivalent to (9.99)
(resp. to (9.100) for the odd eigenfunction).
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Exercise 9.2. With ψ(E, x) defined as in Eq. (9.101), calculate

‖ψ(E, ·)‖2 = 2
∫ ∞

0
|ψ(E, x)|2 dx

and show with the help of Eq. (9.99) that a normalized wave function is
obtained for

N =
1

√

R + 1
κ

. (9.104)

Prove the analogous result for the odd eigenfunction.

Several movies on the CD show scattering phenomena in two di-
mensions. Obstacle scattering is shown in the chapter on boundary
conditions. The chapter about scattering theory contains several
movies of transparent obstacles, that is, potential barriers of finite
height. Two-dimensional steps are shown in CD 7.8, barriers in
CD 7.16. The scattering at smoothed spherical barriers is visualized
in CD 7.20. Here the second movie shows a particle that partially
penetrates into a half-crystal.
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Appendix A

Numerical Solution in One
Dimension

In most cases, the Schrödinger equation with an external field cannot be
solved analytically. Hence many of the movies had to be generated with the
help of numerical methods. In order to solve the time-dependent Schrödinger
equation we use a finite difference scheme, the Crank–Nicolson formula. We
consider, as an example, the Schrödinger equation in one space dimension
with an electrostatic potential V (x, t) (a magnetic field in one-dimension can
always be gauged away).

A.1. Discretization of the Schrödinger Equation

We consider the equation

a
∂

∂t
ψ(x, t) = −b

∂2

∂x2
ψ(x, t) + V (x, t)ψ(x, t) (A.1)

with a given initial value

ψ(x, t0) = ψ0(x). (A.2)

For the numerical treatment we restrict the position space to some finite
interval, say [x0, xn]. We have to prescribe the behavior of the solution at
the borders of the interval. This can done with suitable boundary conditions,
for example

ψ(x0, t) = ψ(xn, t) = 0, for all t. (A.3)

The boundary conditions will certainly influence the behavior of the solution
as discussed in Chapter 5. If there are no boundary conditions for the orig-
inal equation (A.1), the boundary effects have to be treated as a numerical
artifact. The best way to avoid unwanted boundary effects is to place the
initial wave packet (for example, a well localized Gaussian function) suffi-
ciently far away from the borders of the domain [x0, xn]. The domain has to
be chosen large enough, so that the wave packet does not come close to its
borders during the time-interval of interest.

257
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The numerical solution of (A.1) is based on a discretization of space and
time which allows to approximate the partial differential equation by a ma-
trix equation. The interval [x0, xn] is divided into n equal sized subintervals
of size

∆x =
xn − x0

n
. (A.4)

The points are

{x0, x1, . . . , xi, . . . , xn−1, xn}. (A.5)

Time is discretized into time-steps of length ∆t. The sequence of times is

{. . . , t0, t1, . . . , tj , . . . , tn, . . . }. (A.6)

For the values of the solution and of the potential at the space-time points
(xi, tj) we write

ψ(xi, tj) = ψj
i , V (xi, tj) = V j

i . (A.7)

The derivatives are replaced, as usual, by the difference quotients

∂

∂t
ψ

∣

∣

∣

∣

∣

xi,tj

≈ ψj+1
i − ψj

i

∆t
, (A.8)

∂2

∂x2
ψ

∣

∣

∣

∣

∣

xi,tj

≈
ψj

i+1 − 2ψj
i + ψj

i−1

(∆x)2
. (A.9)

We insert these expressions into the Schrödinger equation. On the right-
hand side of Eq. (A.1) we take the average over the times j and j + 1 and
obtain

2a

∆t

(

ψj+1
i − ψj

i

)

= − b

(∆x)2
(

ψj+1
i+1 − 2ψj+1

i + ψj+1
i−1

)

− b

(∆x)2
(

ψj
i+1 − 2ψj

i + ψj
i−1

)

+ V j+1
i ψj+1

i + V j
i ψ

j
i , (A.10)

for all j and i = 1, 2, . . . , n − 1, and the boundary condition becomes

ψj
0 = 0 = ψj

n, for all j. (A.11)

Using the abbreviations

u = b/(∆x)2, v = a/∆t, (A.12)

and

ai = −uψj
i+1 + (2u + 2v + V j

i )ψj
i − uψj

i−1, (A.13)

di = 2v − 2u − V j+1
i , (A.14)
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we can write Eq. (A.10) as

uψj+1
i+1 + di ψ

j+1
i + uψj+1

i−1 = ai, (A.15)

where i = 1, . . . , n − 1. Setting a0 = an = 0 we can write everything
(including the boundary condition) in matrix form:





















1 0
0 d1 u 0

u d2 u
. . . . . . . . .

0 u dn−1 0
0 1











































ψj+1
0

ψj+1
1

ψj+1
2
...

ψj+1
n−1

ψj+1
n























=





















a0

a1

a2
...

an−1

an





















. (A.16)

This inhomogeneous linear equation gives ψ at time tj+1 in terms of the
solution at time tj . The boundary condition is preserved automatically.

A.2. Solution of a Linear Equation with Tridiagonal Matrix

We have to solve Eq. (A.16) which is a linear inhomogeneous equation in Rn

of the form Tψ = a with a tridiagonal matrix T. Because of its importance
we give the solution in the general case. We assume that T is a matrix of
the form

T =





















d0 u0

l1 d1 u1 0
l2 d2 u2

. . . . . . . . .
0 ln−1 dn−1 un−1

ln dn





















. (A.17)

It is possible to write T = FG with triangular matrices F and G of a
particularly simple type:

F =





















f0 0 · · · 0

l1 f1 0
...

0 . . . . . . . . .
... ln−1 fn−1 0
0 · · · 0 ln fn





















, G =





















1 g0 0 · · · 0

0 1 g1
...

. . . . . . . . . 0
... 0 1 gn−1

0 · · · 0 1





















.

It is easy to determine the matrix elements fi and gj from the equation
T = FG. We can now solve the equation Tψ = a by first determining a
vector b from Fb = a and then solving Gψ = b for ψ. For triangular matrices
with only one off-diagonal row this can be done very easily.
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A.3. Crank–Nicolson Method for the Schrödinger Equation

The following algorithm summarizes the considerations above. Assume that
the solution of Eq. (A.1) is given at a time tj on space points xi, as a vector
(ψj

0, ψ
j
1, . . . , ψj

n). We determine (ψj+1
0 , ψj+1

1 , . . . , ψj+1
n ), the solution at time

tj+1 by the following calculation.

1. Step:

ai = (2u + 2v + V j
i )ψj

i − u(ψj
i+1 + ψj

i−1), i = 1, . . . , n − 1,

di = 2v − 2u − V j+1
i , i = 1, . . . , n − 1.,

2. Step:

f1 = d1,

fi = di − u2/fi−1 for i = 2, . . . , n − 1.

3. Step:

b0 = 0,

bi = (ai − ubi−1)/fi for i = 1, . . . , n − 1.

4. Step:

ψj+1
n = 0,

ψj+1
i = bi − uψj+1

i+1 /fi, for i = n − 1, . . . , 1.

ψj+1
0 = 0.

A.4. Discussion

The restriction to a finite interval and the discretization of space leads to
an approximation of the partial differential equation (A.1) by a system of
ordinary differential equations. The wave function is only calculated at the
points xk, k = 0, . . . , n and is hence approximated by a vector in Cn+1. With
the approximation of the Hamiltonian by a difference operator according to
Eq. (A.9) we obtain

a
d

dt
(ψ(t) = Ĥ (ψ(t), (ψ = (ψ0, ψ1, . . . , ψn) ∈ C

n+1, (A.18)
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where Ĥ is the symmetric tridiagonal matrix

Ĥ =





















1 0
0 2u + V1 −u 0

−u 2u + V2 −u
. . . . . . . . .

0 −u 2u + Vn−1 0
0 1





















. (A.19)

Let us assume that the potential and hence the matrix Ĥ does not depend on
time. In this case the solution of the system of ordinary differential equations
(A.18) belonging to an initial vector (ψ(0) is given by

(ψ(t) = exp
(1
a

Ĥ t
)

(ψ(0), (A.20)

where the exponential function of any matrix A is defined by the power series

expA = 1 + A +
A2

2!
+

A3

3!
+ · · · . (A.21)

Advancing the solution by one time step ∆t is done by applying the expo-
nential operator to the state vector at time tj ,

(ψ(tj+1) = exp
(1
a

Ĥ ∆t
)

(ψ(tj). (A.22)

For the numerical calculation of this time step, one could, for example,
truncate the power series after a finite number of summands. For example,
the first order explicit Euler method is obtained by writing

exp
(1
a

Ĥ ∆t
)

≈ 1 +
1
a

Ĥ ∆t. (A.23)

The Crank–Nicolson method is obtained by the approximation

exp
(1
a

Ĥ ∆t
)

≈
(

1 − 1
2a

Ĥ ∆t
)−1 (

1 +
1
2a

Ĥ ∆t
)

. (A.24)

Writing
(

1 − 1
2a

Ĥ ∆t
)

(ψ(tj+1) =
(

1 +
1
2a

Ĥ ∆t
)

(ψ(tj) (A.25)

instead of Eq. (A.22) immediately leads to Eq. (A.10). The Crank–Nicolson
method is of second order in ∆t. Writing

(1 − B)−1 = 1 + B + B2 + B3 + · · · , with B =
1
2a

Ĥ ∆t
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(the power series converges for ∆t small enough), then the right-hand side
of (A.24) becomes

(1 − B)−1(1 + B) = (1 + B + B2 + · · · )(1 + B) = 1 + 2B + 2B2 + · · ·

= 1 +
1
a

Ĥ ∆t +
1
2

(1
a

Ĥ ∆t
)2

+ · · · ,

which reproduces the power series of the exponential function up to order
(∆t)2. Thus, the Crank–Nicolson method is more accurate than the Euler
method—at the expense of being implicit. The calculation of ψ(tj+1) accord-
ing to Crank–Nicolson involves an additional matrix-inversion (the solution
of the linear system (A.16)). This is not necessary for the Euler method,
which gives ψ(tj+1) explicitly in terms of ψ(tj). But there is another ad-
vantage of the Crank–Nicolson method. For the Schrödinger equation, we
have a = i in Eq. (A.18). Because Ĥ is a Hermitian matrix, the exponential
operator exp(−iĤ∆t) is a unitary matrix. The approximation (A.24) is also
unitary. Hence the Crank–Nicolson method (unlike the unstable explicit
Euler method) automatically preserves the norm of the solution.



Appendix B

Movie Index

1. Visualization

CD 1.1. Complex numbers and the color map

1. Complex plane
2. Color code
3. Color map

CD 1.2. RGB color cube

CD 1.3. HSB cone

CD 1.4. HSB cylinder

CD 1.5. HLS double cone

CD 1.6. Color sphere

CD 1.7. Stereographic projection and the color map

CD 1.8. Visualization of complex functions in one dimension

CD 1.9. Visualization of complex functions in two dimensions

CD 1.10. Many examples

CD 1.11. Jacobi elliptic functions

CD 1.12. Plot of real part

CD 1.13. Plot of vector field

CD 1.14. Complex map

CD 1.15. Color density plot

CD 1.16. Surface plot

CD 1.17. Isosurface in three dimensions

CD 1.18. Plane wave in two dimensions
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2. Fourier Analysis

CD 2.1. Trigonometric sums
1. Approximation of a Gaussian
2. Sum of exp(ix) and exp(−ix)
3. Complex Gaussian function
4. The Fourier coefficients

CD 2.2. Fourier spectrum
1. Real-valued Gaussian function
2. Complex Gaussian function

CD 2.3. Approximation of a characteristic function

CD 2.4. Saw-tooth function
1. Real-valued function
2. Function with complex values

CD 2.5. Fourier expansion and translation

CD 2.6. From Fourier series to Fourier integral

CD 2.7. Translations
1. Translation in k-space
2. Translation in x-space

CD 2.8. Noncommutativity
1. x-space translation first
2. k-space translation first

CD 2.9. Scaling transformation

CD 2.10. Example of the Fourier transform 1/(1 + x2)

CD 2.11. Step function
1. Fourier transform and scaling
2. Approximation by continuous functions

CD 2.12. A discontinuous function

CD 2.13. Example of the Fourier transform: cos(ax) exp(−x2)

CD 2.14. Example of the Fourier transform: cos(x − b) exp(−x2)

CD 2.15. Phase factor in momentum space

CD 2.16. Example of the Fourier transform

CD 2.17. Example of the Fourier transform

CD 2.18. Generalized derivative

CD 2.19. Action of the resolvent on a Gaussian

CD 2.20. Resolvent acting on a step function
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3. Free Particles

CD 3.1. Free plane waves
1. Real and imaginary part
2. Plot as a space curve
3. Plot filled with colors
4. Periodic superposition
5. Quasiperiodic superposition

CD 3.2. Building a wave packet
1. Superposition of real parts
2. ArgColorPlot of the superposition

CD 3.3. Gaussian wave packets
1. Free particle at rest
2. Slowly moving free particle (k = 2)

CD 3.4. Fast wave packets
1. Fast moving free wave packet (k = 8)
2. Very fast moving free particle (k = 100)

CD 3.5. Two-dimensional wave packet (Gaussian at rest)

CD 3.6. Slow wave packet in two dimensions

CD 3.7. Wave function in momentum space

CD 3.8. Motion in phase space
1. Slowly moving Gaussian wave packet
2. Gaussian at rest in position space

CD 3.9. Energy representation
1. Gauss function in energy space
2. Time evolution in energy space

CD 3.10. Direction of motion
1. Particle at rest
2. Slowly moving particle

CD 3.11. Free time evolution
1. Flow from red to yellow
2. Flow from green to blue

CD 3.12. Step function
1. Time evolution
2. Close-up in slow motion
3. Approximation of a step function

CD 3.13. Two separated Gaussian peaks (Schrödinger cat state)
1. Non-Gaussian initial condition
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2. Time evolution
3. Asymptotic time evolution

CD 3.14. Superposition realizing a boundary condition
1. Dirichlet boundary condition
2. Neumann boundary condition

CD 3.15. Dirichlet boundary condition in two dimensions
1. Two Gaussians
2. Time-symmetric motion

CD 3.16. Neumann boundary condition in two dimensions
1. Wave function in position space
2. Position probability density

CD 3.17. Exotic initial state (circularly symmetric)

CD 3.18. State evolving into a characteristic function

CD 3.19. Motion in a constant field
1. potential energy = kinetic energy
2. potential energy > kinetic energy
3. potential energy < kinetic energy
4. potential energy + kinetic energy = 0
5. potential energy = 0 (free motion for comparison)

CD 3.20. Magnetic gauge field in one and two dimensions
1. Motion of a Gaussian in a gauge field
2. Motion in another gauge field
3. Gauge field in two dimensions

4. Boundary Conditions

CD 4.1. Particle hitting a wall
1. Elastic reflection (k = 10)
2. Elastic reflection (k = 2)
3. Elastic reflection (k = 5)
4. Symmetric reflection

CD 4.2. Momentum space
1. Elastic reflection with k = 5
2. Symmetric reflection with k = 5

CD 4.3. Method of mirror waves
1. Gaussian with k = 5
2. Time-symmetric state
3. Particle at rest near the wall

CD 4.4. Neumann condition



4. BOUNDARY CONDITIONS 267

1. Particle at rest near the wall
2. Comparison with Dirichlet
3. Reflection and phase shift

CD 4.5. Between two walls
1. Gaussian function with mirrors
2. Slower moving initial function

CD 4.6. Particle in a box
1. Slow Gaussian initial function
2. Fast, well-localized initial state
3. Initially at rest near one wall

CD 4.7. Dirichlet box in 2D
1. Gaussian initial state
2. Diagonal motion
3. Centered Gaussian at rest

CD 4.8. Dirichlet box in 2D
1. Centered initial state
2. Asymmetric initial state

CD 4.9. Dirichlet box
1. States with a sharp energy
2. Superposition of states 1 and 2
3. Superposition of states 1 and 3
4. Superposition of states 2 and 3

CD 4.10. Neumann box
1. States with a sharp energy
2. Superposition of states 0 and 1
3. Superposition of states 1 and 2
4. Gaussian initial state

CD 4.11. Dirichlet box
1. Strange behavior of the unit function

CD 4.12. Particle on a circle
1. Superposition of eigenfunctions
2. Self-interference of a Gaussian
3. Gaussian moving on a circle
4. Gaussian with periodic BC

CD 4.13. Quantum waveguide
1. Motion parallel to walls
2. Reflection between walls
3. Converging walls

CD 4.14. Periodic walls
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1. Wall with periodic structure
2. Sine wall with short wavelength
3. Sine wall with long wavelength
4. Angle of incidence 45 degrees

CD 4.15. Obstacle Scattering
1. Scattering at a large sphere
2. Scattering at a large square
3. Scattering at a small sphere
4. Scattering at a small square

CD 4.16. Wall with a hole
1. Penetrating Gaussian state
2. Dependence on hole diameter
3. Scattering at the edge of a wall

CD 4.17. Double-slit experiment
1. Interference pattern
2. One slit closed—no interference
3. Superposition of spherical waves

CD 4.18. Double slit
1. Faster Gaussian wave packet
2. Dependence on slit distance

CD 4.19. Multislit
1. Scattering of Gaussian state
2. Parameter dependence

5. Harmonic Oscillator

CD 5.1. Classical motion

CD 5.2. Energy eigenstates
1. Introduction
2. Gallery of eigenfunctions
3. Comparison with classical density
4. Color plot of eigenfunctions

CD 5.3. Oscillating state 0+1
1. Wave function in position space
2. Position probability density
3. Wave function in momentum space
4. Wave function in phase space

CD 5.4. Oscillating state 0+2
1. Wave function in position space
2. Position probability density
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3. Wave function in momentum space
4. Wave function in phase space

CD 5.5. Oscillating state 1+2
1. Wave function in position space
2. Position probability density
3. Wave function in momentum space
4. Wave function in phase space

CD 5.6. Superposition of three eigenstates (0 + 1 + 2)
1. Wave function in position space
2. Position probability density
3. Wave function in momentum space

CD 5.7. Linear combination of three eigenstates (0 + 1 − 2)
1. Wave function in position space
2. Position probability density

CD 5.8. Superposition of ten eigenstates
1. Sum of first ten eigenstates
2. Boltzmann distribution of energies
3. Random phases

CD 5.9. Eigenfunction expansion
1. Build a Gaussian function (interactive experiment)
2. Energy representation
3. Energy representation of a shifted state
4. Time evolution in energy space

CD 5.10. Coherent state (shifted eigenstate)
1. Wave function in position space
2. Position probability density
3. Wave function in momentum space
4. Energy representation
5. Time period and gauge

CD 5.11. Squeezed state (widespread initial localization)
1. Wave function in position space
2. Position probability density
3. Wave function in momentum space

CD 5.12. Squeezed state (sharper initial localization)
1. Wave function in position space
2. Position probability density
3. Momentum space

CD 5.13. Step function
1. Approximation in position space
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2. Position probability density
3. Momentum space

CD 5.14. Coherent state
1. Phase space motion
2. Circular motion in two dimensions
3. Elliptic motion in two dimensions

CD 5.15. Diagonal motion (surface plots)
1. Coherent state in two dimensions
2. Squeezed state in two dimensions (flat)
3. Squeezed state in two dimensions (sharp)

CD 5.16. Particle at rest
1. Centered squeezed state
2. Asymmetric centered state
3. Squeezed state in phase space

CD 5.17. Phase space motion (contour plots)
1. Squeezed state in phase space
2. Closer to the center
3. Very flat Gaussian state
4. Sharp Gaussian peak

CD 5.18. Circular motion (surface plots)
1. Circular motion of Gaussian
2. Another initial condition
3. Yet another initial condition (“the swimmer”)

CD 5.19. Constant shapes (time evolution of shifted eigenstates)
1. Translated first eigenstate
2. Second eigenstate
3. First+second eigenstate

CD 5.20. Gallery of angular momentum eigenstates

6. Special Systems

CD 6.1. Free Fall
1. Dropping a particle
2. Throwing a particle

CD 6.2. Free fall
1. Exact solution in a linear potential

CD 6.3. Free fall in two dimensions
1. Letting a particle drop vertically
2. Vertical throw of a particle
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CD 6.4. Quantum ballistics
1. Horizontal initial velocity
2. Parabolic trajectory

CD 6.5. Bouncing ball
1. Eigenfunctions
2. Oscillating state “0+1”
3. Oscillating state “0+2”

CD 6.6. Bouncing ball
1. Oscillating state “1+2”
2. Oscillating state “0+1+2”

CD 6.7. Bouncing ball
1. Gaussian initial function
2. Approximate revival of the initial state
3. Better localized Gaussian

CD 6.8. Box in two dimensions with gravity
1. Gaussian initial state

CD 6.9. Box in two dimensions with gravity
1. Eigenfunctions

CD 6.10. Box in two dimensions with gravity
1. Oscillating state

CD 6.11. Magnetic potential
1. Three-dimensional view of the Poincaré gauge
2. Constant field strength in two dimensions
3. Arrows and colors

CD 6.12. Gauge transformation
1. Translations of the vector potential

CD 6.13. Classical motion
1. Particle moving on a circle
2. Small circle—low energy

CD 6.14. Translations (E =const)
1. Horizontal direction
2. Vertical direction
3. Translations do not commute
4. Shifted ground state

CD 6.15. Translations of second kind
1. Horizontal direction
2. Vertical direction
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3. Noncommutativity

CD 6.16. Coherent states
1. Gaussian starting at x = 0
2. Zero momentum and low energy
3. Zero momentum and high energy
4. Gaussian in another gauge

CD 6.17. Squeezed states
1. Well localized at x = 0
2. Flat state starting at x = 0
3. Zero momentum and low energy
4. Vector potential at center

CD 6.18. Eigenfunctions
1. Eigenfunction “0-1”
2. Eigenfunction “2-2”
3. Translated eigenfunction “2-2”

CD 6.19. Oscillating states
1. Simple linear combination
2. Centered state “(0+1)-(0+2)”
3. Shifted initial state

CD 6.20. Aharonov–Bohm effect
1. Interference due to gauge potential
2. No interference for quantized flux
3. Dependence on field strength

7. Scattering Theory

CD 7.1. Scattering coefficients for a potential step
1. R(E) and T (E) as functions of the energy
2. R(E) and T (E) as functions of the step size

CD 7.2. Step potential: Plane wave solutions
1. Incident wave from the left
2. Step size to infinity
3. Incident wave from the right

CD 7.3. Wave packets at a step
1. Parts of the wave packet
2. Energy higher than step size
3. Total reflection at low energies

CD 7.4. Potential step
1. Gaussian at a potential step
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2. Narrow energy distribution
3. Dependence on the step size

CD 7.5. Momentum space
1. Energy/momentum representation
2. Dependence on average momentum
3. Dependence on the step size
4. Potential step down (V negative)

CD 7.6. Fourier transform
1. Step size equals mean energy
2. Step size is half of the energy
3. Potential step down

CD 7.7. Continuous potential steps
1. Step size = 0.8〈E〉
2. Step size = 1.2〈E〉
3. Step size = 1.6〈E〉
4. Step size = 〈E〉 (wide)

CD 7.8. Potential step in two dimensions
1. Step up, scattering from the front
2. Step down, from the front
3. Step up, scattering at 45 degrees
4. Step down, at 45 degrees

CD 7.9. Potential barrier
1. Coefficients depending on width
2. Solution depending on width
3. Coefficients depending on height
4. Solution depending on height

CD 7.10. Gaussian at barrier
1. Energy around a zero of R
2. Energy around a maximum of R
3. Reflection at both edges
4. Multiple reflections

CD 7.11. Tunnel effect
1. Wave packet penetrating a barrier
2. Very thin rectangular barrier
3. Tunneling through a thicker barrier

CD 7.12. Fourier transform
1. Scattering at a rectangular barrier
2. Scattering at a thick barrier
3. Tunneling through a thin barrier
4. Thin barrier, higher energy
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CD 7.13. Momentum distribution
1. Dependence on the height V
2. Dependence on the average energy
3. Dependence on the thickness R

CD 7.14. Rectangular barrier
1. Influence of thickness on final state
2. Much reflection at a thin barrier
3. Less reflection at a thicker barrier

CD 7.15. Smoothed barrier
1. Wave packet and Fourier transform
2. Wave packet at a thicker barrier
3. Very thick barrier

CD 7.16. Barrier in two dimensions
1. Jumping over a wall
2. Penetrating a thin wall
3. Oblique wall
4. Scattering at a potential corner

CD 7.17. Barrier in two dimensions
1. Scattering at a circular barrier
2. Scattering at a smaller circle
3. Scattering at a square barrier

CD 7.18. Scanning tunneling microscope
1. Tip close to a conducting surface
2. Larger tip–surface distance
3. Scanning a surface with the STM

CD 7.19. Gallery of STM images

CD 7.20. Several obstacles
1. Two smoothed circular barriers
2. Half-crystal
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Other Books on Quantum
Mechanics

The huge number of excellent books about quantum mechanics indicates
that it is very difficult to write anything new and original in that field. The
Bibliography contains a certainly incomplete list and I apologize to all who
have made significant contributions and do not appear here. Moreover, I did
not include books on special topics such as quantum scattering theory or rel-
ativistic quantum mechanics, or books which are only available in languages
other than English.

My decision to write Visual Quantum Mechanics (i.e., a “Movie Book of
Quantum Mechanics”) has certainly been influenced by The Picture Book
of Quantum Mechanics [10] (see also [11]) and by some recent books con-
cerning the application of computer algebra systems (such as Mathematica)
to quantum mechanics, see the books [18], [36].

Sometimes, I look into one of the famous old classical texts, for example,
[5], [7], [14], [24], [39], [49], [48], and [68]. Perhaps the most famous and most
classic are [15] and [52], but I would not recommend to begin with those. If
you prefer a more intuitive approach, you should read Feynman’s lectures
[19], which are still incredibly modern, and [40].

If you want to train your problem solving skills, you should have a look
at [22], [31], [70], or [78]. On my desk I also found [4], [12], [62], and [76]
which I recommend for the mathematically inclined reader, but not without
some previous knowledge of functional analysis. The standard for books
about the mathematical methods of quantum mechanics is set by [64].

If you want to read about quantum mechanics and its weird interpreta-
tion without being disturbed by mathematical formulas, I recommend [30].
For more recent developments in the quantum measurement problem, see the
book of Omnes [54]. People interested in the history of quantum mechanics
will like [38].

An alternative approach to quantum physics using Feynman’s path in-
tegral formalism is explained in [20] and [66].
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[62] E. Prugovečki. Quantum Mechanics in Hilbert Space. 2nd edition. Academic Press,
New York, 1981.

[63] A. I. M. Rae. Quantum Mechanics. 3rd edition. IOP Pub/Institute of Physics, Bristol,
1992.

[64] M Reed, B. Simon. Methods of Modern Mathematical Physics. (Four volumes). Aca-
demic Press, New York, 1972–1978.

[65] R. W. Robinett. Quantum Mechanics. Classical Results, Modern Systems, and Visu-
alized Examples. Oxford University Press, New York, 1996.

[66] G. Roepstorff. Path Integral Approach to Quantum Physics : An Introduction. Texts
and Monographs in Physics. Springer-Verlag, New York, 1996.

[67] J. J. Sakurai, San F. Tuan. Modern Quantum Mechanics. Addison-Wesley, Reading,
MA, 1994.

[68] L. I. Schiff. Quantum Mechanics. 3rd edition. McGraw-Hill, New York, 1968.
[69] R. Shankar. Principles of Quantum Mechanics. 2nd edition. Plenum, New York, 1994.
[70] G. L. Squires. Problems in Quantum Mechanics. With solutions. Cambridge Univer-

sity Press, Cambridge, 1995.
[71] L Sobrino. Elements of Non-Relativistic Quantum Mechanics. World Scientific, Sin-

gapore, 1996
[72] W.-H. Steeb. Quantum Mechanics using Computer Algebra. World Scientific, Singa-

pore, 1994.
[73] D. F. Styer. The Strange World of Quantum Mechanics. Cambridge University Press,

Cambridge, 2000.
[74] A. Sudbery. Quantum Mechanics and the Particles of Nature. Cambridge University

Press, Cambridge, 1986.
[75] F. Schwabl. Quantum Mechanics. 2nd edition. Springer-Verlag, New York, 1995.
[76] W. Thirring. A Course in Mathematical Physics. Vol. 3. Springer-Verlag, New York,

1981.
[77] J. S. Townsend. A Modern Approach to Quantum Mechanics. McGraw-Hill, New

York, 1992.
[78] E. Zaarur, P. Reuven. Schaum’s Outline of Quantum Mechanics. McGraw-Hill, New

York, 1998.



Index

absolute value, 3
action, 51
adjoint, 143
Aharonov–Bohm effect, 202
Airy functions, 197
amplitude, 18, 56
amplitude function, 57
angular momentum, 92, 125, 216, 221,

224
annihilation operator, 183
argument, 3
asymptotic time evolution, 75, 236
Avron–Herbst formula, 193

basis, 24
of eigenfunctions, 118, 164

Bohm’s quantum mechanics, 72
bouncing ball, 196
bound states, 118, 159
boundary condition, 108

Dirichlet, 108, 197
Neumann, 110
periodic, 124

bounded, 31
box, 111
Bragg condition, 52
brightness, 5

canonical commutation relations, 93, 151,
180, 210

canonically conjugate, 204
Cauchy sequence, 23
Cauchy–Schwarz inequality, 23, 41
center of motion, 208, 214
characteristic function, 19, 100
CIE-Lab, 8
classical motion

harmonic oscillator, 159, 166, 173, 181

linear potential, 192
magnetic field, 207

classically allowed region, 159
closure, 32
coherent states, 175, 184
collapse of wave packet, 102
color manifold, 5
color map, 7
commensurable, 199
commutator, 30, 93, 151
commuting operators, 149, 153
compactified complex plane, 4
compatible, 70, 153
completeness, 23

of oscillator functions, 186
completeness property, 24
complex infinity, 4
complex number, 2
complex plane, 3
composition of linear operators, 30
confluent hypergeometric function, 223
conservation law, 154
conservation of the norm, 62
constant force, 192
constant magnetic field, 202, 224
constant of motion, 154, 172
constant potential, 98
constants of motion, 210
continuity at zero, 32
continuity equation, 71
continuous, 31
convergence in the mean, 18, 119
Coulomb gauge, 99
Crank–Nicolson formula, 260
creation operator, 183
current vector, 71

279



280 INDEX

degeneracy, 115
delta distribution, 46
dense set, 32
derivative, 36
determinative measurement, 69
dimensionless units, 161
Dirac delta function, 45
Dirichlet boundary condition, 108, 141,

145, 197, 233
dispersion relation, 50
distance, 22
distribution, 46
domain, 30

extension of, 32
dualism, 50

eigenfunction, 115
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potential barrier, 243
potential energy, 91
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Schrödinger equation
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Schrödinger operators, 96
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Schrödinger equation
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linearity, 56

Schwartz space, 179
self-adjoint, 144
shifted initial state, 175, 215
Sobolev inequality, 45
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spinor wave function, 14
spreading of wave packets, 62
spring constant, 158
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square-summable, 23
standard deviation, 43
state, 85
stationary plane wave, 9, 16
stationary Schrödinger equation, 117
stationary state, 117
statistical interpretation, 64
step function, 122
step potential, 231
stereographic projection, 3
Stone’s theorem, 146
strict solution, 136
strong continuity, 139
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of oscillator eigenstates, 168

superposition principle, 55, 86
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tensor product, 178
test functions, 46
time delay, 244
time evolution, 136
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energy representation, 82
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harmonic oscillator, 168
magnetic field, 217
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unit function, 120

total reflection, 232
transition matrix, 241
transition probability, 104
translation, 34, 147, 174

in a magnetic field, 211
transmission coefficient, 232
transmission probability, 232
trigonometric sum, 16
tunnel effect, 246
turning points, 159

unbounded operator, 31, 144
uncertainty, 43, 90, 152

uncertainty principle lemma, 45
uncertainty relation, 34, 41, 68, 152, 166
unitary, 138, 143
unitary group, 139, 146

vector potential, 96
velocity operator, 203
violation of supersymmetry, 181

wave, 50
wave function, 1

for particle with spin, 13
wave number, 16, 50
wave packet, 55, 109, 234

collapse, 102
in energy space, 81
spreading, 62

wave vector, 50
wave-particle dualism, 50
wavelength, 50
Weyl relations, 149, 174, 185



Color Plate 1. Color manifold in various representations:
The RGB color cube, the HSB cone, and the HLS double-
cone. Each figure indicates the shape of the manifold and
shows a collection of lines with constant saturation on a sur-
face with brightness 0.75. (Section 1.2.2.)

Color Plate 2. The color map of the sphere is defined by
mapping the surface of the color manifold in the HLS system
to the sphere. With the help of a stereographic projection,
the colored sphere can be used to define a color map of the
complex plane. (Section 1.2.3.)
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Color Plate 3. Color map of the complex plane. Each
complex number has a hue proportional to its phase, the
lightness corresponds to its absolute value. This color map of
the plane is obtained by a stereographic projection from the
colored sphere in Color Plate 2. (Section 1.2.3.)
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Color Plate 4. Various visualizations of the complex-
valued function x → exp(ix). See CD 1.8 for other examples.
(a) Separate plots of the real part (red) and the imaginary
part (yellow-green), (b) representation as a space curve, (c)
plot of the absolute value with a color code for the phase.
(Section 1.3.1.)



Color Plate 5. Visualizations of a wave function in two
dimensions. The left graphic shows the function as a “density
plot” with additional contour lines for the absolute value. In
the three-dimensional surface plot the height of the surface
gives the absolute value of the wave function. In both cases,
the color describes the complex values according to Color
Plate 3. (Section 1.3.2.)

Color Plate 6. Visualization of the function ψ(x, y) =
(x + iy)3 − 1 using the color map of Color Plate 3. The left
graphic shows the function ψ and the right graphic shows its
square ψ2. The zeros of ψ2 are of second order. This can be
easily recognized because all colors appear twice on a small
circle around each zero. (Section 1.3.2.)



Color Plate 7. Visualization of a wave function in three
dimensions. The picture shows the wave function of a highly
excited state of the hydrogen atom (with quantum numbers
n = 10, l = 5, m = 3). A certain level of the absolute value
of the wave function is indicated by an isosurface. The hue
of the color is given by the phase of the wave function. (Sec-
tion 1.3.2.)
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Color Plate 8. Various functions and the spectrum of the
Fourier amplitudes ψ̂(k(L)

n ) defined in Eq. (2.13), with k(L)
n =

nπ/L. The lines describe the absolute values (length) and
the phases (color) of the Fourier amplitudes. (Section 2.1.2.)



-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

L = 20

Color Plate 9. The Fourier spectrum of the Gaussian in
Fig. 8, but with respect to a much larger interval [−L, L].
This illustrates the transition from the Fourier spectrum to
the Fourier transformed function ψ̂. (Section 2.3.1.)
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Color Plate 10. The Fourier transform of a Gaussian
function exp(−x2/2) is again a Gaussian function. The pic-
ture shows the function exp(2ix−x2/2) (left) and its Fourier
transform exp(−(k − 2)2/2) (right). The translation by 2
in momentum space corresponds to a phase shift by 2ix in
position space. (Section 2.6.1.)
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Color Plate 11. Time evolution of a Gaussian wave packet
with average momentum 2. It can be seen that the maximum
of the wave packet moves according to classical physics with
velocity 2. During the time evolution the wave packet spreads
and contributions of higher momenta accumulate in front of
the maximum. (Section 3.3.2.)
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Color Plate 12. There is always a flow in the direction of
increasing phase. Hence if a yellow region of a wave packet
is surrounded by red, then the wave function will increase in
the yellow region. (Section 3.5.)
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Color Plate 13. Here the function sin(4x) exp(−x2/2) is
shown together with its Fourier transform, which has two
well-separated peaks in momentum space. (Section 3.6.)
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Color Plate 14. Some snapshots from the time evolution
of the function in Color Plate 13. For sufficiently large times
the localization in position space can be understood from the
distribution of momenta in the Fourier transform of the initial
wave packet. (Section 3.6. See also CD 3.14.)
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Color Plate 15. Particle in a box by the method of mir-
rors. The initial function is a centered Gaussian function.
The motion between the walls can be understood as a su-
perposition of mirror wave packets. Initially, only the mirror
waves that move toward the box are shown. The part of the
wave function in the physical region (inside the box) is drawn
with higher saturation. (Section 5.3.2.)
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Color Plate 16. Particle in a box. This graphic shows
some frames from the time evolution of a state in a Dirichlet
box. The initial state is the unit function ψ0(x) = 1 which
is not in the domain of the generator of the time evolution.
The motion is periodic with period T = 4/π. The function
ψ(x, t) is continuous with respect to t in the L2-topology, but
it is not differentiable. At times t for which t/T is a rational
number, ψ(x, t) is a step function. (Section 5.5.)



Color Plate 17. Aharonov-Bohm effect. Scattering from
the left at an obstacle with a magnetic field inside. The node
line behind the obstacle is due to the influence of the magnetic
vector potential. (Section 8.3.)

Color Plate 18. Potential barrier with two holes (double-
slit experiment). The initial state has an uncertainty of posi-
tion which is larger than the distance between the two holes.
So one cannot predict through which of the holes the particle
will actually go. (Section 5.7.2.)
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Color Plate 19. Time evolution of the initial function
shown in Color Plate 18. A part of the wave function pen-
etrates through the holes in the screen. Behind the screen
emerges an interference pattern which shows that in certain
directions there is only a small probability of observing the
particle. In this example, the probability of being scattered to
angles about ±15◦ off the forward direction has a minimum.
(Section 5.7.4.)
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Color Plate 20. The double slit experiment with one hole
closed. The wave emerging from the hole behind the screen is
an approximately spherical wave without visible interference
pattern, as one might expect from Huygens’ principle. (Sec-
tion 5.7.4.)
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Color Plate 21. Two snapshots of an oscillating state in
a harmonic-oscillator potential. The wave function and its
Fourier transform are shown at times t = 0 and t = π/2. The
initial state is a superposition of φ0 and φ1. (Section 7.3.)
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Color Plate 22. The time evolution of a coherent state of
the harmonic oscillator. (Section 7.4.3.)
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Color Plate 23. Reflection and transmission coefficients
for the scattering at a potential barrier. The barrier has a
width R = 1 and the energy is E = 18. (Section 9.6.3.)
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Color Plate 24. Scattering of a plane waves with energy
E = 18 at a potential barrier. The image above shows the
solution at V0 = 16.8. For this height the reflection coefficient
is zero, as one can see from Color Plate 23. In the image be-
low, at V0 = 15, the part of the solution on the left-hand side
shows the interference between an incoming and a reflected
plane wave. (Section 9.6.3.)
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Color Plate 25. Energy representation g(E) of an incom-
ing wave packet, and the scattering coefficients at a barrier.
(a) V0 = 16.8. (b) V0 = 15. (Section 9.6.3.)
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Color Plate 26. Scattering with energies strictly higher
than the potential barrier for the two situations of Color
Plate 25. (Section 9.6.3.)
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Color Plate 27. Tunneling through a thin barrier in two
dimensions. Here the energies in the wave packet are strictly
below the height of the potential barrier. (Section 9.7.)
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