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Preface 

The present book is based on lectures given for the past several years at the 
Technical University of Denmark. The lectures have primarily been attended 
by students wanting to specialize in advanced fundamental chemistry (includ- 
ing quantum chemistry) or solid-state physics. They have also been attended 
by Ph.D. students. 

Quantum mechanics is one of the greatest intellectual achievements of the 
twentieth century. It constitutes the firm foundation of modern physics and 
chemistry, and has to a large extent led to a synthesis of these sciences. Ac- 
cordingly, every modern physicist and chemist must familiarize him/herself 
with the laws of quantum mechanics, in order to understand the basis of the 
enormous scientific and technological progress that the application of these 
laws has brought about. 

The present treatise is an introduction to the quantum-mechanical laws 
with a molecular angle of approach. It should, however, be useful for most 
students of ordinary matter. I have chosen to make the presentation exact, 
but at the same time pedagogically obliging. 

I value the historic tradition. I have, therefore, in the first two chapters 
tried to draw a picture of the way quantum mechanics emerged at the beginning 
of the twentieth century, in reply to efforts spent by chemists and physicists 
throughout the nineteenth century to make atoms real. 

It took a quarter of a century to develop the proper basis of quantum me- 
chanics. The highlights of the process are included in the second chapter. The 
Schrodinger equation is presented in Chapter 3. It is this equation that gov- 
erns the behavior of electrons and atomic nuclei and thus supplies the basis for 
our understanding of atomic and molecular structure and molecular processes. 
The Schrijdinger equation is solved for some simple, yet illustrative examples 
in Chapter 4. On this background the quantum-mechanical formalism is culti- 
vated in Chapter 5. Emphasis is put on the properties of operators, quantum 
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theory and measurements, and matrix algebra. 
In Chapters 6-9 we discuss some exactly solvable systems in detail, namely, 

the free particle, the harmonic oscillator, and the hydrogen atom. In addition 
to solving these problems analytically, we also become familiar with wave pack- 
ets, ladder operators, angular-momentum theory, and the general centratfield 
problem. 

A very fundamental concept in the theory of atoms and molecules is the 
electron spin. The magnetic moment that accompanies the spin gives rise 
to important effects. But the conceptual importance of spin is greatest in the 
interplay between spin and the antisymmetry requirement that is laid on many- 
electron wavefunctions. It is, for instance, in this interplay that one finds the 
origin of the periodic table and directed valence. Chapter 10 is devoted to a 
detailed description of the electron spin and its interaction with external fields. 
The interplay with the antisymmetry requirement is discussed in Chapter 11, 
which also gives a description of the many-electron atom on the basis of electron 
configurations and introduces determinantal wavefunctions. 

The Schrodinger equation is exactly solvable only for the simplest systems, 
but very effective methods have been developed by means of which good a p  
proximate solutions may be determined even for quite complicated systems. 
The most frequently applied method is the variational method. Chapter 12 
gives an introduction to this method. 

In Chapters 13 and 14 we give the general principles for the quantum- 
mechanical description of molecules in terms of molecular electronic structure, 
molecular vibrations, and rotation. The discussion is concretized for diatomic 
molecules. The description of the electronic structure is based on exact wave- 
functions for the single-electron molecule, and on electron configurations for 
many-electron molecules. 

The remaining five chapters of the book are devoted to a deeper study 
of many-electron atoms and molecules. The concepts of terms and multi- 
plets are discussed in Chapter 15, after a thorough discussion of the theory 
of angular-momentum coupling. In Chapters 16 and 17, we construct proper 
many-electron wavefunctions for selected atoms and molecules. We also derive 
expressions for the term energies of these systems by exploiting expressioss for 
matrix elements between determinantal wavefunctions. 

In Chapters 18 and 19, we discuss the determination of atomic and molec- 
ular orbitals by self-consistent field methods. The Hartree-Fock method is 
discussed in Chapter 18, by the author’s own pedagogical approach, in which 
the so-called Lagrangian multipliers play a less dominant role than in most 
standard presentations. The multipliers are usually introduced in a fairly me- 
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chanical way that causes difficulties for many students. 
The alternative self-consistent field method, the Kohn-Sham method, is 

discussed in Chapter 19. The method is based on the premises of density- 
function& theory, according to which all ground-state properties of an atom or 
a molecule are functionals of the electron density. We discuss density functional 
theory by imbedding it in the theory of reduced density matrices. This makes 
the energy expressions more transparent, and also demonstrates that the gap 
between Hartree-Fock theory and density-functional theory is smaller than one 
might otherwise suspect. 

I believe that the present book gives the student a good understanding of 
the basic structures and the basic concepts of atomic and molecular quantum 
mechanics, although the coverage is far from complete. As to applications of 
atomic and molecular quantum mechanics, they are extensive and very suc- 
cessful. Some applications are included in the text and in the end-of-chapter 
problems, but the number is naturally quite limited. Fortunately, more and 
more textbooks now appear that do in fact focus on the various applications 
of atomic and molecular quantum mechanics. Those books are the ones that 
should be consulted for detailed information about each application. 

The end-of-chapter problems have been carefully designed to support the 
main text. Solutions to the problems will be available on the World Wide Web 
from the fall, 2001. For further information, contact j ~ d ~ k e m i . d ~ u . d k  

During the preparation of the lecture notes behind this book, I have re- 
ceived many valuable comments from both students and colleagues, for which 
I am very grateful. My particular thanks are due to Dr. Helge Johansen for 
many years’ fruitful collaboration in teaching quantum chemistry, and to Dr. 
Bjarne Amstrup for his enthusiasm and his expert assistance with the initial 
typesetting of the emanuscript with LYQijK. 

Finally, and most importantly, I am grateful to my wife Asta for her pa- 
tience and constant encouragement. 

Jens Peder Dahl 
Professor of Chemical Physics 
Technical University of Denmark 
March, 2001 
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Fundament a1 Physical Const ants 
1998-values 

Speed of light in vacuum 
Planck constant 

Permittivity of vacuum 

Elementary charge 

Electron mass 
Proton mass 
Neutron mass 
Deuteron mass 
Atomic mass constant, m("C)/12 

Avogadro constant 
Faraday constant 
Boltzmann constant 
Molar gas constant 

Bohr radius 
Hartree energy 
Bohr magneton, eA/2m, 
Nuclear magneton, eh/2mp 

c = 299 792 458 m s-' 
h = 6.62607 x J s  
h. = 1.05457 x J s  
€0 = 8.85419 x Fm- '  
4 7 ~ 0  = 1.11265 x 10-l' Fm-I  
e = 1.60218 x 1O-l' C 

me = 9.10938 x kg 
mp = 1.67262 x kg 
m, = 1.67493 x kg 
md = 3.34358 x kg 
mu = 1 u= 1.66054 x lodz7 kg 

N A  = 6.02214 x loz3 mol-' 
F = 96485C mol-' 
Ic = 1.38065 x JK- '  
R = 8.31447 J mol-' K-' 

a0 = 0.52918 x lo-'' m 
E h  = 4.35975 x 10-l' J = 27.2114 eV 
p~ = 9.27401 x JT-' 
p~ = 5.05078 x JT-' 

1 eV = 1.60218 x lo-'' J E 96.4853 kJ mol-' 
1 A = 10-10 m 

8065.55 cm-' 

For additional significant figures and more constants, consult one of the fol- 
lowing sources: 
Reviews of Modern Physics 72, No. 2, 2000. 
Journal of Physical and Chemical Reference Data 28, No. 6, 1999. 
http://physics.nist .gov/cuu/Constants 
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Chapter 1 

The Rise of Atomic Theory 

Contents 

1.1 Early Atomic Theories . . . . . . . . . . . . . . . .  2 
1.2 The Chemical Atom. . * , . , , . . I) , . . , . * . . 3 

1.3 The Kinetic Molecuie . . . . . . . . . . . . . . . . .  4 

1.4 The Spectroscopic Atom . . . . . . . . . . . . . . .  7' 
1.5 Antiatomism ...................... 0 

1.6 The Discovery of the Electron. The Planetary 
A t o m . . . . , . . . . . . . . . . . . . . . . . . . . . .  10 

1.7 Constituents of Atoms and Molecules. 
TheModernView . . . . . . . . . . . . . . . . . . .  13 

1.8 External Interactions. Photons . . . . . . . . . . .  16 

Our present understanding of the ~ h e ~ i s t r y  and physics of matter rests 
firmly on the idea of atomism and the theories of quantum mechanics and 
statistical mechanics. The idea of atomism is very old and has assumed differ- 
ent forms throughout the centuries. The theory of statistical mechanics was 
founded in the nineteenth century. Quantum mechanics is, however, a product 
of the twentieth century. It was born in the year 1900 and emerged as a result 
of the efforts spent by chemists and physicists throughout the previous century 

1 



2 Chapter 1 .  The Rise of Atomic Theory 

to make atoms real. The first chapter describes these efforts and the way they 
connect to our modern view of matter. 

1.1 Early Atomic Theories 

The idea of atomism, which states that matter is composed of ultimate and 
indivisible particles (atoms) that move with respect to each other in empty 
space, can be traced back to the Greek philosopher Leukippos and his pupil 
Demokritos, in the fifth century B.C. The idea met considerable resistance from 
the Platonists and the Aristotelians who dominated the philosophical scene 
for many centuries. Still, it was accepted and further developed by Epicurus 
(about 300 B.C.), and it was highly praised by the Roman poet Lucretius 
(about 65 B.C.) in the didactic poem De rerum natura. This extensive work is 
an important source to the understanding of the atomic theories of the classical 
antiquity. 

I t  is likely that the antique idea of atomism has been familiar to most edu- 
cated men since the days of Leukippos and Demokritos. The idea was, however, 
purely philosophical. It was a stimulation to the intellect, but lacked any doc- 
umented connection with the real world outside the minds of the philosophers. 
Hence its impact remained very small. 

It doesn’t seem that the atomic idea played any noticeable role in the Middle 
Ages, but it was revived during the scientific revolution of the sixteenth and 
seventeenth centuries, in particular by Rent! Descartes and Pierre Gassendi in 
France, and by Robert Boyle and Isaac Newton in England. A detailed and 
interesting contribution was made by the influential Croatian Jesuit scholar 
Ruder Boskovid in his Philosophiae naturalis theoria published in 1758.’ What 
Boikovid tried in his treatise was, inter alia, to create a general theory of matter 
based on the idea of atoms and Newton’s concept of force. Unlike the Greeks 
he assumed the atoms to be point-like, and he also assumed that Newton’s law 
of attraction became a law of repulsion at  small distances. This implies that 
two atoms are pulled toward each other by an attractive force until the distance 
between them reaches the point where the force starts to become repulsive. At 
this distance we must have stability of matter because the force is now neither 
attractive nor repulsive. Boikovid even assumed that the force might change 
sign more than once as the distance between atoms varied, and in this way he 

‘Until 1757 the Roman Catholic Church did not allow the publication of books that 
supported views implying the motion of the Earth. Between 1616 and 1757, such books 
were entered in the Index of Forbidden Books (Indm Librorum Prohibitorurn). 



1.2. The Chemical Atom 3 

could account for the existence of more than one stable form of the same kind 
of matter in a qualitative way. Thus, the theory proposed by Boikovii had 
some intuitively appealing features, but it was still a purely speculative theory 
and a theory devoted to generalities. Like its predecessors, it was of little help 
in the solution of specific problems. 

1.2 The Chemical Atom 

The first practical atomic theory was put forward by the English chemist and 
physicist John Dalton during the years 1803 to 1808. The background for this 
theory waa the law of conservation of mass and the law of constant proportions. 
The first of these laws had been formulated by the French chemist Antoine 
Laurent Lavoisier in 1785. It was based on the exact process of weighing and 
states that there is no measurable change in mass during a chemical reaction. 
The second law was enunciated by the French chemist Joseph Louis Proust in 
1799. It states that different samples of a substance contain its elements in the 
same proportions. 

An element had been defined by Lavoisier as being a substance that cannot 
be decomposed (by chemical means), and he had given a list of 33 substances 
that he considered to be elements (among them light and caloric, or heat). 
Dalton’s hypothesis was then that all elements consist of atoms, and that all 
atoms of the same element have the same weight, but the weights of atoms 
of different elements are different. Dalton also formulated the law of simple 
multiple proportions. This law states that when two elements combine to form 
more than one chemical compound, the weights of one element that combine 
with the same weight of the other are in the ratio of small integers. The 
meaning that Dalton gave to this law was that a chemical compound consists 
of units of a characteristic number of atoms. 

The radically new in Dalton’s atomic theory, as compared to earlier atomic 
theories, was its quantitative element. It was based on the process of weighing. 
This made it a practical theory that could grow and expand over the years to 
come. 

The first addition to the theory was proposed in 1811 by the Italian physi- 
cist Amadeo Avogadro, and independently in 1814 by the French physicist 
AndrC Marie Ampkre. It is known as Auogadm’s hypothesis. It gives inde- 
pendent existence to the smallest units of a compound by referring to them 
as molecules and states that any two gases, taken under the same conditions 
of temperature and pressure, contain in the same volume the same number of 
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molecules. The hypothesis was, however, relatively unnoticed for many years. 
Its implication for the determination of a rational table of atomic weights was 
in fact not fully appreciated until 1858, when the Italian chemist Stanislao 
Cannizzaro published his Sketch of a Course of Chemical Philosophy, and it 
was only after then that the concept of free molecules gained its immense 
importance. 

But in the meantime, a large number of new elements were discovered, 
and the atomic theory was enriched with the concept of valency, by the con- 
tributions of many chemists. The elements were grouped according to their 
valencies and general properties, and this allowed the Russian chemist Dmitri 
Ivanovich Mendeleev to construct his periodic table of the elements, in 1869. 

Next, the chemical formulae were extended into space. The molecules be- 
came three-dimensional. It was in 1874 that the Dutch chemist Jacobus Hen- 
ricus van’t Hoff and the French chemist Joseph Achille le Be1 independently 
documented that the valencies of the carbon atom are directed toward the 
corners of a tetrahedron of which the carbon atom itself occupies the center. 

With the three-dimensional structure of molecules understood, the valence 
concept became too narrow to account for the binding capacity of all atoms, 
especially transition metal atoms. It was accordingly supplemented with the 
concept of coordination number, by the German chemist Alfred Werner, in 
1893. This was the last major addition to Dalton’s atomic theory in the nine- 
teenth century. The theory of the chemical atom had now reached a high 
level of development and had shown its ability to rationalize a huge amount of 
chemical data. 

But how big were atoms and molecules, and how should they be visualized? 

1.3 The Kinetic Molecule 

The first serious estimate of the size of atoms and molecules was made by the 
Austrian physicist Joseph Loschmidt in 1865. It was based on the results of 
a new science, the kinetic theory of gases, which had been initiated by the 
physicists Rudolf Clausius in Germany and James Clerk Maxwell in England. 

Together with the English physicist William Thomson (Lord Kelvin), Ru- 
dolf Clausius was the founder of thermodynamics as an exact phenomenological 
science of energetics. He was the first to formulate the second law of thermo- 
dynamics, and the father of the concept of entropy. But he also wanted to 
understand the mechanical (microscopic) basis of the thermodynamic laws, 
and he realized that this basis must be statistical. 
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Thus, the kinetic theory of gases is a statistical theory which deals with 
the average behavior of an immense number of particles. It operates with 
concepts like mean free path and collision time, and it allows the derivation 
of theoretical expressions for coefficients of diffusion, coefficients of thermal 
conductivity, coefficients of viscosity, etc. Maxwell had shown that the mean 
free path of a gas could be calculated from measured values of the coefficient 
of viscosity, and Loschmidt was now able to derive a simple expression for the 
diameter, s, of a molecule, viz. 

in which 1 = mean free path, and E is a condensation coeficient, expressing the 
ratio of the actual volume of condensed gas molecules to the volume they take 
up in the gas phase. Using the values 1 = 1.40 x 10-7m and E = 0.000866, he 
obtained s = lo-’ m = 1 nm as his estimate for the diameter of a molecule of 
air. This result compares reasonably well with the currently accepted value of 
about 0.3nm for the diameter of 0 2  and N2 molecules. 

The mean free path is the average distance which a molecule traverses 
between two collisions, so by combining I with s it is possible to derive the 
number of atoms or molecules in the volume of 1 cm3 at standard conditions. 
This number is referred to as Loschmidt’s constant. Equivalently, one may 
calculate the number of atoms or molecules in a molar mass. This number is 
Avogadm’s constant, whose value is2 

NA = 6.02214 x loz3 mole-’. (1.2) 

The estimate one obtains from Loschmidt’s data is 0.4 x 1023mole-1. 
The kinetic molecule of the nineteenth century was essentially the kind of 

entity we have just  implied, i. e., an impenetrable, perhaps spherical particle 
without internal structure which moves according to the laws of Newtonian 
mechanics and undergoes collisions with other particles. This was a simple 
picture, and it did not distinguish between atoms and molecules, but in the 
hands of some of the great scientists of the time it was a very fruitful one. The 
foremost of these scientists was the Austrian physicist Ludwig Boltzmann. 

Boltrmann studied the mechanics of collisions between the particles of a 
gas in great detail, and as a result he succeeded in constructing a statistical 
function that he could identify with the entropy of the gas. Entropy, he stated, 
is a measure of the disorder of a physical system, and he showed (1877) that 

‘An abbreviated list of the values of the fundamental constants of physics and chemistry 
is given in the back of this book. 
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if the physical system is left to itself its statistical entropy will always either 
increase in time or remain constant, rather than decrease. Thus, he had given 
the second law of thermodynamics an intuitively clear formulation. 

Boltzmann’s definition of entropy is contained in the equation 

S = k l n W  (1.3) 

where S is the entropy and W the so-called thermodynamic probability, i. e., 
the number of microstates which are compatible with the same macroscopic 
properties. 12 is Boltzmann’s constant, with the value 

k = 1.38065 x J K - l .  (1.4) 

Actually, Boltzmann never specified the constant k, nor did his analysis allow 
him to, for his counting of microstates was necessarily relative rather than 
absolute. It was the German physicist Max Planck who first wrote Eq. (1.3) 
in this explicit form and obtained the numerical value of k, in his important 
work on the black-body radiation that we shall discuss in the next chapter. 

Eq. (1.3) is not only a central equation in the kinetic theory of gases. It 
is also a fundamental equation in the broader theory of statistical mechanics 
which deals with a general macroscopic system. The remarkable development 
of this science during the second half of the nineteenth century was  also to a 
large extent due to Boltzmann. The other great contributor was the American 
physicist Josiah Willard Gibbs. 

Boltzmann arrived at his definition of entropy and his interpretation of 
the second law of thermodynamics through his studies of the kinetic theory 
of gases, and it was the simplistic assumption of kinetic molecules without 
internal structure that allowed him to carry his analysis so far. This did not 
imply, however, that molecules were actually believed to be devoid of internal 
structure. Rather, motion of a particle was imagined to mean motion of its 
center of mass. 

Both Maxwell and Boltzmann, as well as several others, considered a mole- 
cule to be a rotating and vibrating cluster of atoms, and they tried to  estimate 
the heat capacity of molecules from this picture, by using the general relations 
of statistical mechanics. For a diatomic molecule, for instance, this resulted in 
the value Cv = 3.5 R for the molar heat capacity of a gas at constant volume, 
where R is the general gas constant, with the value 

R = 8.31447 J K-lrno1e-l = ~ N A .  (1.5) 

The value 3.5 R is made up of separate contributions from the various degrees of 
freedom. There are three degrees of freedom which correspond to  the motion of 
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the center of mass along the three coordinate axes, and each of these contribute 
0.5 RT to the molar internal energy at absolute temperature T ,  according to 
the kinetic theory of gases, and hence 0.5 R to Cv. In addition, there are 
two rotational degrees of freedom according to the two angles that describe 
the direction of the internuclear axis in space, and by a general assumption 
about equipartition of energy each of these also contribute 0.5 R to Cv. Finally, 
there is one vibrational degree of freedom corresponding to the variation of the 
internuclear distance. By the equipartition theorem this gives a contribution 
of 1.0 R because kinetic and potential energy contribute separately to CV. 
Adding up the various contributions, we arrive at the value Cv = 3.5 R. This 
value for Cv is, however, only observed at very high temperatures (several 
thousand degrees), whereas at normal temperatures the molar heat capacity 
of diatomic gases is only about 2.5 R. 

The failure of statistical mechanics to describe the temperature dependence 
of Cv was, of course, a serious shortcoming. It remained a riddle until the 
advent of quantum mechanics. 

1.4 The Spectroscopic Atom 

The nineteenth-century attempts to determine the heat capacity of molecular 
gases from first principles were, as we have seen, only modestly successful. The 
situation was, however, even worse when it came to the understanding of the 
optical spectra of atoms and molecules. 

Optical spectroscopy became a well-developed subject during the nine- 
teenth century. It was realized early that elements liberated from a chemi- 
cal compound in a flame or an electric arc would emit light at discrete and 
characteristic wavelengths, and in 1859 the German chemist Robert Wilhelm 
Bunsen and his colleague, the physicist Gustav Robert Kirchhoff founded the 
method of spectral analysis based on this fact. The presence of many elements 
could now be verified by their line spectra. The elements rubidium, cesium, 
indium, and thallium were, in fact, discovered spectroscopically, and helium 
was detected by observation of the sun (1868) long before it was found on the 
earth (1895). 

The line spectrum of an element has in general a very complex structure, 
but with marked constellations of lines. The simplest line spectrum is that of 
atomic hydrogen. It consists of three lines in the visible part of the spectrum, 
a red line called Ha, a blue-green line called H p  , and a violet line called 
H,. On the photographic plate it is found that the spectrum continues in the 
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ultraviolet region with a large number of close-lying lines which form a spectral 
series that converges to a limiting wavelength of 364.6 nm. It was of course a 
challenge to try to represent the series by some simple arithmetic law, and in 
1885 the Swiss school teacher Johann Jacob Balmer succeeded in showing that 
the following formula would reproduce the series, 

where X is the wavelength and m is an integer parameter that runs from 3 to 
00. The visible lines are reproduced by putting m equal to 3, 4, and 5 .  If, 
instead of A, we introduce the wavenumber, ij = l / X ,  the formula becomes 

fi = RH ($ - 5) 
where RH is the so-called Rydberg constant, with the numerical value 

RH = 1.097 x 107m-'. (1.8) 

The constant is named after the Swedish physicist Johannes Robert Rydberg 
who generalized Eq. (1.7) to other series and other simple atoms. For the 
hydrogen atom, the set of all spectral series may be represented by the general 
formula 

For n = 2 we get the above Balmer series. n = 1 gives the Lyman series with 
wavelengths in the ultraviolet part of the spectrum, n = 3 gives the Paschen 
series with wavelengths in the infrared region, etc. 

Light is electromagnetic radiation, and this was fully understood by the 
end of the nineteenth century. Maxwell had succeeded in combining all the- 
oretical knowledge about electric and magnetic phenomena into a set of four 
differential equations (1873). The equations are expressed in terms of electric 
charges, electric currents, and electric and magnetic fields, and they allow the 
calculation of the fields once the charges and the currents are specified. The 
equations show, in particular, that an accelerated charge, for instance an os- 
cillating charge, will generate electromagnetic waves that spread in space with 
the speed of light. Such waves were first produced and studied by the German 
physicist Heinrich Rudolf Hertz in 1886. 

It was accordingly natural to assume that the emission of light from agi- 
tated atoms and molecules was caused by oscillations of electric charge. It was 



well known from electrochemistry that electric charge was intimately connected 
with the forces of chemical combination, and chemical affinity had often been 
ascribed to  the attraction between opposite charges. This led, in turn, to the 
suggestion that both positive and negative electric charge existed in discrete 
units. But nothing definite was known about the way electric charge operated 
in the atomic and molecular world, and it was consequently completely im- 
possible to calculate the nature of the light that an atom or a molecule might 
emit. 

It was obvious, however, that the atomic emission of light must reflect 
some internal structure of the atom, and speculative suggestions as to what 
this structure might possibly be were certainly made, also prior to the appear- 
ance of Maxwell’s equations, and independent of the assumption of charges. 
Thus proposed William Thomson, in 1867, that atoms should be thought of 
as being vortex rings in the omnipresent ether. The motion and mutual inter- 
actions of such vortices, he contended, could account for the kinetic behavior 
of atoms. They could be linked together to form molecules, and their funda- 
mental vibrations could supposedly account for the spectral lines of an atomic 
gas. 

The vortex atom was an intelligent construction, and it was highly regarded 
by several scientists. But it had to be abandoned as a working model, because 
it was unable to give a quantitative description of the real world after all. No 
other model could do better either. 

1.5 Antiatomism 

As we have discussed it in the previous sections, chemistry, experimental spec- 
troscopy, and statistical mechanics were highly developed sciences at  the end 
of the last century. But nobody had been able to unite the various aspects 
of atomic behavior met in these sciences into a single and coherent picture of 
the atom. As a result, there were several scientists who did not believe in the 
physical reality of atoms and molecules, and some of them were very influen- 
tial indeed, like the German chemists Hermann Kolbe and Friedrich Wilhelm 
Ostwald, and the Austrian physicist Ernst Mach. 

The criticism by these scientists was both deep and varied. The cardinal 
point was their objection to the metaphysical aspect of atomic theories. These 
theories, they said, work with forces whose existence we cannot prove between 
atoms that we cannot observe. So it is better to consider atoms and molecules 
as purely formal, albeit useful entities and concentrate on what we can in fact 
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measure, and on the pure energetics of processes. 
The strong opposition of the antiatomists led to many fierce debates and 

much bitterness. And their attitude survived long into the twentieth century, 
but quite unwarranted, for soon new experimental results provided unambigu- 
ous proofs of the reality of atoms. 

1.6 The Discovery of the Electron. 
The Planetary Atom 

The experimental study of the interaction of an electric current with chemical 
substances in a melt or a solution played a considerable role for the devel- 
opment of chemistry and chemical ideas during the nineteenth century. The 
process of decomposing a chemical compound by an electric current is known as 
electrolysis, and the first quantitative laws concerning this process were formu- 
lated in 1834 by the English scientist Michael Faraday who also introduced the 
notion of ions for the carriers of the current. The laws state that the amount 
of matter decomposed by an electric current is proportional to the amount of 
electricity which passes, and that the weights of different substances produced 
by the same quantity of electricity are proportional to the equivalent weights 
of the substances. (The equivalent weights of different substances are defined 
in chemistry as the weights than can combine with each other or a same third 
substance, to saturate a single unit of valence.) 

I t  is, of course, tempting to speculate from Faraday’s laws, that if chemical 
compunds are composed of atoms, then electricity too, positive as well as 
negative, is divided into discrete units which attach themselves to the atoms 
and thus behave like atoms of electricity. This possibility was suggested by the 
English scientist George Johnstone Stoney in 1874 and, with great strength, 
by the German scientist Hermann von Helmholtz in 1881. The postulated unit 
of electricity was given the name electron by Stoney in 1891. By hypothesis, 
an ion will either accept or deliver an integer number of elementary electric 
units at  an electrode during electrolysis. Hence, we may refer to N A  electrons 
as one mole of electrons and conclude, from the quantitative measurements by 
Faraday and other scientists, that the electric charge of one mole of electrons 
is 96485 C. This gives us Faraday’s constant, 

F = 96485 C mole-’. (1.10) 

We also conclude, that if the charge of the electron is denoted by e and the 
mass of a hydrogen atom by M I  then e / M  is approximately equal to F (since 
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the atomic weight of hydrogen is almost exactly equal to 1). 
Toward the end of the century, several studies were performed on electrical 

discharges in gases and on the conductivity of gases subjected to radiation. 
The experiments were carried out in glass tubes fitted with electrodes and at 
different gas pressure. It was then found that when a tube was evacuated, 
rays were observed to cross the tube from a negative electrode (the cathode) 
to the positive electrode (the anode). These rays were given the name cathode 
rays. There was much discussion as to the nature of the rays, but in 1897 the 
physicists Emil Wiechert in Germany and Joseph John Thomson in England 
demonstrated that they were in fact negatively charged particles. By a very 
careful study, which involved deflections of the rays by both electric and mag- 
netic fields, J. J .  Thomson succeeded in determining the ratio of the electric 
charge ( e )  to mass (m)  for cathode rays, showing that e l m  was at least 1000 
times as great as the value for hydrogen mentioned above. Later, the value 
was corrected to become almost twice as large. 

This experiment i s  considered to  mark the discovery of the electron. 
The study of cathode rays only allowed the determination of the e l m  ratio 

and not the values of e and m separately. Approximate values for e and m 
were estimated, but exact values were not determined until 1909. In that year 
the American physicist Robert Andrews Millikan succeeded in determining the 
value of e to within 1%, by measuring the velocity in an electric field, of falling 
oil drops charged with electrons that had been produced by irradiating the air 
with a beam of X-rays. With the value of e thus determined, the value of m 
could of course be found from the elm ratio.3 

X-rays had been discovered already in 1895, by the German physicist Wil- 
helm Konrad Rontgen, and the next year the French physicist Henri Becquerel 
had discovered the phenomenon of radioactivity. During the following years 
it was found that radioactivity involved no less than three distinct types of 
radiation. They were called a (alpha) radiation, p (beta) radiation, and 7 
(gamma) radiation respectively. It was also found that beta rays consist of 
electrons, wheras gamma rays and X-rays are electromagnetic waves like visi- 
ble light, but with much shorter wavelengths. Alpha rays were shown, by the 
British physicist Ernest Rutherford, to be the dipositive ions of helium atoms, 
moving at high speed. He showed this, partly by measuring the deflection of 
the rays in electric and magnetic fields, partly by shooting the rays through 
a thin metal foil into a chamber and demonstrating the presence of helium in 
the chamber. 

3Millikrm’s determination of the electronic charge became also the first truly direct deter- 
mination of Avogadro’s constant, by comparison of e with the known charge of the Faraday. 
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Much work was done on the scattering of the newly discovered rays by 
matter. J .  J .  Thomson derived a formula which showed that the scattering of 
X-rays should be proportional to the number of electrons in the target, and this 
led to the experimental finding that the number of electrons in an atom equals 
its atomic number, 2. Studies of radioactive decay, by Rutherford and others, 
pointed in the same direction. But if an atom contains 2 electrons each of 
charge -e, then by charge neutrality it must also contain a positive charge Ze. 
And because the mass of Z electrons is only a tiny part of the atomic mass, the 
positive charge and the majority of the atom’s mass must belong together. But 
how is this positive charge and remaining mass distributed within the atom? 

J. J .  Thomson, who incidentally had been working on Kelvin’s theory of 
vortex atoms several years earlier, made the simplest possible assumption. He 
suggested that the mass and the positive charge was uniformly distributed 
within a sphere with an approximate radius of 1O-l0m, a value supported 
by the kinetic theory of gases and other evidence. The electrons were then 
supposed to form an electrostatically stable constellation inside the sphere. 
This model of the atom is referred to as Thomson’s model, and thus its name 
also does justice to Kelvin who earlier had presented some ideas of a similar 
type. 

Thomson’s atomic model was of course unable to account for the large 
number of spectral lines and laws like those hidden in Balmer’s and Rydberg’s 
formulae. It was again a new model based on speculation and incomplete 
knowledge. 

The final step toward a correct picture of the atom was taken by Rutherford 
in 1911. It was based on experimental results on the scattering of alpha rays, 
obtained in 1909 by his collaborators Hans Geiger and Ernest Marsden. Geiger 
and Marsden had allowed a beam of alpha particles to pass through a thin gold 
foil and observed that most of the particles showed very slight deviations from 
a straight path. However, a small fraction of the particles showed deflections 
through very large angles. Rutherford went carefully through the dynamics of 
possible collision processes and showed that such large deflections could come 
only from a collision of a heavy particle with another particle of comparable 
mass, and at  such a small distance that the electric force of interaction was 
extremely great. 

On the basis of his analysis, Rutherford introduced his model of the plan- 
etary atom, or solar atom, according to which the positive charge and the 
majority of the atomic mass is concentrated in a tiny nucleus at the center 
of the atom. The electrons, on the other hand, are distributed throughout a 
sphere of atomic dimensions. 
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Rutherford’s analysis marked the end of a long search for an objective model 
of the atom, a search in which both chemists and physicists had taken part, 
and a search during which several false models had emerged and led the way for 
some time. The new atom became the principle of unification for chemistry 
and physics, but so far only its constitution was known. To understand its 
internal dynamics it became necessary to enter a whole new world, the world 
of quantum mechanics, in which the classical laws of motion lose their validity. 
Thus, the end of a long development also became the beginning of a new epoch 
for science. 

It is this epoch that the present exposition is about. But before we enter 
the discussion of quantum mechanics, let us update the description and give a 
brief sketch of our present picture of the constitution of atoms and molecules 
and their interactions. 

1.7 The Constituents of Atoms and Molecules. 
The Modern View 

The constituents of atoms and molecules are electrons and atomic nuclei. The 
present section specifies the basic physical parameters of these particles. 

Modern physics considers the electron to be a true elementary particle, i. e., 
it is believed that the electron cannot be divided into smaller constituents. Its 
mass is 

me = 9.10938 x kg. (1.11) 

The electron is a carrier of the negative elementary electric charge - e ,  where 

e = 1.60218 x 10-19C. (1.12) 

As to the spatial extension of the electron, its radius is known to be less 
than 10-18m. There is in fact nothing in our present knowledge that conflicts 
the aasumption that the electron is contracted into a point. 

However, it is incorrect to consider the electron to be merely a charged 
mass point. The contraction into a point is such that it produces an anisotropy 
which, in a certain sense, allows us to talk about the orientation of an electron. 
This orientation is defined by the so-called spin of the electron and the magnetic 
dipole accompanying this spin. The spin, which we shall consider in much 
more detail later, is the intrinsic angular momentum of the electron. It has 
the magnitude ti12 where 

h = h / 2 ~  (1.13) 
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and h is Planck's constant (the quantum of action), with the numerical value 

h = 6.62607 x J s .  (1.14) 

The introduction of this natural constant will be the first thing to be discussed 
in the following chapter. 

The magnetic dipole accompanying the spin has a magnetic moment whose 
magnitude is almost exactly given by 

p~ = eh/2m, = 9.27401 x J T-'. (1.15) 

This quantity is called the Bohr magneton. 

being protons and neutrons. The masses of the proton and the neutron are 
Unlike the electron, atomic nuclei are composite particles, the constituents 

mp = 1.67262 x 10-27kg = 1836.15me (1.16) 

and 

m, = 1.67493 x 10-27kg = 1838.67me, (1.17) 

respectively. The proton carries the positive electric charge e ,  whereas the 
charge of the neutron is zero. Protons and neutrons are collectively referred 
to as nucleons. The number of nucleons in a nucleus consisting of 2 protons 
and N neutrons is therefore 

A = Z + N .  (1.18) 

A is called the mass number and 2 the atomic number. 
Protons and neutrons are each composed of three so-called quarks and 

are not point-like. They both have a radius of approximately The 
volume of a nucleus increases essentially linearly with its mass number A ,  and 
in accordance with this it is found that the approximate radius of a nucleus 
may be represented by the formula 

R = 1.1 x 10-'5A1/3m. (1.19) 

The nuclear surface is, however, often deformed from the spherical shape and, 
in addition, it should be considered as diffuse rather than sharp. 

Just like the electron, a nucleon has a spin and a magnetic dipole associated 
with it. The spin is the same as for the electron, but the magnetic moment is 
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three orders of magnitude smaller than that of the electron. It is expressed in 
terms of the so-called nuclear magneton 

p~ = e7i/2mp = 5.05078 x J T-l .  (1.20) 

Both the spin and the magnetic dipole are vector quantities, and when the 
nucleus is formed, these quantities add like vectors. This implies that the 
resulting spin and magnetic dipole of the nucleus may be zero or only a few 
times larger than the spin and magnetic dipole of a free nucleon. 

Electric charge is, however, a scalar quantity, and the total electric charge 
of a nucleus with atomic number Z is consequently Ze. Such a nucleus may 
bind 2 electrons to form a neutral atom. 

The radius of a neutral atom is of the order of 10-l' m. This is five orders 
of magnitude larger than the radius of the nucleus. In discussing the properties 
of the electronic cloud, it is accordingly an extremely good first approximation 
to consider the nucleus as point-like. 

An atom, X, with only Z - n electrons is referred to as the positive ion 
Xn+, and an atom, X, with Z + n electrons is referred to as the negative ion 
X"-. For a positive ion, n may take any value between 1 and 2. On the other 
hand, no free negative ion is known for which n is larger than one. 

An atomic nucleus consists of nucleons in interaction. The nuclear forces 
that govern this interaction will not be discussed in the present text. Such a 
discussion belongs in the realm of nuclear physics. Hence, we shall always ex- 
press nuclear properties in terms of parameters like charge, magnetic moment, 
and electric moments describing the shape of nuclei. 

As a result of this simplification, we may now treat an atom or a molecule 
as a collection of nuclei and electrons in intemction. The forces responsible 
for this interaction are the electromagnetic forces between the particles. 

In spite of the complexity of the problem, we shall see that quantum me- 
chanics allows us to  obtain a clear and exact description of atoms and molecules 
in their various internal states, on the basis of the above picture of nucleons 
and electrons in interaction. This description moves naturally from the smaller 
systems toward the larger ones. Thus, we obtain the so-called shell structure 
of atoms, and the picture of molecules as assemblies of atoms. But we also 
learn that shells in atoms, and atoms in molecules, are soft concepts that must 
be used with care. 
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1.8 External Interactions. Photons 
Experimentally, one studies the structure and properties of atoms and mole- 
cules by letting them interact with each other in a vessel or a beam, and letting 
them interact with external media. An external medium may, for instance, 
be a static electric or magnetic field, or it may be a beam of free particles 
like electrons and neutrons. But the most widely applied external medium is 
electromagnetic radiation. 

Electromagnetic radiation is, for instance, produced in light bulbs, electric 
arcs, lasers, X-ray generators, and synchrotrons. As we shall discuss it in the 
following chapter, it consists of photons of distinct energy. 

Like the electron, the photon is a true elementary particle. It has a spin 
of magnitude ti, but its mass is zero and it has no intrinsic magnetic moment. 
I t  may have any energy, but it always moves with the speed of light which, in 
vacuum, is defined as 

c = 299792458ms-‘. (1.21) 

A photon of energy E carries a linear momentum whose direction is the direction 
of propagation, and whose magnitude is 

p = &/C.  (1.22) 

When a photon interacts with an atom or molecule, there may be three 
different outcomes. Thus, the photon may leave the region of interaction with 
its energy unchanged, but with a different direction of its momentum. Such a 
process is called elastic scattering. Or the energy, and hence also the magnitude 
of the photon’s momentum, may be changed. This is the process of inelastic 
scattering. Finally, the photon may be destroyed as a result of the interaction. 
Its energy and momentum are absorbed by the atom or molecule affected. We 
call this an absorption process. 

The reverse of the process of absorption is the process of emission, during 
which an atom or a molecule emits a photon and loses corresponding quanta 
of energy and momentum. 

Although electromagnetic rays are composed of photons, and although in- 
teraction processes are elementary events that only involve one or a few photons 
a t  a time, it is usually possible to represent a ray composed of many photons 
by an electromagnetic wave. This is certainly the case for all situations studied 
in the nineteenth century. All such situations are, as we know, governed by 
Maxwell’s equations which predict electromagnetic radiation to be true wave 



motion. For a ray consisting of photons with energy E ,  the frequency v that 
characterizes the wave is given by the relation 

E = hu. (1.23) 

The corresponding wavelength is related to the frequency through the general 
equation 

u A = c  (1.24) 

which simply states that an e~ectromagnetic wave propagates with the speed 
of light. 

Eqs, (1.23) and (1.24) allow us to write Eq. (1.22) as 

p = h/A, (1 25) 

The remarkable d ~ a ~ ~ s r n  between particle properties ( E  and p> and wave prop- 
erties (v and A), expressed by Eqs.(1,23) and (1,25), is a genuine and general 
feature of quantum mechanics. It also plays a most fundamental role in the 
description of electrons and nucleons and will be properly discussed in the 
follo~jng chapters. 

The elastic scattering of photons is observed as Rayleigh scattering and 
Thomson scattering, the inelastic scattering as Compton scattering and Ra- 
man scattering. The measurements of photon absorption and photon emission 
are called absorption and emission spectroscopy, respectively. Depending on 
the energy of the photons, and the nature of the atomic or molecular changes 
brought about through the in t e r~ t ion  with the photons, different experimen- 
tal techniques are used, and thus many different branches of spectroscopy have 
developed. This has, in turn, led to a natural division of the so-called electro- 
magnetic spectmrn into subregions. 

The ~ ~ c t ~ u ~  of a physical quantity is the set of values that the quantity 
may take, This set may be discrete or continuous, or it may have both a 
discrete and a continuous part. The energy of a photon may take any value 
between zero and infinity (in arbitrary units). The energy spectrum is accord- 
ingly continuous. It is this energy spectrum that is called the electromagnetic 
spectrum. It may, of course, equally well be characterized by the possible 
values of v ,  or the possible values of A, for the associated wave, and this is 
common practice. The range of values is again from zero to in~nity,  and so is 
the range for the so-called wavenumber 

i7 = l / X  = e/hc (1.26) 
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Spectral region 

X-ray 
Vacuum ultraviolet 
Quartz ultraviolet 
Visible region 
Photographic infrared 
Near infrared 
Medium infrared 
Far infrared 
Micro- and radiowaves 

Table 1.1: The Electromagnetic Spectrum 

which we already introduced in Section 1.4. It is a frequently used quantity in 
spectroscopy. 

A coarse division of the electromagnetic spectrum into subregions is shown 
in Table 1.1. Each subregion may, of course, be further divided. The visible 
region may, for instance] be divided into subregions according to  the various 
colors. 

We shall now return to  our historical approach and discuss how the study of 
electromagnetic radiation in equilibrium with matter led to  quantum mechan- 
ics, and hence to the discovery of the photon and the dynamics that governs 
the behavior of the particles in the atomic and molecular world. 

Supplementary Reading 
The bibliography] entries [l], [2] and [3]. 

Problems 
1.1. From your favorite physics textbook, repeat the classical description of the 
harmonic oscillator, i. e., a particle with mass m and position coordinate z, bound 
to the origin (z = 0) by the elastic force F = -kz. Set up Newton’s second law and 
determine 2 as a function of time. Express the frequency of oscillation in terms of k 
and m. 

1.2. In the atomic model suggested by J .  J. Thomson (page 12)’ the hydrogen atom 
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is imagined to consist of a positive charge e ,  uniformly distributed inside a sphere 
with radius R, and an electron with the negative charge -e, originally placed at  the 
center of the sphere, 0. 

a. Write down the expression for the force acting on the electron if it 
is pulled out to a distance r < R from 0. (According to the laws of 
electrostatics, one may calculate this force by assuming that the positive 
charge inside the sphere of radius r is concentrated at  0, while the 
positive charge outside this sphere is neglected.) 

b. Show that the force just calculated is a harmonic force (Problem I), 
and write down the expression for the frequency of the oscillations that 
the electron may execute under the influence of this force. 

c. Assume that R = 0.53 x lo-’’ m, corresponding to the radius of the 
first Bohr orbit defined in the following chapter. Determine the numeri- 
cal value of the frequency of oscillation under this assumption. Calculate 
also the corresponding wavenumber P and relate it to the Rydberg con- 
stant defined by Eq. (1.8). 

The Thomson model has a quantum-mechanical parallel in the so-called jellium model 
which is sometimes used as a first description of large systems, for instance a crystal 
or a cluster of atoms. The sum of nuclear charges is uniformly distributed over the 
region of the crystal or the cluster. The motion of the electrons is then modelled 
by solving the Schrodinger equation with the electrostatic potential arising from the 
positive “jellium” . 
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In this chapter we cover the first twenty-five years of quantum mechanics. 
Those were the years of the so-called early quantum mechanics, which was the 
precursor of the modern theory. As far as solving problems were concerned, 
the idea behind the early quantum theory was to first write down all possible 
classical motions of a system and then pick out ‘the quantum-mechanically 
allowed motions’ by means of a set of cleverly devised quantization conditions. 
This method of attack was successful for simple systems like the harmonic 
oscillator and the hydrogen atom, but it failed for more complex systems. It 
was not the true theory. 

20 



2.1. Black-Body Radiation and Planck’s Discovery 21 

We devote a full chapter to early quantum mechanics for three reasons. 
Firstly, there is the obvious historical reason. Secondly, the period of the early 
quantum theory produced a number of concepts that are of lasting value. The 
third reaaon for still studying the methods of early quantum mechanics is that 
the so-called semiclassical mechanics-which is a proper and frequently used 
limit form of modern quantum mechanics-has many similarities with it and 
hence uses much of its language. 

We begin with Max Planck’s important discovery of the quantum of action, 
the Planck constant. 

2.1 Black-Body Radiation and Planck’s 
Discovery 

The official birthday of quantum mechanics is the 14th of December, year 
1900, the day when Max Planck, in der Deutschen Physikalischen Gesellschaj?, 
presented his final analysis of the energy distribution in what he called the 
normal spectrum.’ This is the part of the electromagnetic spectrum seen in 
the radiation from a secalled black body at a definite temperature. 

A black body is an object which absorbs all radiant energy incident upon it, 
without discriminating between wavelengths. A good candidate is a perfectly 
insulated electric oven with only a tiny hole in it. For even if the walls of the 
oven are not ideal absorbers practically all radiation shone upon the opening 
of the oven will be absorbed, for it would have to  bounce back and forth many 
times within the oven before it would have any chance of hitting the opening 
again and escape. 

When the oven is heated, electromagnetic radiation will build up in the 
cavity of the oven, and the intensity and spectral composition of this black- 
body radiation may be observed and measured through the hole of the oven. It 
is a thermodynamic system just as well as a gas or piece of matter is, and we 
may also describe it in the same way, by means of the usual thermodynamic 
functions. In particular, the radiation may be characterized by the same tem- 
perature, T, as the walls with which it is in thermodynamic equilibrium. The 
internal energy of the radiation is proportional to the volume of the cavity, and 
so is the entropy. We shall therefore let u and s denote energy and entropy 
densities respectively, i. e., energy and entropy per unit volume. 

The first quantitative information about these densities was derived by the 
Austrian physicists Josef Stefan (1879) and Ludwig Boltzmann (1884). Stefan 

‘M. Planck, Ann. Physik 4, 563 (1901). 
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found experimentally that the intensity} J ,  of emission from a black body has 
the form 

J = aT4 (2.1) 

where u is a constant whose value is the same for all black bodies and is 
called the Stefan-Boltzmann constant. The intensity of emission is defined as 
the total energy radiated per unit area per unit time, and elementary though 
somewhat lengthy considerations show that it is connected to u through the 
relation u = 4J/c. Hence, we also have that 

where a = 40/c. 
It was Boltzmann’s achievement that he was able to derive the form of 

this expression theoretically,2 on the basis of thermodynamic arguments and 
Maxwell’s theory of electromagnetic radiation, to which we alluded in Sec- 
tion 1.4. He also derived the following form for the entropy density: 

s = $aT3 + const. (2.3) 

Eqs. (2.2) and (2.3) give the energy and entropy densities of the black-body 
radiation, but the expressions say nothing about the spectral composition of 
the radiation. In order to describe this composition we need universal func- 
tions p(v, T )  and a(v, T )  such that ply,  T)dv gives the partial energy density 
corresponding to the frequencies between v and Y + dv, while ~ ( v ,  T)dv gives 
the corresponding partial entropy density. p(v,  T )  and ~ ( v ,  T )  are called spec- 
tral distributions, or just distributions. They must satisfy the normalization 
conditions: 

s,” d . 1  w v  = 4% 1” u(v, T)dv = s (T) ,  (2.4) 

with the T dependence of u(T) and s(T) i19 given by Eqs. (2.2) and (2.3), 
respectively. 

Instead of p(v, T ) ,  much of the original work used a function E(X, T )  show- 
ing how the energy density is distributed with respect to the wavelength A. 
Since vX = c, we have that dv = -(c/X2)dX. E(X, T )  must be normalized with 
respect to A. Hence, we get 

2L.Boltzrnann, Ann. Physik 22, 291 (1884). 
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We may, of course, also introduce the wavenumber D = l / A  = u/c and define 
the corresponding distribution function 

p(i7,T) = cp(v,T). 

The actual form of the function E(A ,T)  was much discussed during the 
1890s. For a given T ,  it has a maximum at some definite value, A. In Berlin, 
Wilhelm W e n  found the remarkable result that the product of T and A is a 
universal constant, today called b: 

TA = b .  (2.7) 

This relation is known a8 Wien’s displacement law. Wien also found an ex- 
pression for the function E(A ,T)  which was correct for higher frequencies. 
For lower frequencies, an independent expression was found by the English 
physicist Lord Rayleigh. For the actual form of these expressions, see the 
introduction to the next section. 

In Berlin, in 1899, Otto Lummer and Ernst Pringsheim produced experi- 
mental graphs of E(A, T )  for different values of T and hence derived the value 
of b .  The value of the constant u in Eq. (2.1) had been accurately determined 
in 1898 by Ferdinand Kurlbaum. On the basis of these results and Wien’s and 
Rayleigh’s expressions, Max Planck found the analytic form of E(A, T ) ,  in the 
pioneering contribution mentioned at the beginning of this section. 

From the very outset of his analysis, Planck looked not only for the form of 
the function E(A,T),  or p(v, T ) ,  but also for the form of the entropy function 
u(v, 2’). To determine the form of these functions, he introduced a collection 
of harmonic oscillators (resonators) with which the radiation was supposed to 
be in thermal equilibrium. He then used Newton’s and Maxwell’s equations 
to find relations between the energy and entropy of the oscillator system on 
the one hand, and the energy and entropy functions, p(u,T)  and u(u,T) ,  for 
the radiation on the other. In this way, he reduced the problem to that of 
determining the energy and the entropy of the oscillator system from first 
principles. 

To this end, he wrote the entropy of the oscillator system in the form (1.3), 
with k as a parameter, and set out to evaluate the thermodynamic probability, 
W .  He then arrived at the remarkable conclusion that in order to obtain a 
qualitative agreement with the form of Lummer and Pringsheim’s curves, it 
was  necessary to limit the possible energy values of an oscillator with frequency 
v to a discrete set and write 

~ , , = n h v ,  n = 0 , 1 , 2  , . . .  (2 .8)  
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where h is a constant. A quantitative agreement was obtained by treating h 
and k as adjustable parameters with values to be determined from the values 
of the constants IY and b that we mentioned above. k is Boltzmann's constant, 
and h is Planck's constant. Their numerical values have already been given, 
in Eqs. (1.4) and (1.14) respectively. 

Thus, Planck's struggle to understand the energy and entropy re- 
lations for electromagnetic radiation simultaneously crowned the 
science of statistical mechanics with Boltzmann's constant, and 
gave birth to quantum mechanics with the introduction of the 
constant h. 

We shall not attempt to reproduce Planck's analysis here. It is quite an 
exercise in classical mechanics, electrodynamics, and statistical mechanics. So, 
we shall pass on to a direct presentation of the fundamental function p(v, T ) .  
Its analytic expression is 

The corresponding function E(X, T ) ,  defined by Eq. (2.5) becomes 

1 
exp(hc/XkT) - 1 

E(X,T)  = (87rhC/X5) (2.10) 

By integrating p(v, 5") over v ,  as in Eq. (2.4), we obtain the energy density 
u(T) .  The integration is readily performed by utilizing that3 

7r4 

15 
d x = - - .  

The result is 

u(T)  = - 8n5k4 T4 = 7.56598 x T4 K-4 J m-3 
15h3c3 

(2.11) 

(2.12) 

Hence we find, by comparison with Eq. (2.2), that the Stefan-Boltzmann con- 
stant has the value 

87r5k4 u=-- - 5.67051 x lO-'W m-2K-4. 
6Oh c 

(2.13) 

3See, for example, I. S. Gradshteyn and I. M. Ryshik, Table of Integrals, Series and 
Products, Academic Press, New York, 1965, Sec. 3.411. 
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We also find, by standard methods, that p(v, T )  and E(X, T )  attain their 
maximum values when 

hv/kT = 2.821440 and hc/XkT = 4.965114, (2.14) 

respectively. That these values correspond to different wavelengths (and fre- 
quencies) is a consequence of the relation (2.5), according to which the func- 
tions p(v,T) and E(X,T) differ by the factor c /X2 .  

By Eq. (2.14), the constant b in Wien’s displacement law, Eq. (2.7)’ attains 
the value 

hc 
4.965114 k 

b =  = 2.89776 x m K .  (2.15) 

Eqs. (2.13) and (2.15) provide theoretical expressions for u and 6 .  On the 
other hand, they also allow a determination of h and k from experimentally 
determined values of u and b ,  and as we mentioned above, this was the route 
that Planck had to follow. 

It is instructive to write Eq. (2.9) in the form 

(2.16) 

where u(T) is given by Eq. (2.12)’ and x is a dimensionless variable, while f(x) 
is given by 

1” f(x)dx = 1. 15 x3 
7r4 ec - 1 ’ f(x) = -- (2.17) 

Since f(z) is normalized to unity, we may interpret f(x)dx as the fraction of 
the radiation that corresponds to values of hv/kT between x and x + dx. We 
see that this fraction is the same for all black bodies. 

The function f ( x )  is shown in Fig. 2.1 and, with logarithmic axes, in 
Fig. 2.2. 

We close this section by evaluating a few A values from Eqs. (2.7) and (2.15). 
The results are presented in Table 2.1. In the table, T = 300 K corresponds 
to room temperature, T = 1808K to the melting point of iron, T = 5800K 
to the temperature of the solar surface, T = 107K to the temperature in a 
nuclear explosion and T = 2.9 K to the temperature of the cosmic background 
radiation (which was created approximately 300 000 years after the big bang, at 
a temperature around 3000 K) .  We note that the cosmic background radiation 
falls in the microwave region (see Table 1.1) .  The A values corresponding 
to room temperature and the temperature of molten iron fall in the infrared 
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Figure 2.1: Universal Planck distribution. 

region. However, a large part of the radiation from the surface of the sun 
falls in what we call the visible region. This coincidence may, of course, be 
considered to be a result of evolution which has adapted our eyes so that we 
may take maximum advantage of the light from the sun. Finally, we note that 
the radiation from an atomic explosion has its highest intensity in the X-ray 
region. 

The last column in Table 2.1 gives the photon density, i. e., the number of 
photons per unit volume, as calculated from Eq. (2.27) below. 
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Figure 2.2: Universal Planck distribution. Logarithmic axes. 

2.2 Photons and the Photoelectric Effect 
In Eq. (2.9) we presented the analytic expression for the distribution function 
p(v, T) .  We shall now consider the limits of low and high frequencies. Hereby, 
we arrive at expressions whose qualitative forms were already known to Planck 
and used by him in his derivation of Eq. (2.9)--as mentioned on page 23 above. 

In the low-frequency limit we replace exp(hv/kT) by 1 + hv/kT and get: 

p(v, T )  N (8nv2/c3)kT. (2.18) 

This expression is known as the Rayleigh-Jeans f ~ r m u l a . ~  It was suggested 
by Lord Rayleigh on the basis of the equipartition theorem for energy and a 
simple counting of standing waves in a cavity. The number of possible standing 
waves per unit volume, with frequencies between v and v + dv, is shown to 
be (8nv2/c3)dv,  and by assigning to each standing wave an energy of k T  one 
arrives directly at Eq. (2.18). We note that this expression does not involve the 
Planck constant. It is the so-called classical limit of Eq. (2.9). Working from 
the classical limit we may, with some hindsight, replace the k T  in Eq. (2.18) 
with the average energy of a quantized harmonic oscillator. The expression 
for that energy is derived in Sec. 2.4 and is given by Eq. (2.36). When it is 

4Lord Rayleigh, Phil. Mag. 49, 539 (1900). J .  H. Jeans, Phil. Mag. 10, 91 (1905). 
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inserted in Eq. (2.18), it correctly gives Planck’s distribution function (2.9). 
This was pointed out by the Dutch physicist Petrus Debye in 1910.5 

The high-frequency limit of Eq. (2.9) is obtained by neglecting the number 
1 against exp(hv/kT). Thus we get: 

p(v, T )  N (8.rrhv3/c3) exp(-hv/kT). (2.19) 

This expression is known as the Waen formula, because it is similar to the 
formula suggested by Wien a few years prior to Planck’s work-with arbitrary 
constants instead of 8rh/c3 and h/k.6 The background for the formula was a 
statistical analysis of the interaction between radiation and the molecules of a 
gas. 

We recall that Planck’s quantum condition (2.8) is a condition on the oscil- 
lators representing the matter with which the blackbody radiation is supposed 
to  be in equilibrium. It implies that energy is exchanged with the radiation in 
multiples of hv. But Planck did not suggest that the radiation itself consist of 
energy quanta. This suggestion was made in 1905 by the German (later Amer- 
ican) physicist Albert E i n ~ t e i n , ~  on the basis of an analysis of the entropy of 
the radiation, in the high-frequency limit. He derived an expression for the 
entropy of the radiation from general considerations and Wien’s formula, and 
he demonstrated that the volume dependence of the entropy thus derived was 
the same as for an ideal gas. This convinced him that radiation should be 
conceived of as consisting of particles, with energy hv. These particles are, of 
course, the photons which we described in Section 1.8.’ 

To give an experimental proof of the existence of photons, Einstein merely 
had to  refer to a large series of measurements by the German physicist Philipp 
Lenard on the so-called photoelectric effect. The photoelectric effect amounts 
to the observation that free electrons may be emitted from a metal surface 
when it is illuminated by ultraviolet light. Such photoelectrons had already 
been detected by J .  J. Thomson in 1898 as cathode rays. Lenard had found 
that the velocity of the liberated electrons was independent of the intensity of 
the incident light, and Einstein took this as a proof that the liberation of an 
electron was an elementary process that only involved a single photon. The 
photon would transfer its energy, hv, to an electron which would then come 
out of the metal with a kinetic energy, km,v2, which equals the difference 

’P. Debye, Ann. Physik 33, 1427 (1910). 
‘W. Wien, Ann. Physik 58, 662 (1896). 
‘A. Einstein, Ann. Physik 17, 132 (1905). 
‘Einstein merely referred to the particles as energy quanta. The name photon was de- 

signed much later by G .  N.  Lewis, Nature 118, 874 (1926). 
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between the received energy, hv, and the so-called work function, W ,  of the 
metal. The work function is simply the minimum energy required to liberate 
an electron. Thus, we get Einstein’s equation 

$mev2 = hv - W I (2.20) 

v is, of course, the velocity of the e l e ~ t r o n . ~  
Since the left-hand side of Eq. (2.20) is invariably non-negative, a threshold 

value of v must exist, below which no electrons are ejected at  all, because the 
photon energy is too small. This threshold value, vo, is obviously determined 
by the condition 

hvo = W. (2.21) 

The existence of the threshold is amply borne out by experiment. 
In practice, one measures the number of photoelectrons by registering the 

charge transferred from the photoelectrode to a metallic plate placed at some 
distance from it. The velocity of the photoelectrons is measured by applying a 
negative voltage to the plate, just big enough to stop the flow of electrons. Let 
the necessary potential difference between the photoelectrode and the plate be 
E .  Then the electron must have been emitted with an initial kinetic energy of 
eE, i. e., 

3mev 2 = eE.  (2.22) 

The kinetic energy which an electron acquires (or loses) by traversing an electric 
potential difference of 1 Volt is denoted l e v  (1  electron Volt). Thus we get, 
by inserting the value of e from Eq. (1.12): 

1 eV = (1.60218 x 10-19C)(l V) = 1.60218 x 10-19J 1 (2.23) 

This is a practical unit of energy which we shall often use in the following. 

cesium) to several eV. 
The value of the work function, W ,  varies for pure metals from l.9eV (for 

sActually, v is the maximum velocity of an outgoing electron. One sees a distribution of 
velocitien, corresponding to the fact that the photon energy is transferred to the solid as a 
whole. So a single electron will, in general, only receive part of the photon energy. 
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In Fig. 2.3 we show a graphic representation of Eq. (2.20) with the metal 
of barium as an example. The work function for barium is 2.5 eV. This 
gives the threshold frequency 

uo = W / h  = (2.5 x 1.60218 x lo-'' J)/(6.62608 x J s )  

= 6.0 x 1014 Hz 

orl if we prefer to measure the frequency in wavenumbers, 

fio = uo/c = 

= 
(6.0 x 1014 s-')/(2.99792 x 10' ms-') 

2.0 x 10' m-l = 20000cm-'. 

This corresponds to a wavelength of 500nm, and hence to light in the 
visible region. 

Now that we have convinced ourselves of the reality of photons, let us 
calculate the density of photons in the black-body radiation. We recall that 
p(u, T ) d u ,  with p(u, T )  given by Planck's formula (2.9), is the contribution to  
the energy density from frequencies between Y and u + du. Hence the number 
of photons (per unit volume) in the same frequency interval is n(u, T)du, where 

The total number of photons per unit volume is 

We evaluate this integral by utilizing that lo 

(2.24) 

(2.25) 

(2.26) 

where ('(n) is the Riemann zeta function.ll The result is 

N ( T )  = 60.422 - = 2.0287 x 10'T3 K-3 m-'. (2.27) (3 
A set of calculated N(T)-values have been included in Table (2.1). 

'Osee footnote 3. 
"See, for example, M. Abramowitz and I. A. Stegun, Handbook of Mathematical Func- 

tions, Dover, 1965, Chapter 23. 
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Figure 2.3: Kinetic energy of photoelectrons as a function of 
frequency of incident light, far the metal of barium. 

After having proved the existence of photons, Einstein turned to the de- 
scription of matter iand, in particular, to the problem of correctly ~ a I ~ u l a t i n ~  
the mdar heat capacity of a gas or ib solid, We shall return to this problem in 
Section 2.4, after the f o ~ ~ o w ~ ~ ~  brief section which teaches us more about the 
nature of the photon. 

2.3 The Photon is a Relativistic Particle 
1905 ww also the year when Einstein presented his s p e e d  theory of ~ ~ ~ ~ ~ ~ ~ t ~ ,  
according to which c, the speed of light, is the same in all inertial systerns,12 An 
important concept in the theory of relativity is that of the &vector. This is a 
~ u ~ t ~ t ~  with four ~ ~ ~ p o n ~ ~ t ~  that transform into linear € ~ ~ ~ i ~ ~ ~ i o n s  of each 
other under a Lorents ~ ~ ~ ~ ~ o r ~ a t i o n ,  i. e., a t r a ~ ~ € ~ r ~ a t ~ ~ ~  from one inertid 

'%An inertial eystem is a coordinate system in which any free particle moves along a 
straight line with constant velocity. 
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system to another. The three position coordinates of a free particle, together 
with ct where t is the time coordinate, form one such 4-vector. Another is 
formed by the three components of the linear momentump, together with E / c  
where E is the energy, and one shows the following relation: 

(2.28) 

where m is the mass of the particle. 
For a free particle at  rest the linear momentum is zero, and hence 

EO = mc2 (2.29) 

where Eo is the rest energy of the particle. This is the famous equation that 
introduces the equivalence of mass and energy. 

If p is small as compared with mc, we take a factor mc2 outside the square- 
root sign and replace the new square root function with the two first terms in 
its Taylor expansion. This yields 

E 21 mc2 (i + --) 1 c2p2 = mc2 + -. P2 
2 m2c4 2m 

(2.30) 

In the same approximation, we have that p = mv, where v is the velocity of 
the particle. Hence we see that the relativistic energy is the sum of the rest 
energy and the non-relativistic kinetic energy, T ,  where 

(2.31) 

For a particle whose velocity is small as compared with c, the non-relativistic 
description is a good one. 

But the photon is a truly relativistic particle, for it moves with the speed 
of light. Moreover, its mass is zero, and Eq. (2.28) gives: 

E = cp (2.32) 

where E is the photon energy. This is Eq. (1.22) again. The momentum of a 
photon is a vector whose direction is the direction of propagation, and whose 
magnitude is E / C .  

If we go from one inertial system to another the energy and the momentum 
of the photon will change, and hence also the wavelength and the frequency 
of an associated electromagnetic wave. Light emitted by a body moving away 
from us will reach us with a smaller frequency than similar light emitted from a 
body at  rest. This is the reason for the red shift of the light from stars moving 
away from us. 



2.4. The Heat-Capacity Problem 33 

2.4 The Heat-Capacity Problem 

In Section 1.3 we described how classical statistical mechanics led to the value 
Cv = 3,5R for the molar heat capacity of a diatomic gas. In particular, the 
vibrational motion was claimed to contribute RT to the molar internal energy 
at absolute temperature T ,  and hence R to Cv. We also mentioned that these 
results only match the experimental findings for high values of T.  

For a monatomic crystal, the molar heat capacity has the value 3R at 
high temperatures. This is the law of Dulong and Petit (1819). But the heat 
capacity decreases with the temperature and goes to zero when the temperature 
does. Again, it is easy to account for the high temperature value, for each 
atom in the crystal can vibrate about its equilibrium position in three different 
directions. It has, therefore, three vibrational degrees of freedom, and with NA 
atoms in the crystal this leads to a contribution of 3RT to the internal molar 
energy, and hence to a contribution of 3R to the molar heat capacity. But again 
a statistical description based on classical mechanics is unable to account for 
the observed temperature dependence of Cv . 

In a classical harmonic oscillator, the position coordinate executes sinu- 
soidal oscillations around a fixed value with a definite frequency, v ,  and the 
energy is a continuous function of the maximum amplitude. Thus, the oscilla- 
tor has a continuous energy spectrum. In his study of the black-body radiation, 
Planck replaced this continuous energy spectrum with a discrete one: The only 
allowed energy values are nhv, as in Eq. (2.8), with n = 0 , 1 , 2 , .  . . 

In an important paper from 1907,13 Einstein made the suggestion that if 
the energy of the black-body oscillators should be treated as quantized, then 
one might expect the same to hold for the energy of any other oscillator. He 
therefore went on to calcuIate Cv for a monatomic crystal under this assump 
tion. Let us take the opportunity to be more specific about the statistical 
met hod. 

Assume that the only possible energies of an oscillator are €0 , €1 , ~2 , . . . 
and that we have a large collection of oscillators as we do in a gas or a crystal, 
and assume also that all these oscillators correspond to the same frequency, v. 
Each oscillator may exchange energy with the other oscillators, and as a result 
of this it only makes sense to talk about the mean energy, F, of an oscillator. 
This mean energy must be a function of the temperature, and each allowed 

ISA, Einstein, Ann. Physik 22, 180 (1907). 
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energy value will contribute to it with a definite weight: 

00 

q T )  = c %(T)En (2.33) 

where w,, is the weight corresponding to the energy en. The sum of all weights 
must equal 1, 

?l=O 

00 

(2.34) 

and we may therefore also refer to the weights as probabilities. 
The way to determine the weights is by finding the maximium contribution 

to the entropy function (1.3), This is a fundamental problem in statistical 
mechanics,14 and the result is that 

(2.35) 

These weights define the so-called Boltzmann distribution. When we put en = 
nhu in the above expressions, the sum in Eq. (2.33) may be evaluated explicitly, 
to give 

hv 
exp(hu/kT) - 1 ' T(T) = (2.36) 

For a monatomic crystal with 3NA vibrational degrees of freedom we must 
multiply F by ~ N A  to get the internal molar energy, U(T). The result may be 
written 

hu/kT 
= 3RTexp(hu/kT) - 1 ' 

CV is the derivative of U(T)  with respect to T, and becomes 

exP Cv = 3R(O/T)2 (exp(O/T) - 1)2 

(2.37) 

(2.38) 

where 

0 = hu/k. (2.39) 

0 is called the Einstein temperature. It is readily seen that the expression for 
CV approaches the classical one, Cv 2: 3R, for T sufficiently large. 
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Figure 2.4: Einstein’s heat-capacity curve. 

Eq. (2.38) gives a reasonable agreement with experimental CV versus T 
curves for monatomic crystals when proper values are assigned to 0. These 
values lie largely between 100 and 2000K. The agreement with experiment 
is, however, not exact. But this was to be expected, for it is obviously a 
very crude approximation to treat the oscillators on different atomic centers as 
being dynamically independent. When this approximation is removed, at the 
expense of a more complex analysis, a perfect agreement between theory and 
experiment is obtained. 

Figure 2.4 shows a graph of Einstein’s C,, curve, as defined by Eq. (2.38). 
With 3R replaced by R, the curve also represents the vibrational contribution 
to the molar heat capacity of a diatomic gas. 

Thus the problem of explaining the temperature dependence of the molar 
heat capacity had been solved, and it became obvious that the discrete energy 
spectrum of an oscillator was a very real thing. 

It should be noted that the expression for C,, remains unchanged if one 
introduces a so-called zero-point energy EO by replacing Planck’s original ex- 

~~ ~ ~ 

14See any standard textbook on statistical thermodynamics. 
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pression (2.8) for the energy spectrum by an expression of the form 

E,, = EO + nhv, n = 0 , 1 , 2 , .  . . (2.40) 

For Eqs. (2.33) and (2.34) show that Z(T) is merely modified by €0 and hence 
becomes 

(2.41) 

Similarly, the expression (2.37) is modified by ~ N A E O .  This temperature- 
independent term does not contribute to Cv which therefore remains un- 
changed, as claimed. 

In this context it is interesting to rewrite the expression (2.41) as eo plus 
k T  times a Taylor series in hv/kT. In this way we get: 

+ . . .  (2.42) 
- 1 1 (hv)' 1 ( h ~ ) ~  

2 12 k T  720 (kT)3 
E(T) = €0 + k T -  -hv+ -- - -- 

For large values of T this approaches kT + ( € 0  - ihv) .  Thus, a pure approach 
to k T  is obtained with €0  = 4hv. 

The concept of zero-point energy was  suggested by Max Planck in a second 
discussion of the black-body p r ~ b l e m ' ~ ,  in which he was led to the expression 

- 1 exp(hv/kT) + 1 
2 exp(hv/kT) - 1 

€(T)  = -hv (2.43) 

It is readily seen that this expression may be written in the form (2.41), with 
€0 = ahw. Subsequently, Einstein and Stern" discussed an expansion similar 
to (2.42) and presented some independent arguments for the existence of a 
zero-point energy equal to ahv. These arguments were based on a compari- 
son between the rotational and vibrational contributions to CV for diatomic 
molecules. Today, these arguments can hardly be considered c o n c l u ~ i v e , ~ ~  but 
they stirred some interest a t  the time. 

In modern quantum mechanics, a zero-point energy of i h v  shows up auto- 
matically (See Chapter 7). The correct expression for the energy spectrum of 
the harmonic oscillator is accordingly 

E,, = Thv 1 + nhv, n = 0, 1 , 2 , .  . . (2.44) 

I5M. Planck, Ann. Physik 37, 642 (1912). 
"A. Einstein and 0. Stern, Ann. Physik 40, 551 (1913). 
I'J. P. Dahl, J .  Chem. Phys. 109, 10688 (1998). 
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But if the energy spectrum of an oscillator is always discrete, should we 
not expect the energy spectra of other physical systems to be discrete as well? 
The first explicit answer to this question was given by Niels Bohr. 

2.5 Bohr’s Theory of the Hydrogen Atom 

In Section 1.6 we described Rutherford’s picture of the atom as a solar system, 
with the light electrons circling the heavy, positively charged nucleus at the 
center of the atom. This is an intuitively simple picture. But as it was realized 
at the time, it is a picture of an unstable mechanical system if the laws of 
classical mechanics hold. For while the electrons move, they must be continu- 
ously changing their directions in order to stay within the atomic region. But 
an electron changing its direction is an accelerated electron, and as a charged 
particle it should therefore emit electromagnetic radiation, as mentioned in 
Section 1.4. And because of the energy loss associated with such an emission, 
the electron should spiral toward the nucleus. The atom would collapse, and 
during the collapse it would emit radiation of all possible wavelengths. Nothing 
like the well-known line spectra could possibly emerge in this way. 

Also, it would not help to assume that the electrons form some fixed elec- 
trostatic configuration around the nucleus For it may be shown that no elec- 
trostatic configuration of point charges can be stable (Earnshaw’s theorem). 

It was obvious that drastic modifications of the classical description of 
moving particles would be required to account for the stability of the planetary 
atom and the observation of spectral lines. This was where the Danish physicist 
Niels Bohr entered the scene, in 1913.” 

With reference to Planck’s and Einstein’s work, Bohr made the suggestion 
that we hinted at in the previous section, namely, that also the energy of an 
atom should be quantized. Thus, he simply postulated that an atom possesses 
a series of discrete stationary states just as a harmonic oscillator does, and 
in each of these states the atom has a definite energy. (We may denote the 
energiee of these stationary states by El,  Ez, E3,. . . and assume an energy 
ordering such that El < E2 < E3 < . . .) 

Next, Bohr suggested that the atom may pass from one stationary state 
to another under emission or absorption of a light quantum with an energy 
equal to the energy difference, AE, between the two states. This leads to the 

lSN. Bohr, Phil. Mag. 26, 1 (1913). 
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fundamental energy-frequency condition: 

AE = hv (2.45) 

where u is the frequency characterizing the absorbed or emitted photon, Thus, 
Bohr treated the absorption and emission of radiation as an elementary process 
that merely involves a single atom and a single photon. 

It is obvious that such a model leads to the appearance of line spectra, for 
the values of v that are in accordance with Eq. (2.45) form a discrete set. But 
so far, the model is an entirely qualitative one. To turn it into a quantitative 
model, Bohr suggested that the allowed energies could be calculated, and he 
devised a method of doing so for the one-electron atom. He contended that in a 
stationary state of a one-electron atom the electron moves around the nucleus 
in a stationary circular orbit, subject to the laws of classical mechanics. The 
stationary orbits and hence the allowed energies, he postulated, would then be 
determined from the condition that the angular momentum, 1 ,  be a multiple 
of ti = h / 2 r  

I 

1 = n h ,  n = 1 , 2 , 3  ,... (2.46) 

This quantum condition was ad hoc, i. e., it was exclusively introduced 
because it worked. But so was, of course, Planck’s quantum condition (2.8). 
Let us, without further ado, accept Bohr’s quantum condition and calculate 
the allowed energies of the one-electron atom. 

To this end we introduce a Cartesian coordinate system centered on the 
atomic nucleus which, for the time being, we consider to be at rest. The 
electron, whose position vector we denote by T ,  is then subject to an attractive 
electrostatic force, F ,  from the nucleus. According to the well-known Coulomb 
law, F has the form: 

(2.47) 

where Z is the nuclear charge (2 = 1 for hydrogen) and E O ,  which is the 
secalled permittivity of vacuum, has the value 

EO = 8.85419 x F m-’. (2.48) 

r is the electron’s distance form the nucleus. For the magnitude of the force, 
we get: 

(2.49) 
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r 

Figure 2.5: Circular motion as viewed in position space (left) and mo- 
mentum space (right). The origin of position space is the atomic nu- 
cleus, and T is the instantaneous position vector of the electron. The 
origin of momentum space corresponds to an electron at rest. p is the 
instantaneous linear momentum of the electron. For circular motion, 
corresponding values of T and p are mutually perpendicular. 

The linear momentum of the electron is 

p = mev 

where v is the velocity. 
The angular momentum of the electron is defined as 

(2.50) 

l = r x p .  (2.51) 

Its magnitude is 

1 = rpl sin uJ  (2.52) 

where u is the angle between r and p .  For a circular orbit, r and p are constant, 
u equals r/2,  and I = rp. 

Bohr’s quantum condition (2.46) may now be written 

r p = n f i ,  n =  1 , 2 , 3 , . . .  (2.53) 

To proceed, we introduce Fig. 2.5 which shows the increments of the vectors 
r and p ,  corresponding to the infinitesimally small time interval dt during 
which both vectors traverse the angle element d$. From the left part of the 
figure, we see that ldrI = rdll, and hence 

d$ v =  - = r - .  lzl dt (2.54) 
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From the right part of the figure, we get that ldpl = pd$ and thus 

(2.55) 

From Eq. (2.54) we see that d $ / d t  = v / r ,  and by inserting this in Eq. (2.55) 
while using Eq. (2.50), we get: 

Newton's second law states that 

dP 
d t  
- = F .  

Hence we get, from Eqs. (2.49) and (2.56): 

(2.56) 

(2.57) 

(2.58) 

This equation must be satisfied for any circular orbit. 
The orbits that satisfy the quantum condition (2.53) may now be found by 

utilizing that the n'th orbit for which the quantum condition is satisfied has 
its r-value, r,, and its pvalue, p,,, correlated by the condition rnpn = ntr. The 
value of p ,  is found from this condition and Eq. (2.58) divided by p. We get 

(2.59) 

where 

(2.60) 

Inserting the value of p ,  on the left-hand side of Eq. (2.58) gives subsequently: 

(2.61) 
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a0 is the so-called Bohr radius. It is the radius of the first allowed orbit for 
hydrogen (n = 1 and Z = 1). It has the numerical value 

a0 = 0.52918 x 10-'om. (2.62) 

For the energy we write: 

E = T + V  

where T is the kinetic energy, 
n 

P' 
2me 

T = - ,  

and V is the potential energy, 

Eq. (2.58) tells us that 

(2.63) 

(2.64) 

(2.65) 

(2.66) 

This relation is called the wirial theorem. It implies that E = V/2. Hence, we 
get that 

Substituting the expression for rn from Eq. (2.61) gives finally: 

(2.67) 

(2.68) 

This is Bohr's expression for the allowed energies of the one-electron atom. 
We now turn to Eq. (2.45) which gives the possible spectral lines. We 

rewrite the equation in the form 

ij = v / c  = (Em - En)/hc n < m, (2.69) 

and insert the values for Em and En from the above equation. This gives 

(2.70) 
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me - 1.09737 x 107m-' 

where 

(2.71) 

Eq. (2.70) has exactly the same form as the experimentally derived Ryd- 
berg formula (1.9). We even see that R, and RH are identical to within the 
accuracy with which the latter is quoted in Eq. (1.8). Thus, Bohr's theory is in 
fact capable of reproducing the actual spectrum of hydrogen, and the quantum 
condition (2.46) must conceal something essential about the internal dynamics 
of the one-electron atom. 

A more exact value for RH is, however 

RH = 1.09679 x 107m-' (2.72) 

which deviates 0.05% from R,. But this discrepancy is readily accounted 
for by relaxing the condition that the atomic nucleus be at rest. As we shall 
discuss it later (Sec. 8.1), the effect of taking the motion of the nucleus into 
account simply amounts to replacing me in Eq. 

me mn 
'= me +m, 

where m, is the mass of the nucleus. Thus, 

(2.71) by the reduced mass 

(2.73) 

R, really corresponds to an 
infinitely heavy nucleus. With m, equal to the proton mass mp as given by 
Eq. (1.16) we get 

p = 0.99946 me. (2.74) 

The replacement of me by p yields RH = 1.09677 x 107m-'. Thus, the 
agreement with Bohr's theory is restored. 

Still, the position of spectral lines may be measured with an accuracy that 
corresponds to three more digits in RH and R, than given above. Such 
accurate measurements reveal that what was so far treated as single lines are 
in fact groups of two or more lines that lie very close together. The spectrum 
shows a so-called fine structure. This fine structure is further enhanced when 
the emitting or absorbing atoms are subjected to electric and magnetic fields. 

In the years following 1913, great efforts were made to extend the Bohr 
theory so that the fine structure could be accounted for. These efforts were to 
a large extent successful. The German physicist Arnold Sommerfeld replaced 
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Bohr’s circular orbits with elliptical orbits, and new quantum numbers were 
introduced in addition to the quantum number n above. Also, relativistic 
corrections were included and their effect accounted for. 

But the extension to atoms with more than a single electron turned out 
to represent too big a challenge for Bohr-like theories. Some very impor- 
tant qualitative results were obtained, however, the most conspicuous being 
Bohr’s explanation of the periodic table in terms of rings of electrons at var- 
ious distances from the nucleus, in 1921.” This account was almost directly 
translatable to the proper quantum-mechanical language that finally came into 
being. 

The quantum mechanical theories that we have considered in the present 
chapter constitute what we now call the old quantum mechanics. It developed 
over a period of 25 years and, in spite of all its incompleteness, it gave con- 
siderable insight in atomic structure, much less insight in molecular structure, 
however. 

The old quantum mechanics was, as we have seen, really classical mechanics 
subjected to quantization conditions. A rich formalism was developed around 
the problem of quantization, but we shall not consider this formalism further 
here. It is, however, worth while emphasizing that it is still a very useful for- 
malism. It includes, in particular, valuable formulations of quantum mechanics 
in the so-called semiclassical limit. 

We complete this chapter on the birth of quantum mechanics with the 
introduction of matter waves, the so-called de Broglie waves. 

2.6 D e  Broglie Waves 

In the previous sections we have learned that electrodynamic radiation is com- 
posed of photons. A photon has zero mass and moves with the speed of light. 
It is defined by its energy, E ,  and its linear momentum, p ,  whose direction is 
the direction of propagation and whose magnitude is p = E / c .  

We have, however, also learned that we may associate an electromagnetic 
wave with the same photon, The frequency, u, and the wavelength, A,  of this 
wave correspond to the relation 

1 h 1  
(p, - E )  = ( -n -hu) c x ’ c  

where n is a unit vector in p’s direction. 

(2.75) 

leN. Bohr, Danak Fys. Tidsskr. 19, 153 (1921), Z. Phys. 9, 1 (1922). 
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In 1924, the French physicist Louis de Broglie made the suggestion that 
this relation is valid for all types of particles, whether or not they are carriers 
of mass, when E is taken to be the relativistic energy as defined by Eq. ( 2 . 2 8 ) ,  
or Eq. ( 2 . 3 0 )  when u / c  is small.” He was led to this suggestion by studying 
a parallelism between the description of wave propagation and the description 
of particle motion in an advanced formulation of classical mechanics due to 
the nineteenth century mathematical physicists William Rowan Hamilton in 
Ireland and Carl Gustav Jacobi in Germany. He was also governed by rela- 
tivistic considerations, of which the simplest was  that both sides of Eq. ( 2 . 7 5 )  
represent 4-vectors. This has the consequence that the relation is invariant 
under Lorentz transformations. We must of course desist from reproducing de 
Broglie’s analysis here. 

For a particle with mass m (and v / c  small) we have that p = mu, and 
hence that 

h A = -  
m u  

( 2 . 7 6 )  

X is called the de BToglae wavelength of the particle. We see that heavy particles 
and particles moving at high speed have the shorter de Broglie wavelengths. 

Let us calculate the de Broglie wavelength, A,, for an electron in the n’th 
Bohr orbit. The radius, r,, of the orbit and the linear momentum, p , ,  are 
related by the quantum condition ( 2 . 5 3 ) ,  i. e., 

rnpn = nh. ( 2 . 7 7 )  

We get, accordingly: 

h 27rrn A - - = -  
Pn n n -  (2 .78)  

27rr, = nAn. ( 2 . 7 9 )  

Thus, the circumference of the n’th Bohr orbit equals exactly n de Broglie 
wavelengths. If we view the amplitude of a wave as a succession of troughs 
and crests, then the wavelength is defined as the distance between neighboring 

2oL. de Broglie, Ann. de Physique 3, 22 (1925). The article is based on de Broglie’s thesis 
from 1924, republished under the title Recherches sur la the‘orie des  quanta, Masson, Paris, 
1963. 
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crests (or troughs). That a de Broglie wave satisfies Eq. (2.79) implies, there- 
fore, that the amplitude varies continuously and matches itself as we follow it 
all the way around a Bohr orbit. Such a way wave may be construed of as a 
stationary, or standing wave. 

The fact that the stationary states of Bohr are exactly those that corre- 
spond to stationary waves associated with the atomic electron threw new light 
on the real meaning of the quantum condition (2.46). It was an important 
finding on the way toward the exact theory. But apart from that, the concept 
of de Broglie waves alone was unable to throw further light on the internal 
structure of atoms and molecules. 

The concept has proven much more useful in the description of free parti- 
cles and the center-of-mass motion of atoms and molecules. For electrons, the 
reality of matter waves was experimentally proven in 1927 by the American 
physicists Clinton Davisson and Lester Halbert Germer, and by the English 
physicist George Paget Thomson (the son of J.  J. Thomson). Davisson and 
Germer obtained diffraction patterns of electrons reflected from a nickel sur- 
face, of a similar type as the diffraction patterns produced by x-rays. Thom- 
son, on the other hand, observed diffraction rings upon the passage of electrons 
through thin metal sheets. 

Precise studies of matter waves may be carried out by experiments based 
on the diffraction at single-, double- and multiple-slit assemblies. Consider, for 
instance, a planar plate with a narrow rectangular opening of width b-this is 
a slit, and imagine a wave with wavelength X falling perpendicularly upon the 
plate. We may then observe a diffracted wave behind the slit and study it in 
a plane parallel to the plate. Let the distance between the plate and the plane 
of observation be L ,  and let z be the coordinate in the direction across the slit. 
The intensity in the plane of observation may for instance vary with z as shown 
by the upper graph in Fig. 2.6. Next, add another slit parallel to the first. The 
intensity we observe will now have a much richer structure, like the one shown 
by the lower graph (for which the distance between the centerlines of the two 
slits was chosen to be 5b). This richer structure is due to interference between 
the elementary waves emerging from the two slits. The interference may be 
understood as follows, by drawing on the general rule that the intensity of a 
wave with amplitude cp is IpI2 = (PIP, where * means complex conjugation. 

Let PI(%) be the amplitude of the wave emerging from the first slit. With 
the second slit absent, we measure the intensity l ( ~ l ( z ) 1 ~  along z (upper graph 
in Fig. 2.6). Next, let ( o ~ ( z )  be the amplitude of the wave emerging from the 
second slit. With the first slit absent, it gives rise to  the intensity lcp2(z)I2 
along z .  If the two slits are exactly similar, and L is large, we have that 
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Figure 2.6: Single- and double-slit experiments. See the text for 
a detailed description. 

1p02(z)1~ w lp1(z)l2. With both slits open, we might therefore expect to observe 
the intensity distribution 2((p1(z)l2. But this is not how waves behave. The rule 
of superposition for waves is that it is the amplitudes that should be added, not 
the intensities. With both slits open, we will therefore observe the amplitude 

along z .  The intensity will be 

It is the last two terms that represent the interference between the ele- 
mentary de Broglie waves emerging from the two slits and gives rise to the 
oscillatory structure in the lower graph. 
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The graphs of Fig. 2.6 are theoretically calculated graphs, based on what is 
known as Kirchhoff diffraction theory21 in the Fraunhofer region. This region 
corresponds to large values of L.  For smaller values of L ,  one must work 
in the secalled Fresnel region. This results in qualitatively similar graphs. 
There are, however, quantitative differences, one being for instance that the 
intensity as a function of z no longer drops completely to zero at  the displayed 
minima. The most precise experiments require the Fresnel description for their 
interpretation. 

Thanks to great advances in beam- and laser-technology it is now pos- 
sible to perform very accurate diffraction experiments over a large range of 
de Broglie wavelengths. Thus, accurate double- and multiple-slit experiments 
have been carried out for systems as different as neutrons,22 Na atoms and 
Na2 molecules,23 and CSO molecules.24 In every case, it has been possible to 
interpret the results as diffraction of the de Broglie waves associated with the 
center-of-maas motion of the particles. 

It is essential to realize that the way graphs like those in Fig. 2.6 are ver- 
ified experimentally is by directing a beam of particles toward the diffraction 
plate and then measure the arrival of each particle in the plane of observation. 
The beam is sufficiently dilute that the particles do not interact. Hence the 
particles pass through the slits one after another and arrive at the plane of 
observation independently. It appears that they arrive at mutually random 
positions. However, after the passage of a large number of particles a pattern 
begins to build up. There are positions where particles hit frequently and po- 
sitions where only a few particles are observed. Eventually, when a sufficiently 
large number of particles have arrived, it becomes possible to draw a stable 
graph of the number of hits as a function of position. With a single slit open, 
this graph will reproduce the upper graph in Fig. 2.6. With two slits open, it 
will reproduce the lower graph. 

Thus, the diffraction of a single de Broglie wave really reflects the cumula- 
tive result obtained by performing the same experiment a very large number 
of times on identical copies of a single particle. This is the essence of the 
wave-particle dualism. 

21See, for instance, M. Born and E. Wolf, Principles of Optical Cambridge University 

22A. Zeilinger, R. Gahler, C. G. Shull, W. Treimer, and W. Mampe, Rev. Mod. Phys. 60, 

23M. S. Chapman, C. R. Ekstrom, T.  D. Hammond, R. A. Rubenstein, J .  Schmiedmayer, 

I'M. Arndt, 0. Nairz, J .  Vos-Andreae, C. Keller, G .  van der Zouw, and A. Zeilinger, 

Press, Cambridge, 1999. 

1067 (1988). 

S. Wehinger, and D. E. Pritchard, Phys. Rev. Letters 74, 4783 (1995). 

Nature 401, 680 (1999). 
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The wave-particle dualism is of fundamental importance for our descrip- 
tion of atoms and molecules, and the elementary particles of which they are 
composed. But how can we understand this dualism in a rational way, without 
the many ad hoc assumptions that we have so far had to  accept. The answer 
to  this question is given by the exact theory of modern quantum mechanics, t o  
which we now turn. As far as de Broglie waves are concerned, we shall meet 
them again in Chapter 6, which deals with the exact quantum-mechanical 
description of free-particle motion. 

Supplementary Reading 

The bibliography, entries [4] and [5]. 

Problems 
2.1. Calculate the intensity of emission (W m-’) from a ‘black body’ at 800K (the 
temperature of dark-red iron). 
Next, calculate the energy density in the radiation field inside an oven with 
‘black walls’ at 800K. 
Calculate the number of photons/cm3 in the oven, again at 800 K. 

2.2. When a lithium crystal is irradiated with light of wavelengths 300 nm and 400 nm 
photoelectrons are emitted with maximum kinetic energies 1.83 eV and 0.80eV, re- 
spectively. From this information, calculate the Planck constant, the wavelength 
corresponding to the threshold frequency VO, and the work function W for lithium. 

2.3. By means of lasers it has become possible to produce hydrogen-like atoms with 
n-values exceeding 300, and in interstellar space atoms with even higher n-values 
have been observed. 
From the Bohr model calculate the ‘diameter’ of a hydrogen atom with n = 732. 
Also calculate the value of the wavenumber fi corresponding to to the transition from 
n = 732 to n = 731. 

2.4. What is the value of u / c  for an electron in the first Bohr orbit for hydrogen, 
and for a one-electron atom with 2 = 54? (u is the velocity of the electron.) 

2.5. Calculate the de Broglie wavelength of 

a. An electron with the kinetic energy 10eV. 
b. A neutron with the velocity 220 m s-’ . 
c. A Na atom with the velocity 830 m s-’. 
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d. A Na2 molecule with the velocity 830 m s-l. 
e. A CSO molecule with the velocity 220 ms-’. 

(The atomic masses of Na and C are 22.990~ and 12.000u, respectively; l u  = 
1.66054 x lo-’’ kg.) 

2.6. By directing a 589nm laser beam toward a well-focused beam of Na atoms 
and Naz molecules, at right angles, it is possible to separate the Na atoms from the 
Naz molecules. The wavelength 589nm corresponds to a strongly allowed electronic 
transition in the Na atom, and the atom is therefore most likely to absorb a photon 
from the laser beam. The momentum delivered by the photon is essentially big 
enough to remove the atom from the beam. 
Calculate the magnitude of the momentum delivered by the photon, and the velocity 
component that the atom acquires in the direction of the laser beam as a result of 
the momentum transfer. 
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The exact foundation of modern quantum mechanics was laid within a few 
consecutive months of 1925-1926, by the German physicists Werner Heisen- 
berg, Max Born and Pascual Jordan,’ and by the Austrian physicist Erwin 
Schrodinger.’ Important contributions were also made by the English physi- 
cist Paul Adrien Maurice D i r a ~ . ~  The formulation by the first three men is 
usually referred to as Heisenberg’s matrix mechanics] while Schrodinger’s for- 
mulation is known as Schrodinger’s wave mechanics. 

At the outset, these two versions of quantum mechanics appeared very dif- 
ferent, but it was soon realized that they were in fact equivalent, and that they 

‘W. Heisenberg, Z.  Phys. 33,879 (1925); M. Born and P. Jordan, Z.  Phys. 34,858 (1925); 

2E. Schrodinger, Ann. Physik 79, 361 (1926); 79, 489 (1926); 80, 437 (1926); 81, 109 

3P. A.  M. Dirac, Proc. Roy. SOC. A 109, 642 (1926); 110, 561 (1926). 

M. Born, W. Heisenberg and P. Jordan, 35, 557 (1926). 

(1926). 
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merely represented two different entrances to the same theory. Subsequently, 
other entrances were added, and the science of quantum mechanics may today 
be approached from several different angles. This diversity reflects the rich 
structure of the science. It also deepens the understanding and facilitates the 
applications. Schrodinger’s approach is probably the most readily accessible, 
so it is the one we shall follow. But as we get deeper into the quantum me- 
chanical world, we shall gradually enrich our language by looking out toward 
some of the other entrances. Heisenberg’s formulation is, in particular, briefly 
discussed at the end of Section 5.10. 

In this chapter, we introduce the basic elements of wave mechanics and set 
up the Schrodinger equation for a particle in a potential field. The Schrodinger 
equation is the proper equation of motion for particles that move with a mod- 
erate speed. For a particle that moves with velocities comparable to the speed 
of light, it must be replaced by its relativistic counterpart, the Dirac e q ~ a t i o n . ~  

3.1 The Time-Dependent Schrodinger Equation 
In Section 2.6 we saw how de Broglie was able to associate a stationary wave 
with the stationary orbits in Bohr’s atomic model. Apart from this, the de 
Broglie theory threw no new light on the structure of the atom. But it was 
an important stepping stone, and it inspired the Austrian physicist Erwin 
Schrodinger to look for a description of atomic structure in terms of functions, 
but note, functions defined everywhere within the atom, not merely on selected 
classical orbits. He set up a differential equation by means of which these 
functions could be determined and found the energies of the one-electron atom 
without any introduction of ad hoc assumptions. The new functions were 
called wavefunctions. 

Schrlidinger published the results of his analysis in a series of four papers 
(See footnote 2), and added a fifth6 on the connection between his and Heisen- 
berg’s approach. In the set of four papers he determined the wavefunctions 
and energies for the stationary states of the one-electron atom, the harmonic 
oscillator, and the rigid and non-rigid rotators that model the rotation of a 
diatomic molecule. He also studied the influence of an external electric field 
on the hydrogenic spectrum (the so-called Stark eflect), and to this end he in- 
troduced the approximate treatment now known as Schrodinger perturbation 
theory. The stationary states and their changes in the electric field were de- 

‘P. A. M. Dirac, Proc. Roy. SOC. A 117, 610 (1926). 
5E. Schriidinger, Ann. Physik 79, 734 (1926). 
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scribed by means of time-independent functions. The actual time dependence 
of the wavefunctions was introduced in the fourth paper, which therefore also 
opened for an exact description of non-stationary quantum states. 

We shall include the time from the very beginning and thus begin by pre- 
senting the time-dependent Schrodinger equation. But let us first remind our- 
selves that elementary particles are carriers of spin (Section 1.7).  The hy- 
pothesis of the spin had been forwarded by the Dutch physicists George Eu- 
gene Uhlenbeck and Samuel Abraham Goudsmit in 1925. It was known to 
Schrodinger, and the complications caused by the presence of spin were the 
reason why he excluded the treatment of the hydrogenic atom in a static mag- 
netic field from his analysis. As long as we exclude magnetic fields and only 
treat single-particle problems it is a good approximation to neglect the spin. 
Like Schrodinger, we shall therefore postpone its incorporation into the the- 
ory. With these remarks, the time-dependent Schrodinger equation for a single 
particle with mass m reads 

where i is the imaginary unit (i2 = -1). Q = Q ( x , y , z , t )  = Q ( T , ~ )  is the 
wavefunction and V = V ( x ,  y, z ,  t )  = V ( T ,  t )  is the potential-energy function. 
This is the same function as in classical mechanics. It determines the force on 
the particle, as the negative gradient of V ,  

I I 

F ( T , t )  = - V V ( r , t )  = - - - - (xx) 1 
Eq. (3.1) is an equation of motion for Q. For if we know the wavefunction 

Q ( T ,  t o )  at some initial time t o ,  then the equation gives us the wavefunction 
at time to + 6 t ,  where 6t is infinitesimal. To see this, we write the unknown 
functionQ(r,to+6t) a s Q ( ~ , t 0 + 6 t )  = Q ( ~ , t o ) + d Q ( ~ ) , a n d a s k f o r t h e f o r m  
of ~ Q ( T ) .  Replacing dQ/dt  in Eq. (3.1) by 6Q/6t gives 
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This equation determines M(T) and hence Q ( T ,  t o  + 6t)  from the known func- 
tion 9(r , to) .  Next, we can determine Q ( ~ , t 0  + 26t) from Q ( T , ~ o  + 6t )  in a 
similar way. Thus, by continued iteration, Eq. (3.1) determines Q(r , t )  at any 
later time from Q ( T ,  t o )  at time t o .  So, it is in fact an equation of motion. 

As to the permissible form of Q ( T ,  t o ) ,  it is only restricted by the conditions 
of continuity and integrability to be discussed in Section 3.4. In practice, we 
fix q(r , to)  by the prepamtion of the system, i. e., through some controlled 
experimental situation at time t o .  

Let us now consider a so-called conservative system, i. e. a system for which 
the potential energy function V is independent of time, 

v = V ( X ,  y, 2) = V(T). (3.4) 

Eq. (3.1) will then have particular solutions of the form 

To verify this, one simply inserts the expression (3.5) in Eq. (3.1) and 
performs the differentiation with respect to t .  This gives 

The exponentials on the two sides of the equation cancel out, and i ( 4 )  = 1. 
Thus, Eq. (3.1) will be satisfied, provided $ ( T )  is a solution of the equation 

I I 

I I 

A wavefunction of the particular form (3.5) is said to describe a station- 
ary state with energy E.  Wavefunctions describing stationary states play a 
fundamental role in the applications. They are the exact substitutes for the 
Bohr orbits of the old quantum mechanics. Eq. (3.7) is the time-independent 
Schrodinger equation which we shall now proceed to discuss. Later, we shall 
consider non-stationary states, for which the time dependence of the wave- 
function is more complicated than in Eq. (3.5). We shall also consider non- 
conservative systems, for which the potential energy function depends on the 
time. 
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3.2 The Time-Independent Schrodinger 
Equation 

Eq. (3.7) which determines the stationary states of a particle with mass m 
in the potential V ( T )  is a second-order partial differential equation. It has 
solutions for every value of E ,  but only certain solutions are physically accept- 
able. Schrodinger put the restrictions on an acceptable $, that it should be 
singlevalued and finite everywhere, and that the second derivatives in Eq. (3.7) 
should exist and be continuous everywhere (except perhaps at  isolated points). 
With these restrictions it is found that not all values of E lead to acceptable 
solutions. Those values that do are called the eigenvalues of the equation, and 
in accordance with this, Schrodinger called his set of four papers Quantasierung 
als Eigenwertproblem (Quantization as an eigenvalue problem). 

The eigenvalues E determine the spectrum of the energy.6 For the hydro- 
gen-like atom, the spectrum is found to consist of a discrete part with negative 
values of E and a continuous part with positive values of E.  For the harmonic 
oscillator, all allowed values of E are positive and the whole energy spectrum 
is discrete. 

It is found that a wavefunction going with a value of E from the discrete 
part of an energy spectrum vanishes at  infinity and moreover is square inte- 
grable, i. e., the integral of / $ I 2  = $*$ taken over all space is finite. For a 
wavefunction going with an energy value from a continuous spectrum, $ stays 
non-zero at  infinity and the integral of $*$ does not exist. As in Sec. 2.6, the 
symbol * means complex conjugation. $* is the complex conjugate of 4,  and 
hence different from $ unless $ is real. The quantity $*$ is always real and 
non-negative (See also Appendix A).  

A square-integrable wavefunction, $, may always be so chosen that it is 
normalized to unity, by which we mean that 

where the integration is extended over all space. The possibility of imposing 
this normalization condition on $ becomes obvious when we look at the form 
of the Schrodinger equation (3.7). For it is readily seen, by insertion, that if 4 
is a solution then so is c$, where c is any real or complex number. We say that 
Eq. (3.7) is a homogeneous differential equation. All functions of the form c$, 

gThe spectrum of a physical quantity was defined in Section 1.8 as the set of values that 
the quantity may take. 
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with c different from zero, are understood to define the same physical state, 
and hence we may choose to represent the state by a normalized wavefunction. 

At this stage two questions present themselves: 

1. How did Schrodinger arrive at the exact form of his equation? 

2. What is the interpretation of the wavefunction? 

We shall answer these questions in the following sections. 

3.3 Schrodinger Operators 

The answer to the first question above is that Schrodinger, like de Broglie 
before him, was well versed in the Hamilton-Jacobi formalism of classical me- 
chanics, and that his intuition led him the one and decisive step beyond de 
Broglie. Schrodinger did not derive his equation from classical mechanics. For 
that ia impossible since quantum mechanics is not a part of classical mechanics. 
But classical mechanics is, on the other hand, a certain limit form of quan- 
tum mechanics, and so it is in fact possible to derive classical mechanics from 
quantum mechanics. It is especially easy to pass from quantum mechanics to 
the Hamilton-Jacobi formulation of classical mechanics. There is no route the 
other way. Yet, Schrodinger saw how to make the jump. 

Although the Schrodinger equation cannot be derived from classical me- 
chanics it is found that we can, in fact, generate it from the expressions of 
classical mechanics in a purely formal way. Namely, one replaces the dynam- 
ical functions of classical mechanics (like position, linear momentum, energy, 
etc.) by operators. The remarkable recipe, which is also due to Schrodinger, is 
the following. 

Turn the three Cartesian components of the linear momentum (p,,p,,p,) 
into three operators (&,fiy,fiz) according to the rule 

and let, for instance, p: mean p x  applied twice, such that 

(3.10) 
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Then the kinetic energy T = p2/2m is transformed into the operator 

Next, turn the position coordinates (x, y, z )  into operators according to the 
trivial rule 

Then the potential energy is trivially transformed into 

P(& Y, i) = V ( 2 ,  y, z ) .  (3.13) 

The so-called Hamiltonian, 

H(P0  , P,, Pi?, 2, Y, 2) = T(P0, P, , P z )  + V ( 2 ,  Y ,  2) , (3.14) 

which gives the classical energy of a particle, if its kinetic energy is T and its 
position is (2, y, z ) ,  is transformed into the operator 

(3.15) 

1. e., 

(3.16) 

Having constructed our quantum-mechanical operators, we must introduce 
something for them to act upon. Otherwise they are devoid of meaning. This 
something is the wavefunction. We see that the Schrodinger equation (3.7) 
may in fact be written 

I G+=E1c, I (3.17) 

In words: When the Hamiltonian (operator) acts on the wavefunction of a 
stationary state, we get the wavefunction back again, but multiplied by the 
energy of the state. We say that 1c, is an eigenfunction of fi, and that E is its 
eigenvalue. 
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Eq. (3.17) is a transparent way of writing the time-independent Schrodinger 
equation, The time-dependent Schrodinger equation, Eq. (3.1) , may be written 
in the equally transparent way, 

(3.18) 
I 

With reference to the discussion around Q. (3.3), this equation says that the 
Hamiltonian is the generator of the motion: from the wavefunction at some 
time to, it generates the wavefunction at any later time t .  This is a very 
fundamental way of interpreting 2. 

The process of guantazation which we have carried through in the present 
section may be directly transferred to systems with more than a single particle. 
Thus, the Schrodinger equation for such systems is easily written down, and we 
shall of course give several examples of this in the following chapters. For now, 
we shall turn to the second of the questions posed at the end of the preceding 
section. 

3.4 The Statistical Interpretation 
Having introduced the wavefunction, Schrodinger worried a lot about its phys- 
ical interpretation. At first, be believed that an atomic wavefunction in some 
way must describe a real oscillation within the atom and that P ( ~ , t ) * @ ( r , t )  
might represent the distribution of negative charge. It was, however, difficult 
to apply this picture to a many-electron atom, and it had to be abandoned. 

It was Max Born who gave the wavefunction its present interpretation.' It 
is one that we will have to look at from different angles in order to understand 
its full implication, and we shall do so as we go along. But for the present, the 
simple statement will do, that provided the wavefunction @ ( T ,  t>  is normalized 
to unity, 

with the integration extended over all space, then 

(3.19) 

1 I 
'M. Born, 2. Phys. 37, 863 (1926); Nature 119, 354 (1927). 
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What this means is that the quantity 

9 * 4 d v  = Q + ( r , t ) Q ( ~ , t ) d z d y d z  (3.21) 

is the probability of finding the electron (or whatever particle we are studying) 
around the point T = (2, y ,  z )  in the volume element dv  = d x d y d z ,  at time t .  
This interpretation allows our particle to be observed around a definite point 
in space, but only with a certain probability. We can never say exactly where 
the particle is or claim that we can describe exactly how it moves. The only 
statements that may be made are entirely statistical. 

With this interpretation of 4 ( ~ ,  t ) ,  Eq. (3.19) simply states that the prob- 
ability of finding the particle somewhere in space is unity. It is of course an 
absolute requirement that the particle must be somewhere, and hence we de- 
duce that only square-integrable wavefunctions can represent physical states. 
For a stationary state with the wavefunction (3.5) we get, in particular 

Thus, we learn that the probability density associated with a stationary state is 
independent of time. This is, in fact, the reason for calling the state stationary. 

In Section 3.2 we pointed out, that for a stationary-state wavefunction to 
be square integrable, it must go with a value of E from the discrete part of 
the energy spectrum. For a wavefunction going with an energy value from a 
continuous spectrum, II, stays non-zero at  infinity and the integral of $*+ does 
not exist. Hence, wavefunctions of this type cannot represent physical states 
in a strict sense. This, however, does not imply that such wavefunctions are 
without physical significance. We shall come back to this point in Section 6.1. 

The interpretation of Q * ( T , t ) Q ( P ,  t )  as a probability density might well 
lead us to believe that all information about the quantum mechanical state of 
a particle is contained in this quantity. This is, however, far from being so. 
We shall see that 4 may carry substantial information beyond that of 8’4, 
and that this information allows us to make statistical predictions about other 
properties than the position of the particle. One such property is, for instance, 
the linear momentum. 

We shall often use the word probability amplitude for 9 .  This notion reflects 
that i# is a quantity from which various probabilities may be calculated and 
used to predict the possible outcome of experiments. A quantity of this type is 
all that we can ever arrive at .  Correspondingly, the outcome of an experiment 
involving an elementary particle like an electron must also be statistical. The 
fact that this is always found to be the case is the confirmation that our 
interpretation of \E is the correct one. 
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That the outcome of an experiment must be statistical, marks a fundamen- 
tal difference between classical mechanics and quantum mechanics. As we have 
put it above: we can never say exactly where the particle is or claim that we 
can describe exactly how it moves. Yet, the wavefunction that describes the 
motion in the quantum mechanical sense is a well-defined quantity, and the 
time-dependent Schrodinger equation allows us to follow its detailed evolution 
in time. 

Note that these considerations are similar to those we made in order to 
interpret the diffraction of a de Broglie wave at the end of the previous chapter. 
The de Broglie wave is a well-defined quantity that leads to a unique intensity 
distribution in the plane of observation. Yet, we cannot tell where a particular 
particle will hit the plane. What the said intensity distribution gives us is the 
probability with which the particle hits a t  the various points in the plane. 

This is indeed a new world. It takes some time and effort to become familiar 
with it. So let us try to gain understanding by solving real problems, and let us 
actually begin by determining the form of the stationary-state wavefunctions in 
some simple cases. We shall enter into thorougher discussion of the statistical 
interpretation in Section 5.5. 

Supplementary Reading 
The bibliography, entries [6], [lo], [7] and [ll]. 

Problems 
3.1. For a particle restricted to moving in a single dimension,which of the following 
functiona are physically acceptable as wavefunctions according to the criteria set up 
in Sec. 3.2: 

$(x) = x2, e -= ,  e-xa , cosx, el3,  

$(z) = f i e - =  

-O0<x<oo 
Which of the functions are square integrable? 

3.2. Show that the function 

is normalized to unity on the interval 0 5 x < 00. 

Determine the constants N1 and N2 such that the functions 

(8) = N~ cos e 

and 
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are normalized to unity on the interval 0 5 0 < 2 ~ .  
Plot the probability densities +1(0)*+1(0) and +2(0)*G~(0). 

3.3. The function 
1 - 1 2  G ( x )  = ( ~ ) - 4 e  2 

is normalized to unity on the interval -m < x < cx). Evaluate 

fiz+(x), fi22G(x), %+(.z.), a w x )  

#r;, +B,k)G(z),  3(2id2. -r;z?)$(x). 
and 

Note that xp, = pix, whereas 26, # fjs2. Hence, Schrodinger’s prescription does 
not give a unique result for the operator corresponding to the classical quantity xp,. 
The proper operator to use here is generally taken to be the symmetrized expression 
k(2I-L + 855). 
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The tim~independent Schrodinger equation for the one-electron atom is 
obtained from Eq, (3.7) by inserting the expression (2.65) for If(.). The re- 
sulting di~erent~al  equat~on is, however, too complicated to serve a our first 
example, We shall consider it later and study some easier proble~s  first. 

Much is learned by s t ~ d y i ~ ~  the simple problem called the particle in a 
box, which is the problem of free motion within a box, or cavity, of a specified 
shape. We shall consequently devote the present chapter to this problem. In 
particular, we shall consider a box of rectangular shape, as in Fig. 4.1. 
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We begin by noticing that the problem of solving the tim~independent 
Schrodinger equation for the rectangular box may be reduced to that of solving 
the Schriidinger equation for the one-dimensional box, i. e., the motions in the 
x-, y- and z-directions may be treated separately. We shall therefore study the 
one-dimensional problem in detail, and subsequently construct the solution of 
the three-dimensional problem. 

The wavefunctions for the particle in a box are analytically very simple, yet 
they have many qualitative properties in common with wavefunctions for more 
complicated systems. These properties, which include mutual orthogonality, 
nodal structure, symmetry, and degeneracy, are accordingly also illustrated 
and discussed in the present chapter. 

Solving the Schrijdinger equation for the particle in a box is, as already 
implied, not a big mathematical exercise. It is hence gratifying to note that 
the solutions of this problem may sometimes be used to crudely model the 
behavior of much more complex systems. As an example of this, we consider 
the electronic stucture of conjugated hydrocarbons in some detail.--We might 
equally well have considered an atomic nucleus, a molecular cluster or a simple 
metal. 

The final section of the present chapter illustrates how the solutions of the 
tim~independent Schrodinger equation allow us to construct wavefunctions 
for a general non-stationary state. It is also illustrated how the explicit time 
evolution of such a state may be easily determined from the time-dependent 
Schrodinger equation. Again, we use the solutions of a simple problem to 
display general behavior of quantum systems. 

4.1. Introduction 

To set up the Schrodinger equation for a particle enclosed in the rectangular 
box of Fig. 4.1, we must specify the potential energy function V(P}. Except 
for its confinement to the interior of the box, the particle is assumed to be free. 
Hence, we take the potential energy to be zero inside the box, so that the force 
defined by Eq. (3.2) vanishes. Outside the box, we let the potential energy 
tend to infinity. The wavefunction must therefore be zero outside the box, for 
otherwise V $  would be infinite there, and Eq. (3.7) could not be satisfied for a 
finite value of E. But if the wavefunction is zero outside the box, then it must 
also vanish on the walls of the box, by the requirement of continuity. 
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Figure 4.1: Three-dimensional rectangular box. 

The acceptable solutions of Eq. (3.7) must accordingly satisfy the equation 

within the box and vanish on the walls of the box. 

condition. Hence 
The requirement that $ vanish on the walls of the box is called a boundary 

Our problem is to solve a partial differential equation with 
specified boundary conditions. 

The problem of finding those solutions of a partial differential equation that 
satisfy a specified set of boundary conditions is a fundamental problem in 
m a t h ~ m a t i ~ ,  and it is frequently met in theoretical chemistry and physics. We 
meet it, for instance, in the study of sound, the study of electromagnetic fields, 
the study of heat conduction, and now in the study of quantum mechanics. 
The general theory is extensive, but specific methods have been developed to 
deal with large classes of special differential equations.' 

Eq, (4.1) may be solved by the method called separation of variables, ac- 
cording to which one seeks solutions of the form 

'See, for example, P. Mome and H. Feshbach, Methods of Theoretical Physics, McGraw- 
Hill, New York, 1953, Chapter 5;  or P. Dennery and A. Krzywicki, Mathematics for Phpi-  
eistr, Harper and Row, New York, 1967, Chapter 4. 
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That such a method may be applied here is due to  the simplicity of the equation 
and the fact that the boundary conditions refer to planes of constant x ,  y, and 

We begin by substituting the ansatz expression (4.2) into Eq. (4.1). This 
z .  

yields 

We then divide on both sides of this equation by X ( x ) Y  ( y ) Z ( z )  and get 

(4.4) 

Next, we rewrite this equation in the form 

(4.5) __-- 

The left-hand side of this equation, taken as a whole, is obviously a function 
of x ,  whereas the right-hand side is independent of x .  Thus, the left-hand side 
is a function of x which does not depend upon x .  The onIy such function is a 
constant Hence, the left-hand side must be a constant, E, say. It follows that 
X must satisfy the differential equation 

--- fi2 d 2 X  = E,X. 
2m dx2 

By a similar argument we find that Y and Z must satisfy the equations 

and 

Finally, a comparison with Eq. (4.4) shows that 

E, + Ey + E, = E.  (4.9) 

These four equations, Eqs. (4.6)-(4.9), are a direct consequence of the ansatz 
(4.2). 
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Thus, the problem of solving a differential equation of three variables has 
been reduced to that of solving three differential equations of a single variable. 
Moreover, the equations (4.6), (4.7), and (4.8) are all of the same form, so if 
we have solved one of them we have in fact solved them all. The boundary 
condition, that $ J ( x ,  y, z )  vanish on the walls of the three-dimensional box, will 
be satisfied if 

X ( 0 )  = X(a) = 0, Y ( 0 )  = Y(b)  = 0, Z(0) = Z(c) = 0, 

where a, b ,  and c are the lengths of the box edges, as in Fig. 4.1. 

boundary condition X ( 0 )  = X ( a )  = 0. 

(4.10) 

Let us now solve the first of the above equations, i. e., Eq. (4.6), with the 

4.2 The One-Dimensional Box 
Eq. (4.6), rewrittten here for convenience, 

- E,X 
ti2 d2X 
2 m  d x 2  

(4.11) 

may be interpreted as the Schrodinger equation for a particle restricted to 
move in a single dimension, the corresponding Hamiltonian being 

(4.12) 

In the following chapter, we shall see that Hamiltonians are so-called Her- 
mitian operators, and that the eigenvalues of such operators are always real. 
Anticipating this result, we may assume Ex to be real in the ensuing analysis. 

Now, we observe that not only is Eq. (4.11) a homogeneous differential 
equation (see Sec. 3 . 2 ) ,  it is also a linear equation. By this we simply mean 
that it is linear in X and its derivatives (it contains no terms like X 2  or 
XdXldz) .  Thus, Eq. (4.11) is a homogeneous linear differential equation of 
second order, and of a single variable, x.  

The general theory of differential equations tells us that the complete so- 
lution of such an equation (for a given Ex)  may be written in the form 

x(z)  = clxl(x) + c2x2(2)J (4.13) 

where XI and X2 are two linearly independent solutions of the equation and 
c1 and c2 are arbitrary constants. 
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Eq. (4.11) has solutions of the type (4.13) for all real values of E,. We must 
determine the values of E, for which it is also possible to  satisfy the boundary 
conditions X ( 0 )  = 0 and X ( Q )  = 0. 

Let us first consider negative values of E,. It is then expedient to  write: 

so that Eq. (4.11) assumes the simple form 

d2X 
dx2 

It has the two independent solutions: 

X I ( Z )  = en,, 

and hence the complete solution 

= K2X. 

~ ~ ( 2 )  = e-nx, 

(4.14) 

(4.15) 

(4.16) 

X ( x )  = q e n "  + (4.17) 

This is the complete mathematical solution. To get the possible physical 
solutions we must observe the above-mentioned boundary conditions X ( 0 )  = 0 
and X ( Q )  = 0. Since e0 = 1,  the first of these becomes 

c1 + c2 = 0 .  (4.18) 

It shows that c2 = -c1.  Using this result, the second condition reads 

c1 (en' - e-na) = 0. (4.19) 

But this equation is only satisfied for c1 = 0, and this does certainly not lead to 
an acceptable solution, because it defines nothing but a vanishing wavefunction. 

Thus, Eq. (4.11) does not have acceptable solutions for negative values 
of E,. But this is exactly what we would expect on physical grounds. For 
the energy of the particle in a box is purely kinetic and should therefore be 
non-negative. 

Next, we consider positive values of Ez and write 

(4.20) 

so that Eq. (4.11) becomes 

d2X -- d x 2  - -k:X. (4.21) 
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This equation has the two independent solutions: 

XI(%) = sin(k,z), X2(z) = cos(kxx) ,  (4.22) 

and hence the complete solution 

X(z) = c1 sin(kxz) + c2 cos(k,z). (4.23) 

Again, this is the complete mathematical solution. To get the physical 
solutions we must observe the boundary conditions X(0) = 0 and X ( a )  = 0. 
The first of these gives 

c1 sin(0) + c2 cos(0) = 0. (4.24) 

It shows that c2 must be zero. Using this result, the second condition reads 

c1 sin(k,a) = 0. (4.25) 

Here we cannot put c1 equal to zero, for this would cause X(z) to vanish. 
Hence, Eq. (4.25) is a condition on k,. It is satisfied for the following set of 
values 

k, = nzA/a ,  n, = 1 , 2 , 3 , .  . . (4.26) 

The corresponding allowed energies are then, by Eq. (4.20) 

n2 nx = 1 , 2 , 3 ,  ... $ti2 
E x = =  X I  (4.27) 

or, by writing En, instead of Ex and remembering that ti = h/2n, 

n,= 1,2 ,3 ,  ... (4.28) 

Having considered both negative and positive values of Ex,  we must finally 
examine what happens when Ex = 0. Eq. (4.11) becomes then 

-- - 0. d2X 
dx2 

(4.29) 

It has the complete solution 

X ( z )  = c1+ c2z, (4.30) 
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Xn,(x) = fi sin(mzx/a) ,  n, = 1,2,3,. . . 

and it is readily seen that this solution cannot be made to satisfy the boundary 
conditions X ( 0 )  = 0 and X ( a )  = 0 for any values of c1 and c2. 

Consequently, the quantum mechanical particle in a box cannot have zero 
energy, i.e., it cannot be at rest as it can in classical mechanics. The lowest 
possible energy is obtained by putting nz = 1 in the expression (4.28). This 
energy is called the zero-point energy: 

(4.36) 

Zero-point energy = - (4.31) 

The result of our analysis is, then, that the only allowed energies of the 
particle in a one-dimensional box are those of Eq. (4.28). The energy spectrum 
is accordingly discrete. This result is a consequence of the fact that the motion 
is bounded by the ‘walls’ at  x = 0 and x = a. The wavefunction corresponding 
to the quantum number nc is 

X,= (x) = c1 sin(nn,x/a) (4.32) 

where the value of c1 is at our disposal. Let us determine it such that X is 
normalized to unity (see Eq. (3.8)). The condition is 

We have that 

and thus Eq. (4.33) will be fulfilled if we choose c1 to be 

c1 = ei6@ 

(4.33) 

(4.34) 

(4.35) 

2See Appendix A for a brief introduction to the complex exponential function. 
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Figure 4.2: Energy level diagram for a particle in a one-dimensional 
box. Energies in units of h2 /8ma2. 

Thus, we have found both the energies and the wavefunctions for the 
stationary states of the particle in a one-dimensional box, by solving the 
Schrodinger equation (4.11) with the boundary conditions X ( 0 )  = X(a) = 0. 
The energy spectrum is defined by Eq. (4.28). Each energy value is said to 
define an energy level. There is one wavefunction per energy level, and its form 
is given by Eq. (4.36). 

The energy spectrum is represented graphically in Fig. 4.2 which is called 
an energy level diagmm. The wavefunctions and their squares are shown in 
Fig. 4.3, for some selected values of no. In this figure, we have discarded the 
subscript x on the quantum number n, and written $ ( x )  instead of X ( x ) .  
We recall that I , ! J ( X ) ~  is a probability density, $ ( x ) 2 d x  being the probability of 
finding the particle around the point x in the interval d x .  

We proceed by emphasizing some very general properties of the set of wave- 
functions given by Eq. (4.36). 
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0 0.5 1 0 0.5 1 
x la x/a 

Figure 4.3: Wavefunctions, left, and probability densities, right, for particle in 
a onedimensional box. n = 1,2,3,4,7,10. The amplitudes are measured from 
the indicated base lines, the distance between two tick marks on the vertical 
axes being 1 dimensionless unit. 

4.3 Orthogonality of Wavefunctions 
Let us introduce the -called scalar F ~ ~ u c ~ ,  or overlaF l ~ ~ e g ~ l ,  between two 
functions, f(z) and g(z). We denote it by (flg) and define it by the relation: 

(4.37) 

where the integr~tion is extended over the range of z. Note that the first factor 
in the integrand is the complex conjugate of f(z) rather than f(z) itself. This 
is, of course, of no importance when we only deal with real functions, but 
when complex functions are used the complex conjugation is essential. Let us  
evaluate the integral (fig) when f and g are two different functions taken from 
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the set (4.36). 

Fig. 4.2), and get: 
For simplicity, we drop the index x on the quantum number n, (a9 in 

(XmIXn) = J Xh(X)Xn(x)dX = - sin(mrx/a) sin(nnx/a)dx 
0 : Jo (4.38) 

= 11" Q 
{ cos ( y r x )  - cos ( y n x )  } dx, 

where we have used the general formula 

2sinu sinv = cos(u - v) - cos(u + v).  (4.39) 

From a graph of the function cos(lnx/a), where 1 is a non-zero integer, or 
from a table of integrals, it is readily seen that 

la cos(lrx/a)dx = 0, 1 # 0. (4.40) 

It is exactly this type of integral that occurs in Eq. (4.38), for both m - n and 
m + n are non-zero integers. Hence, we get: 

(XmIXn)  = 0, m # n. (4.41) 

We express this result by saying that X,, and Xm are orthogonal. 
Thus, our function set (4.36) fulfills the condition 

where 

1 i f m = n  I d m n =  { 0 i f m # n  

(4.42) 

(4.43) 

The useful symbol Smn is called the Kronecker delta. 
The condition (4.42) is called the orthonormality condition, and we say that 

our function set is an orthonormal set. We shall later be able to prove that any 
two solutions of a given Schrodinger equation are orthogonal, if they correspond 
to different energies (See Chapter 5).  The relation (4.42) is therefore a specific 
example of a general relation. 
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4.4 Number of Nodes Versus Energy 

A point in the interval 0 < x < a at which a wavefunction changes sign (be- 
comes zero) is called a node of the wavefunction. It is obvious, both from Eq. 
(4.36) and Fig. 4.3, that the number of nodes equals n, - 1, and hence that the 
number of nodes increases with the energy. This is a general result which may 
be transferred to more complicated systems. It is closely connected with the 
orthogonality theorem of the previous section, for the product Xi (x)X2(z) 
must necessarily change sign at  least once in the interval 0 < x < a in or- 
der that (X1IX2) may become zero. A similar remark holds for X ~ ( Z ) X ~ ( X ) ,  
XZ+(x)X3(x), etc. 

4.5 Inversion Symmetry 

The last, albeit rather lengthy remark concerning the wavefunctions for a par- 
ticle in a one-dimensional box deals with their inversion symmetry. A glance at  
Fig. 4.3 shows that XI, X3, Xg, . . . are unchanged when reflected with respect 
to the midpoint of the box, whereas X Z ,  X4, X S ,  . . . change sign under such a 
reflection. We say that the functions are alternately euen (or gerade) and odd 
(or ungerade). 

Analytically, the inversion symmetry of the wavefunction is most clearly 
displayed, if we place the origin of the x-coordinate at the midpoint of the box 
rather than at  one end. Such a shift of the origin corresponds to replacing 2 
by x + a/2 in the analytical expression (4.36) for the wavefunctions. Thus we 
obtain, by using elementary properties of the trigonometric functions 

(4.44) 
( - l ) ( " = - ' ) / ' m  cos(~n,x/a) ,  n, = 1 , 3 , 5 , .  . . 

X",(X) = ( - 1 ) " ~ / ~ f i  sin(m,x/a), n, = 2 , 4 , 6 , .  . . 

where the range of x is -i 5 x 5 %. We would, of course have obtained 
these analytical expressions from the outset, if we had subjected the general 
solution (4.23) to the boundary conditions X(-a/2) = X(a/2) = 0 rather 
than X ( 0 )  = X ( a )  = 0. Had we done so, we would probably also have defined 
the functions (4.44) without the phase factors (-l)("=-')/' and (-l)n*/z. As 
pointed out in connection with Eq. (4.35), the choice of a phase factor is always 
at  our disposal. 

A reflection with respect to the midpoint of the box is an inversion in the 
new origin and corresponds to replacing x by -x. The even/odd character of 
the wavefunctions is therefore easily read off the analytical expressions (4.44), 
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by remembering the elementary relations 

cos(-kz) = cos(kx) 
sin(-kx) = -sin(kt) 

(4.45) 

So far we have done nothing but observe that the wavefunctions which 
we found by solving the Schrodinger equation (4.11) turned out to be either 
even or odd. We shall now show that this symmetry property can actually be 
derived by a simple formal consideration. 

Let X ( x )  be one of the above functions. It satisfies the Schrodinger equation 
(4.11) which we rewrite as 

I?,X(x) = E , X ( z ) ,  (4.46) 
h 

with H ,  given by Eq. (4.12), i.e., 

(4.47) 

Now it is obvious that an inversion in the point x = 0 (the new origin) leaves 
this Harniltonian unchanged. In addition, it carries the “walls” a t  x = -a/2 
and x = a/2 into each other. The whole physical setup is accordingly invariant 
under the inversion. But this does not imply that X(x) must be invariant. 

Let us introduce an operator, i, which per definition carries a function f(.) 
into its mirror image, i f ( z ) ,  with respect to the origin. This new function, 
if(z), is defined by 

if(.) = +x). 

Applying the inversion operator to both sides of Eq. (4.46) gives 

i ( I ? , X ( z ) )  = i ( E , X ( x ) )  . 

(4.48) 

(4.49) 

But since the Hamiltonian is invariant under i, and E, is a constant, this 
becomes 

r?, iX(x)  = E , i X ( z ) .  (4.50) 

What this equation tells us, is that the function i X ( x )  is an eigenfunction of e, with the eigenvalue E,. But according to what we have found in Sec. 4.2, 
there is only a single eigenfunction per energy level. Hence, i X ( z )  can at most 
differ from X ( z )  by a constant factor, c say. It follows that 

i X ( x )  = cX(x). (4.51) 
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If we now apply the inversion operator to both sides of this equation we 
get 

and hence, by using Eq. (4.5 

? X ( Z )  = C i X ( Z )  (4.52) 

) again (on the right-hand side) 

P X ( Z )  = C 2 X ( Z ) .  (4.53) 

But it is obvious that two inversions performed after each other restores the 
original , i .el 

i 2 X ( Z )  = X ( Z ) .  (4.54) 

This follows also from the explicit definition (4.48). Comparing Eqs. (4.53) 
and (4.54) then shows that 

c2 = 1 (4.55) 

which obviously implies that 

c =  1 or c = -1. (4.56) 

c = 1 defines an even function, c = -1 an odd function. 
What we have obtained by this simple analysis is the important result that 

the presence of symmetry allows a classification of wavefunctions according to 
their symmetry properties. For more complicated symmetries this classification 
must be carried through by means of the mathematical discipline known as 
group theory. The group that characterizes the present problem is defined by 
the inversion operator i together with the identity operator E. It is called Ci 
and is defined by a so-called group multiplication table of the form 

The identity operator is the trivial operator which leaves everything unchanged. 
It appears in many formal considerations. 

We have now given a rather thorough discussion of the one-dimensional 
problem and must return to the three-dimensional case. 
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4.6 The Three-Dimensional Box 
As discussed in Sec. 4.1, the Schrodinger equation (4.1) for a particle in a 
three-dimensional box is solved once we have solved the three one-dimensional 
problems given by Eqs. (4.6)-(4.8). Each of the three problems is, however, 
equivalent to the problem of a particle in a one-dimensional box which we have 
solved above. We may accordingly write the solution of the three-dimensional 
problem down immediately. The possible energies are obtained from Eqs. (4.9) 
and (4.28), and become 

I 

(4.57) 

The wavefunctions are obtained by inserting the analytical result (4.38) into 
the factorized expression (4.2). They are 

(4.58) 

Thus, the solutions are characterized by three quantum numbers nx l  ny, n, 
which independently take the values 1 , 2 , 3 ,  . . . The wavefunctions form an 
orthonormal set, i.e., 

(4.59) 

where the scalar product now is defined as 

r a  rb rc 
(4.60) 

Eq. (4.59) follows immediately by noticing that the analytical form (4.58) 
causes the integral to factor into three, each of which satisfies an orthonormality 
condition of the type (4.42). 

In Sec. 4.4 we discussed the nodal structure of the wavefunctions in a one- 
dimensional box and found that a wavefunction with quantum number n, 
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possesses n, - 1 nodes. The three-dimensional analog of a node is a nodal 
sur~ace (and the two-dimensional analog a nodal curue). It is obvious that 
any node, say x = 20, of a single-coordinate wavefunction of the type (4.36) 
produces a nodal plane (x = xo) once it is a factor in the wavefunction (4.58). 
Thus, the nodal surfaces of the wavefunction (4.58) are planes parallel to one 
or the other of the coordinate planes. We don't count the walls of the box 
as nodal planes, so the wavefunction (4.58) possesses n, + ny + n, - 3 nodal 
planes. 

As to inversion symmetry, we note that the point (af2, b / 2 ,  c/2) is an inuer- 
sion center, i.e., the whole physical setup is invariant under an inversion in this 
point. To study this symmetry analytically it is expedient to shift the origin 
of coordinates so that it coincides with the inversion center. We then obtain 
new analytical expressions for the wavefunctions, which may be obtained by 
inserting the alternative expressions (4.44) for the one-dimensional wavefunc- 
tions into the factorized expression (4.2). IJnder an inversion, which we denote 
by i as in the one-dimensional case, these functions are transformed according 
to the relation 

ff(z, Y, r )  = f(-., -Y, -.I. (4.61) 

Drawing on the discussion of Sec. 4.5,  we then see that the three factors in 
the wavefunction (4.58) are multiplied by (-l)flz-l, ( - l ) r ' v - l ,  and ( - l ) n g - l  

respectively under the inversion. Thus, the total wavefunction is m ~ l t ~ p l i e d  by 
the factor ( - l )n=+nv+n=-3 ,  and is therefore either even or odd. We call this 
factor the parity of the wavefunction, so 

The parity of the wavefunction (4.58) is ( - l ) n r t n y t n z - 3  1 (4.62) 

The ground-state wavefunction (n,  = ny = n, = 1) is, in particular, a nodeless 
and even function. 

4.7 The Concept of Degeneracy 

An interesting situation occurs if two or all three of the box lengths a, b ,  
c become equal, for in that case the same value of the energy may well be 
obtained for more than one set of the quantum numbers nO, ny, and n,, and 
an energy level will have more than one wavefunction associated with it. This 
does not occur for one-dimensional bound states, but it is frequently met in 
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0 
Figure 4.4: Energy level diagram and level-degeneracies, g, for a par- 
ticle in a cubic box. Energies in units of hZ/8ma2. 

two- and three-dimensional systems. We say that the level is degenerate and 
call the number of linearly independent wavefunctions associated with the level 
for its degeneracy. 

Assume that we have a cubic box, so that a = b = c. Then the energy 
expression (4.57) becomes 

(4.63) 

- The ground state is obtained by putting n, = ny - n, = 1.  It is non- 
degenerate. The first excited state corresponds to three sets of quantum num- 
bers, namely (2,1,1), (1,2,1), and (1,1,2). Thus, the level is three-fold de- 
generate, and the wavefunctions $211, $121 and $112 have the same energy. 
Continuing the counting procedure we obtain the energy level diagram shown 
in Fig. 4.4. 

To fully appreciate the concept of degeneracy, let us consider a general level 
with degeneracy g.  We have, then, g linearly independent wavefunctions, say 
$1 , $2 , .  . . , log. That these functions are linearly independent means that none 
of them can be expressed as a linear combination of the others. In other words, 
the only solution of the equation 

C l $ l  + c2$2 + . . . + Cglbg = 0 (4.64) 

is the trivial solution c1 = c2 = . . = cg = 0. 
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A g-fold degenerate level is characterized by a linear function 
space, V ,  of dimension g. Any function belonging to V is an 
eigenfunction of the Hamiltonian with the same energy. 

The functions $1, $2, . . . , $g are all eigenfunctions of the Hamiltonian i? 
with the same energy, E: 

(4.68) 

(4.65) 

Let us multiply the first of these equations by an arbitrary constant c1, the 
second by an arbitrary constant c2, etc., and add the resulting equations to 
get 

E(c~$I  + CZ$Z + . . . + cg$g) = E(ci$l + ~ 2 $ 2  + . . . + cg$g). (4.66) 

What this equation says, is that any function of the form 

(4.67) 
i=l 

h 

is an eigenfunction of H with energy E. 

space, V ,  of dimension g. Thus, we realize that 
The set of all functions of the form (4.67) are said to form a linear function 

The set of the g linearly independent functions $1, $12, , . . , qbg is called a basis 
set, or simply a basis for V ,  because any function in V may be represented in 
the form (4.67). It is obvious that any set of g linearly independent functions 
in V may serve as a basis, and that any such set therefore characterizes V just 
as well as the set $ 1 , $ 2 , .  . . , $g does. 

A g-fold degenerate level is defined once a basis has been written down, but 
as just said, there are many equivalent ways of choosing a basis. In particular, 
it is always possible to choose an orthonormal basis,3 i.e., a set of functions, 
$ 1 ,  $ 2 , .  . . , $g, for which 

( $ i l $ j )  = dij, i , j  = 1 , 2 , .  . . , g .  (4.69) 

3See Problem 4. 
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Any orthonormal set of g functions belonging to V may in fact serve as a basis. 
For we have the general theorem 

(4.70) 
Orthogonality implies linear independence, and any set of 
m orthogonal functions is therefore a basis. 

To prove this theorem, we assume that $1,  $2, . . . , $g is a set of g mutually 
orthogonal functions in V and look for values of the coefficients c 1 ,  c 2 ,  . . . , cg 
for which Eq. (4.64) is satisfied. Scalar multiplication with $1 gives 

Cl($11$1) + c2($11$2) + . . . + Cg($lI$g) = 0 (4.71) 

and hence, by using the orthogonality relations (4.69) 

(4.72) 

i.e. c1 = 0. Similarly, scalar multiplication with $2 gives c 2  = 0, etc. Thus, Eq. 
(4.64) is only satisfied by c 1  = c 2  = . . . = cg = 0. Consequently, $1, $2, . . . , $Jg 

is a linearly independent set, and hence a basis, which was to be proved. 
The wavefunctions (4.58) define a natural orthonormal basis in the case of 

degeneracy, but other choices are equally valid. We shall not consider other 
choices here, but only mention that when we come to discuss the free particle 
and the hydrogen atom, we shall find it natural to set up two alternative basis 
sets for each degenerate level. 

Apart from the null-function, any function belonging to the function space 
V defines a physical state (Sec. 3.2). But since all functions of the form c$, 
where c is a non-vanishing constant, define the same state, we may as usual 
(Sec. 3.4) restrict our attention to functions that are normalized to unity, i. e., 
functions for which 

($I$) = 1. (4.73) 

In view of this, let us derive the condition that the coefficients in the linear 
combination (4.67) has to satisfy in order that the resulting function be normal- 
ized. We assume that the basis functions $1, $2, . . . , form an orthonormal 
set (Eq. (4.69)), remember the definition (4.37) of the scalar product, and 
hence also of the normalization integral (4.73), and get 

(4.74) 

i=l  j = 1  i= l  i = l  
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Hence, the normalization condition (4.73) requires that 

(4.75) 

This is a condition that we shall often have the opportunity to use. Note that 
nowhere in its derivation have we used that the basis functions $1, $2, .  . . , t+hg 
have the same energy. We have only used that they form an orthonormal set. 
The condition holds therefore for any expansion of a normalized function on 
an orthonormal set: 

Let $ ~ , $ 2 , .  . . , lcls be an orthonormal set of functions: 

($i i$j i )  = Sij, 43- = 1,2, * .  . 79 
and let 
$ may be written in the form: 

belong to the function space defined by this set, i. e,, 

i = l  

The condition for $ to be normalized to unity, 

is then that 

(4.76) 

Let us now finally mention that degeneracy, just like parity, is closely as- 
sociated with the symmetry of the problem. For a cubic box, there are 48 
geometrical symmetry operations which leave the physical setup unchanged. 
They define the so-called octahedral group o h .  If $ is an eigenfunction of 
with energy E ,  then so is R$ where R represents one of the operations of o h .  

This follows by an a r~umen t  similar to the one used for the inversion operator 
in Sec, 4.5. Next, let and S represent two different symmetry operations. 
The combinations RS and will then also represent symmetry operations. 
The functions RS$ and SR$ will accordingly also be eigenfunctions of @ with 
energy E. But if kS # SR,  then I%,!?$ and SR$ must in general be linearly 
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independent functions. For this to be possible, the energy level must, of course, 
be degenerate. 

A simple example of a symmetry related degeneracy is provided by the first 
excited state with wavefunctions $211, $121 and $112. These three functions 
are carried into each other under a rotation of magnitude 2 ~ / 3  around the axis 
defined by the vector (l,l,l). This is readily verified from the analytical ex- 
pressions for these functions when it is noted that the said rotation transforms 
x, y and I into each other. 

In most cases, the degree of degeneracy of a level may be completely “un- 
derstood” on the basis of symmetry. In some cases, however, additional de- 
generacy occurs which is then referred to as accidental degeneracy. Some of 
the degeneracies met in the present problem are in fact accidental, for it may 
be shown that the group o h  supports no higher degeneracy than three. This 
special situation is caused by the extremely simple form of the potential en- 
ergy function: V ( T )  is a constant (chosen to be zero). We shall, however, not 
discuss this problem further at p r e ~ e n t . ~  

With these remarks on symmetry and degeneracy, our analysis of the sta- 
tionary states of the particle in a box has come to a natural end. The box 
problem is sufficiently simple that we have been able to solve it exactly with- 
out much effort. Yet, its solutions possess a number of important properties of 
a general nature, and we shall meet analogous properties over and over again 
in the following chapters. 

The particle in a box is a useful first-model system for the description of 
“nearly free” particles in atomic nuclei, atomic clusters, molecules, and solids- 
especially when spherical and ellipsoidal box shapes are also allowed. We shall 
consider a simple application and then terminate the present chapter with a 
discussion of non-stationary states of the particle in a box. 

4For a discussion of the degeneracies in the square-box problem, see W.-K. Li, Am. J. 
Phys. 50,666 (1982); F. Leyvraz, A. Frank, R. Lemus, and M. V. AndrCs, Am. J. Phys. 65, 
1087 (1997). 
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4.8 The Free-Electron Model 

Consider the following planar hydrocarbon molecules: 

Ethylene Butadiene 

Hexatriene Octatetraene 

The displayed valence-bond structures show that ethylene contains a single 
double bond, and that the three other molecules contain respectively two, three 
and four double bonds “in conjugation”. The two bonds in a double bond are, 
however, not considered to be equivalent. Much like a C-H single bond, one of 
them is formed by an electron pair that is fairly localized in the bond region. 
The two electrons that are responsible for the other part of a double bond 
are more delocalized. They are accordingly called mobile electrons. Ethylene, 
butadiene, hexatriene, and octatetraene contain respectively 2, 4, 6, and 8 
mobile electrons, and one should in fact think of these electrons as being shared 
between all the carbon atoms in a chain rather than between separate atom 
pairs. Accordingly, the above valence formulae don’t do full justice to the 
distribution of the mobile electrons. 

In the usual quantum mechanical description of the mobile electrons they 
are placed in so-called molecular orbitals that extend over all the carbon atoms. 
We shall later discuss how molecular orbitals may be constructed from the 
atomic orbitals of the individual atoms. Here we shall show, however, that 
some general properties of the mobile electrons may already be gotten by the 
so-called free-electron model, which is constructed from the solutions of the par- 
ticle in a box problem. The word orbital means one-electron wavefunction, and 
we shall therefore also, in the present context, refer to the box wavefunctions 
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aa orbitals, 
Consider, then, a conjugated hydrocarbon, CNHN+I, with an even number 

of carbon atoms, N. The average length of a C-C bond in such a molecule is 
about 1.40 A = 1.40~ lo-'' m, and by making the approximation of considering 
all C-atoms to lie on a straight line we may therefore fit the molecule into a 
rectangular box of length a = 1.4O(N + 1) A. This gives a free distance of one 
bond l e n ~ t h  at each end of the chain.& We consider the box ~engths b and c in 
Fig. 4.1 to be quite small, so that the lower energy levels defined by the energy 
expression (4.57) all correspond to ny = nz = 1 while no takes on the values 
1,2,3, * , , 

The number of mobile electrons in the molecule C N H N + ~  equals N .  We 
neglect the electrostatic interaction between the electrons, and assign to each of 
them a station~y-state wavefunction of the form (4.58). But according to the 
so-cafled ~ a ~ l ~  p r ~ n ~ a p ~ e ,  whose origin we shall discuss later, we may associate 
no more than two electrons with the same orbital. The energetica~Iy lowest 
state of the N-electron system, i.e. its ground state, is therefore obtained by 
assigning two electrons to each of the orbitals defined by ne = 1,2,. . . , N / 2  
while keeping ny and nz equal to 1. The condition ny = n, = 1 implies that the 
motion in the y and z-directions is locked into a stiff pattern. The chemically 
interesting behavior of the mobile electrons is accordingly tied to their motion 
in the x-direction. The system is said to be quasi one-dzmensaonal. 

Let us therefore neglect the 51- and z-motion altogether and simply work 
with the wavefunctions and energies of the one-dimensional box (Sec. 4.2). Let 
us aIso, in the same way as in Figs. 4.2 and 4.3, discard the subscript z on 
the q u a ~ t u m  number n, and write &,(z) instead of Xn,(s:). The electron 
configurations of the above mentioned molecules are then 

E t ~ l e n e :  $$, Butadiene: $f$Z, 
Hexatriene: ~ f $ ~ ~ ~ ,  O c t a t e t r ~ n e ~  ~~~~~~~~, 

where, for instance, the symbol ~~~~$~ implies that each of the orbitals $1, $2 

and $3 are occupied by two electrons, and it is understood that corresponding 
orbitals for different molecules refer to different values of the box length a in 
the expmion (4.36) for the box wavefunctions. It is important to realize that 
the designations given for the electron configurations are in fact nothing but 
symbols. They are not many-electron wavefunctions. Later, we shall learn how 
to construct proper many-electron wavefuncti~ns for an N-electron system. 

s H o ~  much free space there shouid be allowed at each end of the chain is a matter of 
choice. Attar all, our description is only a modet. Many authors allow only a free distance of 
half a bond length. This gives slightly better transition energies, but somewhat less realistic 
electron denrities. 
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According to the statistical interpretation of quantum mechanics, the quan- 
tity $Jf(x)$Ji(x)dx is the probability of observing an electron in the interval dx 
around the point x, when its wavefunction is known to be $J i .  This makes us 
define the electron density for each of the above molecules by the expression 

(4.77) 

The number of electrons that we are likely to find in the interval dx around x 
is then n(x)dz. Each $Jj is normalized to unity, and we get therefore 

La n(xc)dx = N ,  (4.78) 

showing that the electron density integrates to the total number of electrons, 
as it should. 

Starting from the analytical expression (4.36) for the box wavefunctions 
and remembering that the box length a should be taken to be 1.40(N + 1) di 
for a particular molecule, it is straightforward to evaluate the electron density 
n(x) for some chosen values of x and hence plot n ( x )  as a function of 2 along 
the molecular axis. In this way we obtain the graphs shown in Fig. 4.5. The 
ethylene molecule is not included in the figure, but its electron density is simply 
2 X l ( z ) ’ ,  with X ~ ( Z ) ~  as shown in Fig. 4.3. 

The electron densities of Pig. 4.5 exhibit a characteristic oscillating behavior 
as functions of x. They show in fact a certain resemblance with the electron 
densities indicated by the valence-bond formulae shown at the beginning of 
this section, in the sense that they accumulate more electron density between 
carbon atoms connected by a double bond than between atoms connected by 
a single bond. A similar behavior is found by the molecular orbital method. 

That such a simple model as the above is able to reproduce some quali- 
tatively correct features of the charge oscillation in conjugated hydrocarbons 
is at  first sight rather surprising, for the model entirely neglects the strong 
variation of the electron-nuclear attraction along the chain. The reason for 
the agreement must be sought in the fact that the free-electron orbitals and 
the true molecular orbitals have similar nodal structures with respect to the 
2-coordinate, i.e., the lowest orbital is nodeless, the second has a nodal plane 
at  the middle of the molecule, etc. What we see, therefore, is that when we 
perform the summation (4.77) to get the electron density n ( x ) ,  then similar 
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Figure 4.5: Electron densities in some conjugated hydrocarbons according 
to the free-electron model. The positions of the carbon atoms are indicated 
by the vertical grid lines. 
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nodal structures of the free-electron orbitals and the true molecular orbitals 
have similar effects on n(x). 

The calculation of electron densities is an important problem in quantum 
chemistry, but far from being the only one of course. Another important 
problem is, for instance, the calculation of transition energies. The first strong 
electronic absorption bands of the molecules ethylene, butadiene, hexatriene, 
and octatetraene have their maxima at  the wavelengths 162, 217, 268, and 
304nm, respectively. These bands are known to be associated with the mobile 
electrons. We note that the absorption maxima are progressively displaced to 
longer wavelengths as the number of carbon atoms in the polyenes increases. 
We shall now show that this important trend can be understood on the basis 
of the free-electron model, whereas the positions of the absorption maxima 
cannot be calculated with any reasonable accuracy within the model. 

The highest occupied orbital of a conjugated polyene with N electrons is 
$JN/~, as discussed earlier in this section. The first electronic absorption band 
may be assumed to originate when an electron is removed from this orbital and 
placed in the lowest unoccupied orbital which is $N/2+1. The energy required 
to affect this transition is 

(4.79) 

The orbital energies are given by Eq. (4.28), with the box length a being equal 
to ( N  + l )d,  where d = 1.40A. Thus, we get: 

(4.80) 
h2 1 

8md2(N + 1)2 
A E  = 

The transition may be effected by the absorption of a photon with frequency u 
determined by the Bohr condition, A E  = hu. The corresponding wavelength 
is connected to v by the usual relation, vX = c. Hence, we get: 

(4.81) 

or, by inserting d = 1.40 x 10-lOm together with the values of m, c and h: 

X = 64.6(N + 1) nm = 646(N + 1) b;. (4.82) 

For N = 2, 4, 6, and 8 this gives: X = 194, 323, 452, 582nm, respectively. 
These values are not in good agreement with the measured values, but they do 
show the experimentally observed trend, that X increases with N .  The effect, 
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n 2 ,  n = 1 , 2 , 3  , . . .  h2 En = - 
8m(a2 $ n ( t )  = fi sin(nnz/a), 

which is predicted to be linear by Eq. (4.82), is however highly overestimated. 
The red color of carrots is, for instance, due do the presence of carotenes which 
are hydrocarbons with about ten double bonds in conjugation. The carotenes 
absorb light in the blue-green region with X M 500 nm; the above formula would 
predict a much longer wavelength. That carrots actually appear red is caused 
by the fact that the blue-green light is removed by the absorption, and hence 
the complementary color, which is red, will dominate in the light that reaches 
the eye. 

This concludes our discussion of the free-electron model. It has shown us 
both the strengths and the weaknesses of a crude model. It is easy to apply 
and it does describe some important qualitative aspects correctly. But one 
may not hope to  get anything like quantitatively correct predictions from the 
model. It is, of course, possible to improve on a model like the free-electron 
model, but it is usually more rewarding to adopt a more realistic description 
of the system under study. 

(4.83) 

4.9 Non-Stationary States 

In the previous sections we have discussed the stationary states of the particle 
in a box. We shall now show how the acquired knowledge may be used to 
study more general time-dependent states. The procedure that will be used 
may be transferred to other systems with different Hamiltonians, so the idea 
is again to  illustrate general principles by means of a simple model. 

Let us restrict our attention to the one-dimensional box. Let us also, in the 
same way as in the previous section, denote the wavefunctions (4.36) by $+,(z) 
instead of Xn,(t), and denote the energies of Eq. (4.28) by E,. We have then: 

The time-dependent stationary-state wavefunctions are, according to Eq. (3.7) 

The time evolution of any-stationary or non-stationary-state described 
by a wavefunction Q ( x ,  t )  is given by the time-dependent Schrodinger equation 
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(4.85) 

with the Hamiltonian (4.12), which we now simply denote by fi: 

(4.86) 

We have of course that 

fi$Jn(x) = En$Jn(x), n = 1 , 2 , 3 , .  . . (4.87) 

Assume, now, that we are given the form, Q ( x ,  0), of the wavefunction at  
some initial time t = 0. We may then determine the time evolution of Q by 
continued iteration by the method indicated in Eq. (3.3). Such an iteration 
may, for instance, be performed numerically on a computer. There is, however, 
another useful way of representing the time dependence of Q. 

As we emphasized in Sec. 3.1 and 3.4, there are no severe restrictions on the 
possible form of Q ( x ,  0), except that it must be smooth and square integrable, 
and of course satisfy the boundary conditions of the problem. But now it is 
known from the theory of Fourier series, that any well-behaved function which 
vanishes at  x = 0 and x = a may be written as a linear combination of the 
functions sin(nnz/a), n = 1 , 2 , 3 , .  . . These functions are, however, just the 
functions in (4.83). It is, consequently, possible to expand Q(z,O) on the set 
{$~*(x ) }  and write 

(4.88) 

The wavefunction at  any later time will then be 
W 

Q(x,t) = C c n Q t l ( x , t ) ,  (4.89) 

where Qn(x, t )  is given by Eq. (4.84). For this function reduces to Q(x,O) for 
t = 0, and it also satisfies Eq. (4.85). To see this, note that Eq. (4.87) implies 
that 

n = l  

W W 
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while Eq. (4.84) yields 

The right-hand sides of these two equations are identical. Hence, Eq. (4.85) 
is satisfied, and this is the condition for the function (4.89) to be the correct 
time-dependent function. 

It follows, from this exercise, that the wavefunction associated with any 
non-stationary state may be written in the form (4.89) with time-independent 
coefficients cn. We have been able to prove this for the one-dimensional box 
by referring to the theory of Fourier series, but the result is generally valid and 
holds for any system. Thus we can state the important principle of superposi- 
tion: 

For a given system, any time-dependent wavefunction 
can be written as a superposition of the system's time- 
dependent stationary-state wavefunctions, with coefficients 
that are independent of time. 

(4.92) 

The coefficients are determined by the way the system is prepared at t = 0. 
As an illustration, let us consider the simple initial function 

Q(z,O) = d m I c l I ( 4  + Iclz(.)l (4.93) 

where $1 and $2 are given by Eq. (4.83). This is a properly normalized func- 
tion, for the expansion coefficients satisfy the condition spelled out in statement 
(4.76). We get then, by Eq. (4.89): 

(4.94) 

The probability density is !j times a sum of three terms: The first term is the 
probability density associated with the stationary state q1 (z, t ) .  Similarly, 
the second term is the probability density associated with the stationary state 
Q2(z , t ) .  The third term is said to describe the interference between the two 
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Figure 4.6: Probability density for a non-stationary state of the particle in a box. 
See text. 

stationary states \kl(z,t) and lslz(z,t). Note that this contribution to  the 
probability density oscillates in time. 

The origin of the interference term is similar to the origin of the interference 
terms in Eq. (2.81) for the double-slit experiment. In both cwes, the interfer- 
ence terms occur because the principle of superposition applies to amplitudes 
rather than probability densities. 

We remind the reader that a function of the type cos(3avt) is said to 
oscillate in time with freqerency u,  peraod T = l /v ,  and angerlar ~ q u e n c ~  
w = 2nu. For the above oscillation, the angular frequency is seen to have the 
magnitude: 

w = - El)/h.  (4.96) 

We may also write 

Ez - El 7 l i ~  = hv, 

which reminds us of the Bohr frequency rule, Eq. (2.45), but the content is of 
course different. 

In Fig. 4.6 we show graphs of the probability density (4.951, here denoted 
by P(z , t ) :  

(4.98) 

(4.97) 

P(z ,  t )  = *If(%, t)\E(z, t ) .  
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The graphs are instant pictures of P ( z , t )  corresponding to t = 0, T/8, T/4, 
3T/8, T/2, where 

h T = -  
E2 - Ei 

(4.99) 

is the period of the oscillation. 
We have now studied the wavefunctions associated with both stationary 

and non-stationary states of a single particle, and we have plotted probability 
densities, P ( z ,  t ) ,  for both types of states. The probability densities give sta- 
tistical information about the behavior of the particle. Important aspects of 
this behavior are reflected in the so-called expectation values and uncertainties. 
This will be discussed in some detail in the next chapter. 

Supplementary Reading 
The bibliography, entries [GI, [ l l ]  and [9]. 

Problems 
4.1. Imagine an electron confined to a cubic box with edge a. Determine the value 
of a for which the electron’s zero-point energy equals its rest-mass energy, mecZ. 
Express the result in units of the so-called Compton wavelength, X c  = h/ (mec) ,  and 
in atomic units (Appendix B.2). 

4.2. According to the kinetic theory of gases, the average speed of an atom in an 
atomic gas at the absolute temperature T is given by the expression 

where m is the mass of the atom and k is the Boltzmann constant. 

a. Write down an expression for the de Broglie wavelength X correspond- 
ing to v .  

b. Calculate the value of X for a Na atom in a Na gas at T = 300K 
and at T = 100 x 10-OK. (The atomic mass of Na is 22.990~1, with 
l u  = 1.66054 x lo-’’ kg.) 

c. Assume that a Na atom is enclosed in a cubic box with edge A. Give 
an expression for the energy separation A E  between the ground state 
and the first excited state of such an atom. 

d. Determine the value of kT/AE. 



92 Chapter 4. Particle in a Box 

4.3. Write down the energy levels and the stationary-state wavefunctions for a 
particle in a two-dimensional box with edges a and b. 
For a = b (a square box), construct the energy level diagram corresponding to that 
of Fig. (4.4). Specify the sets of quantum numbers (nz, nY)  corresponding to each 
level in the diagram. 
Sketch the form of the ground-state wavefunction by means of contour curves in the 
2, y-plane, i. e., curves on which the wavefunction has a constant value. 

4.4. At time t = 0, a particle in a one-dimensional box is known to be in a non- 
stationary state described by the wavefunction of Eq. (4.93). Calculate the quantity 

“ ( t )  = 2 @ * ( C ,  t)U(2, t ) d 2 ,  la 
i. e., the mean position of the particle as a function of t .  
traversed by the possible values of Z. 

Specify the 2-interval 

Use, for instance, that 

and 
1 

n2 
u cos(nu)du = - [(-I)” - 11. 

4.5. Consider a two-dimensional linear function space, V ,  with basis ($1, $2) where 
$1 and t,b2 are linearly independent functions. $1 and $2 are assumed to be normal- 
ized to unity, but they are not orthogonal. Thus, we have. 

($11$1) = 1, ($21$2) = 1, ($11(I2) = s, 
where S is the overlap integral between $1 and $2 (cf. Eq. (4.37)). 
In what follows, it may be assumed that S is real-valued. 

a. Construct an orthonormal basis in V defined by the functions 

(I; = $1, $; = ~ ( $ 2  +a$,). 

First, determine a such that ($;I$;) = 0. Next, determine the value of 
the normalization constant N .  
(This method of orthogonalization is called Gram-Schmidt orthogonal- 
ization. It is readily extended to function spaces of higher dimensions.) 

b. Construct another orthonormal basis, defined by the functions 

(I” - 
1 - Ni($1 + $2), 4;’ = N2($1 + W J ~ ) .  

First, determine the value of b. Next, determine the normalization con- 
stants Ni and N z .  
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We have now performed a rather detailed study of a concrete qu~ntum- 
mechanical probiem. On the wayy, we have made some important observations 
on the general behavior of quantum systems. It was possibie to make these 
observations because of the simplicity of the problem. But for more complex 
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problems, we may benefit considerably from a refinement of the formalism. 
Consequently, we shall devote the present chapter to a formal study of the 
properties of quantum-mechanical operators. 

In Sec. (3.3) we discussed the process of quantization by means of which 
the dynamical functions of classical mechanics (like position, linear momentum, 
angular momentum, etc.) are replaced by operators in quantum mechanics. 
This process induces a fundamental algebraic difference between the dynam- 
ical quantities in classical mechanics and quantum mechanics: Two classical 
functions like z and p ,  multiply together as zp, and p,z with the same result, 
whereas the result of multiplying the two corresponding operators f and & 
depends on the order of multiplication. Thus, the operators f p z  and p,? are 
different. The difference between the two operators is called a commutator. 
As may well be imagined, commutators play a fundamental role in quantum 
mechanics. We shall lay the basis for the understanding of that role in this 
chapter . 

Operators like f and fi,, and the Hamiltonian fi, are all operators that 
represent quantities that can be measured. Such quantities are called observ- 
ables. There are other interesting operators in quantum mechanics besides 
those that represent observables, but operators representing observables have 
special properties. They belong to the class of so-called Hermitian operators. 
We shall accordingly put much focus on Hermitian operators and their prop 
erties in what follows. 

The commutator between two Hermitian operators is obviously an impor- 
tant quantity. We shall see that if it vanishes, then it is possible to construct 
quantum states for which both observables involved have so-called sharp Val- 
ues. But if the commutator between the two operators is different from zero, 
then it is impossible to construct such states in general. The famous uncer- 
tainty relation puts a well-defined limit on the accuracy with which the two 
observables may be measured simultaneously. This limit is determined by the 
commutator. The discussion in the present chapter is sufficiently precise that 
it enables us to derive the exact form of the uncertainty relation and we shall 
accordingly do so, before we close the chapter with a more general discussion 
of quantum theory and measurements, and a section on matrix mechanics. 

5.1 The Bra-Ket Notation 

In Chapter 3 we introduced the Schrodinger wave mechanics according to which 
the state of a physical system is determined by a wavefunction, q.  The wave- 
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function depends on the time and all the coordinates of the system. For the 
latter, we shall use the collective notation q in what follows and thus write 
q = 9(q , t ) .  The time development of the wavefunction is governed by the 
system’s Hamiltonian, H ,  through the time-dependent Schrodinger equation, 

h 

66 
at 

ih- = HQ. 

The stationary states are described by wavefunctions of the particular form 

where En is the energy of the state, and &,(q) is a solution of the time- 
independent Schrodinger equation, 

i?Q = EQ. (5.3) 

In the preceding chapters we have considered this equation in some detail and 
found its solutions for the particle in a box, in a single dimension and in three 
dimensions. 

It was pointed out in Sec. 3.2, that if $ is a solution of Eq. (5.3) then so 
is c$, where c is any nonvanishing complex constant. In a similar way, CQ 

satisfies Eq. (5.1) whenever Q does. Accordingly, all functions of the form c\k‘ 
are understood to define the same physical state. One sometimes says that the 
state is determined by the ray cQ. 

For Q to represent a physical state it must be square integrable, i.e., the 
integral 

(5.4) 

where dq denotes integration over all the coordinates of the system, must be 
finite. We may consequently choose the constant c such that the integral is 
unity, which is useful in most applications. Q*9 is then a probability density, 
and Q*(q,t)Q(q,t)dq is the probability of finding the system in the ‘volume 
element’ dq around the configuration q,  at time t .  But we need not normalize 
the wavefunction to unity. If we don’t, then the quantity to be interpreted as 
a probability density is !J!*(q, t)!J!(q, t)/(QI\E). 

We begin the next section with some basic definitions. They all refer to 
a given quantum system at some instant of time. Hence, we shall omit the 
argument t and write Q(q)  for a possible wavefunction of the system. We do 
not assume that Q ( q )  is an eigenfunction of the Hamiltonian. On the contrary, 
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we allow Q to be a very general function of the system coordinates q. The only 
requirements are that Q be a smooth function of the arguments, and that it 
be square integrable so that the integral 

is finite. 

product, or overlap integral, by the definition 
For two square integrable functions, Q,. and Q 3 ,  we introduce the scalar 

(5.6) 

in analogy with Eq. (4.39). As in Sec. 4.3,  we underline that the first factor in 
the integrand is the complex conjugate of \k,(q) rather than Qr(q)  itself. As a 
result of this, we have the general relation 

(QSlQr} = (QrlQ.s)* (5.7) I 
Note, also, that Eq. (5.5) is but a special case of Eq. (5.6). 

As we have stated, q is a collective notion for all coordinates of the system. 
When we need a more explicit notation and the number of coordinates is f, 
we may write 

{ q )  = {.1,x2,. . . , q). (5.8) 

If, for instance, the system consists of N particles, then we might let X I ,  ~ 2 ~ x 3  

represent the x ,  y,  z coordinates of particle 1, x4,25,x6 the x ,  y, z coordinates 
of particle 2, etc. Thus, we would write 

{ q ) = { x 1 , x 2 , . . .  ,ZBN). (5-9) 

The notation ( Q r l Q 8 )  which we have used above, and also in the previous 
chapter, is the so-called bra-ket notation. The terms bra and ket were coined 
by Dirac. They were extracted as the left and right parts of the word bmcket 
and denote quantities of the type (*,.I and respectively. A ket IS) was 
meant by Dirac to designate a vector in an abstract space. Hence it is written 
without reference to specific variables, except possibly the time. q ( q )  is the 
so-called position-space representation of IS), and one writes 

(5.10) 
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and 

* * ( q )  = (QM. (5.11) 

But since we shall mainly work in position space, we may generally think of I*) 
as being simply \E(q), and of (91 as being simply \E*(q). Obviously, we obtain 
the symbol (\Efl\Es) for the scalar product (5.6) by a simple juxtaposition of 
the bra symbol (ap! and the ket symbol the two vertical lines being 
contracted to one for brevity. 

The bra-ket notation is both useful and elegant, and we shall extend its use 
in the following sections. 

5.2 Linear Operators. The Commutator 
An operator fi is called linear if the relation 

&\El + c292) = C l f i \ E l  + c2h292 (5.12) 

is satisfied for arbitrary complex coefficients, c1 and czl and for arbitrary func- 
tions, and \E2. We shall only meet linear operators in the following. 

Let us consider the successive application of two operators, ha and f i b ,  to 
a function \E. Applying f i b  first results in a new function f i b * ,  and when ha 
is applied next we get the function f i a f i b \ E .  Applying fia before f i b  results, 
on the other hand, in the function h b f i a \ E .  The difference between the two 
functions is 

f i a f i b \ E  - h b f i a g  = ( f i a f i b  - f i b h a ) \ E .  (5.13) 

If this function vanishes, it does not matter in which order we apply f i a  and 
f i b .  And if this is found to be true for any q ,  we say that ha and fit, commute. 
However, quantum-mechanical operators do not commute in general, so an 
important quantity is the commutator: 

(5.14) 

It follows from the definition that this is an antisymmetric quantity, in the 
sense that 

(5.15) 
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Let us consider some impor t~nt  examples. 
As the first example we take 

n *  

fl, 'fl, a b = c ,  (5.16) 

where fi is an arbitrary operator and c an arbitrary complex constant. Since 
fi is assumed to be linear we get, for any function 9, that f ic9  = cfi9,  and 
hence that (& - ch)9 = 0. But this implies that 

j_ [c?, c] = 0 

In our second example we put 

in the notation of Eq. (5.9). We get 

and hence 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

Since this holds for any !&, we have derived the following c o ~ ~ ~ ~ a t a o n  ~ Z a t ~ o ~  y-, = 1. 
8x1 

(5.21) 

Provided that the coordinates involved are Cartesian, dlax1 defines the mo- 
mentum operator $1 by the definition (3.11) 

Hence we get, by multiplying Eq. (5.20) by ifi 

(5.22) 

(5.23) 

A similar relation holds, of course, €or the commutator between $2 and 2 2 .  To 
derive the commutator between $1 and 2 2  we note that 

(6.24) 
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which shows that 

[xz, $11 = 0. (5.25) 

Extending these findings to all the Cartesian coordinates in a set of the type 
(5.9) allows us to write 

[ X i ,  p j ]  = ihdij I (5.26) 

This is a very basic quantum-mechanical result. 
In our last, and somewhat more complicated example we consider a single 

particle in three dimensions. Its Cartesian coordinates are called (x, y, z )  as 
usual. We seek the commutation relations between the angular-momentum 
operators (f,, iy, it), which are defined as the Cartesian components of the 
angular-momentum vector operator 

1 = 3 x p .  ( 5 . 8 )  

These components are 

(5.28) 

The square of the angular momentum is represented by the operator 

i2 = i,” + i; + i-,2 . (5.29) 

Straightforward evaluation gives first 

[iz, iY]U = (ixiy - iJx) \E 

= -hZ { (y; - z&) (.” ax - .”> a2 (5.30) 

-(za.-xz) a a (y--zE)} a* 
aZ ay 
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[i2, fx] = [i2, i,] = [P,  i,] = 0 

and next, 

(5.34) 

a ae a ae a ae a ae 
z {  a z  ax a z  a z  a y  ax a y  a z  

~~ 

[lx, ly]Q = -h y-z- - y-x- - z-z- + 2-2- 

a (5.31) -2-y- + z-z- + x-y- - 2-1- d ae a a4 a ae 
ax az ax ay az  at at ay 

The result of the exercise is that 
* , ,  

[lx, l,] = ihi, . (5.32) 

Similar results are obtained for the commutators [i,, it] and [it, fx]. Thus, we 
arrive at  the fundamental commutation relations 

[ix, i,] = irii, , 
[i, , i,] = ifii,, 
[G , lx] = ihi,. 

(5.33) 

so that i 2  commutes with each of the components ix,iy, and f,. 
In the derivation of more complicated commutation relations it is often 

helpful to take advantage of the following general relations, in which the fils 
are arbitrary operators and the c’s arbitrary complex constants, 

(5.35) 



5.3. Hermitian Operators. Hermitian Conjugation 101 

Each of these relations is easily verified by evaluating the two sides of the 
relation separately and comparing the results. We get, for instance, for the 
second relation 

and 

which verifies the relation. 

mutator [P, is]. We get 
As an example of using the relation just proven, let us evaluate the com- 

-2  i [J , rl = “2, is]  3. If;, d ]  + “2, is] 
= 0+iy[iy, fr]+[fy, frJiy+aj[iz, iz]+[fz,L]iz 

&iTJz) + (-ihfz)iy +iz(ihi,) + (itiig)iz = 
= 0. (5.38) 

This verifies the first part of the relation (5.34). The rest is verified in a similar 
manner. 

In closing this section, let us note that we may also use the bra-ket notation 
freely when operators are involved. The effect of operating with an operator 
h on the ket I$) is written @If). It equals the ket Ih), which we may think 
of as d@(q) as long as we stay in the position representation. 

5.3 Hermitian Operators. Hermitian 
Conjugation 

An important class of quantum-mechanical operators are the so-called Hermi- 
tian opemtors. The Hamiltonian is a Hermitian operator, and the same is true 
for any other operator that represents an observable. We shall show this in the 
following section. Here, we shall mereIy introduce the definition of Hermitian 
operators and make ourselves familiar with the definition through some simple, 
but. important examples. 

Let us consider an operator a, together with two functions, 9, (q )  and 
q8(q), which so far are completely arbitrary except for the condition that the 
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An operator F is said to be Hermitian if and only if 

for arbitrary, well-behaved functions Q, and Q s .  
The condition may also be written 

(Qr l f i l ~ s )  = ( 4 s  l$IQr)* 

(QrlplQs) = (fiQrlQs)* 

integral 

(5.42) 

Opera tors 

(5.39) 

must exist. Integrals of this type play an important role in quantum mechanics, 
and are often referred to as matrix elements, because any set of functions, 
@ I ( q ) ,  Q 2 ( q ) ,  . . . , allows us to construct a matrix, namely, the matrix with 
elements Q l l ,  Q 1 2 , Q 2 1 ,  f i 2 2 ,  etc. The notation (Qr161Qs) is anatural extension 
of the bra-ket notation. We recall again that whenever a function appears 
in a bra position, as 4, does in the above expression, then it is the complex 
conjugate of the function that is involved. Remembering this, we may establish 
the following relation, 

( f iQr 1 ~ s )  1 ( Q s I f i I Q r ) * ,  (5.40) 

for when we specify the integrals involved, the relation becomes 

(5.41) 

which is a trivial identity. 
With the definition of the matrix element (Q, IfiIQs) completely under- 

stood, let us recall the relation (5.7), which says that if we interchange the 
two functions Qr and Qs in the scalar product (QrlQs), then the value of the 
scalar product is merely replaced by its complex conjugate. This implies, in 
particular, that the absolute value l ( Q r  IS,)l is unchanged. We cannot expect 
the relation between (Q, IfilQs) and (Qs IfilQ,) to be equally simple. But for 
a certain class of operators it is. This is just the class of Hermitian operators. 
The proper definition of a Hermitian operator is 

The latter form of the definition is readily obtained from the first by exploiting 
the relation (5.40). By a well-behaved function we understand a function that 
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may, at least in principle, serve as a wavefunction for the system under study 
(in general a non-stationary wavefunction). This implies, as we know, that the 
function must be square integrable, and that it must honor the boundary con- 
ditions imposed on the system. A well-behaved wavefunction for the particle 
in a box must, for instance, vanish on the walls of the box. The importance 
of requiring the functions 9, and to be well-behaved in the present con- 
text will become clear through the following examples. (See, in particular, the 
derivation of Eqs. (5.50) and (5.52).) 

For a general operator h we may introduce the secalled Hermitian con- 
jugate operator ht by the requirement that the matrix element (QplhtlQ8) 
equal (@',(h(Q,)* for arbitrary functions 9, and Q',. We may again exploit 
the relation (5.40) and turn the expression (q8 [hIQ,.)* into (h9, I@#). Thus, 
we have, 

An operator ht is said to be the Hermitian conjugate 
of the operator h if and only if 

for arbitrary, well-behaved functions 9, and 9, . 
The condition may also be written 

This relation is known as the turn-over rule.. 

(9, IhtlQa) = ( 9 8  IfilQr)* 

(*rlfi+lQa) = (fiQrIQ8). 

(5.43) 

Hermitian conjugation is a symmetric relationship between the operators 6 and 
ht, in the aense that fi is also the Hermitian conjugate of ht. The relation 
that certifies this is simply the complex conjugate of the first of the relations 

The condition f o r  F to be a Hermitian operator may now be rephrased: The 
operators F and Ft must be identical. 

To proceed, let us determine the Hermitian conjugates of the operators 
studied in the previous section. In each case, the easiest route to follow is to 
write down the expression (d9, 19',),and then manipulate this expression such 
that it is brought on the form (9 r lS2 ' [98) ,  from which ht may be identified 
by the turn-over rule. 

First, we consider a complex constant c,  and hence the expression ( c 9 ,  I@$). 
We obviously have that 

(5.43). 
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that is, 

This shows that 

,t = c* (5.46) 

The steps just carried through may be repeated without modification for an 
arbitrary function of q ,  V ( q )  say. Thus, we have that 

E l  

E I I l  V’(q )  = V(q)* (5.47) 

These simple examples might let us believe that Hermitian conjugation 
is the same thing as complex conjugation. That this is not so in general, is 
inherent in the following examples. 

In the example to be taken up next, we want to determine the Hermitian 
conjugate of the operator d/dxl, where x1 belongs to a coordinate set of the 
type (5.9), i.e., we assume that we are dealing with a set of Cartesian coordi- 
nates x1,x2, . . . , x ~ N .  We also assume that the functions involved satisfy the 
following boundary condition, 

Q(ai, 22,. . . , X ~ N )  = Q(h, 22,. . . , X ~ N ) ,  (5.48) 

where a1 and 61 define the range of 21. The condition is certainly satisfied if 
x1 is defined on the interval --oo < x1 < 00, for the integral (QIQ) will only 
exist if 8 tends to zero when 1x11 tends to infinity. But the condition is, for 
instance, also satisfied for the particle in a box, where we require all physically 
acceptable wavefunctions to vanish on the walls of the box. 

By observing Eq. (5.48), and introducing the notation dq’ for the incomplete 
volume element dx2dx3. . . d x 3 ~ ,  we get: 

(5.49) 
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which shows that 

I 3  t 

(&) =-a21 (5.50) 

Hence, 8/8x1 is not Hermitian. The operator is said to be anti-Hermatian. 
If, however, we multiply all expressions in (5.49) by ih, we get 

(5.51) 

which shows that - i t ia/8xl ,  is Hermitian, But this operator is nothing but 
the linear momentum operator $1, Hence is Hermitian, 

FI P ,  = Pl (5.52) 

A similar result holds, of course, for the operators p 2 ,  p 3 , .  . . , p 3 N ,  provided 
the functions involved also satisfy boundary conditions similar to (5.48) for 
the coordinates X I ,  2 2 , .  . . , X 3 N .  

The operators that represent the position variables 2 1 ,  x 2 ,  . . . , X3N are, 
as we know, just the functions x 1 , x 2 ,  , . . , X 3 N .  These functions are all real- 
valued and therefore Hermitian operators, according to Eq. (5.47). We have 
thus learned that Cartesian position and momentum variables are represented 
b y  Hermitian opemtors. 

In determining the Hermitian conjugates of more complicated operators, 
the following expression for the Hermitian conjugate of a product of operators 
is useful, 

(fiafib...h,)t = q...fip$ (5.53) 

To prove the relation, it is sufficient to consider the product of two operators. 
We use the turn-over rule, (fiQrlQs) = (Qrlf i t lQ8),  twice and get 

( f i a f i b q r l q s )  = ( f ibqrl f iLlQs)  = ( Q r l f i i f i i l q s ) .  (5.54) 

In the first step we have let fia play the role of the operator fi in the above 
reproduction of the turn-over rule, in the second step we have let f i b  play that 
role. A comparison of the first and the last expression in Eq. (5.54) shows that 

(fiah2,)t = fig& (5.55) 
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An iteration of this result gives Eq. (5.53). 
As an obvious deduction from the relations (5.55) and (5.46) we get that 

( C l f i a  + C Z f i b ) +  = CTfi!  + . ;f ib.  (5.56) 

For two Hermitian operators, F a  and F b ,  Eq. (5.55) reads 

( P a p b ) ’  = f i b f i a .  (5.57) 

The right-hand side equals F a F b  if Fa and F b  commute. Hence the following 
theorem, 

(5.58) 
The product of two Hermitian operators is Hermitian 

if and only if the two operators commute. 

This theorem guarantees, for instance, that the angular momentum oper- 
ators (5.28) are Hermitian, as the following sequence of arguments shows: We 
have that I ,  = ypz - zpy, and we know that the Cartesian coordinates and 
momenta y, p z  , z ,  and pY are Hermitian. We also know that y and Gz commute, 
and so do z and py, cf. Eq. (5.26). ypz and zpY are accordingly Hermitian, and 
the same must therefore hold for their difference, which equals i,. A similar 
series of arguments may be carried through for iy and iz . 

Thus, the theorem (5.58) causes fx,iy and iz to be Hermitian. It also 
guarantees that i2 is Hermitian (because I , ,  iy and fz are). 

Finally, the theorem also guarantees that Hamiltonians are Hermitian o p  
erators. Thus, the Hamiltonian for a single particle in three dimensions reads 

(5.59) 

This is a sum of Hermitian operators, for fi; is Hermitian because pc is (the 
above theorem), and V is Hermitian because it is a real-valued function (Eq. 
(5.47)). Being a sum of Hermitian operators fi is itself Hermitian, as claimed. 

At the beginning of this section, we stated that quantum mechanical oper- 
ators representing observables must be Hermitian. We have now demonstrated 
that this is in fact the case for a number of such operators. A general proof of 
the statement is contained in the following section. 

In closing the present section we note that any non-Hermitian operator, fi, 
determines two Hermitian operators, fi, and f i 2 ,  by the definitions 

1 
2 fi1 = -(fi + f i t ) ,  

1 -  .. 
2i f i 2  = -(a - at). (5.60) 
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Conversely, the operators 

(5.61) 

are each other’s Hermitian conjugates whenever f21 and 62 are Hermitian. An 
example of such a pair of operators is, for instance, supplied by the angular- 
momentum operators i+ and i- defined by the relations 

i+ = i, + i fy ,  
i- = is - i f y .  (5.62) 

5.4 Some Properties of Hermitian Operators 
On the basis of the definition (5.42), we shall now derive some important results 
concerning the eigenvalues and eigenfunctions of Hermitian operators. First 
we prove that 

The eigenvalues of a Hermitian operator are all real. I (5.63) 

Let Q be eigenfunction of a Hermitian operator, F ,  with eigenvalue f, 

F Q =  fQ. (5.64) 

Scalar multiplication from the left with Q gives then: 

Now, it is obvious from the definition (5.5) that (SlQ) is real. It also follows 
from the definition (5.42) that 

(QI@lQ)  = (QI@lQ)* ,  (5.66) 

so (QlPlU) is also real. Hence f must be real. This proves the theorem. 
Next, we prove the theorem 

(5.67) Eigenfunctions corresponding to different eigenvalues 
of a Hermitian operator are orthogonal. 
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Let the two eigenfunctions be Q l  and Q 2 ,  and let f1 and f2  be the correspond- 
ing eigenvalues, so that 

PQl = f l Q l ,  

F 9 2  = f2Q2. (5.68) 

We shall evaluate the matrix element ( Q l I F I Q 2 )  in two different ways. First, 
we use that 9 2  has the eigenvalue f2 and get 

(QlIFIQZ) = ( Q l l f 2 Q 2 )  = f 2 ( Q l l Q 2 ) .  (5.69) 

Secondly, we use that F is Hermitian, that Q 1  has the eigenvalue fi, and that 
f1 is real (Theorem (5.63)). This gives 

( Q i I F l Q 2 )  = ( F Q i l Q 2 )  = ( f i Q i l Q 2 )  = f r ( Q i I Q 2 )  = f i ( Q 1 1 9 2 ) .  (5.70) 

Thus, we have derived the relations 

( Q l I F l 9 2 )  = fZ(Q1 l Q 2 ) !  

(%l@lQ2)  = f l ( ~ l I * Z ) .  (5.71) 

Subtracting these two relations from each other gives 

(f2 - fl)(QlIQZ) = 0. (5.72) 

So, whenever f1 # f2 we must have that 

( 9 1 l Q 2 )  = 0, (5.73) 

which proves the theorem. 
In the previous section, we observed that the Hamiltonian is a Hermitian 

operator. Eigenfunctions corresponding to different energies must consequently 
be orthogonal. But this is exactly what we have found in the previous chapter, 
so the theorem (5.67) is the rationale for our earlier observation. 

The theorem may be considered a special case (G = 1) of the more general 
theorem: 

When two functions, 9 1  and Q 2 ,  are eigenfunctions of a 
Hermitian operator F with different eigenvalues, and 

G is any operator that commutes with F, then 
( 9 1 1 G : l 9 2 )  = 0. 

(5.74) 
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This theorem may be proved in a similar way as the previous one. We get first 

and then 

But because we have assumed that FG = GF, the results of the two cal- 
culations must be the same. Subtracting the results from each other gives 
therefore 

(5.77) 

We assume that f1 f f ~ .  Hence, 

which finishes the proof. 
We have now made ourselves familiar with Hermitian operators and their 

properties, and it is time to prove the assertion made at the beginning of Sec. 
5.3: 

Observables must be represented by Hermitian operators. 1 (5.79) 

Observables are physical quantities that can be measured, like position, linear 
momentum, energy etc. The problem of deriving the values of observables from 
a given wavefunction will be discussed in the following section. The basis of 
the discussion will be the postulate that the quantity 

(5.80) 

is the expectation value of F in the quantum state q. By this we mean that if 
we have a very large number of identical systems, each in a state described by 
the wavefunction Q, and if we measure the value of the physical quantity F for 
each of these systems, then the average value will be (k).  The wavefunction is 
not supposed to be an eigenfunction of F .  All that is required is that it should 
be well-behaved, in the sense discussed in connection with the definition (5.42) 
of Hermitian operators. 

The important point is now, that the result of a measurement must be 8 
real number. As a consequence, we must demand that the expectation value 
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(F) be real, and this must hold no matter what the function Q looks like, as 
long as it is a well-behaved function. The quantity (QIQ) is always real. It 
follows therefore, from Eq. (5.80), that (F) will be real whenever (Ul$'lQ) is. 
We have learned, by Eq. (5.66), that (@l@14) is real if F is Hermitian. What 
we shall now show is, that if ( Q l j l Q )  is real for any well-behaved U, then F 
is Hermitian. We proceed as follows. 

We assume that (QI$'lQ) is in fact real for any well-behaved Q and let 
and 4 2  be two well-behaved, but otherwise arbitrary (complex-valued) 

functions. We then construct the two new functions 

(5.81) 

But if the sum of two complex numbers is real while their difference is imagi- 
nary, then the two numbers must be complex conjugates. The proof is elemen- 
tary: We assume that the relations (5.83) are fulfilled and write 

(5.84) 

where A ,  B ,  C, and D are real per definition We get then 

(QiIPlQ2) + (QzlPlQi) = (A + C )  + i (B  - D), 
(QiI$lQz) - (Qzl f i lQi)  = (A - C )  + i ( B  + D).  (5.85) 

Since the sum is real we conclude that B = D, and since the difference is 
imaginary we conclude that A = C.  Thus, the expressions (5.83) do in fact 
give that 

(Q2lPIQl) = (QlIfiI*Z)*. (5.86) 
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But this is, according to the definition (5.42), exactly the condition for F to 
be Hermitian, since Ql and Q2 are arbitrary. 

This completes the proof of the theorem (5.79). 

5.5 Expectation Values and Uncertainties 
In Sec. 3.4, we introduced the statistical interpretation of the wavefunction, 
and touched upon it again in Sections 4.9 and 5.1. We shall now consider the 
general problem of extracting statistical information from a wavefunction. 

Let us, for simplicity, begin by considering a particle which is restricted to 
move in a single dimension, as in the case of a one-dimensional box. Let Q ( x ,  t )  
be a normalized (stationary or non-stationary) wavefunction for the particle. 
Our previous considerations tell us then that the quantity 

P ( x , t )  = Q*(x,t)!P(x,t) (5.87) 

is a probability density, in the sense that P(x,t)dt is the probability of ob- 
serving the particle in the small interval dx at x, at time t .  It integrates to 
unity: 

/ P ( r , t ) d x  = Q*(x,t)!P(x,t)dz = 1, s (5.88) 

the integration being extended over the range of x. 

of the variable x at time t by the definition 
As in ordinary probability theory, we may now introduce the average value 

(x) = J xP(x,t)dx, (5.89) 

The average value of x is also referred to as the expectation value of x. To 
stress that it depends on t whenever Q does, it is sometimes convenient to use 
the symbol F ( t )  instead of (z). 

In a similar way, we may introduce the average or expectation value of an 
arbitrary function of the type v(x, t )  by the definition 

( v ( x ,  t ) )  = v(. , t)P(. ,  t ) d x .  J 
The expectation value of r2 is, in particular 

(2) = / z 2 P ( x , t ) d z ,  

(5.90) 

(5.91) 
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and the average value of a constant is seen to be the constant itself. 

The so-called variance of x is defined by the relation 

({x - (x)}2) = J {x - (x)}2P(x,t)dz. (5.92) 

Finally, the standard deviation of x, denoted by Ax, is defined as the square 
root of the variance, i.e., 

AX = ((2 - (z)}~):. (5.93) 

One refers to this quantity as the uncertainty of x, since it measures the mag- 
nitude of the fluctuation of x about its average value, at  time t .  We note that 
the variance of x, and hence also Ax,  may be calculated from the expectation 
values of x and x 2  in the following way 

(Az)’ = ({z - (x)}’) = (x2 - 2 x ( x )  + (x)~) 
(5.94) 

= (2) - 2 ( x ) ( x )  + (xy = (2) - (x)? 

The above expressions are all similar to the expressions of ordinary prob- 
ability theory, but they only give information about the expectation value of 
x and about the expectation values of functions of x. A wavefunction hides, 
however, much more information than that. It enables us, in fact, to calcu- 
late the expectation value of any relevant observable. Let us note, that the 
elementary manipulations 

v(x, t ) P ( x ,  t )  = v(x,t)Q*(x, t )U(x ,  t )  = Q*(x ,  t)v(x,  t ) Q ( x ,  t )  (5.95) 

allow us to write the expressions (5.89), (5.90) and (5.92) as follows: 

These are expressions that may be generalized to arbitrary observables. 
This is done by the following postulate, in which we again use the notation q 
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for the coordinates and k for a general Hermitian operator: 

113 

The expectation value of the observable F 
in the state IfD) 2 q ( q ,  t ) ,  is given by the expression 

\ - I  - 1  

When Q is normalized to unity, this becomes 

The uncertainty of F is 
A F  = ( { P  - (#)}2)i. 

A F  is a measure of the fluctuation of F 
about its average value. 

( P )  = (UlPlS). (5.97) 

The variance, ( A F ) 2 ,  may be calculated from the expectation values of F and 
F2 by the relation 

( A F ) ~  = ( { P  - (F)}2) = (F2) - (F)2. (5.98) 

The validity of the postulate, that the expressions in (5.97) are the correct 
ones to  use for the expectation value and hence the uncertainty of a physical 
quantity, hinges of course on experimental verification. To verify it experi- 
mentally, prepare a large number of identical systems, each described by the 
wavefunction fD(z, t ) ,  then measure the value of F for each system at time t .  
This results in a distribution of values of F .  Then compare the mean value 
and the variance of this distribution with the values calculated for (fi) and 
( A F ) 2  by the expressions in (5.97). If the experimental and theoretical values 
are the aame for any operator, then the postulate has been verified. Needless 
to say, one knows of no examples where the agreement between the two sets 
of values breaks down. 

That the measurement of a physical quantity F results in a distribution of 
values in the above sense, implies that the result of a single experiment is, in 
general, irreproducible. The only thing that is reproducible is the form of the 
distribution. This is a genuine feature of quantum mechanics. 

The only case in which the result of a single experiment is in fact repro- 
ducible, is when U ( q , t )  is an eigenfunction of fi, with eigenvalue f, say. For 
then we have that 

(5.99) 
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so that 

and 

(AF)' = 1 Q * ( q , t ) ( f i  - f ) ( f i  - f)Q(q,t)ds = 0. (5 I 101) 

We have used that F - f annihilates Q ( q , t ) ,  which follows from Eq. (5.99). 
Thus all experiments give the value f in this case. 

An important example of such a situation is encountered when F is the 
Hamiltonian fi and q ( q , t )  is the wavefunction associated with a stationary 
state. For Q ( q ,  t )  is then an eigenfunction of fi. Thus, we always get the same 
value when we measure the energy of a stationary state-we say that we get a 
sharp value of the energy. It is for this reason that we have been able to refer 
to the value of E in the time-independent Schrodinger equation as the energy 
of the state. 

A non-stationary state does not have a well-defined energy. I t  is merely 
characterized by a distribution of energy values, but the average value (r?) 
and the uncertainty AH associated with the distribution are, of course, well 
defined. 

To illustrate the above concepts, let us again turn to the particle in a 
one-dimensional box. 

5.6 The Particle in a Box Revisited 
The stationary-state wavefunctions for the particle in a one-dimensional box 
are given by the expressions (4.83) and (4.84). These expressions show that 

(Qn IFIFn)  = (+n IfiI+n) 
whenever F is independent o f t .  

(5.102) 

This is a general result: In a stationary state, the expectation value of a 
physical quantity F is independent of time, unless the operator F depends 
explicitly on time. Important time-independent operators are operators like 
t and p ,  and the Hamiltonian for a conservative system. For a conservative 
system, the potential energy function is independent of time, cf. Sec. 3.1. It is 
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The integral of an I odd function vanishes 

Figure 5.1: The function f(c) is odd (ungerade) under inversion inJhe point 
20, i. e., f(zo -6) = -f{xo+() for all 6. The value of the integral J-, f(z)dz 
is equal to the sign-valued area between the curve f(z) and the z-axis. With 
z’ -20 = zo - z“, as on the figure, the two contributions f(z’)dz and f(z”)dz 
to the integral are numerically equal but of opposite sign, and hence cancel 
out. This is true wherever x’ is chosen on the z-axis, so the contribution to 
Jf(z)dx from the interval c > EO is exactly cancelled by the contribution 
from the interval z < zo. 

only for such systems that the time-independent Schrodinger equation is at all 
relevant. 

For the stationary states of the particle in a one-dimensional box, the prob- 
ability densities defined by Eq. (5.87) become: 

2 
Pn(x) = $ J ; ( X ) $ ~ ( X )  = -sin2(nnx/a). a (5.103) 

They are plotted on the right-hand side of Fig. 4.3. They are all even under 
inversion in the point x = a/2. Hence we get that 

ca 

(5.104) 

for all n. For since the function x - a/2 is odd under the inversion, the product 
function (z  - a/2)Pn(z) is also odd, and the integral of an odd function is 
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strictly zero (See Fig. (5.1)). By combining the result (5.104) with that of Eq. 
(5.88) we see that 

a a  
(z) = la zP,(z)dz = (z - a / Z ) ~ ~ ~ z ) d z  + - P,(z)dz = 0 -+ - = - h' 2 2' 

(5.105) 

This result is just what one would expect by simply looking at the graphs of 
P,(x), (It falls out a little easier, but now in the form (x) = 0, by shifting the 
origin to the midpoint of the box, as in Sec. 4.5.) 

To evaluate the variance and hence the uncertainty of x, we use that 
( A E ) ~  = (z2) - ( z ) ~ ,  as in Eqs. (5.94) and (5.98). For (z2) we find 

2 (-) a 3 , "  Jd u2sin2udu 
(2') = 2 la ~2s in2 (n~x /u}dx  = - 

a 0  a 7En- 

n") = a2 (L - -) 1 
a 4 3 2n2+ ' 

and when we combine this result with the result of Eq. (5.105), we get 

(5.106) 

Thus, the uncertainty of z increases from the value 0.1808a in the ground state 
to the value 0.2887a in highly excited states. 

Next, let us evaluate (6,) and Ap, for the linear momentum which corre- 
sponds to the operator 

d 
dx px = -itt--. 

We find that 

c>  = 2 a  / sin(nnx/a) ( - i h $ )  s 
n 

(5.108) 

in( nnx/a)  dx 

where the last integral vanishes because the integrand is odd under inversion 
in the point z = af2. AIternative~y, we may argue that (&) must be real 
because f j x  is Hermitian. The integral expression is, however, imaginary-so a 
contradiction occurs unless the integral and hence (&) vanishes. 
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To evaluate @;), we observe that 

P: 0. 

f$&(2) = 2m-$,(x) = 2mH$n(2) = 2 m ~ n $ ~ ( ~ ~  
2m 

so that 

and hence 

(5.110) 

(5.11 1) 

(5.112) 

Thus, Ap# increases linearly with n, the ground-state value being nh/a. 
An important q u ~ t i t y  is the uncertainty product AzAp,. For it follows 

from general operator relations to be discussed in Sections 5.7 and 5.8, that it 
is impossible to construct a quantum state for which this product is smaller 
than h/2 .  This is an exampieof the famous uncertainty relation, attributed to 
Heisenberg, 

Heisenberg's uncertainty relation 
for position and momentum: 

AzAp, 2 ih .  
(5,113) 

I 1 

For the stationary states of the particle in a on~dimensiona~ box we get, 
by combining Eq. (5.107) and Eq. (5.112), 

(5.114) 

The product increases roughly linearly with n, the ground-state value being 
0.5679h. The values are seen to be in accordance with the relation (5.113). 

After this example, let us return to the discussion of arbitrary quantum 
systems. 

5.7 ~ o ~ ~ u ~ i n g  ~ e ~ ~ i ~ i a ~  Operators 
In the light of the uncertainty principle for position and momentum, it is of 
interest to evaluate the uncertainty product AFAG for arbitrary operators 
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and states. This we shall do in the following section. In the present section, 
we shall consider a related important problem. 

Assume that we have a set of linearly independent functions, 

which is complete in the sense that any well-behaved function, Q ( q ) ,  may 
be expanded on the set. By this we mean that a unique set of coefficients, 
c1, c2, . . . , exists such that we may write 

Assume also that each function in the set (5.115) is a common eigenfunction 
of two linear Hermitian operators F and G, 

(5.117) 

Under which conditions is this possible? 

with the operator G, on the second with the operator F .  We get 
To answer this question, we act on the first of the above eigenvalue relations 

(5.118) 

Subtraction gives 

(GF-FG)+, ,  = o ,  n =  1 , 2 , . . .  (5.119) 

and hence (GF - FG)Q = 0 for any function that is a linear combination of 
the functions $1, $ 2 , .  . . . But the set (5.115) is complete, so any @ is of that 
type. Thus, the commutator [G, F] annihilates any function, and is therefore 
by definition zero. 

A necessary condition for the relations (5.117) to be possible is, accordingly, 
that the commutator between the operators F and G vanish. This, then, 
raises the question whether one can always construct common eigenfunctions 
of two commuting Hermitian operators. The question may be answered in 
the affirmative, although we shall not go through the somewhat elaborate 
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A necessary and sufficient condition for two Hermitian 
operators to have a complete set of eigenfunctions in 

common, is that the operators commute. 

119 

(5.120) 

derivation.' We have, therefore, the following theorem 

1 I 

The theorem (5.120) is of great importance because it allows us to  classify 
the eigenstates of a physical system by the eigenvalues of a maximum set of 
mutually commuting operators. We shall take great advantage of this possibil- 
ity in the following chapters. In fact, we have already applied the possibility 
in Sec. (4.5), where we showed that the eigenfunctions of the Hamiltonian (the 
solutions of the time-independent Schrodinger equation) were also eigenfunc- 
tions of the inversion operator. The inversion operator is a Hermitian operator, 
and it commutes with the Hamiltonian for the particle in a box. 

The theorem (5.120) also tells us something about the possibility of con- 
structing quantum states for which sharp values of more than one observable 
may be obtained during a measurement. For the discussion at  the end of Sec. 
5.5 is readily generalized to other observables besides the energy. The condi- 
tion that a sharp value is obtained for an observable F is, therefore, that the 
quantum state under observation is an eigenstate of the operator F. Similarly, 
it must be an eigenstate of the operator G for G to have a sharp value. But 
according to the discussion above this is, in general, only possible when F and 
G commute. 

If the operators F and G fail to commute, then we cannot generally have 
common eigenfunctions for F and G. Consequently, the uncertainties AF and 
AG cannot both vanish for the same quantum state. For the non-commuting 
operators x and ps  of the previous section, we have the uncertainty relation 
(5.113). This relation is a special case of the general relation 

The uncertainty relation 
for two arbitrary observables F and G: 

AFAG 2 ~l(i[@,&'l)]. 
(5.121) 

< i[P,&'J > is the expectation value of i times the commutator between F 
and G. 

'The derivation draws on the methods of linear algebra and the possibility of sirnultane- 
ously diagonalizing two Hermitian matrices. 
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The commutator [z,&] has, according to Eq. (5.23), the value iti. The 
expectation value of i times this number is -h  for any state. The absolute 
value is ti. Hence, the uncertainty relation (5.113) follows immediately from 
the general uncertainty relation (5.121). 

A proof of the relation (5.121) is given in the following section. 

5.8 The General Uncertainty Principle 

We begin by noticing that for any operator A and any wavefunction Q,  we 
have the relation (AQIAQ) 2 0. This follows immediately from the definition 
(5.5), which shows that (AQIAQ) is the integral of a real and non-negative 
function, and such an integral can, of course, never be negative. 

Next, let us consider two Hermitian operators, F and G, a normalized 
wavefunction, Q, and a real constant, a. The relation 

( ( P  + iaG)Ql(P + iaG)Q) 2 0 (5.122) 

will then hold for all values of a. A straightforward expansion of the expression 
on the left-hand side of this relation gives 

(PQIFQ) + a2(GQlGQ) + ia((PQlG"E) - (GQIFQ))  2 0. (5.123) 

We now use the definition (5.42) of a Hermitian operator, together with Eq. 
(5.46), to get 

(Q1P2'21Q) + a2(Q(G2'21S) + ia(Q1FG - G q Q )  2 0. (5.124) 

Written in terms of expectation values, this becomes 

( F )  + a2(G'") + *(i(PG - GP)) 2 0. (5.125) 

According to Eq. (5.60), the operator i[$,a is Hermitian. Its expectation 
value is therefore real. Thus, all three terms on the left-hand side of the above 
relation are real. 

To appreciate the next step in the derivation, recall that a second-order 
polynomium in z, say Ax2+Bz+C, has two real roots whenever B2-4AC > 0. 
When B2 - 4AC < 0, the polynomium is positive valued for all x. The 
condition that the relation (5.125) hold for all values of a is therefore 

( i (FG - GF))2  - 4(GZ)(P) 5 0, (5.126) 
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(5.127) 

To proceed, we introduce two real constants, a and 6, and note that 
A , .  (k - u) (G - b )  - (G - b) (  F - a) = F G  - GF = [ F ,  G]. (5.128) 

The relation (5.127), applied to the operators F - a and G - b instead of F 
and G, implies therefore that 

((p - u) ' ) ( (G - b)') 2 + ( i [ F ,  (5.129) 

We now put u equal to (F) and b equal to (G). The definition of uncer- 
tainties, (Eq. (5.97)), gives then 

( A F ) ~ ( A G ) ~  2 $( i [P ,Gl )2 .  (5.130) 

We may therefore conclude that 

(5.131) 

But this is just the uncertainty relation (5.121) which we set out to prove. 

5.9 Quantum Theory and Measurements 
In the preceding sections we have stressed that'observables must be represented 
by Hermitian operators. We have also postulated that if we have a system 
described by a coordinate set q ,  then the average value, or expectation value, 
of a general observable F in the state [U) = Q ( q , t ) ,  at time t ,  is given by 
(F) = (\EI!plS), assuming of course that U(q,t)  is properly normalized to 
unity. We also learned how to calculate the uncertainty A F  that measures the 
fluctuations of F about its average value. 

Expectation values and uncertainties play important roles in the interpre- 
tation of quantum mechanics and in the applications. Yet, they merely express 
the average result of a series of measurements on identical systems, in the sense 
spelled out in the text following Eq. (5.80). We shall now consider the pos- 
sible outcome of a single measurement on a single system. As we know, the 
outcome of such a measurement is statistical. The predictions we can make 
concerning the outcome are formulated in the following. They are part of a 
generally accepted theory of measurements on quantum systems. 
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An observable F is represented by a Hermitian operator F 
whose eigenstates form a complete set. 

First, we have the general statement, or postulate 

The measurement of an observable F gives an eigenvalue of 
the operator 8. As a result of the measurement, the state 
of the system is turned into a corresponding eigenstate of 

(5.132) 

(5.133) 

The very concept of an observable is delimited by the statement 

That the eigenstates of the Hamiltonian must form a complete set has already 
been formulated as the principle of superposition, in Sec. 4.9. Now we require 
that a similar condition hold for any operator F that represents an observable. 
What the requirement really says is that if we consider a complete, orthonormal 
set of functions, 

then this set may be so chosen that the basis functions are eigenfunctions Qf 
F, 

The eigenvalues need not all be different. 
Next, we consider a particular state I\E) = g(q,t), at  time t ,  and write 

or 

"Dirac lets any Hermitian operator whose eigenstates form a complete set define an 
observable, and he even uses the term observable for the operator itself (See Sec. 10 of 
reference [12] in the bibliography). This practise is today quite common, but it implies a 
higher level of abstraction than the one we have adopted throughout the present treatise. 
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Knowing the basis set (5.134) and the form of the wavefunction @(q, t ) ,  we may 
determine the value of each of the coefficients cn(t), say Ck(t), by multiplication 
of Eq. (5.136) by $k(q)* followed by integration. For in that way we get 

(5.138) 

More elegantly, we may say that we take the scalar product of I$k) with Eq. 
(5.137) to get 

Thus, the values of the coefficients are given by the expression 

(5.139) 

(5.140) 

With reference to Eq. (4.76), we note that 

(5.141) 
n=l n=l 

provided that Q ( q , t )  is normalized to unity. This leads us to the following 
definitions 

(5.142) 

According to Eq. (5.141) the sum of the weights equals 1, as it should for the 
use of the word weight to be justified in the statistical sense. 
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We can now make the following postulate 

If the basis function I$k) is the only eigenfunction of F that 
corresponds to the eigenvalue fk, then the probability for a 
measurement of F at time t to give the value fk equals the 
weight of I$k) in IQ(t)), i. e., it equals ck(t)*ck(t). If a mea- 
surement actually gives the value fk, then the state of the 
system immediately after the measurement will be I $ k ) .  

If, on the other hand, there is a set of basis functions, 
I$kl), l $ k 2 ) ,  . . . , I$km), corresponding to the eigenvalue fk, 

then the probability that a measurement of F at time t give 
the value fk equals 

Ckl(t)*Ckl(t) + CkZ(t )*CkZ(t )  + " '+  C k m ( t ) * C k r n ( t ) .  

If a measurement actually gives the value fk, then the state of 
the system immediately after the measurement will be a linear 
superposition of the states l$kl), l$kz), . . . I$km). 

(5.143) 

With the above postulates, we have extended the discussion of the preceding 
sections, and it is therefore worth-while returning to a few of our previous 
definitions and results. 

First, there is the definition (5.97) of the expectation value, or average 
value, of an observable F .  Inserting the expansion (5.137) into the expression 
for the definition of ( F )  gives 

n=l  m=l n= l  
(5.144) 

We have used Eq. (5.9) and the orthonormality relation (5.134). The final 
expression in Eq. (5.144) is just the sum of the eigenvalues of F multiplied by 
their statistical weights. It corresponds to the ususal definition of an average 
value in probability theory. That the expectation value of F equals (ql&'lq) 
needs therefore not be introduced as an independent postulate. It is derivable 
from the theory of the present section. Yet, the expression plays such an 
important role in the applications that it is natural to give it a central position 
in the discussion. 

Next, there is the lemma (5.120) concerning two commuting Hermitian 
operators F and G. Letting F and G represent observables, it implies that 
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the functions defining the basis set (5.134) may be chosen as eigenfunctions of 
both F and G. Hence, a combined measurement of the observables F and G 
may be performed. The result of a single measurement wil be an eigenvalue 
pair (fn,gm) and an eigenstate of both F and G. 

It is also of interest to look at the time-dependent function (4.89) which is 
written aa a linear superposition of eigenfunctions of the Hamiltonian. Here, 
the weight c:cn gives the probability of getting the value En as the result of 
measuring the energy of the particle. After the measurement, the wavefunction 
will be an eigenfunction of the Hamiltonian and hence describe a stationary 
state. 

The fact that a wavefunction like that of Eq. (5.136) is changed in a dis- 
continuous way during a measurement is often referred to as the reductaon or 
the collapse of a wave packet. It has given rise to much discussion in the past 
and together with other facets of measurement theory it is still being elabo- 
rated upon, with the purpose of clarifying all its physical and philosophical 
implications. But here we must refer the reader to the rich and diversified 
l i t e r a t ~ r e . ~  

We close our chapter on quantum-mechanical operators with a section on 
matrix algebra. 

5.10 Matrix Algebra 
In Sec. 5.3 we referred to an integral of the type (qr @Z(!Pu,) as a matrix element, 
firs. The use of this notation reflects a close connection between the algebra 
of linear operators and the algebra of square matrices. The connection is a 
fundamental and important one, and we shall study it in the present section. 

Let us consider a general quantum system and assume that we have an 
operator A that operates in a linear function space V of dimension m. The 
function space is defined by an orthonormal basis of m functions, 

A general function in V has the form 

m 

Q = C C r O r .  (5.146) 
r = l  

3See, for instance, the reprint collection by Wheeler and Zurek; the bibliography, entry 
~ 3 1 .  
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That A operates in V is understood to imply that 
the function 

also belongs to V ,  i .  e., 

@ = A@ (5.147) 

may be written 

m 

w = C char * (5.148) 
r=l  

To obtain the coefficients c: in terms of the coefficients c,., let us first 
consider the function A@,.. We write 

(5.149) 

where the coefficients At, are to be determined. To determine these coefficients, 
multiply Eq. (5.149) from the left by @; and integrate over the variables on 
which the @ functions depend. In this way we get 

where we have utilized the orthonormality of the basis set (5.145). The desired 
expression for At, is therefore 

i. e., At, is the tr’th element of a matrix A which, according to the definitions 
of Sec. 5.3, is just the matrix that we conventionally associate with the operator 
A and the set of functions (5.145). A relation like (5.149) holds, of course, for 
each Qr in the set (5.145). It is convenient to collect the functions in a row 
matrix and write 

(5.152) 
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We are now prepared to determine the coefficients c i  in Eq. (5.148). We 

and hence 
m 

r=l 

(5.153) 

(5.154) 

1. e., 

(5.155) . . . . . . . . . . . .  
Am1 Am2 . . *  Amm 

C' = Ac. (5.156) 

This is the matrix representation of Eq. (5.147). The functions \E and 9' 
are represented by the column vectors 

(5.157) 

respectively, and the operator A is represented by the matrix 

Similar matrix representations may, of course, be set up for other relations. 
Thus, the eigenvalue equation 

F9= f9, (5.159) 
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where F is some operator acting in V ,  has the matrix representation 

F c  = fc. (5.160) 

In this way, the problem of determining the eigenvalues of an operator becomes 
transformed into the problem of determining the eigenvalues of a square matrix. 
in particular, the Schrodinger equation (5.3) becomes 

H c  = Ec, (5.16 1) 

where H is the Harniltonian rnatrax. 
To proceed, let us show that the matrix C corresponding to the operator 

product C =. AB,  is the product of the matrices A and 33. We make successive 
use of the analogues of Eq. (5.149) to  get 

m m 

t=l a = l  

which shows that 
m 

(5.162) 

(5.163) 
t=l 

This is just the matrix equation 

C = AS.  (5.164) 

Hence C is the product of A and B ,  as claimed. 
As a special consequence of Eq. (5,164), we note that the matrix repre- 

sentation of a commutator between operators is the commutator between the 
corresponding matrices. Thus, a commutator relation like 

[A, &] = i_ri (5.165) 

implies the corresponding matrix relation 

[A, B] = in. (5.166) 
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The results of the present section are of great importance in many applica- 
tions of quantum mechanics. A statement of warning is, however, in order. We 
have everywhere assumed that the operators referred to act within the finite 
function space V ,  such that relations like (5.149) are exact. This condition 
will in general not be satisfied for all operators of a given physical system. It 
will, in particular, never be satisfied for the familiar position and momentum 
operators & and p j  . In order to have the condition fulfilled for these operators, 
it is necessary to let the dimension rn of the function space V go to infinity. 
One then encounters infinite matrices, and such matrices must be treated with 
great care. 

It is, in this context, of interest to notice that Heisenberg’s formulation of 
quantum mechanics, to which we alluded in the introduction to Chapter 3, was 
a theory based on infinite matrices. It was prior to Schrodinger’s formulation. 
Infinite matrices, zi and p j ,  were postulated to exist, and in terms of these 
the Hamiltonian matrix was to be constructed. A basic role was played by the 
commutator relation 

[x i , p j ]  = itidijl (5.167) 

where 1 is the unit matrix (of infinite dimension). The idea was to search 
for matrices zi and p j  that would cause the Hamiltonian matrix to become 
diagonal, with the diagonal elements postulated to be the observed energies 
of the system. This was a difficult task, but in the cases where it could be 
carried through its results were reproduced by Schrodinger’s theory. Amazed 
by this, Schrodinger produced his fifth paper4 in which he showed that Heisen- 
berg’s matrices could be understood as the matrix representives of his own 
operators. The search for a diagonal Hamiltonian matrix, he showed, cor- 
responds to choosing the basis functions (5.145) as the eigenfunctions of the 
Hamiltonian, for in that case we have that 

Hrs = (Qr lGl@s) = G a r s  * (5.168) 

In closing the present section, it is important to stress that the relations 
we have derived all hinge on the assumption that the basis functions (5.145) 
form an orthonormal set. If the basis functions are non-orthogonal, the setup 
of the correspondence between operators and matrices is best performed by 
introducing an additional basis in V ,  viz. 

{ 0‘) = @ I ,  02, . . . , Om, (5.169) 

‘See footnote 3.2. 
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such that 

The two bases are said to be the duals of each other, and are collectively 
referred to as a biorthonormal basis. We shall not discuss the use of such a 
basis here, but refer the reader to the l i t e r a t ~ r e . ~  

By working with a biorthonormal basis, one may preserve relations like 
(5.161), (5.164) and (5.166). If, however, this is not essential and the main 
object is to  solve the time-independent Schrodinger equation 

(2 - E)lk = 0, (5.171) 

then one may proceed as follows. 
Write \I! on the form (5.146) and substitute it into Eq. (5.171), to get 

m 

(5.172) 
B = 1  

Then multiply from the left by 0: and integrate over all the coordinates of the 
system. We get then 

(5.174) 

is an element of the Hamiltonian matrix and 

s r ,  = (Or I Q B )  * 

(5.175) 

(5.176) 

5For an introduction to the properties of biorthonormal sets and their use in quantum 
chemistry, see J .  P. Dahl, Int. J .  Quantum Chem. 14, 191 (1978). 
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is an element of the overlap matrix. Eq. (5.174) may be written 

H c  = ESc. (5.177) 

Eq. (5.177) is also a matrix form of the Schrodinger equation. In the same 
way as &. (5.161), it is equivalent to the Schrdinger equation when the 
representation (5.146) is exact. But even if the representation is not exact, 
i. e., the function GQ does not entirely belong to V ,  then Eq. (5.177) will 
still determine an approximate solution to the Schrodinger equation, and this 
solution is the best one within V in a variational sense, as we shall discuss it 
at length in Sec. 12.5. It is an observation of great practical value. 

Supplementary Reading 
The bibliography, entries [lo], [ll], [12], and [13]. 

Problems 
5.1. Starting from the commutation relation (5.26), use the relations (5.35) to derive 
the first of the commutation relations (5.33). 

5.2. Evaluate the commutators [$,aZ], bz,z"] and [o,fi:], where n is a positive 
integer. 

5.3. Evaluate the commutators [xliz], [ x , f # ]  and [x,i,]. 

5.4. Determine the Hermitian conjugate to each of the operators c2, xfizl xfiz and 
xfizx.  

5.5. Let a be the operator 

Write down the Hermitian conjugate operator at and evaluate the commutator 

a = t + &. 

[a, it]. 
5.6. Use the fact that d / d x  is an anti-Hermitian operator (Eq. (5.50)) to show that 

J f ( z ) f ' ( z ) d x  = 0 

whenever f(x) is real and well-behaved, and f'(x) = d f ( z ) / d x .  

5.7. Let q( t )  be a wavefunction that develops in time in accordance with the t ime 
dependent Schriidinger equation and a timeindependent Hamiltonian fi. Let E 
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be some other time-independent operator. The expectation value of p is then, in 
general, a function of time. We denote it f ( t ) :  

f(t) = ~ ~ ( t ) l ~ l ~ ~ t ~ } ,  

In forming this expression, we have assumed that ( q ~ t ~ l ~ { t ) }  = 1 at all times. That 
this i s  a consistent assumption is shown in b. 

a. Show that 

where 
13, = i[@, F]. 

FJ 
b. By putting P = 1, show that the normalization integral (q(t ) \J i ( t ) )  
is, in fact, independent of time. 

e. Assume, now, that we consider a one-dimensional system with the 
Hamiltonian - R H = - + V(x). 2m 
Evaluate the expressions 

for x’ and &. 

5.8, Consider the one-dimensional box, but with the origin placed at  the inversion 
center as in Sec. (4.5), and approximate the ground-state wavefunction by the ‘trial 
function’ 

+(XI = N (: - $2) , -aj2 5 5 5 aj2. 

a. Determine the constant N such that +(x) is normalized to I. 

b. Determine the expectation value of I?, i. e., 

and verify that (@) is larger than the true ground-state energy E l ,  

e. Evaluate the overlap integral ($11t+!J) between the trial function + ( x )  
and the true ground-state wavefunction $1 (x). 

5.9. Consider the time-dependent wavefunction (4.94) and show that the average 
value ,!? s (&} of the energy, and the uncertainty A E  AH, are given by the 
expressions 

1 1 

Use that $I(%) and &(x) are eigenfunctions of &. 
E = $(El +E2), AE = ~ ( E Z  - El) .  
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After the refinement of the quantum-mechanical formalism performed in 
the previous chapter, let us continue our study of actual problems. 

In Chapter 4 we determined the stationary states of the particle in a box. 
In the next chapter we shall determine the stationary states of the harmonic 
oscillator. In both cases the energy spectrum is entirely discrete, because the 
potential energy function rises to infinity in all directions. In the present chap 
ter we shall consider the free particle, for which the potential energy function 
is everywhere zero. This causes the energy spectrum to become entirely con- 
tinuous. It is also found that the wavefunctions associated with the stationary 
states a0 longer vanish at infinity. Hence they cannot be normalized to unity. 
This implies in turn that the stationary states of a free particle cannot be phys- 
ically realized. The only genuine states of a free particle are the non-stationary 
states. The principle of superposition, (4.92), remains valid however, so it is 
still of great importance to study the stationary states. This we shall do in the 
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following section. We shall see that the stationary-state wavefunctions may 
be considered to be de Broglie waves. A linear superposition of stationary- 
state wavefunctions is hence a superposition of de Broglie waves, and since 
any non-stationary wavefunction may, at least in principle, be written as such 
a superposition, one often refers to a non-stationary wavefunction as a wave 
packet. 

In Sec. 2 we study the time evolution of a particular non-stationary wave- 
function known as the Gaussian wave packet. This kind of wavefunction plays 
an important role in many applications and in general discussions on the nature 
of quantum mechanics. The wavefunction retains a simple analytical form as 
a function of time, and simple expressions hold for the statistical parameters 
introduced in the previous chapter. These parameters include mean values, 
uncertainties and uncertainty product. They are derived and discussed in Sec. 
3. 

Throughout the first three sections we confine the motion of the free particle 
to a single dimension. The generalization to ordinary three-dimensional space 
is presented in the last section of the chapter. 

6.1 The Stationary States of the Free Particle 
For the free particle, the time-independent Schriidinger equation has the form 
(4.1) everywhere. We may separate the variables in the same way as it was 
done for the particle in the box in Sec. 4.1, and we are thus led to study the 
Schrijdinger equation 

fiw = J W z )  (6 .1)  

for a free particle in one dimension. Its Hamiltonian is 

where m is the mass of the particle as usual, and pz is the linear momentum 
operator: 

d 
dx ps = -ih- . 

Thus, Eq. (6.1) takes the familiar form 
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Apart from a slight difference in notation, this equation is the same as Eq. 
(4.11), and it has the same mathematical solutions. 

The physically relevant solutions of Eq. (6.4) are those that stay finite for 
all value8 of 2 (cf. Sec. (3.2)). It follows from the discussion of Sec. 4.2 that 
no such eolutions exist for negative values of E ;  for any function of the form 
(4.17) becomes infinite at either +oo or -w. For E = 0 we must put c2 equal 
to zero in the expression (4.30) for the general solution, so there is just one 
physically acceptable solution, namely a constant. For positive values of E we 
have the mathematical solution (4.23); the general solution is oscillatory and 
stays finite everywhere; it is accordingly a physically acceptable solution for 
all values of E and for all values of the arbitrary coefficients c1 and c2. 

Let us, for simplicity, write k for the k, of Sec. 4.2. The stationary-state 
energies of the free particle are then 

The corresponding wavefunctions have the form (4.23), i. e., 

$J(z) = c1 sin(kz) + c2 cos(kz). (6.6) 

This expression also covers the case E = 0, since $(z) reduces to the constant 
c2 when k becomes zero. 

Apart from the level E = 0, each energy level is twofold degenerate, i. e., 
there are two linearly independent eigenfunctions for each value of E l  and 
any linear combination of these functions is again an eigenfunction (cf. the 
discussion of degeneracy in Sec. 4.7). The two basis functions are sin(ks) and 
cos(kz), or any two linearly independent combinations of these functions. It 
is particularly useful to select the functions eikx and e-ikx which are related 
to sin(kz) and cos(kz) by Euler’s relations (See Appendix A). Thus, we may 
write the general eigenfunction (6.6) in the alternative form 

$(z) = Aleikx + A2e-jkX (6.7) 

where A1 and A2 are new arbitrary constants. 
Not only are the basis functions eikx and e-ikx eigenfunctions of the Hamil- 

tonian (6.2). They are also eigenfunctions of the momentum operator (6.3). It 
is, in fact, easily verified that 
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We say that eikx describes a particle with momentum f i k ,  and eeikz a particle 
with momentum -fik. 

In the above expressions it is s u ~ c i e n t  to work with non-negative k-values 
to cover all stationary states of the free particle, as we did in Sec. 4.2, But now 
it is expedient to allow k to become negative, and thus let the notation eikz 
cover both positive and negative k-values. Our results may then be formulated 
as folIows: 

The functions eikx, --co < k < 00, are common eigenfunctions of 
the free-particle Hamiltonian (6.2) and the momentum operator 
(6.3). The momentum eigenvalue is p ,  = fik,  and the energy 
eigenvalue is E = f i 2 k 2 / 2 ~  = pz/29n.  For a given k $ 0, the 
two funct io~s e-ikz and eikx c~rrespondin~ to opposite values of 
k have the same energy: The energy level is twofold degenerate, 
and the most general energy eigenfunction may be written as in 
Eq. (6.7) or Eq. (6 .6) .  

I 

The complex exponential function is periodic with the period 2ni (See 
Appendix A).  We have accordingly 

e i k ( x + 2 r f k )  = eikx (6.10) 

Thus, the function eikx repeats itself when x is augmented by 2n/k. In other 
words, the funct~on eikz may be characterized by the wavelength X = Za//kl. 
And since eikz is an ei~enfunct~on of & with eigenvalue pz = hk, we afso 
get that X = h/tpxl. But this is nothing but the expression for the de Broglie 
wavelength, which we introduced in Sec. 2.6. Thus, we have made an important 
contact with the concepts of early quantum mechanics: 

~ 

The energy- and momentum-wavefunction eikz is a 
de Broglie wave with the de Broglie wavelength 

.A = h/tpxl = 2 n / l k t .  
(6.11) 

We shall now consider the orthogonality and normalization properties of the 
free-electron wavefunctions. We have already stated several times that these 
functions fail to be square integrable. Let us, however, consider the following 
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integral 
00 

( e i k i x l e i k a x )  = / ( e i k l x ) *  e i k a x d z  = e i (ka-ki )x  dz 
-a 

where the integral from --03 to 00 is evaluated by the prescription 
Fm Pa 

This is the so-called Cauchy value of the integral. We get then 

(6.12) 

(6.13) 

(6.14) 

where we have used the Euler relation (A.5) in Appendix A. 
At this stage the reader is referred to Appendix E in which the Dirac 6- 

function is discussed. In the appendix, the independent variable is denoted u.  
Here we want it to  be k. The &function, 6(k), is defined such that 

In ddition we h 

d(k) = 0 for k # 0, 

G(k)dk = 1. { J_m_ 
ve, for any function g ( k ) ,  that 

m 

(6.15) 

(6.16) 

These relations are the equivalents of the relations (E.4) and (E.5). 
As shown in the appendix, several one-parameter families of functions have 

the &function i19 limit function when the parameter tends to 0 or 00, say. Eqs. 
(E.lO) and (E.13) show in fact that 

. 1 sin(ak) Iim -- =6(k). 
a + m n  k 

Eq. (6.14) may accordingly be written 

(6.17) 
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(2tki (x ) l$kz(x) )  = 6(k2 - k1) 

Thus, functions corresponding to different values of k are mutually orthogonal. 
We may avoid the factor 27r on the right-hand side of Eq. (6.18) by defining 

(6.20) 

(6.19) 

for then we get 

Although we say that the function (6.21) describes a particle with momen- 
tum f tk ,  it is not square ~ntegrab~e and hence does not describe a bona fide 
state of the €ree particte, It may, however, be proved that the functions e ikx ,  
with k being a continuous paramet~r extendi~g from -m to QO, form a com- 
plete set in the sense that any w~ll-behaved and squar~~ntegrable function, 
f(z), may be written on the form 

f ( x )  = GIrn g ( k ) e i k X d k .  
-00 

(6.22) 

This is the so-called Foarier ~ p ~ s ~ n t a t a o n  of f ( z ) .  The function g ( k )  is 
called the Fourier ~ ~ n s ~ o ~ ~  of f ( x ) ,  and vice versa, since the foI~ow~ngjnver~ 
relation also holds: 

(6.23) 
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To prove this inverse relation, we isolate the right-hand side of Eq. (6.23) 
and insert the expression (6.22) for f(z),  to show that the result in fact equals 
g(k).We get 

dxdklg(kl)e'k'X e - ikx  . (6.24) 

But the integration over z results in a &function, according to Eq. (6.18). 
Hence we get 

00 

f(E)e-jkXdz = [, dk'g(k')d(k' - k). (6.25) 

The right-hand side is now of the form (6.16). Thus, we reproduce the expres- 
sion (6.23) for g(k). 

It may also be proven that 
00 00 

f ' (z)f(x)dz = s_, s*(k)s(k)dk. (6.26) 

This relation is known as Parseval's theorem1 The reader may find it interest- 
ing to prove this theorem by inserting the expression (6.22) for f(x) twice on 
the left-hand side of Eq. (6.26) and then use the properties of the &function 
to obtain the right-hand side of the equation. 

In connection with our study of non-stationary states of the particle in a 
box in Sec. 4.9, we stressed on the principle of superposition (4.92), accord- 
ing to which the wavefunction associated with any non-stationary state could 
be written in the form (4.89), i. e., as a sum over the stationary-state wave- 
functions. Because of the possibility of writing a general function in the form 
(6.22), a similar principle holds in the present case, the only difference being 
that the sum over n in Eq. (4.89) now has to be replaced by an integral over 
k. In this sense, the stationary states of the free particle play a similar role as 
the stationary states of a bound system. In the next section, we shall consider 
a typical time-dependent state of a free particle on this background. 

L 

6.2 Non-Stationary States of the Free Particle 
Let 9 ( z ,  0) be some properly normalized wavefunction for a free particle at 
time t = 0. As always, we may then try to determine the form of 8 at any 

'The theory of Fourier transforms is discussed in a large number of textbooks. But at 
present it is sufficient to realize the mere existence of the relations (6.22), (6.23) and (6.26). 
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later time by continued iteration based on the time-dependent Schrodinger 
equation. But in accordance with the discussion at  the end of the last section, 
and in analogy with the discussion in Sec. 4.9, we may prefer to start from the 
Fourier representation of Q(x,O),  i. e., we draw on Eq. (6.22) and write 

The analogs of Eqs. (4.88)-(4.91) give then 

(6.27) 

(6.28) 

We shall use this expression to study the time evolution of a so-called Gaussian 
wave packet which plays an important role in many contexts. The designa- 
tion wave packet refers to the representation (6.28), according to which the 
wavefunction is written as a superposition of de Broglie waves. It is, however, 
important to realize that one need not use that representation. The only thing 
that matters is the function 9 ( z , t )  itself. 

A Gaussian wave packet centered at  x = 0 at  time t = 0 has the form 

(6.29) 

The corresponding position probability density is 

(6.30) 
(Y a a  

P ( x ,  0) = q * ( x ,  O)IE(z, 0) = . 
J;; 

This density is independent of the value of ko. But we shall see below that 
the factor eikox nevertheless is essential in determining the momentum of the 
particle. The wavefunction (6.29) is therefore a good example of a wavefunction 
that carries essential information beyond that contained in its absolute square 
(cf. the discussion in Sec. 3.4). 

The wavefunction (6.29) is normalized to unity, which is easily verified from 

2The term Gaussian has its origin in probability theory where a distribution described 
by a function of the form (6.30) is called normal or Gaussian. 



6.2. Non-Stationary States of the fiee Particle 

the first expression in the following list of useful integrals 

141 

(6.31) 

These integrals also allow us to evaluate d ( k )  from the analog of Eq. (6.23), 
1. e., 

The result is 
I I 

(6.32) 

(6.33) 

Inserting this expression into Eq. (6.28) together with the expression of Eq. 
(6.21) for I& gives, after some tedious but straightforward algebra, 

where 

(6.35) 

Thus, we have been able to derive an analytic expression for Q ( x , t ) .  The 
associated position probability density is found to be 

(6.36) 
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Figure 6.1: Motion of a Gaussian wave packet. T is the natural unit of 
time defined by Eq. (6.35). 

with 

(6.37) 

Eq. (6.36) shows that the probability density P ( x , t )  is a Gaussian at  all 
times. I t  propagates along the x-axis with velocity u = hlco/m, broadening as 
it moves. This broadening is referred to as the spreading of the wave packet. 
It makes predictions about the position of the particle increasingly imprecise 
as time goes on. The spreading of the wave packet is illustrated in Figure 6.1. 

The wavefunction (6.34) contains more information than is displayed in 
Eq. (6.36) or Figure 6.1, in particular information about the momentum dis- 
tribution. In the following section, we shall display such information in terms 
of expectation values and uncertainties. But in the light of the discussion of 
Sec. 5.9 it is possible to go further. For Eq. (6.27) is really an expansion of 
Q ( x , O )  in terms of the eigenfunctions (6.19) of &. In analogy with the pos- 
tulate (5.143), we may therefore interpret the absolute square of the function 
q5(k)/fi, where 4(lc) is given by Eq. (6.33), as the distribution function for 



6.3. The Gaussian Wave Packet 143 

the linear momentum of the p a r t i ~ l e . ~  In accordance with this, the function 
4 ( k ) / f i  becomes the wavefunction in momentum space if one transforms the 
quantum-mechanical description to the so-called momentum-space representa- 
tion. 

6.3 The Gaussian Wave Packet 
An evaluation of the mean values and uncertainties for the Gaussian wave 
packet (6.34) is straightforward, but the calculations are rather lengthy. Hence, 
we only give the final results, 

hk0 * ( t )  = -t 
m 

Ap,(t) = &ah 

(6.38) 

These expressions show that the center of the wave packet, as defined by 
?:(t) ,  move8 with the constant velocity 

frk0 

m 
v = - .  (6.39) 

The expectation value of the momentum, &(t) ,  is seen to be independent of 
time and equal to n v .  Thus, the center of the wave packet moves like a free 
classical particle with mass m. 

A Gaussian wave packet is the most precise wavefunction that we can con- 
struct for a free particle, in the sense that the uncertainty product A z ( t ) A p , ( t )  
has its smallest possible value, i h ,  at t = 0. This is why this kind of wavefunc- 
tion is 80 important in the applications. For the optimal initial state is one in 

3The linear momentum corresponding to k is hk, and Id(k)12dk = ld(k)/&12d(hk). 
Hence, the probability amplitude for the linear momentum is d(k)/& rather than just 
d(k). 
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which the uncertainties in the quantities by which one wants to characterize 
the state are as small as possible. The exact meaning of this statement is the 
following. 

Assume that we want the momentum in our initial state to  be very well 
defined, i.e., we want Apz(0) to be quite small. Then the uncertainty principle 
tells us that Ax(0) must necessarily be relatively large, for it is impossible to 
construct a wavefunction for which AxAp, is smaller than i h .  But we don't 
want to make Ax(0) unnecessarily large; we make it as small as possible by con- 
structing a Gaussian wave packet. Conversely, if we find it useful to construct 
an initial state with a small Ax value, we avoid making Ap, unnecessarily 
large, again by choosing a Gaussian wave packet. 

So far, so good. But our formulae also tell us that even if we have prepared 
an optimal state at  t = 0, and even though the center of the wave packet 
moves in a classical way, we loose information about the particle as time goes 
on. This loss of information takes place in the position coordinate. For Eq. 
(6.38) shows that ApE is independent of time, whereas Ax increases in time. 
The rate of increase is governed by the parameter r defined by Eq. (6.35). A 
small value of this parameter makes Ax increase fast. A larger value of the 
parameter leads to a slower increase. 

As Eq. (6.38) and Figure 6.1 show, the rate a t  which the wave packet 
spreads is determined by the parameter T. By choosing t = T in Eq. (6.37) we 
get 

Q 
a(.) = - Jz' (6.40) 

and hence 

Ax(T) = h A z ( 0 ) .  (6.41) 

Thus, the width of the Gaussian increases by a factor of 4 during a time 
interval r. 

For an electron with m = me and Q = l / ~ ,  where a0 is the Bohr radius, we 
get T = 2.4 x 10-17s. For a particle with m = kg and Q = 1/(10-6m) we 
find T = 9.5 x lOZ7s = 3.0 x 10'' years. Thus, the spreading of the wave packet 
is very important in the realm of the elementary particles, but irrelevant for 
particles of macroscopic dimensions. 

We close our discussion of the free particle with a generalization to three- 
dimensional space. 
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6.4 From One to Three Dimensions 

The Schrodinger equation for a free particle in ordinary three-dimensional 
space is the same as that for the particle in the three-dimens~onal box (Eq. 
(4.1)). Consequently, the stationary-state wavefunctions may be constructed 
from those for a free particle in a single dimension in a manner which is en- 
tirely analogous to that applied in Sec. 4.6. Thus, the wavefunction $ k ( m )  of 
Eq. (6.19) becomes replaced by the wavefunction 

(6.42) 

Let us introduce the usual notation for the position vector, 

and the notation k for the vector 

This vector is usually referred to as the wave vector. The wavefunction (6.42) 
may then be written 

(6.45) 

This function is referred to as a plane wave because it is constant in any 
plane perpendicular to k, and because it repeats itself whenever one moves the 
distance 

2n A=-- .  
lkl 

in the direction parallel to k (cf. Eq. (6.11)). 
The equivalent of Eq. (6.21) becomes 

(6.46) 

(6.47) 
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Similarly, the Gaussian wave packet (6.29) becomes replaced by the three- 
dimensional wave packet 

I 

I 
The center of the wave packet moves in the direction le0 with the velocity 
hlco/m, just like a free classical particle with mass m and linear momentum 
hko. The form of Q ( T , ~ )  is the straightforward generalization of the one- 
dimensional form (6.34). 

Supplementary Reading 
The bibliography, entries [lo] and [ll]. 

Problems 
6.1. Let i be the inversion operator definec -y Eq. (4.48) and let. be the linear- 
momentum operator (6.3). By simplifying the expression [f,fiz]f(z), show that the 
commutator [i,fiz] is different from zero. 

6.2. For a given value of k (> 0) , the basis functions eikr and e-ikz are common 
eigenfunctions of the Hamiltonian (6.2) and the momentum operator (6.3), whereas 
the basis functions sin kx and cos k x  are common eigenfunctions of the Hamiltonian 
and the inversion operator defined by Eq. (4.48). Relate these observations to the 
theorem (5.120), and relate the presence of degeneracy to the non-vanishing of the 
commutator [f,$5] and the discussion at the end of Sec. 4.7. 

6.3. Calculate the quantities E 
function (6.29). Use the integral expressions (6.31). 

(i?) and A E  = AH for the free-particle wave- 
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In Sec. 2.1 we described how Planck was able to account for the intensity 
and spectral composition of the black-body radiation by assuming that the 
energy of an oscillator was quantized according to the rule 

E n = n h v ,  n=0,1 ,2  . . . .  (7.1) 

And in Sec. 2.4 we described how Einstein, by applying the same assump 
tion to the atomic vibrations in a monatomic crystal, could account for the 
temperature dependence of its specific heat. In the present chapter we shall 
solve the Schrtidinger equation for the harmonic oscillator and thus justify the 
expression (7.1), albeit in the modified form 

En = ( n +  $)hv, n = 0,1,2 . . . .  (7.2) 

147 
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which differs from the older expression by the inclusion of the zero-point energy 
i h v ,  as already discussed at  the end of Sec. 2.4. 

The harmonic oscillator is one of the most important model systems in 
quantum mechanics. The solutions of the harmonic-oscillator problem find 
extensive application in theoretical physics and chemistry. Central applications 
include the description of vibrations in molecules and crystals, and the theory 
of the electromagnetic field. 

We shall determine the stationary states of the harmonic oscillator by two 
different methods. One is the so-called polynomial method in which one pro- 
ceeds in essentially the same manner as for the particle in a box, i. e., one 
determines all the mathematical solutions of a second-order differential equa- 
tion and subsequently picks out the physically acceptable ones. This is the 
classical method. The other method is called the algebraic method. For the 
harmonic oscillator, this method simply amounts to solving a first-order dif- 
ferential equation for the ground state. The higher states are then determined 
from the known ground state by means of a ladder operator. The algebraic 
method plays an important role in modern quantum mechanics. We shall 
encounter it again in the following chapters. 

7.1 Definitions 
Let x be the coordinate associated with a one-dimensional oscillator, --03 < 
x < 00 and let m be the mass. The oscillator is said to be harmonic, with 
force constant k > 0, if the potential energy function has the form 

V ( x )  = i k x 2 .  (7.3) 
The particle is then pulled toward the origin, x = 0, with an attractive force 
which is the negative gradient of the potential (cf. Eq. (3.2)): 

Classically, the oscillator performs harmonic vibrations whose frequency u is 
determined by the expression 

w = 2nu = c, (7.5) 

with w being the angular frequency. Eq. (7.5) allows us to write the expression 
(7.3) for the potential-energy function as 

V ( x )  = + u L l 2 x 2 ,  (7.6) 
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and this is the form that we shall prefer to use in the following. 
The classical kinetic energy is as usual given by the expression 

2 T = -  P x  
2m’ 

and the Hamiltonian is 

(7.7) 

The coordinate, x ,  of a classical oscillator with energy E varies sinusoidally 
between -zcl and xcl ,  where zcl is the maximum amplitude. It is determined 
by the condition that the kinetic energy at this amplitude vanishes, i.e., the 
energy equals the value of the potential energy at  that amplitude, 

The points f x c l  are called the classical turnang points.. 
To the quantum mechanical energies (7.2), 

correspond the classical turning points 

Thus, we may expect that the quantity 

(7.11) 

(7.12) 

I I 

is a characteristic length in the quantum mechanical problem, in a similar way 
as QO is a characteristic length in the quantum theory of the hydrogen atom. 
This is borne out in the following section. 

7.2 The Schrodinger Equation for the 
Harmonic Oscillator 

By the usual process of quantization (Sec. 3.3), the Hamiltonian (7.8) gives 
the time-independent Schrodinger equation 

2 2  
--- Ti + i w 2 x 2 $ ( x )  = E $ ( x ) .  

2m d x 2  
(7.13) 
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To clear the equation for dimensional constants we first divide both sides by 
tiw. This gives 

where E is the dimensionless energy, 

Then we introduce the dimensionless coordinate 

I 1 

defined in terms of the characteristic length 1/a of Eq. (7.12), and get 

(7.14) 

(7.15) 

(7.16) 

(7.17) 

Thus, we have reduced the original equation (7.13) to a standard form which is 
the same for all harmonic oscillators, no matter what their defining parameters 
(in and w )  are. 

The relation between $(z) and p(Q) is, of course, that $(z) = p ( a z ) ,  or 
more general, that $(z) = cp(ax), where c is an arbitrary constant that allows 
us to work with different normalization conditions for II, and cp. Assume, in 
fact, that p(Q) is normalized to unity with respect to Q,  

00 [, v * ( Q M Q ) d Q  = 1, (7.18) 

but that we want $(x) to  be normalized to unity with respect to z, 
00 

$* (z)$(x)dz = 1. L (7.19) 

We must then choose c such that c*c = a, for inserting $(x) = c p ( a z )  into 
Eq. (7.19) gives 

00 00 

$*(x)$(x)dx = c*c 
(7.20) 

c*c O0 = J_, ~*(QMQVQ = 9. 
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Eqs. (7.18) and (7.19) will thus be compatible if we choose c as fi. This gives 
the important relation 

Together with the dimensionless coordinate Q we may introduce the di- 
mensionless momentum operator 

1 - - T P x .  
w h  

(7.22) 

The new variables Q and P define the uncertainty product AQAP, for which 
we find 

AQAP=  AX) - = -AXAPE. (%) ; (7.23) 

So, Heisenberg’s uncertainty relation (5.113) for AQ and AP becomes 

AQAP 2 3 (7.24) 

We shall now go on and find the proper solutions of the Schrodinger equa- 
tion as expressed in the form (7.17). 

7.3 Solving the Schrodinger Equation 
Let us, for convenience, rewrite the Schrodinger equation (7.17) in the form 

d2iQ(Q) + (2& - Q2)iQ(Q) = 0 .  
dQ2 

(7.25) 

We shall solve this equation in three steps. 
In the first step we consider the equation for so large values of 191 that 2~ 

may be neglected in comparison with Q2.  As it is easily verified by insertion, 
this gives us the asymptotic solution 

p(Q) w Ale-*@ + (Aze tQ2)  , 191 large, (7.26) 
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where A1 and A2 are arbitrary constants. A physically acceptable solution 
must stay finite in the limit IQI + 00 and hence have A2 equal to zero. In 
Eq. (7.26), we have indicated this by putting the unacceptable part of the 
asymptotic solution in brackets. 

Inspired by the known asymptotic behavior of an acceptable p(Q) we pro- 
ceed by writing 

p(Q) = F ( Q ) e - i Q a ,  (7.27) 

and find 

(7.28) 
- 1) F }  e - 39’ . 

Inserting these expressions in Eq. (7.25) gives 

d F  
2Q- + ( 2 ~  - l)F = 0. 

d2F 
dQ2 dQ 
-- (7.29) 

We have thus transformed the problem of solving Eq. (7.25) into that of solving 
Eq. (7.29). This completes the first step. 

for it is then satisfied 
by putting F ( Q )  equal to a constant. We are thus led to what appears to be 
the ground-state wavefunction: 

Eq. (7.29) has one very simple solution when E = 

po(Q) = Noe-iQ’, EO = 1 2 ,  Eo = ~ A w ,  (7.30) 

where NO is a normalization constant. 
For other values of E we must take a second step. This step amounts to 

expanding F ( Q )  as a power series in Q and determining the coefficients in the 
expansion. Thus, we write 

(7.31) 

and find 
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Inserting these expressions in Eq. (7.29) gives 
03 C [in+a(n + 2)(n + 1) - an(2n - 2~ + I)] = O. (7.33) 

n=O 

The va&ous powers of Q are linearly independent functions, and hence the 
sum in E& (7.33) can only vanish if the coefficients of each power of Q are 
separately zero. Thus, F(Q) is a solution of Eq. (7.29) if and only if 

2n + 1 - 2~ 
(n + 1)(n + 2)"" a n t 2  = (7.34) 

for all n. This is called a recursion relation. It shows that once a value of a0 

has been chosen, then the values of u2, a4, a s , .  . . are determined. Similarly, 
the values of a3, u5, "7,. . , are determined once the value of a1 is fixed. A 
direct app~icat~on of the recursion relation gives in fact 

Q4+ ...} 1 - 28 (1 - 2 ~ ) ( 5  - 2s) 
F(Q1 {I+ nQ2+ 1 .  2 .  . 4  

3 - 2 ~  ( 3 - 2 ~ ) ( 7 - 2 ~ )  5 (7.35) 
Q3 + 2 . 3 . 4 . 5  Q +. . . }  

aoFo(Q) + aiJ'i(Q) 

where a0 and a1 are arbitrary constants. 
By multiplying the expression (7.35) by exp(-iQ2) we obtain the complete 

solution of the original Eq. (7.25). As it should, the solution contains two 
arbitrary constants, a0 and a1. We must now extract the solutions that behave 
properly at fm. This defines the t h 2 ~  step in our effort to solve Eq. (7.25). 

In this third step, we begin by comparing the behavior of F(Q) for large 
values of lQl with that of the function exp(Q2). The latter has the well-known 
power-series expansion 

Qn+2 + . . . 1 1 1 
e8' = 1 + Q2 + %Q4 + , . . + -Qn + 

(n/2)! (n/2 + I)! (7.36) 
=Z bo + b2QZ + b4Q4 + . . . + bnQn + bn+2Qn+2 + . . 

As we see, this expansion is characterized by the recursion relation 

(7.37) 

When we compare this relation with the corresponding relation (7.34) for F(Q) , 
we observe that the two relations approach each other for sufficiently large 
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values of n,  for fixed E .  We get in fact that 

(7.38) 

What this means is that both Fo(Q) and PI(&) behave like exp(Q2) in the 
limits Q -+ 00 and Q j .  -00. The function F(Q) = aoFo(Q) + a lF l (Q)  will 
accordingly also behave like exp(Q2), at least on the side of the origin where 
the terms of U ~ ~ O ~ Q )  and ulFl(Q) have the same sign for large values of n. 
When QO and u1 have the same sign this corresponds to the limit Q -+ cx3, 
when a0 and a1 have opposite signs it corresponds to the limit Q + -w. 

That F(Q) behaves like exp(Q2) implies in turn that v(Q),  as defined by 
Eq. (7.27), behaves like exp(iQ2). But this is exactly the behavior which we 
rejected in Eq, (7.26). So it looks as if no proper solutions exist at all. 

But there is a way out. For our considerations around the relations (7.38) 
lose their validity if the power series (7.31) terminates after a finite number 
of terms. This causes F(Q) to become a polynomial, and a polynomial times 
exp(- $Q2) tends to zero when 101 becomes large. 

So, if Fo(Q) is a polynomial, we put u1 = 0 and construct the function 
~ ~ ( ~ ) e x p ( - ~ Q 2 ) .  And if PI(&) is a p o l y n o ~ i a ~ ,  we put a0 = 0 and construct 
the function Fl(Q) exp(-iQ2). These functions are then the proper solutions 
of the Schrodinger equation (7.25). 

For the power series (7.31) to become a polynomial of the nth degree, we 
must have that Q, # 0, with all subsequent coefficients vanishing. Eq. (7.34) 
shows that this situation will be met with if and only if 2~ = 2n + 1. 

Thus, we have arrived at the conclusion that acceptable solutions of Eq. 
(7.25) only exist when E = E , ,  with 

(7.39) 

There is one proper solution for each value .of E ~ .  It has the form of a Gaus- 
sian function, exp(-$Q2), times an nth degree polynomial which we denote 
If,(&). Its defining coefficients may be read off Eq. (7.35). We write the 
proper solutions as 

(7.40) 

where N,  is a normalization constant. We shall devote the following section 
to a more detailed presentation of these functions. 



7.4. The Wavefunctions 155 

E, = ( n  + 3)hw = (n  + +)hv, n = O,1,2 , .  . . (7.41) 

as anticipated in Eq. (7.2). 

7.4 The Wavefunctions 
By substituting 2n + 1 for 2~ in Eq. (7.29) we see that the polynomial H n ( Q )  
satisfies the differential equation 

d F  2Q- + 2nF = 0. d 2 F  -- 
dQ2 dQ 

(7.42) 

This is a well-known differential equation in applied mathematics. It is called 
Hemite 'a  diflerential equation, and the polynomials H , ( Q )  are called Hermite 
polynomials. They have a number of interesting properties, but here we shall 
merely mention the independent definition 

the identity 

(7.43) 

(7.44) 

and the recursion relation 

H n + l ( Q )  = 2QHn(&) - 2 n H n - l ( Q ) .  (7.45) 

The first few Hermite polynomials are listed in Table 7.1. The reader will 
find it easy to generate them from Eq. (7.43), or from Eq. (7.35) where the 
values of 00 and a1 are at our disposal. 

The wavefunctions (7.40) have now been fully specified, apart from the 
normalization constant N,,. For lower values of n, it is easy to evaluate a 
particular N ,  from the list (6.31) of integral expressions. We get, for instance, 

ISee, for example, Chapter 22 in the reference of footnote 2.11. 



156 Chapter 7. The Harmonic Oscillator 

Table 7.1: Hermite Polynomials 

Ho(Q) = 1 
HI(&) = 2 9  
H2(Q) = 4Q2 - 2 
H3(Q)  = 8Q3 - 12Q 
H*(Q) = 16Q4 - 48Q2 + 12 
H&(Q)  = 32Q5 - 16Q3 + l20Q 
H s ( Q )  = 64Q6 - 480Q4 -+ 720Q2 - 120 
H7(Q) = 128Q7 - 1344Q5 i- 3360Q3 - l680Q 

and 

= 4N;N1$1/;;= 21/;;N,*N1 

and hence, by applying the normalization condition (7.18), 

No = (J;;>-" N l =  ( 2 J ; ; ) - ' .  (7.48) 

We have made rational phase choices similar to the one made in Eq. (4.36). 
For other n-values, the normalization constant may be evaluated in a similar 

fashion. It is, however, also possible to use the mathematical properties of the 
Hermite polynomi~s  to derive the following general expression 

N" = (2"n!J;;)-3.  (7.49) 

The properly normalized solutions of Eq. (7.25) are therefore 

They are normalized according to Eq. (7.18). We have, in fact, that 

(7.51) 

I 1 

2See, for example, the second reference of footnote 1. 
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(&lf$m) = JTrn ~ f l ( s ~ $ m ( ~ ~ ~ t  = s,, 

Thus, these functions form an orthonormal set, just like the wavefunctions 
for the particle in a box (cf. Eq. ( 4 . 4 2 ~ ~ .  The or t~ogo~ai i ty  of the wavefunc- 
tions may be demonstrated by using the general properties of the Hermite 
polynomials, but this is really not necessary, for we proved in Sec. 5.4 that 
eigenfunctions corresponding to different eigenvalues of a Hermitian operator 
are always orthogonal. The relation (7.51) is therefore tied to a very general 
rule. 

The wavefunctions of our original oscillator are related to the functions of 
Eq. (7.50) through Eq. (7.21). Thus, we have 

(7.53) 

Their energies are given by the familiar expression (7.41). 
In Fig. 7.1 we give a graphic picture of some of the results obtained above, 

in the dimensionless representation based on the coordinate Q. Shown are the 
wavefunctions and their squares, in a presentation that allows their values at  a 
point Q to be directly compared with the value of the potential energy function 
V(Q) at the same point. 

The base lines from which the amplitudes of the wavefunctions and their 
squares are measured are defined by the dimensionless energies of the states. 
Hence, the base lines intersect the potential energy curve at the classical turn- 
ing points. A classical particle is unable to cross these points, but we see that 
a quantum-mechanical particle can. There is, in fact, a non-vanishing proba- 
bility of finding the particle in the region beyond the turning points. We say 
that the particle tunnels into the classically forbidden regions. 

Apart from this, the wavefunctions in Fig. 7.1 share some characteris- 
tic features with the wavefunctions for the particle in a on~dimensional box 
(Fig. 4.3): The number of nodes increases with the energy, the ground-state 
wavefunction being a nodeless function, and the wavefunctions are alternately 
even and odd. The latter feature reflects the inversion symmetry of the prob- 
lem: the potential energy function, and hence the Hamiltonian, is invariant 
under an inversion in the origin (cf. Sec. 4.5). 
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Figure 7.1: Harmonic oscillator wavef~ctions cpn(&), left, and p r o b a ~ ~ ~ t y  
densities ~ ~ ( Q ) * ~ ~ ( ~ ~ ,  right, for n = 0, 1,2,3,4. The amplitudes are mea- 
sured from the positions of the energy levels. The potentid energy function 
V(Q)  = $Q2 is also shown. 

We have now determined both the energies and the wave€unctions for the 
o ~ ~ d i m e n s ~ o n ~  harmonic oscillator. The method we have been using to solve 
the Schrodinger equation is the polynomial method which may be applied to 
a large class of quantum-mechanical eigenvalue problems. Most often, such 
problems may also be treated by the already mentioned algebraic method. This 
method is particularly simple and elegant for the harmonic oscillator problem. 
We discuss this case in the following wction. 

7.5 The Algebraic Method 
We begin by writing the d i ~ e n s i o n l ~ s  Schrodin~er equation (7.17) as 

Qy3) = E l 4  (7.54) 

(7.55) 

with 

i = +(a2 + Q”, 
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where Q = Q and P = - id /dQ,  as in Eq. (7.22). We have the commutation 
relation 

[Q, P] = a .  (7.56) 

In the following, this relation is more important than what the operators 0 
and P actually stand for. We have therefore kept the operator symbol on the 
variable Q. 

Let us now introduce the operators 

ii = J&Q + iP) (7.57) 

and 

?It = &(Q - iP). (7.58) 

They are not Hermitian, but aa the notation indicates, they are the Hermitian 
conjugatea of each other (cf. Eq. (5.61)). Utilizing the commutation relation 
(7.56) we get 

hat = + ( P 2  + 0 2 )  - i[Q, P] = k ( P 2  + Q2) + + , 
i t &  = q p z  + 0 2 )  - z .  1 

(7.59) 
2 

Hence, 

and 

[ii, ii'] = 1 (7.60) 

h = 8th + 5 .  1 (7.61) 

The last equation shows that h and ?It6 have the same eigenfunctions. Solving 
Eq. (7.54) is therefore equivalent to solving the eigenvalue equation 

ii'iilp) = Alp). (7.62) 

The eigenvalues are connected by the relation 

€ = A + ? .  1 (7.63) 

We note that X must be non-negative, for Eq. (7.62) implies the relation 
( P P t 4 d  = X(cpl(o), or (~cpIW = WPlY), and both (cplv) and ( ~ c p l & 9  are 
non-negative (See the introductory remarks of Sec. 5.8). 
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To determine the possible values of A,  and hence of E ,  let us imagine that 
we already know one X-value and the corresponding lp). Operating with u on 
both sides of Eq. (7.62) gives then 

iiiitiilcp) = Xi i lp) .  (7.64) 

The commutation relation (7.60) shows that iiut = iitii + 1. Inserting this in 
Eq. (7.64) gives 

or 

(iitii)iilp) = (A - 1)iilp). (7.66) 

This relation shows that ulp) is an eigenfunction of iitu with eigenvalue X - 1, 
or else iilp) vanishes. If iilcp) is in fact different from zero, then we may repeat 
the argument with iilp) as the target function and conclude that ii21p) is an 
eigenfunction of i i t h  with eigenvalue X - 2, or else it is zero. This process may 
be continued, but not indefinitely, for we have learned that all eigenvalues of 
iitii are non-negative. Consequently, there must exist a Ipo) that is annihilated 
by a, so that 

4po) = 0. (7.67) 

Operating with ut gives 

hti i lpo) = 0. (7.68) 

Thus, Ipo) has the eigenvalue 0. 
Because the operator u lowers the eigenvalue of i i th by one (unless it oper- 

ates on Jpo)), it is called a lowering operator, or a step-down operator. Simi- 
larly, the operator iit is called a raising operator, or a step-up operator, because 
it raises the eigenvalue of hl i i  by one. To see this, operate with iit on both 
sides of Eq. (7.62) and use the commutation relation (7.60). This gives first 

utut i i (p)  = X d l p ) ,  (7.69) 

and then 

(7.70) 
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Thus, we have 

(ht&)&tJ$O) = (A + l)h+ly), (7.71) 

showing that &tip) is in fact an eigenfunction of Stir with eigenvalue X + 1. 

ladder operetors. 

eigenv~ues 0,1,2, . . . . We may express this result by the ~ ~ u a t i o n  

A common designation for step-up and step-down operators is the term 

The algebraic method has now led us to the conclusion that &t& has the 

Gtilpn) = RIpn),  n = O,1,2, . (7.72) 

Since iitd is a Hermitian operator, we know that wavefunctions corresponding 
to different values of n are orthogonal. We may assume that all eigenfunct~ons 
have been normalized to unity, and thus we have 

(pn {pm) = &m (7.73) 

The results of operating with ir and iit may now be written 

(7.74) 

where cn and dn are constants to be determined. By taking the scalar product 
with ly,,-l) in the first of these equations and with IF,,) in the second equation, 
we get immediately 

(7.75) 

The coefficients cn and dn are not independent, for we know that ir and a t  are 
Hermitian conjugate operators. According to the first of the relations (5.43) 
we have therefore that 

dn = C; (7.76) 

Thus, we only need to determine the cn coefficients. 
From Eq. (7.74) we get that 

(&nl2pn) = c:cn(pn-I(pn-1) G C n -  (7.77) 

But by using the second of the relations (5.43) together with Eq. (7.72) we 
also get that 

(SFnIQn) = (pnPt2IYn) = n(9nIyn) = n. (7.78) 
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We may therefore conclude that c, = e i a n f i  where the phase d, is real. We 
may, however, choose the relative phases of the Ipn) functions such that all d, 
are zero, because the normalization condition only determines the normaliza- 
tion constant of Ip,) to within a phase factor ei6 (cf. Eq. (4.35)). Making the 
proper choice of phases gives us accordingly 

I 1 

(7.79) 

Note that the first of these equations includes the special case ii(po) = 0. 
The relations (7.79) allow us to determine all the eigenfunctions of iitir, and 

hence of h ,  by a recursive procedure starting from Jpo). To do so, we again 
put Q = Q and P = -id/dQ and get 

The relation ii((p0) = 0 becomes then 

dpo(Q) + Qpo(Q) = 0. 
dQ 

This first-order differential equation has the normalized solution 

To determine pl(Q) we use the relation iitJpo) = Jpl) which gives 

(7.80) 

(7.81) 

Successive application of the relation iitlpn-l) = ,/Zipn) gives 
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The functions obtained in this way are the same as those presented in Eq. 
(7.50), as the cpo(Q) and cpl(Q) of Eqs. (7.82) and (7.83) indicate. 

This concludes our present discussion of the algebraic method. The method 
has allowed us to determine the energy spectrum of the harmonic oscillator 
solely from the commutation relation (7.60) and the form (7.61) for the Hamil- 
tonian. The ladder operators ii and irt connect the various eigenstates by the 
scheme (7.79). For many purposes, these relations are more important than 
the actual form of the wavefunctions. They invite us to simply talk about the 
eigenketa (cf. Sec.  5.1) and the relations between them, instead of worrying 
about the actual form of the wavefunctions. 

Supplementary Reading 
The bibliography, entries [lo], [ll] and [14]. 

Problems 
7.1. Consider the harmonic oscillator defined by the Hamiltonian (7.8) and write 
down the normalized wavefunctions $~(z) and $l(z) for the ground state and the 
first excited state, respectively. 

a. Show that the expectation values (x) and @,) both vanish for the 
two states. Use symmetry arguments related to the inversion operator. 

b. Evaluate the expectation values (z2) and @:) and the uncertainty 
product AxAp, for both states. Exploit the integral list (6.31). 

c. Evaluate (9) and (Q) for both states and show that 

(9) = (Q). 
This is the virial theorem for the harmonic oscillator. 

d. The virial theorem holds for all states of the harmonic oscillator. Use 
this information together with the energy expression (7.41) to calculate 
the uncertainty product AxAp, for the nth excited state. 

7.2. The Sdrriidinger equation for the two-dimensional, isotropic harmonic oscillator 
reads 

where t+b = $(z, v) .  
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a. Show that the Schrodinger equation has solutions of the form 

$(z, Y) = X(Z)Y(Y), E = Ez + E Y ,  

and write the Schrodinger equations that determine X and Y. Specify 
also the allowed energies El and E,, expressed in terms of the respective 
quantum numbers n, and ny. 

b. The allowed values of E may be written 

En = ( n +  1)Rw, n = 0,1,2,. . . 
Express n in terms of the quantum numbers n, and ny and construct 
an energy-level diagram similar to that of Fig. 4.4. Include at  least 
four levels and specify the degeneracy of each level together with the 
(n=, ny)-values. 

7.3. A particle with mass rn executes a one-dimensional motion in the harmonic 
potential (7.6). At time t = 0, it may be described by the wavefunction 

where &(z) and (112(z) are the wavefunctions for the ground state and the second 
excited state, respectively, of the harmonic oscillator defined by the potential V(z). 

a. Write down the formal expression for Q(z, t), the wavefunction at  a 
later time t. It is not necessary to insert the analytical expressions for 
$o(z) and $ 2 ( 2 ) .  

b. The probability density @(I, t ) *@(z ,  t) oscillates with the frequency 
v. Write the expression for the probability density and determine v. 
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In this chapter, we shall consider the Schrodinger equation for a particle in 
a central field. A central field is characterized by a potential energy function, 
V ( T ) ,  which only depends upon the distance, T ,  to a fixed point. This point is 
taken aa the origin of a rectangular Cartesian coordinate system. The central- 
field problem may be easily set up in spaces of any dimension, but we shall 
confine ourselves to the familiar three-dimensional space. The position vector 
of the particle is then T = (z, y, a) ,  with magnitude T = Jz2 + y2 + x 2 .  

165 
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The central-field problem is of paramount importance in quantum mechan- 
ics and, of course, in classical mechanics too. The one-electron atom is a 
central-field problem, with V ( r )  given by Eq. (2.65). But the central-field 
problem is also encountered in the theory of many-electron atoms. V ( T )  is 
then the sum of the Coulomb field from the nucleus and a suitably averaged 
field from the electrons. Other central-field problems include, for instance, 
the isotropic oscillator and the particle in a spherical box. These two model 
systems have, in particular, been much used in simplified descriptions of the 
atomic nucleus. 

Talking about the one-electron atom we must be aware that even this-the 
simplest atomic system-really is a two-body system. Both the nucleus and 
the electron are quantum-mechanical particles, and even though the nucleus is 
much heavier than the electron it cannot be brought to a complete standstill. 
But in a similar way as in Classical mechanics, it is possible to separate the 
motion of two particles into the center-of-mass motion and the relative motion 
when the interaction between the particles only depends upon the distance r 
between the particles. The relative motion is then found to be a genuine one- 
particle problem of the central-field type, but now for a particle with a reduced 
mass. That it is the reduced mass rather than the mass of a free electron that 
enters the description of the oneelctron atom was, aa mentioned in Sec. 2.5, 
properly realized by Bohr in his early theory of the hydrogen atom. 

The fact, that any two-body problem in which the two particles interact 
through a potential-energy function of the form V ( r )  may be reduced to a one- 
particle central-field problem, is also of essential importance in the description 
of the vibration and rotation of a diatomic molecule. There, the introduction of 
the reduced mass as an effective one-particle mass induces much larger effects 
than in the one-electron atom. 

Because it is important to be aware of the reduced-mass issue in many 
applications, we shall begin our general description of the central-field problem 
by actually demonstrating how a two-particle problem may be reduced to a 
one-particle problem. This will be the subject matter of the following section. 

After that, we address the true central-field problem. The procedure is to 
introduce spherical polar coordinates which in turn leads to a separation of 
the motion into a radial part and an angular part. The angular part is then 
solved by introducing the so-called surface spherical harmonics. This is a very 
important class of functions which is shared by all central-field problems. They 
also occur in many problems of classical physics and were, in fact, introduced 
by the Fkench mathematician Pierre Simon de Laplace about two hundred 
years ago. 
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~ 

Figure 8.1: The Two-Body Problem. 

We devote a fairly long section to the introduction of the surface spherical 
harmonics, and end the chapter with a discussion of the radial part of the 
central-field problem. The functions that solve this part of the problem depend 
on the actual form of the potential V ( r ) .  Some general comments may be made, 
but the actual determination of the radial functions must be postponed to the 
ensuing sections containing the applications. 

8.1 The Reduced Mass of a Two-Body System 
Let us now demonstrate how the motion of a two-body system may be sepa- 
rated into relative motion and center-of-mass motion of a particle with reduced 
mass. 

To this end, we introduce Figure 8.1 which shows the position of two parti- 
cles (with masses rnl and rnz) relative to two coordinate systems, namely, the 
labomtory system (marked LAB in the figure) and the center-of-mass system 
(marked CM). The position vectors of the two particles in the LAB system are 
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and the distance between them is 

We assume that the potential energy function of the two-body system is a 
function of this distance alone,' i. e., 

v = V(T).  (8.3) 

Then the time-independent Schrodinger equation for the system has the form 

1c, (8.4) + V(r)* = Etota' 
a2 ) 2ml (ax; ayl aZ; ) 2m2 (ax; a Y 2  8 2 2  

ti2 a2 a2 a2 ti2 a2 a2 
-- -+-+- * - -  --+7+2 * 

where Etota' is the (total) energy, and the wavefunction is 

We shall show that the wavefunction may be factorized into a product of two 
functions provided we introduce new variables. 

These new variables are defined by the vectors 

where 

and M is the total mass: 

R gives the position of the center of mass, and r gives the position of particle 
1 with respect to particle 2. Both of these vectors are shown in Figure 8.1.  

'The reader may easily verify that it is in fact sufficient to assume that V = V(rl - r 2 )  

in order to carry the following demonstration through. A separation into relative motion 
and center-of-mass motion is therefore also possible when the potential is a general function 
of the relative position vector. 
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We may equally well consider the wavefunction to be a function of the new 
variables and write 

We now note that Eq. (8.7) implies that 

(8.10) 
x = x 1 - 2 2 ,  

with similar relations for the y and z coordinates. Hence we get, by implicit 
differentiation, 

ale, all, ax + a$ ax - ml W + 3, 
a+ - a+ ax a$ ax m2 a* a* 
ax2 a x a x ,  a x a x 2  M ax ax' 

-=-- --_-- 
ax1 a x a x ,  a x a x ,  M ax ax (8.11) 
-- -- + -- = -- - - 

Repeating the process gives, for instance, 

ml a2$ S2$ 
ax; M a x a x l  axaxl 

m1 ~ a x  a L m l  ~ a x  a* +-  ax 

+- -= -- 

--- -- 841 + a [El!% + ""1 , ax ~ a x  ax - 
(8.12) 

and hence 

(8.13) 

Let us now insert these expressions and their y- and z-analogs into the 
Schrodinger equation (8.4). We then recover that equation in the form 

a= a 2  ti2 a2 a2 a2 -"( 2~ Bx2 + 2 ay + -) az2 $ - - 2p (2 ax + - by2 + -) az2 * 
+ V ( r ) $  = Etota' $ (8.14) 

where p is the reduced mass: 

(8.15) 
ml m2 
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Next, we make the ansatz that $ may be written as the product 

* = * t r y x ,  Y, Z)*'el(t, y, z )  (8.16) 

and insert this product in the Schrodinger equation (8.14). We then proceed 
in a similar way as in Section 4.1 and find that Eq. (8.14) splits into the two 
equations 

and 

with 

(8.17) 

(8.18) 

Etotal = Etrans + Ere1 (8.19) 

Eq. (8.17) is equivalent to the Schrodinger equation for a free particle with 
mass M. It describes the motion of the center of mass and hence of the two- 
body system as a whole. We may imagine that our molecule is enclosed in 
a very large box. The center-of-mass wavefunction ljltrans(X, Y, 2) and the 
translational energy Pan' will then be given by the expressions of Sec. 4.6. 
Alternatively, we may choose qtrans ( X ,  Y ,  2)  to be a free-particle wavefunc- 
tion of the form (6.45). Subsequently, we may form superpositions of such 
wavefunctions since Eq. (8.18) is the same for all values of EtFand. We may, 
for instance, choose a Gaussian wave packet of the form (6.48). In either case, 
we need not consider the center-of-mass motion further. 

Equation (8.18) descibes the relative, or internal motion. This motion is 
equivatent to that of a particle with mass p in the central field V ( r ) ,  and we 
have thus achieved the goal of reducing the two-body problem to a one-body 
problem. 

In the following section we shall show that if we introduce spherical polar 
coordinates, then $ ~ ~ ~ l ( t ,  y, z )  may be factorized into the product of a function 
of the angular coordinates of T and a function of r ,  the magnitude of r.  

~ 
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The importance of the central-field problem transcends its natural occur- 
rence as part of the two-body problem, as is clear from the comments made 
in the introductory remarks to the present chapter. In accordance with this 
universal importance of the problem, we shall adopt a general notation in the 
following section and consider Eq. (8.18) as but a special case of the Schrodinger 
equation 

(8.20) 
r12 

- -V2W)  + V(T)ll(T) = W T ) ,  2m 

in which rn is a general mass and V ( r )  a general central-field potential. For 
convenience, we have also introduced a new operator symbol, V2, by the defi- 
nition 

(8.21) 

V2 is called the Laplacian. We now need the expression for this operator in 
spherical polar coordinates. 

8.2 Spherical Polar Coordinates 

The spherical polar coordinates have the same natural relation to the central- 
field problem as the Cartesian coordinates have to the rectangular box problem, 
and they allow the variables in the Schrodinger equation to be separated in a 
similar way. The definition of the coordinates is the familiar one, 

x = rsinecosqi, O < r < o o ,  
y = rsinesind, o I e < n ,  (8.22) 
z = r cos 8,  0 5 4 < 2n. 

See Fig. 8.2. 
To express the Laplacian (8.21) and other useful operators in spherical polar 

coordinates, one may take advantage of the theory of curvilinear coordinates, 
of which the spherical polar coordinates form just one example. The most 
fundamental ingredients of this theory are presented in Appendix C. It leads 
to the following expression for the Laplacian in spherical polar coordinates 
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/ 
I ,Y \ I  

x = rsinBcosq5 
2 y =  rsinesinq5 

z = rcose  

J 
Figure 8.2: Spherical Polar Coordinates. 

or 

where the operator 2’ only acts on the angular variables 0 and dJ: 

It is also found that the volume element becomes 

dv = r2 sin 0 drdddq5 
~ 

Inserting the expression (8.24) into Eq. (8.20) gives 

(8.24) 

(8.25) 

(8.26) 

(8.27) 
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This, then, is the Schrodinger equation (8.20) expressed in spherical polar 
coordinates. 

As discussed in Appendix C, the operator i2 may be written 

f?=e+i;+i;, (8.28) 

where (is, &, iz) represents the dimensionless angular momentum of a particle 
with radius vector T .  The connection to the true angular momentumi is simply 

(lZIfY,lZ) = h ( i Z l i Y I i Z ) .  (8.29) 

We may therefore also write Eq. (8.27) as 

(8.30) 

To solve Eq. (8.27), we begin 
left with 2 m r 2 / h 2 .  This gives 

p2 (-- a2+ - -_ 2 a q  
dr2 r dr  

Since i2 only acts on the angular 
ration of variables by writing 

by rearranging terms and multiply from the 

(8.31) 

variables we may accomplish a partial sepa- 

*(r ,  0,9)  = R(r)Y(fl, 9) .  (8.32) 

For if we insert this expression into Eq. (8.31) and subsequently divide from 
the left with R ( r ) Y ( 0 ,  d),  we get 

(8.33) d 2 R  2 d R  2 m  
Lr2 (-- - -- + +V(r)  - E ] R  R dr2 r dr  f i  

The left-hand side of this equation depends only on r .  On the other hand, 
the right-hand side is independent of r .  In a similar way as in the transition 
from Eq. (4.5) to Eq. (4 .6 )  we must therefore demand that both sides equal a 
constant, -x say. Thus we conclude that Eq. (8.27), together with the ansatz 
(8.32)), is equivalent to the following two differential equations 

and -: (p + -- d R ( r ) )  + X f i l R ( r )  + V ( r ) R ( r )  = ER(r) .  (8.35) 
r d r  2mr2 
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The well-behaved solutions of Eq. (8.34) are called surface spherical har- 
monics. Well-behaved solutions exist only for specific values of the separation 
constant x. We shall see below that these values may be written 

x = l(l + l ) ,  e = 0 , 1 , 2 ,  . . . (8.36) 

We shall also find that there are 2t + 1 linearly independent solutions of Eq. 
(8.34) for a given value of k?. Inserting x = l(l + 1 ) )  into Eq. (8.35) gives 

(8.37) 

Solving this radial equation gives the allowed values of the energy E for each 
[-value, and the corresponding radial functions R( r ) .  

The form of the radial functions R(r )  depends, of course, on the form 
of the potential V ( r ) .  Thus, different central-field problems lead to different 
radial functions. But all central-field problems share the same set of angular 
functions since Eq. (8.34) is independent of V ( r ) .  These angular functions are, 
as already mentioned, called surface spherical harmonics. They are of immense 
importance in quantum mechanics-and also in other branches of physics and 
theoretical chemistry. The quantum number l is related to the magnitude of 
the angular momentum associated with the central-field motion. 

The following section and its subsections is a presentation of the surface 
spherical harmonics. 

8.3 Spherical Harmonics 
Eq. (8.34) may be written in the form 

It is a second-order differential equation in 8 and 4. It has been much studied, 
and there are different ways of attacking it. The complete mathematical so- 
lution for a given value of x may be found by separation of variables, whence 
one obtains a second-order differential equation in 4 and another second-order 
differential equation in 6.  The &part is easy to  handle, but to extract the 
physically acceptable solutions from the &part is a somewhat intricate matter. 
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However, we do not need the complete mathematical solution of Eq. (8.38), 
so it is really not necessary for us to write it down as an intermediate step 
towards obtaining the physically well-behaved solutions. We shall therefore 
adopt a different procedure. 

8.3.1 The Dimensionless Angular-Momentum Operators 

The idea is to use an algebraic method much related to the method used 
in Sec. 7.5 for the harmonic- oscillator problem. The operators involved are 
the angular-momentum operators, and it is expedient to take them in the 
dimensionless form given in Appendix C. Thus, we consider the operators 

(8.39) 

and the square 

P = t + e ! + 1 ? .  (8.40) 

It follows from Eqs. (5.33) and (5.34) that they obey the commutation relations 

(8.41) 

and 

[P ,  is] = [ i 2 ,  iY] = [P, &] = 0. (8.42) 

According to Eq. (8.34) we are looking for the eigenfunctions of the operator 
i2. As mentioned above, we may expect degeneracy, in the sense that there 
may be several linearly independent eigenfunctions for a given value of x. 
Thus, we have a situation similar to the one discussed at length in Sec. 4.7. 
The eigenfunctions in question define a linear function space, any function 
belonging to this function space being an eigenfunction with eigenvaiue x.  If 
the degeneracy is g ,  then any set of g linearly independent functions will be 
a basis of the function space. But which criterion should we use to determine 
an appropriate basis? 
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Here we are helped by the theorem (5.120), according to  which two Her- 
mitian operators may have a complete set of eigenfunctions in common, if the 
two operators commute. So, the procedure to follow is to find an operator that 
commutes with @, and then require that the eigenfunctions defining the basis 
of the g-dimensional function space also be eigenfunctions of the new operator. 
We may hope that the basis functions determined in this way correspond to 
different eigenvalues of the new operator, so that these eigenvalues in fact char- 
acterize the basis in a unique way. If, however, there still is some degeneracy 
left with respect to the new eigenvalues, then we may go on and search for 
a third operator which commutes with the two operators already discussed. 
Hopefully, then, this will lead to a unique characterization of the basis. 

The operators is, iY and i2 all commute with i2, so it is natural to let 
one of these operators define our basis in the case of degeneracy. Which one 
we choose is immaterial, but each choice leads to a different basis, for lx, iY 
and do not commute with each other and hence cannot have a complete 
set of eigenfunctions in common. Traditionally, one chooses to define the basis 
by the eigenvalues of iz because this operator is represented by the simplest 
expression in spherical polar coordinates. 

8.3.2 Looking for Common Eigenfunctions of i2 and i2 
Consequently, we shall now be looking for the common solutions of the eigen- 
value equation (8.34) and the eigenvalue equation 

where m denotes the eigenvalue of iZ . 

in Appendix C. They are 
The expressions €or iz, 2, and 2, in spherical polar coordinates are presented 

The eigenvalue equation (8.43) may accordingly be written 

(8.44) 

a -i-Y(d,+) = mY(e,4). a4 (8.45) 
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It has the complete mathematical solution 

Y(e) 4) = e(8)eim+. (8.46) 

where s(r3) is an arbitrary function of 8. Thus, the #-dependence of Y (8, #) is 
given by the complex exponential function. This is not a physically acceptable 
#-dependence for arbitrary m-values. For we must require that the function 
Y(6, 4) be single valued, and as far as the #-dependence is concerned, this 
amounts to the condition 

Y(B,# + 2x1 = Y ( 4  #I, (8.47) 

since q$ and I$ + 2x must define the same point in space, i. e., the same point 
P in Fig. 8.2. 

The implication of the condition (8.47) is that n must be an integer. For 
only then will exp(im#) be periodic in # with period 27r (See Appendix A). 

We may now let the c o m ~ o n  e i g e ~ f ~ ~ c t i o n s  of i2 and .fz be denoted 
Y$’(8,q$) and write 

y$(e, 4) = e p ( e ) e t m + .  (8.48) 

For a given value of x, we may expect not just one, but a whole set of m-values. 
The basis discussed above will then be characterized by this set. We must now 
determine the allowed values of x and the set of m-values going with each x. 

In connection with functions of (3 and #) it is convenient to use a bra-ket 
notation baaed on the definition 

i t 

(8.49) 

The integration involved in this definition is “integration over the unit sphere”, 
the surface element being the angular part of the volume element dv of Eq, 
(8.26). We shall assume that the functions in the set (8.48) are normalized to 
unity in the sense 

( Y h q Y i q  = 1. (8.50) 

Now, we may derive an important relation between the value of x and the 
corresponding values of rn directly from the definition (8.40). The definition 
implies that 

(8.51) 
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for any Y(B,4). For a function in the set (8.48) this gives 

x = (Y$)IElYk)) + (Y$)I&YhX)) + m2. (8.52) 

Since lZ is a Hermitian operator, we have that 

(Yk) IelYhx)) = (izYAqlZYp)). (8.53) 

By an argument similar to that of the opening remark of Sec. 5.8, we note that 
the right-hand side of Eq. (8.53) is non-negative. The same holds therefore for 
the left-hand side. From this result, and an equivalent result for the second 
term on the right-hand side of Eq. (8.52), we conclude from Eq. (8.52) that 

x ? m  2 * (8.54) 

This is the relation that we wanted to derive. 

8.3.3 The Raising and Lowering Operators 

To proceed, let us introduce the operators 

(8.55) 

which are the Hermitian conjugates of each other (cf. Eq. (5.62)). They both 
commute with i2 (because iZ and & do). Utilizing this we get 

Pi,y$(e, 4) = i,e%$X)(e, 4) = xl*Y,p(e, 4), (8.56) 

showing that the functions l+Ykx) and e^-Yk) both belong to  the function 
space defined by the eigenvalue x. 

To learn more about the functions l+Y,$,” and i-YAX), let us express i+ 
and ê - in spherical polar coordinates. The expressions (8.44) give immediately 

(8.57) 

Applying these relations to the function Y,$,x’(B, 4) of Eq. (8.48) shows that the 
&dependence of the function i+YAx)(8, 4) is exp(i(m+l)d) (unless the function 
vanishes), while that of the function t!-YAx)(0,4) is exp(i(m - 1)4) (unless 
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this function vanishes). The first function is accordingly an eigenfunction of iZ 
with eigenvalue m + 1, and the second function is an eigenfunction of i2 with 
eigenvalue m - 1. 

The same conclusions may be arrived at in a more formal way by considering 
the commutation relations [&, i+] and Elz, 2-1. We find easily that 

[i2,i+] = [iz,iz3 + i[i2,iy] = iiy -t i(-&) 
(8.58) 

= is t $1, = e+, 
and similarly, 

n n  pz, e-] = -e- . (8.59) 

Exploiting these results gives 

&i+Y$) = @+is + i+)YLX) = ( m  + l)i+YLX) (8.60) 

and 

i2 i- Y ~ X )  = (2, .E;, - i- >Y~x) = (m - 1 )i- ~ $ 1 .  (8.61) 

The first of these relations tell us that unless i+Y$' vanishes, it is an eigen- 
function of with eigenvalue m -t 1.  Similarly, the function ê -YLx' is an 
eigenfun~tion of with eigenvalue m - 1, unless it vanishes. These conclu- 
sions are the same as those obtained above. 

Thus, the operator l+ raises the eigenvalue of i2 by one (unless i+Yhx) 
vanishes), and it is therefore called a raisang operator, or a step-up operator. 
Similarly, i- is called a 1 Q ~ e ~ ~ g  o ~ ~ t o ~ ,  or a s t ~ p - d o ~ n  operator. One also 
refers to both types of operators as ladder operators. This is a similar notation 
as that used for the operators 2t and ci in the discussion of the harmonic- 
oscillator problem (See. 7.5). 

These findings now lead to the conclusion, that if we repeatedly apply the 
operators j+ and I- to the function Yh"', then we generate a set of functions, 

(8.62) 

which successively differ in their m quantum numbers by 1, but are eigenfunc- 
tions of t2 with the same eigenvalue x (cf. Eq. (8.56)). The sequence must 
terminate in both directions since the values of m are bounded by the relation 
(8.54). Thus, we must have that 

LY$ = 0, (8.63) 
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and 

i , y y  = 0.  

We shall now show that m“ = -m’. 

(8.64) 

8.3.4 The Quantum Number l 
We may relate m” and m‘ to the value of x in the following way. 

we first get 
From the definitions of @, -f?+ and e -̂ , and the commutation relations (8.41) 

and similarly, 

2 2 -  ,... e-e, = c - e, - L, (8.66) 

We then note that the relations (8.63) and (8.64) of course imply that also 
i+i-Y2j) and k&Y$)  vanish. When this observation is combined with the 
results of Eqs. (8.65) and (8.66) we get 

. . A  

t+t-~>) = (x - m112 + mtt)Y>) = o (8.67) 

and 
..,. e - t + ~ 3 )  = (x - mI2 - m1)Y2) = 0. (8.68) 

But the functions Y$? and Y$) are not supposed to vanish since they are 
defined as the terminal functions in the set (8.62). Eqs. (8.67) and (8.68) 
imply therefore that 

(8.69) x m / /2  - m” = m”(m” - 1) 

and 

(8.70) 

For both of these two equations to be true, we must have that m”(m” - 1) = 
rn’(m‘ + l ) ,  or, 

‘2 x = m + m’ = m’(m’ + I ) .  

(m’ + m”)(rn’ - m” + 1) = 0. (8.71) 
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But the setup of the sequence (8.62) implies that m' 2 m". The second factor 
on the right-hand side of Eq. (8.71) is consequently different from zero. Hence, 
we conclude that m" = -m' and therefore also that m' 2 0. 

The value of x as well aa the range of m-values is accordingly determined 
by the value of m'. Let us change the notation and write e instead of m', and 
hence also -1 instead of m". We have then that x = t L +  l ) ,  according to Eq. 
(8.70). Let us also write write &,(6, 4) instead of VAL L+1))(61 4). Our finding 
is then (cf, the setup (8.62)) that each possible &value ( L  = 0 , 1 , 2 , .  . . )  defines 
a sequence of 2L + 1 functions, 

(8.72) 

which are eigenfunctions of i2 with the same eigenvalue, and eigenfunctions of 
& with eigenvalues that vary in steps of one from -L to L ,  i. e., 

That the only possible values of L are the numbers 0 , 1 , 2 , .  . . is obvious from 
the definition of 4, namely, 4 3 m' = -m", and from the condition that any 
m must be an integer. The latter condition waa derived from the actual form 
of iZ via the relation (8.47) which required that any Y (8,d) be a single-valued 
function. 

It is interesting to note that we may obtain a condition on the possible 
values o f t  from the pure algebra without worrying about the form of izl and 
that this condition is milder than the one above. The argument is the following. 

From the very way the sequence (8.62), and hence the sequence (8.72), was 
constructed, it is obvious that the difference between m' and m'' must be an 
integer. But this difference is just 2L. Hence, 2& must be an integer. The values 
of L that the algebraic formalism allows are, therefore, 0, $ , 1 , $  , 2, . . . . This 
set of values differs from the above set by the inclusion of half-integral values 
of L.  We shall refer to this finding when we come to discuss the introduction 
of spin, in Chapter 10. As far as the spherical harmonics are concerned, only 
integral values of L come into play. 

8.3.5 A Phase Convention 
The spherical harmonics in the set (8.72) are transformed into each other under 
the action of the step-up and step-down operators f!+ and f!-. We assume that 
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each fi ,  is normalized according to the prescription of Eqs. (8.49) and (8.50). 
In addition, we know that any two members of the set (8.72) are orthogonal, 
because they correspond to different eigenvalues of the Hermitian operator iz 
(This is the theorem (5.67)). Thus, we have 

The results of acting with e^+ and ê - may be written 

(8.75) l+Yern (O,  4) = CmYL,m+l(6 ,4) ,  

e^-X,m+l(O, 4) = dmYe,m(e,  $1, 
where c ,  and d, are constants to be determined. The constants are, however, 
not independent, for if we take the scalar product with X,m+l(B, 4) in the first 
of the equations, and the scalar product with Ye,(O, 4) in the second equation 
we get 

and since e^+ and ê - are Hermitian conjugate operators, we have that 

according to the definition (5.43). This implies that 

d, = ck .  (8.78) 

Thus, we only need to worry about the determination of the Cm coefficients. 

(8.75) gives 
To determine the c ,  coefficients, we first note that the first of the relations 

(e^+YLrnIi+fim) = (cmYe,m+l(d,  $ ) I C r n f i , r n + 1 ( 6 , 4 ) )  = ckcm = ICm12. (8.79) 

Next, we use the turn-over rule (5.43) and then the relation (8.66) to get 

(8.80) (i+fimle^+Yem) = ( f i m l i - i + l f i m )  = (firnli’ -e :  4 1 ~ e r n )  

= [ ( L  4- 1) - m2 - m = (t - m)(e + m + 1). 

A comparison of these results shows that c,  = ei*m (t - m)(t -t rn + 1) where 
the phase S, is real. We now choose the relative phases of the functions 
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&,(8, 4) such that all dm become zero. This is possible because the normal- 
ization condition only determines each &,(O,d) to within a phase factor (cf. 
Eq. (4.35) and the discussion in Sec. 7.5). With this choice we get that 

and hence 

Note that these relations show that e ^ + f i l ( O ,  4) and e^-yL,-t(O, 4) vanish, in 
accordance with Eqs. (8.63) and (8.64). 

The convention, by which the relative phases of the surface spherical har- 
monics are so chosen that the relations (8.82) are valid, is called the Condon- 
Shortley phase convention, in tribute to a classic book by Condon and Short- 
ley.2 

8.3.6 The Analytical Expressions 
We are now able to derive the analytical expressions for the surface spherical 
harmonics &,(8,4). From Eq. (8.46) we know that they have the general form 

& m ( 8 , 4 )  = Otm(8) eimQ. (8.83) 

The problem is therefore to determine the analytical form of the functions 
Otm(e). To do so, we settle on a given &value and begin by determining 
the form of Ol,-l(8) from the condition that e^-yL,-t(O, 4) vanish. With the 
expression for 2- as given in Eq. (8.57), the condition reads 

Hence, we must solve the first-order differential equation 

(8.84) 

(8.85) 

2E. U. Condon and G .  H. Shortley, The Theory of Atomic Spectra. See the bibliography, 
entry [15]. 
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The complete solution of this equation is an arbitrary constant, A, times sin' 0. 
Thus, we have found that 

Yj,-'(O, 4) = Asin' Be-"@. (8.86) 

The constant A is obtained by normalizing Ye,-~(6,4~ according to the 
general normalization condition contained in Eq. (8.74), i .  e., 

(Yern iYjvem> = I r  /" ytrn (0, $)Yem (0,4) sin ocieci4 = 1 I (8.87) 
6=0 @=O 

For 4 = 0 we get 

and for t # 0, 

where we have chosen the sign of the normalization constant to be positive. 
Having determined the function &,-e(O,  $), we may determine the remain- 

ing 2 C  functions belonging to the same t-vaIue by means of the first of the 
relations in (8,82). We illustrate this for C = 1. 

For & = 0, there is only one spherical harmonic, namely the function 
Y00(6,$) given by Eq. (8.88). For 4 = 1, we have the three functions Yl1, 
YIO and Y1-1. Eq. (8.89) gives immediately: 

Next, we note that the first of the relations in (8.82) requires that 

&Yl-I(Q, 4) = d(1 + 1)(1 - 1 + 1)YlO(@, 4). (8.91) 

With the expression (8.57) for I!+, we may therefore determine Y ~ o  as follows 

(8.92) 
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Yl1 may be determined by a similar procedure, 

(8.93) 

For higher &values we may proceed in a similar fashion and thus generate 
any spherical harmonic needed. Table 8.1 gives all the spherical harmonics 
with 4 = 0, 1,  2,  and 3.3 Note the factor -1 which occurs whenever rn is 
odd and positive. This factor is a consequence of the Condon-Shortley phase 
convention, as the transition from Eq. (8.92) to Eq. (8.93) exemplifies. 

The spherical harmonics in Table 8.1 are eigenfunctions of j 2  and j Z .  The 
square of the true angular momentum (8.29) has the sharp value l(.t + l)h2, 
and the projection of the true angular momentumonto the z-axis has the sharp 
value mh. (The term sharp value was defined in Secs. 5.5 and 5.7. That an 
observable has a sharp value, implies that the wavefunction of the system is 
an eigenfunction of the operator representing the observable.) 

For a given value of 4, the 21 + 1 spherical harmonics define a basis in 
the function space defined by the eigenvalue l(l + 1) of i2. Other bases may 
be obtained by taking linear combinations of the functions Y~,(t', 4) .  In this 
way, one might for instance construct 2 t  + 1 functions that are eigenfunctions 
of i2 and &. But one may also construct bases for which no component of 
the angular momentum has a sharp value. A very useful basis of this type is 
obtained by replacing each two functions of the type Yem and Ye,-m by the sum 
and difference of the two functions (normalization introduces an extra factor 
of l/fi),  After multiplication by i or -i, if necessary, one ends up with a set 
of real surface spherical harmonics. Such a set is presented in Table 8.2. It 
finds great application in, for instance, molecular-orbital theory. 

The equivalent of the orthonormality relation (8.74) holds for the functions 
of Table 8.2. We also note that spherical harmonics with different Gvalues 
must be orthogonal, for such functions correspond to eigenfunctions of j 2  with 
different eigenvalues, so the theorem (5.67) may be applied once again. Thus, 

3The symbols 8,  p ,  d ,  f associated with the &values 0,1,2,3,  respectively, refer to the use 
of the spherical harmonics in atomic theory (See the following chapter). 



186 Chapter 8. The Central Field Problem 

we may write 

The index y takes on 2& + f values for a given value of a. When the complex 
harmonics of Table 8.1 are considered, it may be identified with the quantum 
number rn. For the real harmonics of Table 8.2, it is simply some symbol that 
identifies the 2& + 1 different harmonics for fixed f .  

We have now given a thorough description of the physically acceptable 
solutions of Eq. (8.34). They are the surface spherical harmonics. We have 
determined these functions by an algebraic procedure, but as mentioned at the 
beginning of Sec. 8.3 they may also be determined by more classical means. 
One then realizes that the &dependence of the functions is that of the as- 
sociated Legendre functions. For the sake of completeness, we present this 
dependence in Appendix D. 

After this thorough discussion of the solutions of Eq. (8.38), we must now 
turn to the radial equation (8.37). 

8.4 The Radial Function P ( T )  
In this short section, we shall replace the radial equation (8.37) with an equiv- 
alent radial equation obtained in the following way. 

We may assume that the general wavefunction (8.32) is a normalized wave- 
function. The expression for the volume element in spherical polar coordinates 
is given by Eq. (8.26), and the normaiization condition is therefore 

($I$) = /m R * ( ~ ) R ( ~ ) T ~ ~ T / ~  12" Y*(B,~)Y(e,#)s inBd#d~ = 1. (8.95) 
r=O 8=0 &=O 

The spherical harmonic Y (8,$) is supposed to he normalized to unity in anal- 
ogy with Eq. (8.87). Hence, we require that R(r)  be normalized such that 

~~ (8.96) 

where we have assumed that R(r )  is real 
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The form of the normalization expression for R(r)  suggests that we intro- 
duce a new radial function, P ( r ) ,  by the definition 

P ( r )  = rR(r)  D 
which will then be normalized such that 

(8.97) 

[P(r)I2dr = 1 1 L o  1 (8.98) 

The differential equation to be satisfied by P ( r )  is obtained by multiplying Eq. 
(8.37) from the left with T and noting that Eq. (8.97) implies that 

d2P d2R dR - = r -+2- - .  
dr2 dr2 dr 

Thus, we get 

(8.99) 

(8.100) 

The structure of this equation is somewhat simpler than that of Eq. (8.37), 
and we shall accordingly base much of our future discussion of central-field 
problems on the radial function P ( r )  instead of the original function R ( r ) .  

In terms of P ( r ) ,  we may write the wavefunction (8.32) as 

(8.101) 

Eq. (8.100) has the same structure for all central-field problems. But since 
the explicit form of V ( T )  is different for different problems, each problem must 
be handled as a new case. In the following chapter, we shall solve Eq. (8.100) 
for the hydrogen atom. 



188 Chapter 8. The Central Field Problem 

& = O  

S 

Table 8.1: Normalized Surface Spherical Harmonics. Complex Form 

e = i  

P 

e = 2  

d 

e = 3  

f 

Yo0 = d& 

7 z(5za-3ra1 
y 3 0  = & ,.3 = 4& cos 8(5 cos2 8 - 3) 

Y33 =-&V 35 Z t ' Y  
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t = O  

8 

e =  1 

P 

t = 2  

d 

e = 3  

f 

Table 8.2: Normalized Surface Spherical Harmonics. Real Form 
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Supplementary Reading 
The bibliography, entry 1151 and [lS]. 

Problems 
8.1. By actually evaluat~g the integrals involved, check that the surface spherical 
harmonic Y, of Table 8.2 is normalized to unity. Check also that the harmonics Yz 
and YzI are mutually orthogonal. 

8.2. The normalized surface spherical harmonic &a(@, #) is 

By applying the operators 2% and i-, determine the normalized surface spherical 
harmonics U,~(~,#~ and U,,-~(@,cj). 

8.3. A useful way of looking at a surface spherical harmonic is to relate it to the 
f ~ c t i o n  

&,(.., Y, 2) = .'%,(@, #I 
because this function, as the tables 8.1 and 8.2 show, is a homogeneous polynomial 
of order L, i. e., a polynomial of the form 

ut,(x, y, z )  = a,,txryszt, r + s + t = L.  
rst 

The function Uty(s, y, z )  is called a solid sp~erjca~ harmonic. 

a. Show that Ut,(x, g, z )  is a solution of the Laploce e q ~ a ~ j ~ ~  

v2u = 0, 

by identifying the Laplace equation with the central-field equation (8.20) 
for V(r) = 0 and E = 0, and by showing that Eq. (8.37) then is satisfied 
by R(r) = r'. 

b, Equation (8.37) has two linearly independent solutions for a given 
value of 8. As just shown, one of them is R(r) = rc for V(r) = 0 and 
E = 0, Try to guess the other solution. 

G. There are 6 linearly independent homogeneous polynomj~s of order 
2, for instance: 

but they do not all satisfy the Laplace equation. Find 5 linearly inde- 
pendent polynomi~s that do, and compare these with the solid spherical 

x2, Y2r z2* Sty, yz, zx, 
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harmonics that may be read off Table (8.2) for .l = 2. 
An alternative way of introducing the surface spherical harmonics is, in 
fact, to start out from the solid spherical harmonics, defined as the ho- 
mogeneous polynomials that satisfy the Laplace equation. The relation 
C J t 7 ( z , y r t )  = rCK,(B,q5) gives then the form of the surface spherical 
harmonics. 
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In continuation of the previous chapter, let us now determine the energies 
and wavefunctions for the electron in a one-electron atom. We consider the 
general case corresponding to a nuclear charge Z e ,  and take the nucleus to be 
infinitely heavy so that we may neglect its motion. But we understand that 
we may correct for the finite nuclear mass by simply replacing the electronic 
mass, me, with the reduced mass as discussed in Sec. 8.1. In light of this, it 
might seem preferable to work with the reduced mass from the very outset, 
but some natural physical quantities that occur on the way are conventionally 
defined in terms of the mass m, rather than the reduced mass (which varies 
from atom to atom). So it is better to work with me throughout and, when it 
is needed, correct the final expressions by simply replacing me with the proper 
reduced mass. 

192 
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As mentioned in Sec. 4.8, it is customary to refer to a one-electron wave- 
function as an ~ r ~ l t ~ ~ .  The wavefunctions of a o ~ ~ e ~ ~ t r o n  atom are hence 
called atomic or~gta$s. The angular dependence of atomic orbitals is given by 
the surfwe spherical harmonics, so the starting point of the present chapter 
will be the radial equation (8.100). 

We begin the chapter by introducing a standard notation for the radial 
wavefunctions. The radial equation is then solved by the polynomial method 
which is familiar to us from the harmonic-oscillator problem. Three equivalent 
analytical expressions are set up for the radial functions, and the functions 
defining the lowest energy levels are also represented as graphs. In the final 
section, we consider the total wavefunctions obtained by multiplying the radial 
functions by the proper surface spherical harmonics. 

Wavefunctions on a th re~d i~ens iona l  space are, of course, more d i ~ c u l t  
to visualize than wavefunctions on a one-dimens~onal space. But much may be 
achieved by drawing contour curves in selected planes together with contour 
surfaces in three-dimensional space. Because the orbitals of the one-electron 
atom in various ways serve as elementary units in the co~truct ion of wave- 
functions for many-electron atoms and molecules, it is important to form good 
mental pictures of them. As a help in buiIding such pictures, we present a 
number of contour curves and contour surfaces for orbitals of the hydrogen 
atom in the last section. 

The wavefunctions determined in the present chapter are said to describe 
the orbital motion of the electron, and the angular momentum E is similarly 
called the ~ ~ ~ ~ t a l  angula~ ~ o ~ e n t ~ ~ ,  a notat~on which reminds us of the pres- 
ence of the electron spin. As remarked in Sec. 3.1, we may safely neglect the 
spin rn Iong as we exclude magnetic fields and only treat single-particle prob- 
lems. We can live with these limitations throughout this chapter, but in order 
to proceed we must definitely learn how to incorporate the spin. A proper 
discussion of the spin probIem will be included in the following chapter. 

9.1 The Effective Potential. General Notation 
As mentioned above, the starting point of the present chapter is the radial 
equation ($.loo), with the arbitrary mass M replaced by me. The potential- 
energy function V(r) is given by the Coulomb expression (2.65), so the actual 
form of Eq. (8.100) becomes 
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Figure 9.1: Effective radial potential for the hydrogen atom (2 = 1). 
Atomic units as defined in Appendix B. 

We note that each [-value gives a genuinely new equation. 
We may interpret Eq. (9.1) as the Schrodinger equation for a one-dimen- 

sional problem in which the particle moves between r = 0 and r M 00, in the 
e ~ ~ & t ~ ~ e  ~ t ~ n t ~ u ~  

made up of the original Coulomb potential and an !-dependent centrifugal 
~ ~ e n t ~ a ~ .  Each t-value gives a new effective potential and hence its own one- 
dimensional Schrodinger equation. The effective potential for the four lowest 
Cvalues, l = 0, 1 ,2 ,3 ,  is shown in Fig. 9.1. 

For a given [-value, we number the admissible energies and radial functions 
by an additional index n which increases with the energy. It would seem natural 
to let n take on the consecutive values 1,2,3,  . . . , but t r ~ i t i o n a l l y  one lets pt 
start with the value t+  1. So, for a given &value we number the energy levels 
by the n-values 

(9.3) n = e +  l , 8 + 2 , .  . . 
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t-value 
Symbol 

The reason is, that this numbering is natural for the hydrogen-like atom be- 
cause n turns out to be the quantum number that determines the energy, 
through the Bohr formula (2.681. Thus, we have the following radial wave- 
functions, Pn&(v), 

(9.5) 
0 1 2 3 4 5 6 7 8 9 ... 
s p d f 9 h i k 1 m ... 

(9.4) 

I , * .  . , .  . . .  . . .  
As is customary, we have referred to the e-value by a letter symbol defined by 
the following correspondence 

This correspondence was also included in Tables 8.1 and 8.2. The radial func- 
tions &t(r) are indexed in a similar way as the functions P,t(r). When the 
radial function RIS(r) is combined with the surface spherical harmonic Yoo, 
we get the 1s orbital. When the radial function R Z ~ ( P )  is combined with the 
three spherical harmonics with e = 1, we get the three 2 p  orbitals, etc. The 
notation is of spectroscopic origin: the letters s, p ,  d,  and f refer, respectively, 
to the so-called sharp, principal, diffuse, and fundamental series of the alkali 
atom spectra. 

After these introductory remarks, let us now attack the radial Schrodinger 
equation (9.1). As the form of the effective potentials in Fig. 9.1 indicates, 
the energy spectrum is found to be discrete for E < 0 (bound states) and 
continuous for E > 0 (dissociative states). We shall only be interested in the 
bound-state solutions, corresponding to states with negative energy. As we 
shall see, there are infinitely many such states, for each value of t. 

9.2 The Radial Equation for the Hydrogen-Like 
Atom 

For a radial function P(P) to represent a bound state of the electron, it must 
vanish at infinity. In addition, R(r) must stay finite at the origin, and hence 
P(r)-which equals P~(r)-must tend to zero with P. The boundary condi- 
tions on P(P)  are therefore 

P(0) = 0, P(o0) = 0. (9.6) 
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To implement these conditions, we consider the limiting form of Eq. (9.1) for 
small and for large values of T .  

For sufficiently small values of r ,  and l #  0, it is obvious that the centrifugal 
term in Eq. (9.1) will completely dominate the term containing E ,  and also 
the term containing the Coulomb potential. Thus, we may replace Eq. (9.1) 
by the equation 

It has the complete solution 

and we must evidently take a2 to be zero, to satisfy the first of the boundary 
conditions (9.6). When t = 0, there is no centrifugal term, and we must go 
back to Eq. (9.1). Inserting a power series expansion, P(.) = alr+azr2  + . . . , 
into this equation shows that a1 must be different from zero. Hence, the well- 
behaved solution goes as a constant times T for small values of T ,  and is covered 
by the general expression P ( r )  = alrL+l .  

In the other limit, i. e, for very large values of r ,  we replace Eq. (9.1) by 
the equation 

where we have put 

(9.10) 

(9.11) 

Real values of K correspond to negative energies, imaginary values of A to 
positive energies. Eq. (9.10) has the complete solution 

(9.12) 

For imaginary values of K ,  this is an oscillatory solution which stays finite at 
infinity. Accordingly, it cannot represent a bound state, so bound states must 
correspond to real values of K ,  and hence to negative energies, as claimed in 
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the Introduction. We shall only consider bound states in the following, and 
consequently always take R to be real, and in fact positive (since this is no 
restriction, as Eqs. (9.11) and (9.12) show). With R being positive, it follows 
that the second of the boundary conditions in Eq. (9.6) requires b2 to be zero. 

We have thus seen that an acceptable solution of Eq. (9.1) must behave 
like rLS1 for small values of T ,  and like e-nr/2 for large values of T .  As we 
would expect, such a solution only exists for certain discrete vafues of E. Let 
us determine these values. 

We begin by simplifying the look of Eq. (9.1) by introducing the new vari- 
able 

p = w, (9.13) 

whereby the equation becomes 

P 

with the constant n defined as 

(9.14) 

(9.15) 

The values of ra for which Eq. (9.14) has acceptable solutions determine the 
corrclsponding values of R and E ,  through Eqs. (9.15) and (9.11). For K: we get 

(9.16) 

where QO is the Bohr radius which we introduced in Sec. 2.5, Eq. (2.60), 

fa2 4rro 
Qg =: -- 

me e2 

Similarly, we get for E: 

(9.17) 

(9.18) 

This is the Bohr expression (2.68) for the allowed energies of a one-electron 
atom, provided n is an integer. This will turn out to be the case, but we are 
not supposed to know yet. 
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To actually determine the possible values of n ,  we take advantage of what 
we know about P(r) for small and for large values of r and write 

P(r) = pL+1e-P/2F(p). (9.19) 

Inserting this expression in Eq. (9.14) gives, after some algebra, 

d2 F d F  
dP2 dP 

P- + (2f + 2 - p) - + ( n  - l - 1) F = 0. (9.20) 

We shall see that this equation has an infinite number of solutions, correspond- 
ing to n = l +  1 , l + 2 , .  . . , in accordance with the discussion around Eq. (9.4). 
In fact, we immediately see that we get a solution by putting n = l+ 1, namely, 
F = A,  where A is a constant. Thus, we find that PI,, P2p, P 3 d ,  . . . must have 
the general form 

Pfl,fl-l(r) = Ap"e-P/2. (9.21) 

To-determine A, which we take to be real and positive, we invoke the 
normalization condition (8.98) and get 

A2 00 00 

P(r)2dr = ' J l d  P2dp= p2fle-Pdp= -(2n)! (9.22) 
K IE K 

We have used the standard integral 

(9.23) 

With A as determined from Eq. (9.22), and with K taken from Eq. (9.16), 
Eq. (9.21) becomes 

Pn ,n - l  ( r ) = p F ( E ) f l e x p  nao (2n)!  nao (-"'>. 1200 
(9.24) 

Hence, we get that the corresponding R-function, R(r) = P(r)/r, becomes 
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where n = 1,2,3,. . . 

i. e., we write 
In the general c w ,  we solve En. (9.20) by expanding F ( p )  in a power series, 

(9.26) 
s=O 

where we know that co # 0, for otherwise P(r)  would not have the correct 
limit form for small values of r. For the first derivative of F we find 

Do 

(9.27) 

By evaluating also the second derivative and grouping terms with the same 
power of p together, we get 

d F '  O0 - = CC,spb-' = C c a + l ( s  + 1)~ ' .  
s=l a 4  

03 C {c#+~[(s + 1)s + (2f + 2)(s + l)] - C#[S - (n - .t - I)]] pa = 0. (9.28) 
6 E O  

The various powers of p are linearly independent functions, and hence the 
coefficient of pa must vanish for each s. This requirement gives the recursion 
relation 

P + l - r a + s  
(1 + S)(2l+ 2 + s)"# G t 1  = 

which determines the subsequent coefficients in terms of cg . 
By iterating Eq. (9.29) we easily find that 

(9.29) 

( f +  1 - n)(P -t- 2 - n) . * .(P+ 8 - 
'(') = " { + 5 s ! ( 2 t  + 2) (2t -f 3) * 1 * (24 + 1 + s) 

S = l  

where cg now plays the role of an arbitrary constant. The function 

a + 1) 22 + * ., 1F1(a, p; .) = 1 + -% + 1 * p  2!P(P+ 1) 
(9.31) 

is called a confluent hypergeometric function.l It allows us to write F(p) as 

F ( p )  = IF l ( . t+  1 - n, 2P 3.2; P)C@ (9.32) 

ISee, for example, Chapter 13 in the reference of footnote 2.11. 
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We now observe that as s increases without limit, the recursion formula 
(9.29) states that 

C,+1%-. 1 
cs s 

This is the same ratio that we get from the exponential function 

(9.33) 

(9.34) 

so when the expression for F(p)  is inserted in Eq. (9.19) we find that P(p)  
behaves like exp(p/2) for large r .  In other words, the solution which is regular 
at  the origin will in general not tend to zero at  infinity, i.e., the coefficient b2 

in Eq. (9.12) will not vanish. 
This behavior will hold for any n-value which is not a positive integer. We 

see, however, from Eq. (9.29), that if n is a positive integer larger than or equal 
to t +  1 then cn-l and all subsequent coefficients will vanish, and F ( p )  will 
become a polynomial of degree n - t - 1. 

Thus, we have arrived at  the result that Eq. (9.14) has acceptable solutions 
if and only if, for a given value o f t ,  n takes on one of the values 

7 n = t +  1 , t + 2 , .  . . (9.35) 

The corresponding form of P ( r )  is, according to  Eqs. (9.19) and (9.32), 

(9.36) 

where A is a normalization constant. We note that Pnt(r )  equals e-PI2 times 
a polynomial of degree n,  starting with the term Apf+'. We also note, from 
Eqs. (9.13) and (9.16) that 

j l  p = - r  (9.37) 

n is called the principal quantum number. The quantum number .t is often 
called the azimuthal quantum number. Similarly, one often refers to the quan- 
tum number m that appears when the complex spherical harmonics are applied, 
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as the magnetic quantum number. These designations have their origin in the 
old Bohr-Sommerfeld theory, We shall usually refer to k? and m as angular- 
momentum quantum numbers. 

We have now, for each value of C, found all the acceptable solutions of the 
radial Schrodinger equation (9.1). The allowed energies are those given by 
Bohr's formula (9.18). Eq. (9.35) shows that the solutions may be labeled as 
in the diagram (9.4), each line in the diagram going with a different effective 
potential of the type (9.2). The energy expression (9.18) shows that if we also 
order the solutions as in the diagram (9.4), then functions in the same column 
correspond to the same energy. To be specific, 

P,o(P), P f l 1 ( p ) ,  . . . , Pn,n-l(r) go with the same energy. I (9.38) 

This is a remarkable result, for each line in the diagram (9.4) represents 
a different radial equation-as discussed at length in the Introduction. So 
there is no immediate reason why functions in the same column should have 
the same energy. As a matter of fact, this will no longer be the case if the 
Coulomb potential in Eq. (9.1) is replaced by a slightly different potential. The 
energy is then found to depend on both n and L. 

Let us now study the radial functions that we have determined in more 
detail. 

9.3 The Normalized Radial Functions 
For lower values of n, the actual form of P,e(r), and hence of %e(r), is easily 
written down from Eq. (9.36). & ( T )  may then be normalized by the same 
procedure as the &,,+l(r) of Eq. (9.25). In this way, one obtains Table 9.1, 
which shows & L ( P )  for all (n,!) values corresponding to n = 1 , 2 , 3 .  

In the general case, we need an analytic expression for the normalization 
constant A in Eq. (9.36). Such an expression has been derived and is contained 
in the following general formula for %e(r) 

I I 

(9.39) 
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The sign factor has been chosen such as to make Rni(r) positive for large values 
of r.  

It is customary to state this result in terms of the so-called Laguerre poly- 
nomials. There are essentially two different, albeit related, definitions of these 
polynomials in the literature. The one most often used in textbook discussions 
of the hydrogen atom is the following 

(9.40) 
(n!)' 

L:(x) = (-1)m m!(n - m)! 1Fl(-n + m, m + 1; x). 

L F ( x )  is called the associated Laguerre polynomial of degree n - m. An inde- 
pendent definition is 

dm 
dxm 

L,m(x) = -LE(x), 

where the Laguerre polynomial L: (x) is defined as 

d" 
L ; ( Z )  = e"- (cne-"). 

dxn 

(9.41) 

(9.42) 

When R n ~ ( r )  is expressed in terms of these functions by comparing Eqs. (9.39) 
and (9.40), we get 

(9.43) 

The alternative definition of the Laguerre polynomials is2 

(9.44) 

We refer to these polynomials as generalized Laguerre polynomials, because the 
independent definition that may be introduced does not presume that m is a 
non-negative integer as in Eq. (9.41). The independent definition is 

(9.45) 

2See, for example, Chapters 13 and 22 in the reference of footnote 2.11. 
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(9.46) 

The reader will find it rather easy to generate the functions in Table 9.1 
from any of these formulae. As an intermediate step in this process we list the 
first few Laguerre polynomials, derived by the definition of Eq. (9.42), 

LX(t) = 1, LY(2) = 1 - 2, L;(z )  = 2 - 4x + 2 2 ,  

(9.47) L~(z) = 6 - 182 + 9z2 - x 3 ,  
L~(z) = 24 - 962 + 72z2 - 16z3 + z4, { Li(z )  = 120 - 6002 + 6 0 0 ~ ~  - 200t3 + 25x4 - x5.  

Let us finally point out that the radial functions satisfy the orthonormality 
relation 

which supplements the orthonormality relation (8.94) for the angular part of 
the complete wavefunction. Eq. (9.48) follows as a straightforward consequence 
of applying the theorem (5.67) to the solutions of Eq. (9.1). 

9.4 Radial Probability Densities 
In Figs. 9.2,9.3 and 9.4 we present the graphs of the radial functions Rni(r) of 
Table 9.1, together with graphs of the corresponding functions Pnl(r ) .  We have 
put 2 = 1, and thus let the graphs refer to the hydrogen atom. In addition, we 
have put a0 = 1, as in the system of atomic units. Atomic units are discussed 
in Appendix B. 

According to the statistical interpretation of the wavefunction (Sec. 3.4), 
the quantity $* ( T ) $ ( T )  is a probability density, and $* ( T ) $ ( T ) ~ w  is the proba- 
bility of finding the electron in the volume element dw around the point T .  The 
probability of finding the electron within a certain volume V is the integral of 
$*$ over that volume. 
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Table 9.1: Hydrogen-Like Radial Functions 

Thus, we understand that the probability of finding the electron of the 
hydrogen-like atom in the spherical shell between the radii r1 and r2 is given 
by the integral 

where we have inserted the form of the total wavefunction as given by Eqs. 
(8 .32)  and (8 .101) .  So, the quantity P,L(r)'dr may be interpreted as the 
probability of finding the electron between r and r + dr,  irrespective of its 
angular coordinates. Consequently, we may refer to the functions Pnl(r) and 
PnL(r)2 as the radial probability amplitude and the radial probability density, 
respectively . 

We also see, that if f f r )  is some function of r ,  then its average value, the 
so-called expectation value (Sec. 5.5), is given by the integral 



9.4. Radial Probability Densities 205 
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r 

Figure 9.2: Radial wavefunctions for the n = 1 level of the hydrogen 
atom (Z = 1). Atomic units as defined in Appendix B. 

which after integration over 6 and 4 becomes 

(9.51) 

These results demonstrate that the function P ( T )  plays a natural role in the 
applications of the theory. 

Eq. (9.51) may, for instance, be used to calculate the expectatio~ values of 
the various powers of r .  We list the following useful results 

(9.52) 

3For other powers of r, see Chapter 5 in the reference of footnote 8.2. 
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Figure 9.3: Radial wavefunctions for the n = 2 level of the hydrogen 
atom ( Z  = 1). Atomic units as defined in Appendix B. 
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Figure 9.4: Radial wavefunctions for the n = 3 level of the hydrogen 
atom ( Z  = 1). Atomic units as defined in Appendix B. 
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Figure 9.5: The lowest energy levels of the hydrogen atom. 

9.5 The Complete Wavefunctions 
The complete wavefunctions for the hydrogen-like atom have the form (8.32), or 
(8.101). In particular, the complex wavefunctions are obtained by multiplying 
the complex spherical harmonics in Table 8.1 by the radial functions in Table 
9.1. They may accordingly be written 

where we have introduced a generally accepted standard notation by writing 
me instead of m. 

Similarly, the real wavefunctions are obtained by multiplying the real epher- 
ical harmonics in Table 8.2 by the radial functions in Table 9.1. In either case, 
there are 2C+ 1 independent wavefunctions. We may construct a notation that 
embraces both cases by writing 

where ye is a label that identifies the members of a chosen set of 2C+ 1 indepen- 
dent wavefunctions for a given C-value. In the special case where the chosen set 
is the set (9.53), we identify yl with me. In any case, a wavefunction (atomic 
orbital) is characterized by three “quantum numbers”, (n, !, ~ t ) .  Obviously, 



9.5. The Complete Wavefunctions 209 

= Lnl&t'dy.yly: 

which combines the orthonormality relations (8.94) and (9.48). 
The quantum number n determines the energy through Bohr's expression 

(9.18). By introducing atomic units as discussed in Appendix B, we may write 
the Bohr expression in the form 

hartree, n = 1 , 2 , 3 , .  . . (9.56) 

with 1 hartree = 4.35975 x 10-I8J = 27.2114eV. For any n, the quantum 
number L takes on the values 0,1,  . . . , n - 1, and for any L we have 24 + 1 dif- 
ferent values of 7 ~ .  The degeneracy gn, i.e., the total number of wavefunctions 
corresponding to the energy En, is accordingly 

2 2  

27a2 
E --- n -  

(9.57) 

For other central potentials, the energy depends on both n and L ,  so the de- 
generacy of an energy level will only be 2L+ 1. Thus, the Coulomb potential 
leads to a high degree of accidental degeneracy. 

This degeneracy is often said to reflect the presence of a hidden, or dy- 
namical, four-dimensional symmetry. For it turns out that if one constructs 
an angular-momentum theory in a four-dimensional world, then an additional 
quantum number-which we may also call n-appears. For each n,  there are 
n2 surface spherical harmonics. It is possible to set up a well-defined corre- 
spondence between those harmonics and the hydrogenic wavefunctions with 
the same n-value. The correspondence breaks down as soon as one makes the 
slightest change to the Coulomb p ~ t e n t i a l . ~  

4The dynamical symmetry associated with the Coulomb potential has attracted much 
attention in the scientific literature. For an entrance to the literature and a discussion of the 
physical origin of the symmetry, see J .  P. Dahl, J .  Phys. A 30, 6831 (1997). See also the 
bibliography, entry [18], Sec. 30. 
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The energy levels of the hydrogen atom (2 = 1) are shown in Fig.9.5. 
The accidental degeneracy is accentuated by showing separate energy levels 
for each l value. 

It is important to note that the designations (9.53) and (9.54) may be used 
for any central field. But the Bohr expression holds only for hydrogen-like 
atoms. For other central fields, the energy will depend on both n and &. The 
quantum number n is then nothing more than a useful index which, for each 
value of l ,  increases with the energy in accordance with the setup (9.4). 

In Figs. 9.6-9.9 we illustrate some of the real hydrogen atomic orbitals by 
means of contour maps in suitably chosen planes through the nucleus. The 
specific form of the orbitals is commented on in the respective figure captions. 
Each figure also includes a so-called polar plot, the origin of which is the fol- 
lowing. 

A polar plot is a plot of the angular part of an orbital. Let the angular part 
be Y(B, 9). The polar plot is then the surface such that the distance from the 
origin to a point on the surface, in the direction (0, q5), equals lY(B,q$)I. The 
surface has, accordingly, the following parametric representation 

with 0 varying between 0 and T ,  and # varying between 0 and 27r, as in Eq. 
(8.22). 

The intersection between the above described surface and a coordinate 
plane leads to the two-dimensional polar plots shown in Figs. 9.6-9.9, As 
one sees from these figures, there is a close qualitative resemblance between 
the two-dimensional polar plots and the planar contour plots for the com- 
plete wavefunctions. The three-dimensional contour surfaces of the complete 
wavefunctions will cons~uently also have a similar appearance as the three- 
dimensional polar plots. The polar plots are therefore often used for qualitative 
purposes where the exact form of the radial function R(r )  doesn't matter so 
much. As described above, the polar plots are completely defined by the an- 
gular part of an orbital. The proper contour surface of the orbital is, however, 
also sensitive to the form of R(r) .  

Fig. 9.10 shows proper three-d~mensiona~ pictures of the hydrogenic le,2p,, 
3d,,, and 3d,a orbitals, viewed along the direction perpendicular to the 2%- 

plane. Each orbital is rendered as an isosurface, made up of contour surfaces 
on which the wavefunction has the same absolute value. For example, the 
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Figure 9.6: This figure shows the n = 1 orbital of the hydrogen atom (2 = I), 
in atomic units (a0 = 1). The analytic form of the orbital is obtained by 
multiplying the R1, radial function of Table 9.1 by the spherical harmonic Yo0 
of Table 8.2. We get 

$1. = fiexp(-r) .  

The big drawing is a contour map showing the contour curves of the 1s-function 
in any plane through the nucleus. A contour curve is defined as a curve through 
points with the same value of the function (the contour value). The contour 
curves of any s-orbital are circles centered on the nucleus. The corresponding 
three-dimensional contour surfaces are spherical surfAces. 
The numbers specified on the contours are the contour values multiplied by 
10. 
The smaller drawing is a polar plot of the 1s orbital. It shows its spherical 
shape and its constant sign. 

2p,  isosurface consists of two similar lobes, one on which the wavefunction is 
positive, and another on which it has the same absolute value but is negative. 
On the left part of the figure, each isosurface is shown as a shaded surface. On 
the right part of the figure, each orbital is displayed by a wire mesh formed by 
contour curves on the isosurface, drawn in equidistant planes parallel to the 
zz-plane. 
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Figure 9.7: The big map shows the contour curves of the hydrogenic 2pt 
orbital, in any plane through the z-axis. The analytic form of the orbital is 
obtained by multiplying the Rzp function of Table 9.1 by the Y, function from 
Table 8.2. I t  is 

q Z p ,  = &z exp(-r/2) = &r exp(-r/2) cos 8 .  

The numbers specified on the contours are the contour values multiplied by 
100. 
The contour surfaces of the 2p, orbital are surfaces of revolution. They may 
be generated by rotating the above contour curves about the z-axis. 
The 2p3 and 2ppy orbitals are similar to the 2p, orbital, but with the z-axis 
replaced by the x- and y-axes, respectively. 
The smaller drawing is a polar plot of a pt orbital, focusing on the directional 
character of the orbital and the signs of its lobes. 
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Figure 9.8: The big map shows the contour curves of the hydrogenic 3dx, 
orbital, in the zy-plane. The analytic form of the orbital, as obtained from 
Table 9.1 and Table 8.2, is 

+3dSy = ~ ~ x y e ~ p ~ - r / 3 )  = hQ.2 exp(-r/3) sin20 sin24. 

The numbers specified on the contours are the contour values m ~ t i p ~ e d  by 
1000. 
The smaller drawing is a polar plot, showing the directional character of the 
orbital and the signs of its lobes. 
The 3d,, and 3d,, orbitals are similar to the 3dxv orbital, but with the xy 
plane replaced by the yz and tx planes, respectively. 
The 3d,2- 3 orbital is obtained from the 3dx, orbital by a clockwise rotation 
through 7rf4 about the z-axis. 
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Hydrogen 3dzz orbital 
201 ’ ’ I ’ I I I ! 

Figure 9.9: The big map shows the contour curves of the hydrogenic 3d,2 
orbital, in any plane through the z-axis. The analytic form of the orbital, as 
obtained from Table 9.1 and Table 8.2, is 

The numbers specified on the contours are the contour values multiplied by 
1000. 
The smaller drawing is a polar plot, showing the directional character of the 
orbital and the signs of its lobes and its central collar. 
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Figure 9.10: 3, p and d isosurfaces. 
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Supplementary Reading 
The bibliography, entries [lo], [ll], [17], and [18]. 

Problems 
9.1. The 1s orbital for a hydrogen-like atom has the form 

Verify this from Table 8.1 and Table 9.1. 

a. Show that $ls is normalized to 1. 
Use the expression (8.26) for the volume element and draw on the general 
integral expression (9.23). 

b. Determine the expectation value of r, i. e., 

in terms of 2 and ao. 

c.  Likewise, determine the expectation value of l / r ,  i. e., 

9.2. Consider the so-called hybrid orbital 

where $zs and $2p, are the normalized atomic orbitals for a hydrogen-like atom with 
nuclear charge Ze, i. e., 

$2s = RzS(r)Yoo(@,d), { $lP, = Rzp(r)Yz(@, 4). 
Adopt atomic units and write down the explicit expressions for $zs and $pP,.  

a. Determine the dipole moment 

p = (z) = $*zt+!Jdu = $*r cosO$dv J J 
as a function of X and Z. 
For some of the integrals that occur, exploit that the integral of an 
odd function vanishes, This is true in any dimension, as one sees by a 
straightforward generalization of Fig. 5.1 to higher dimensions. 
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b. Which positive value of X gives the largest dipole moment? 

c. Still using atomic units, calculate the value of p for an sp hybrid 
orbital (A = l), an spz hybrid orbital (A = f i) and an sp3 hybrid 
orbital (A = a). 
d. 
curves in a plane containing the z-axis. 

Sketch the above mentioned hybrid orbitals by drawing contour 

9.3. The positron is the antiparticle of the electron. It has the same mass as the 
electron, but while the electron has the charge -e, the positron has the charge 
+e. Under suitable conditions, the two particles may bind to each other, forming a 
positronium atom (average lifetime 0.5 x 
What is the ground-state energy of the positronium atom? 

9.4. Starting from Table 9.1, write down the analytic expressions for the radial 
functions Pla(r), Pz.(r) and PzP(r). 

a. Adapt the bra-ket notation 

s ) .  

m 

(Pn1lPn)lt) = J Pij(r)Pnlv(r)dr 
0 

and conclude, on the basis of suitable theoretical arguments, that 

(PlIIPZ,) = 0. 

b. Show, by direct evaluation of the integral, that 

Next, construct theoretical arguments for this result, by writing down 
the differential equations that Pz, and PzP must satisfy and using that 
-d2/dr2 is a Hermitian operator. 
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In the previous two chapters, we have seen the important role that the 
orbital angular mom~ntum plays in the c~ntral-~eld problem. The orbital 
angular momentum of a single particle is, however, not the only kind of angular 
~ o ~ e n t u m  that occurs in the description of atoms and molecules. Another 
important kind of angular ~ ~ r n e ~ t ~ ~  is the spin, and yet another kind is 
obtained by adding individual angular momenta of any type. 

218 
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In the first section of this chapter, we shall extend the algebraic treatment 
of the angular-momentum problem set up in Sec, 8.3 to cover any type of an- 
gular momentum. This is, in fact, an easy thing to do, because the whole the- 
ory is governed by the commutation relations between the angular-momentum 
components and the requirement that the components be Hermitian operators. 
The general theory is re~~sentataon ~ n d e ~ ~ ~ e n t  in the sense that it only works 
with the eigenkets of the angular-momentum operators and the relations be- 
tween them. The explicit form of the angular-momentum eigenfunctions is 
irrelevant in so far it9 the general theory is concerned. It is determined by the 
system to which the theory is applied. 

The general theory allows both integral and half-integral angular-momen- 
tum quantum numbers. Thus, it enables us to give a quantitative discussion 
of the electron spin. Such a discussion is given in the second section and 
further elaborated in the third section. In the fourth section, with its three 
subsections, we give a detailed account of how a one-electron Hamiltonian is 
modified by the presence of the spin and external electromagnetic fields. 

An ~mportant companion of the spin is the intrinsic magnetic moment of 
the electron which is often given the epithet anomalous. The background 
for this designation is also given in the fourth section. In the fifth section, 
we estimate the magnitude of the effects induced by the spin terms and an 
external magnetic field, and show that the effects are relatively small, at least 
for light atoms. 

When discussing magnetic eflects, one often writes the Hamiltonian as a 
two-by-two matrix and the wavefunction as a two-component quantity. The 
resulting Schrodinger equation is known as the Pauli equation. It is set up in 
the sixth section. 

The final section of the chapter touches on the relation between angular- 
momentum theory and the theory of rotations, and we arrive at the important 
conclusion that wavefunctions describing particles with half-integral spin must 
change sign during a rotation through 2% about any axis. 
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10.1 General Angular Momentum Theory 

The definition of a general angular momentum is the following 

, A set of three Hermitian operators satisfying the com- 
mutation relations 

[&, j,] = ihj , ,  
[j,, j,] = ih&, 
[j , ,  &] = ihjy ,  

defines an angular momentum. The vector operator 

is called an angular-momentum vector, and the operator 

j 2  = j,2 + jy” + j,2 

is called the square of the angular momentum 

(10.1) 

The commutation relations between j,, jy and j ,  are the same as the com- 
mutation relations (5.33) between the orbital angular-momentum operators 1, , 
fy and i,. Hence, the equivalent of the exercise (5.38) gives 

[?, j,] = [P, jy] = [?, j z ]  = 0,  (10.2) 

showing that J2 commutes with any component of J.  

the same dimension as h.  The operators 
The commutation relations in (10.1) show that j,, jy and j ,  must have 

are therefore dimensionless operators. They satisfy the same commutation re- 
lations as the operators (~Z,~,,t!z) of Sec. 8.3. This implies that any result 
of Sec. 8.3 that could be derived from the commutation relations alone must 
also hold in the general case. In particular, there must be a sequence of eigen- 
kets similar to the sequence (8.72). Let us write J and M instead of d and 
rn, and also ( J M )  instead of Yc,. We have, then, relations similar to the 
relations (8.73). Expressed in terms of the operators (&, jy, j z )  rather than 
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(j+, jg, jz), these relations become 

1 j , l JM)  = M h J J M ) ,  M = -J, -J + 1,. . . , J - 1, J. I (10.4) 

~ 

The orthonormality relation (8.74) reads 

( J M I J M ' )  = 6 ~ ~ 1 ,  

and the step-up and stepdown relations (8.82) become 

j + l J M )  = h J ( J  - M ) ( J  + M + 1) IJ, M + 1>$ 
j _ l J M ) = ~ J ( J 3 . M ) ( J - M + l ) I J , M -  1) 

where 

(10.5) 

(10.6) 

(10.7) 

As to the possible values of J ,  we conclude from the discussion at the end 
of Sec. (8.3.4) that the general algebra allows the values J = 0, 4, I, z ,  2,. . . . 
That the quantum number i! had to be restricted to integral values was derived 
from the actual form of j z ,  via the relation (8.47). In other words, it was a 
result that was obtained for a particular physical system. The algebra itself 
allows for the possibility that physical systems exist for which the situation 
could be different. 

The formalism behind the relations (10.1)-(10.7) enables US to treat any 
angular-momentum sytem, whether it refers to a single particle or a collection 
of particles. In the present chapter, we are primarily interested in the spin 
problem, so we shall postpone the discussion of many-particle systems. As a 
foretaste of what is involved for a many-particle system, let us, however, verify 
that the total orbital angular momentumof an N-electron system is a bona-fide 
angular-momentum vector, in regard to the definitions of this section. 

The total orbital angular momentum of an N-electron system is customarily 
denoted by A .  It is defined it9 the vector sum of the individual orbital angular 
momenta: 

N 

(10.8) 
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The components of L are given by the operators 

(10.9) 

When these operators act on a function of the coordinates ( T I ,  ~ 2 , .  . . , P N ) ~  

operators referring to different particles will commute. Hence, we get 

" N N 

i=l j=1 i=l  i=l 

plus the analogous expressions for [iyr iz] and [i, , ix]. Thus, ix, 2, and L, 
satisfy the commutati~n relations (10.1) and & is, in fact, a proper angular- 
momentum vector. 

10.2 Spin, Spin Functions and Spin-Orbitals 
We shall now attack the problem of describing the spin of the electron. For- 
mally, this is quite simple, because everything we need is included in the pre- 
vious section. The only thing we have to do is to treat the spin problem as 
a special case of the general angular-momentum problem. This will be the 
leading philosophy of this section. 

The spin is described by a vector operator i = (gX, Sv,  kz) and its square, 
i2 = d i  + d i  + S;. These operators are assumed to be Hermitian, and they 
satisfy commutation relations similar to those in (lO.l), 

[is , d,] = ihd, 
[S,, S z ]  = ihi,, 
[dz, is] = my, 
[k2, dx] = [2, ky] = [L?, S z ]  = 0, 

(10.11) 

so the formal machinery set up in the previous section applies to them. But 
to indicate that the particular problem is a spin problem, one traditionally 
denotes the J and M quantum numbers by s and m,, respectively. 

As already mentioned in Sec. 1.7, the electron is a spin one-half particle. 
What this says is that the only s-value that appears is s = 4. Thus, the s- 
value is an invariable property of the electron. There is no way of changing 
it. This situation contrasts the orbital angular-momentum case. An orbital 
angular-momentum must be described by an integral &value, but the &value 
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may be changed by letting the electron interact with other particles, including 
photons. 

With s = 3, there are only two linearly independent spin functions. We 
may choose them aa eigenfunctions of i,, and they are then denoted by a and 
P. Thus, we have 

( 10.12) 

~~~~ ~ ~ ~ 

The a and P spin functions are eigenfunctions of the operator i, with 
different eigenvalues and are hence orthogonal. We shall also assume that a 
and p are normalized to unity. The spin variable c is a purely formal quantity 
which allows us to express these statements in a familiar way:' 

(ala) = Ja(C)*a(C)dc = 1, 
(PIP) = JP(c)*P(r)dc = 1,  
(alp) = J a ( C ) * P ( C ) d C  = 0. 

The relations (10.6) take the simple form 

where 

i+ = 0 ,  + i iy ,  
s- = s, - asy.  

(10.13) 

(10.14) 

(1 0.15) 

Since there are only two linearly independent spin functions, the most gen- 
eral, normalized spin function has the form 

7(C) = ClCr(C) + czP(r), c;c1 + c;c2 = 1. (10.16) 

In accordance with the discussion of Sec. 5.9, its statistical interpretation is 
that cicl is the probability of observing the z-projection of the spin to  be 
i h ,  while clcz is the probability of observing its value to be - i h .  In a given 
physical situation c1 and c2 may, of course, be functions of time. 

mistaken for the greek letter C (zeta). 
'The symbol c is a typographical variant of the greek letter u (sigma). It should not be 
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Thus we are able to give a purely formal description of the spin without 
demanding that it emerge from a more fundamental analysis. This type of 
description is fully adequate for most purposes. 

Considering both the spatial and the spin degrees of freedom for a spin 
one-half particle, one introduces a so-called ~ ~ a ~ - o ~ b 2 t u l I  

+ ( T I C )  = ( P l ( 4 4 C )  + cpz(.)P(c). (10.17) 

Any wavefunction for a spin one-half particle may be written in this form. The 
statistical interpretation is that (PI ( T ) * ( P ~ ( T ) ~ v  is the probability of finding the 
particle in the volume element dv at  Ti with the 2-projection of the spin being 
$Ti. SimiIarly, ( P Z ( . ~ ) * ( P ~ ( T ~ ~ V  is the probability of finding the particle with the 
z-projection being -ih.. Again, the functions ( P ~ ( T )  and c p z ( ~ )  may be made 
time-dependent . 

Having introduced the concept of spin-orbitals, we must also be prepared to  
include terms containing the spin operators C,, Cg and C, into the H a m i l t o n i ~ .  
The Schrodinger equation must then be written 

&(TIC)  = E+(T,C).  (10.18) 

Its solutions will be of the form (10.17). We shall meet spin-dependent Hamil- 
tonians later in this chapter (Sec. 10.4). If, however, the Hamiltonian is taken 
to be independent of spin, as when we retain the familiar form 

(10.19) 

then the solutions of Eq. (10.18) will be ( P ~ T ~ ~ ~ c ) ,  where q ( ~ )  is an arbitrary 
spin function of the form (10.16), and p(v) is a solution of the Schrodinger 
equation 

2p f r )  = Ecp(T). (10.20) 

For since the spin-independent Hamiltonian 2 has no effect on q(q), it is 
obvious that J O ( T ) ~ ( C )  satisfies the Schrodinger equation (10.18) whenever V ( T )  
satisfies Eq, ( 1 ~ . 2 0 ~ .  In this way, each cp(.r) defines two linearly independent 
solutions of Eq. (10.18), and it is customary to take these to be 

(10.21) 

where + and - refer to the a and ,l3 spin-functions respectively. The degeneracy 
of each energy level is thus doubled by the inclusion of the spin. 
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In Eq. (10.21), we have used 2 as a convenient designation for the combi- 
nation of the space coordinates ( 2 ,  y, z )  and the spin variable q. Similarly, we 
shall let Hx denote integration over 2,  y, and z plus integration over s, i. e., we 
shall write 

d x  = dvdq. (10.22) 

We get then, provided that p(r) is normalized to unity, 

Hence, the spin-orbitals 6 and (p are normalized and mutually orthogonal 
As an important example, let us assume that the potential in Eq. (10.19) 

only depends upon the distance r to a center. We are then dealing with a 
central-field problem, and the spatial orbitals may be written as in Eq. (9.53) 
or Eq. (9.54). Hence, the associated spin-orbita~s take the form 

(10.24) 

or, more general, 

where ’ys labels two independent linear combinations of a(<) and p(r), in a 
similar way as yt labels 24 + 1 independent linear combinations of the sur- 
face spherical harmonics Ytmc(8, (6). In any case, a central-field spin-orbital is 
characterized by four “quantum numbers”, (n, l ,  mt, vd) or (n, 4, yt, r3). 

In the next chapter, we shall see that the inclusion of spin, and in particular 
the replacement of ordinary spatial orbitals by spin-orbitals, is of €undamental 
importance for the understanding of the electronic structure of many-electron 
atoms and molecules. But apart from this, the spin also manifests itself through 
its accompanying magnetic moment. The presence of the magnetic moment 
leads to additional terms in the Hamiltonian, in particular when the atom or 
the molecule is embedded in an electromagnetic field. We shall introduce these 
terms in Sec. 10.4. 

As already mentioned in Sec. 3.1, the hypothesis that the electron possesses 
an intrinsic angular momentum was introduced in 1925 by Uhlenbeck and 
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Goudsmit.2 At the time, attempts to give a rationai interpretation of the 
simpler atomic spectra had led to much confusion, and it was the merit of 
Uhlenbeck and Goudsmit that they were able to point to a mechanism by 
which the confusion might be eliminated in a convincing way. It appears 
that the young American physicist Ralph de Laer Kronig had come upon a 
similar idea earlier the same year, but since it was ridiculed by the authorative 
Austrian physicist Wolfgang Pauli, he did not publish it. Notwithstanding his 
early opposition, it was Pauli who first constructed an operator description of 
the spin, along e s ~ ~ n t i a ~ I y  the same lines as we have presented above. (See Sec. 
10.6.) 

In continuation of the above discussion, let us emphasize that spin is an 
intrinsic property of all elementary particles. Particles with half-integral spin 
are called fernaions, particles with integral spin are called bosons. The photon 
is a spin 1 particle, the mesons are spin 0 particles, so they are all examples of 
bosons. Among the fermions, we find the electron, the proton and the neutron, 
the neutrinos, etc. A spin formalismsimilar to the one set up for the electron in 
this section may equally well be established for the other elementary particles, 
~ u t ~ t ~ s  ~ u t a n d i s .  

The fact that our present spin operators P,, i, and i, refer to a spin one- 
half system endows them with some special properties that general angular- 
momentum operators do not share. We derive these properties in the following 
section by exploiting that i,, 4, and i, always act on functions in the two- 
dimensional function space spanned by the functions afc) and P(F) ,  namely, 
the set of functions given by Eq. (10.16). 

10.3 Properties of the Spin One-Half Operators 

It is convenient to replace the spin operators 1,, iig and 8, by three dimen- 
sionless operators @,, Cig and Ci, according to the definition3 

(10.26) 

2G. €3. Uhlenbeck and S .  Goudsmit, Naturwiss. 13, 953 (1925). 
3Note that this definition includes an extra factor of 2 as compared with the otherwise 

similar definition in Eq. (10.3). 
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In terms of these operators, the relations (10.12) become 

( 10.27) &,a = a, 
Szp = -8, 

S 2 a  = 3a, 
8 2 p  = 3p 

where we have omitted the formal spin variable c .  Similarly, the relations 
( 10.14) become 

where 

?+a = 0, 
3+p = 2ff, 

6-a = 2p, 
6-p = 0 

I 

S+ = 8, + ib,, 

(10.28) 

(10.29) 

By inserting the expressions (10.29) into the relations (10.28) and subse- 
quently adding and subtracting equations, one obtains simple expressions for 
the action of S, and Su on the functions a and p. Including also the result of 
acting with bz, from Eq. (10.27), we arrive at the important formulae 

I I 
&,a = p, S,a = ip,  &.,a = a, 
bx$ = a, i?,p = -aa, i?,p = -p. (10.30) 

By means of these formulae we find, for instance, that 

8 , S u ( c 1 a  + c 2 P )  = b ? X ( C l P  - C 2 Q )  = i ( c 1 a  - C 2 P )  

8 z ( c 1 f f  + 4) = c 1 a  - c 2 p .  

8 v ~ c ( ~ 1 a  + c 2 p )  = bv(c~P + c z a )  = - i ( c l a  - CZP) (10.31) 

Since c l a + c Z p  is an entirely arbitrary spin one-half function, these expressions 
allow us to write 

(10.32) ,.a .^ exby = -uyux = au,. 

The formulae (10.30) also give that 

S x & x ( c l a  + C 2 P )  = S X ( C 1 P  + C2Q) = c 1 a  + c 2 p ,  (1 0.33) 
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so that we may write 

uxux = 1. (10.34) 

Proceeding in a similar manner, we end up with the following set of relations 

uxux = uyuy = uzuz = 1,  
uxuy = -uyux = zuz, 

uyuz = -uzuy = Z U X ,  
uzux = -u,u, = 2uy. 

n L  

(10.35) 

The relations (10.35) imply the commutation relations 

[UX, i?y] = 2iuz, [UY, 3z] = 2iux,  pZ,ux]  = 2iuy, (10.36) 

which, of course, could have been written down from the very outset by sub- 
stituting the definition (10.26) into the commutation relations of Eq. (10.11). 
However, the relations (10.35) also imply that 

uxuy + uy6x = 0, 
uyuz + uzuy = 0, { uzux + usuz = 0. 

(10.37) 

These relations only hold for spin one-half systems. One says that the spin 
operators ux, kY and uz anticommute with one anothei. By introducing the 
so-called anticommutator by the definition 

with fia and f i b  being arbitrary operators, we may collect the anticommutation 
relations in a single compact expression as follows - 

[kj, & j ] +  = 2sij (10.39) 

where i and j independently take on the values 1,  2 and 3, with 1 referring 
to  index E ,  2 to  index y and 3 to  index z .  The anticommutation relations are 
peculiar to spin one-half systems, because they are a consequence of the spin 
one-half formulae (10.30). 

u 
The formulae (10.30) are often presented in a matrix notation, viz,, 

(10.40) 0 1  
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The matrices 
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(10.41) 

(10.42) 

are called the Pauli spin matrices. They satisfy all the relations (10.35), 
and therefore also the commutation relations (10.36) and the anticommutation 
relations (10.39). This is readily verified, but it also follows from the general 
discussion of Sec. 5.10, by considering a(<) and p(r) as basis functions in a 
two-dimensional function space V and, in particular, by comparing with Eqs. 
(5.152) and (5.164) of that section. Eqs. (5.151) and (5.152) also imply that 

(10.44) 

By the rules laid out in Sec. 5.10, the spin matrices usJ uy and u, become 
the representatives of the operators kZ,  &y and c ? ~  when one represents the 
(Y and p spin functions, and the general spin function (10.16), by the column 
vectors 

respectively. In such a representation, a relation like 

& y ( c l ~  + c2P) = -iczcr + i c lp  (10.45) 

becomes 

( g  -;)(;;)=(-;;;). (10.46) 

Matrix expressions of this type are useful in several contexts and are frequently 
met in the literature (See also Sec. 10.6). 
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10.4 The One-Electron Atom in External FieIds 
The motion of a single electron in a central field has so far been defined by a 
Hami~to~ian of the form 

(10.47) 

As indicated, we now call this ~amiltonian @a. We ask how it is modified by 
the inclusion of the spin and the addition of an external electromagn~tic field, 
and answer this equation in three steps to be described in the following three 
subsections. 

10.4.1 
Let us begin by still neglecting the spin. The procedure to follow is then to 
first construct the proper classical Hami~tonian, in a similar way as in Sec. 3.3, 
and next turn this dynamical function into an operator by the prescription 
given in that section. To set up the classical ~ a m i l t o n i ~  for a particle in the 
presence of aa external electromagnetic field is a somewhat advanced prablem. 
It is properly described in many textbooks,* so we shall merely give the result, 
which is 

The Hamiltonian With Spin Neglected 

(10.48) 

V l r )  is the potentia1 energy without the field. For the one-electron atom it is 
the centrai fieid, V ( r ) .  q is the charge of the particle and rn is its mass. For 
an electron, m = me and q = -e, so Eq. (10.48) becomes 

1 
2m &fP,  T )  = - (P - rrA(p, txJ2 + qp(?=, t )  + V ( 4 .  

{ 10.49) 1 
2me 

&(P,T)  = ~ ( P +  eA(T,t))2 - eul(?=,t) + V ( F )  

A ( T , ~ )  is the oector ~ t e ~ t ~ u ~  of the field and cp(~,t)  is the scalar ~ o ~ e n t a a ~ .  

B(P,  t )  and the electric field E(v ,  t )  through the relations 
The field potentials A(T, t )  and p(?=, t )  represent the ~ a g n e t i c  ~ n ~ u c t ~ o ~  

B = V x A ,  
8A (10.50) E = -vp- - { at' 

4Seet €or instance, Refs. [is], [20], [21], or I221 in the bibliography. 
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where 

( 10.5 1) 

and 

Vp is the gradient of the scalar potential p (cf. Eq. (3.2)). V x A is the curl 
of the vector potential A. 

This is not the place to enter into a deeper discussion of the relations 
(10.50). For the present, we shall focus our attention on fields that are constant 
(independent of time) and uniform (independent of position). We may then 
Put 

(10.53) 

where B and E are the constant and uniform fields. It is readily verified 
that the above expressions do, in fact, generate the fields B and E from the 
relations (10.50). We get, for instance, 

A(T)= ! j B x r =  + ( B u r -  B , y , B , x -  B,z ,B,y-  B y x ) ,  { p ( r )  = - E  T = - (EZx + E, y + E,z) , 

= - B , + - B z = B z  1 1 (10.54) 2 2 
and 

We must now substitute the expressions (10.53) for A and y, into the Hamil- 
tonian (10.49). This leads to the following result, for constant and uniform 
fields, 

I I 
P2 e e2 

2% 2% 8me 
H,..(p, r )  = - + V ( T )  + -1 . B + er . E  + - ( B  x T )  

where 1 = t x p is the usual orbital angular momentum. As an intermediate 
step in obtaining this result, write 

(10.57) (P  + eA(t)I2 = (P + ~ A ( T ) )  (P + eA(t))  
= p 2  + 2eA(r) a p + e2A(r)’, 
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substitute A(T) = 4B x T and use that the elementary rules of vector analysis 
allow us to write ( B  x T )  . p  = B 3 (r x p )  = (T x p )  . B .  

To obtain the quantum-mechanical Hamiltonian, we must replace the vector 
p in Eq. (10.49) by the vector operator 

( 10.58) 

and write 

( 10.59) 

We must then substitute the expressions for A and p as before. But during 
this process, we must now reconsider the step represented by Eq. (10.57) and 
examine whether the commutation relations (5.26) allow us to put 

1 E?,I = -(jj+ eA(r , t ) )2  - ecp(.r,t) + V ( T ) .  
2me 

p . A = A . p  (10.60) 

For this to  be the case, the commutators [pz, A,] ,  [p,, A,] and [p^Z,A,] must 
all vanish. They do, for we see from Eq. (10.53) that A, is independent of x, 
A, is independent of y, and A ,  is independent of z .  Thus, Eq. (10.60) does 
hold, and the quantum-mechanical Hamiltonian becomes 

10.4.2 The Hamiltonian With Spin Included 
We must now worry about the inclusion of the electron’s spin. This is not 
a straightforward problem, for the concept of spin lies outside the realm of 
classical mechanics. 

To tackle the problem, we remark that the classical Hamiltonian (10.49) is 
the non-relativistic classical Hamiltonian. We are looking for the correspond- 
ing non-relativistic quantum-mechanical Hamiltonian. The way to derive the 
form of this Hamiltonian is to infer it from the Dirac equation5 which gives 
the proper relativistic description of the electron, as already pointed out in 
the Introduction to Chapter 3. From the Dirac equation, one arrives at  the 
remarkable result that the Hamiltonian in question becomes 

- 1  
H = -{&. (@+ eA(r , t ) ) } ’  - ecp(T,t) + V ( T )  

2me 
( 10.62) 

5See, for instance, Refs. [18] or [27] in the bibliography. 
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where 6 is the dimensionless spin vector defined by Eq. (10.26), i. e., 

u = (kX, uy, U,). (10.63) 

Thus, the effect of the spin is to modify the first term in the Hamiltonian 
(10.59). 

We shall now show that the modification is illusory when A is zero. For in 
that case the first term merely contains the operator (u . p ) 2 ,  for which we get 

(U * p ) 2  = (&xpx + &yfi, + &zljz)2 
= &:p; + &;fi; + 6:p: + + uy&z)ljxfi, (10.64) 

+ (&,kZ + +zuy)pypz + (6,&x + u x & z ) @ z p x ,  

where we have used that pxpy = p y p x ,  etc. The right-hand side of this equa- 
tion looks complicated enough, but because of the anticommutation relations 
(10.39)-or more explicitly, because of the relations (10.37) and the first set of 
the relations (10.35)-we simply get that 

( 10.65) 2 - -2 
( & a @ )  - p .  

Thus, the Hamiltonians (10.59) and (10.62) are identical when A vanishes. 
The relation (10.65) is a special case of the more general relation 

(U .a)(& 4) = U . b + i U .  (U x b),  (10.66) 

where a and b are arbitrary vector operators. To verify this relation, expand 
(& * U)(U * b) and use the relations (10.35): 

(U * &)(& 6) = (&xiiz + &&/ + &zii,)(&xbx + &,by + u& 

= a:iixbx + &;iiyby + &;iizbz + &x&yiixbv + &y&xii,bx 

+ &x&ziixbz + &z&x&zbx + U,&,ii,bZ + 2z&viizb, 

= i i xbz  + &,by + ii,& + i&,(iiXbY - iiyix) 
+ iUY(ii,bX - U X b Z )  + i&.,(d,S, - i i zby)  

= u . i, + 2% . (U x 6). 

(10.67) 

As the form of Eq. (10.62) shows, we need the relation (10.66) if A is 
different from zero (with a = b in the relation). We get 

{u * (fi + e A ( T , t ) ) } '  = ( p  + eA(r,  t))' + ied . ( p  x A + A x @), (10.68) 
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where we have used that $ x p and A x A vanish. 
We now note that 

@ x A ) Z  + ( A  x @)Z = @yAz - 6 A y )  + (Ay& - Azpyy) 

} (10.69) dAz = {A&, - ihdy  - A& + &A 
dz 

+ - AZ&) = -&(V x A)$, 

etc. But V x A = B ,  according to the first of the relations (10.50). When this 
result is inserted into Eq. (10.68), we find that the Hami~tonian (10.62) may 
be written 

A 1  eti H =  - - ( @ + e A ( ~ , t ) ) ~ +  - b . B ( ~ , t ) - e p ( ~ , t ) +  V ( T ) .  (10.70) 
2me 2% 

This Ham~ltonian differs from the Hamiltonian (10.59~ by the term conta~ning 
li . B(r ,  t ) ,  

By reintroducing the original spin i by Eq. (10.261, we get 

( 10.7 1) 
A 1  e w == - ( p +  e A ( r , t ) ) ’ +  - 8 * B ( ~ , t )  - e c p ( ~ , t ) +  V ( T )  

2me me 

This expression holds for arbitrary external fields. If, however, the external 
fields are constant and uniform, then we may again perform the reduction that 
led to  Eq. (10.61), and we get 

CI p 2  e e e2 a H = - + V ( T )  + -Z.B + --i . B  + ep  - E +  - ( B  x r) 
2% 2me me 8me 

(10.72) 

10.4.3 The Refined ~ a ~ i l t ~ n i a n  
The Hamiltonian (10.72) is the correct non-relativistic Hamiltonian for an 
electron in constant and uniform external fields. But because electrons may 
move at quite high speeds in the interior of an atom-in particular when the 
nuclear charge is large-there are many situations for which a purely non- 
relativistic description does not suffice. In very precise work, it is becoming 
increasingly common to introduce the Dirac equation in such cases, but often 
one may go a long way by simply adopting the H a m i I t o n i ~  (10.72) with a 
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single relativistic correction term which accounts for the so-called spin-orbit 
coupling. The term may be derived from the Dirac equation, and for a central 
field problem it has the following form 

H,, = ((r)ii .Z (10.73) 

where ( ( r )  is derived from the potential-energy function V ( r ) ,  

1 ldV(r)  
((r) = --- 

2m,2c2r dr 
(10.74) 

For a hydrogen-like atom, we insert the Coulomb expression (2.65) for V ( r )  
and get 

(10.75) 

With the spin-orbit term included, we may write the Hamiltonian on the 
following form 

where GO is the “zero order Hamiltonian” (10.47) and we have denoted the 
last term in Eq. (10.72) by Hdiam, 

h 

(10.77) 

It is quadratic in B and gives rise to the phenomenon of diamagnetism. Hence 
it is called the diamagnetic term. If, for instance, the z-axis is chosen to point 
along the B direction it simplifies to 

(10.78) 

Apart from this, the form of the Hamiltonian (10.76) gives occasion for the 
following interpretative comments. 

The term eE.r represents the interaction between the external electric field 
and the charge of the electron. By the prescription (3.2), it gives the familiar 
electric force 

F = -V(eE - F )  = -eE. (10.79) 
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The direction of the force is opposite to that of the electric field, because the 
electron is negatively charged (the symbol e is as usual understood to  represent 
the positive elementary charge). 

In classical electrodynamics, an electric dipole is a vector quantity whose 
potential energy in an electric field is 

H' = - d .  E ,  (10.80) 

where d is the electric moment of the dipole. The term eE . r has, therefore, 
the form of the interaction between an electric dipole 

d = -er (10.81) 

and the electric field E .  

a magnetic field is 
Similarly, a magnetic dipole is a vector quantity whose potential energy in 

H' = -p, . B ,  ( 10.82) 

with p ,  being the magnetic moment of the dipole. The terms ( e /2me) i .  B and 
( e / r n , ) i  . B may, therefore, be said to represent the interaction between the 
magnetic field and the two dipoles 

and 

(10.84) 

The presence of an orbital angular momentum, I ,  is seen to imply the 
presence of a corresponding magnetic moment proportional to Z. The factor of 
proportionality is called the gyromagnetic ratio, and is usually denoted by y. 
Thus, we have 

e 

2% 
y = - - =  -8.79411 x 10" Hz T-'. ( 10.85) 

Its negative sign indicates that 1 and fiOrbit are antiparallel. 
The spin, i, also has a magnetic moment associated with it. The magnetic 

moment is proportional to  i, but the factor of proportionality is twice as large 
as that for the orbital motion. 
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gs = 2.0023193044. 

By summing an equation like Eq. (10.72) over several electrons, it is readily 
seen that the total orbital-angular momentum of a many-electron system, as 
defined by Eq. (10.8), defines a magnetic moment proportional to it, with the 
same gyromagnetic ratio as in Eq. (10.85). Generally, one finds that a system 
of particles with a common charge-to-mass ratio, q/m, may be characterized 
by a gyromagnetic ratio equal to q/2m. In view of this, it is remarkable that 
the gyromagnetic ratio associated with the spin of the electron equals -elm, 
rather than -e/2me. The derivation that we have presented above gives the 
origin of this difference. It simply arises because the spin enters into the 
Hamiltonian (10.62) in a different way than the orbital motion does. 

In proceeding, let us replace Eq. (10.76) by the expression 

(10.88) 

(10.86) 

Here, we have introduced the natural unit of magnetism, the Bohr magneton 
which we already met in Sec. 1.7, 

I 1 
eh = 9.27402 x J T-' (10.87) 

The reaaon for the small deviation from the value 2 is that even the Dirac equa- 
tion has its limitations. These limitations are that the Dirac theory describes 
the electromagnetic field by its scalar potential and its vector potential just 
as we have done above. An electromagnetic field is, however, also a quantum 
system, with its own degrees of freedom. The field potentials and the field vec- 
tors E and B are therefore operators in quantum electrodynamics, and when 
we say that the fields vanish, this merely implies that the expectation values 
of the operators corresponding to E and B vanish. There are, however, uncer- 
tainties associated with the field vectors, and these uncertainties will always be 
different from zero, because the general uncertainty relation (5.121) holds in all 
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branches of quantum mechanics. An electron senses the fluctuations causing 
the nonvanishin~ uncerta~nt~es and even has an in~uence upon them. 

When the quantum fluctuations of the electromagnetic field are properly 
taken into account, one ends up with the g-value of Eq. (10.88), with its eleven 
significant figures. The theoretical value has been confirmed by extremely 
precise me~urements that have been conducted more or less s ~ m u l t ~ e o u s l y  
with the advanced calculations. The calculation of the g-value is one of the 
great triumphes of modern physics, because it confirms the validity of quantum 
electrodynamics which, in turn, is the prototype of modern field theories for 
elementary particles and their interactions. 

The intrinsic magnetic moment of the electron is often called anomalous, 
either because the g-factor is 2 rather than 1 (a9 it is for orbital motion), or 
because the g-factor is not exactly equal to 2 (as it is in the Dirac theory). 

Let us now turn to the spin-orbit term (10.73). It emerges in a natural way 
from the Dirac theory, when that theory is compared with the Schrodinger the- 
ory by means of a series expansion in 1/c6 But its form may also be obtained 
by an analysis based on classical mechanics, by the following arguments. 

In the central field described by the pot~ntial V ( r )  of Eq. (10.47), an elec- 
tron at  rest will experience an electric field E = -&VV(r), but no magnetic 
field. A moving electron will, however, also experience a certain magnetic field 
due to V ( r ) ,  according to the theory of relativity. The magnetic moment of 
the electron must interact with this field in a similar way as it interacts with 
an external magnetic field. But when the interaction is actually calculated, 
one finds twice the value given by the expressions (10.73) and Eq. (10.74). In 
other words, one only obtains the correct result by using a g-value of 1 instead 
of 2. A more careful analysis is, however, able to explain why this is so by 
realizing that an orbital electron is an accelerated electron; the d i r ~ t i o n  of 
its velocity changes all the time. As shown by the English physicist Llewellyn 
Hilleth Thomas,’ the acceleration causes a precession of the spin, and it is this 
precession that leads to a formal reduction of the g-value from 2 to 1.8 

6The expansion also contains other terms of the same order as the spin-orbit term, and 

7L. H. Thomas, Nature 117, 514 (1926). 
8The reader who, as a splendid exercise in special relativity, wants to verify the expression 

(10.73) is recommended to consult Ref. [IS] in the bibliography, where a comprehensive 
treatment of the problem in presented. 

in very accurate work these terms may not be ignored. 
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10.5 The Zeeman Effect 
With reference to the Hamiltonian (10.86), let us now briefly consider the 
energetic effects of the spin-orbit term g,, and the term 

H z = p B ; ( i + g d i ) . B .  (10.89) 

which is customariIy referred to as the Zeernon tern. We shall neglect the 
effect of the diamagnetic term and assume that the electric field is zero. 

It is convenient to choose the z-axis in the direction of the magnetic field, 
so that B may be written 

h 

B = ( O , O ,  B) .  (10.90) 

( 10.91) 

The Zeeman term becomes then 
h 

H z  = p g B $ ( i ,  + 2&). 

We have put gs equal to 2 as an excellent approximation. 
Let us begin by also neglecting the spin-orbit term, so that the Zeeman 

term is the only correction to 80. We then choose the eigenfunctions of 80 on 
the form (10.24), for they are then also eigenfunctions of and i,, and hence 
of 8z 88 well. w e  get 

( 6 0  + fiZ)$ntrnrm, (3) = ( ~ 0  + p B ~ ( m t  + 2ma)) +ntm&m, (z), (10.92) 

Thus, the 2 (2 l+  I) fold degenerate level with the z e ~ - o ~ e r  e~~~~ Eo is 
split into several components with different energies. We find, for instance, 
that a p level (1 = 1) is split into five components, of which four are non- 
degenerate and one is doubly degenerate. An s level (4 = 0) is split into two 
non-degenerate components, This splitting of levels is known as the Zeeman 
eflect. More specifically, we are considering the s t r o ~ g - ~ e ~ d  case because r?, 
has been neglected. 

The just mentioned splitting of s and p levels is illustrated in Table 10.1. 
We see that, if we introduce the energy quantity 

I E = Eo + p ~ B ( m t  + 2ma). 

A E  = ~ B B ,  (10.93) 

then the separation between neighboring components becomes A E  for the p 
level and 2AE for the s level. With B =: 0.5T as an experimentally realistic 
choice, and with the value of p~ taken from Eq. (10.87), we get 

A E  = 0.5 x 9.27402 X J = 4.63701 x 10-243, (10.94) 



240 Chapter 10. The Spinning Electron 

Table 10.1: The Zeeman Effect, Strong-Field Case.(See Eq. (10.58)) 

or 

AE - 0.23343cm-’. (10.95) 

This is a very small energy separation as compared with normal energy sep- 
arations between levels of the ~amiltonian go. Thus, the energy separation 
between the n = 2 and 12 = 3 levels of the hydrogen atom corresponds to 
15241 cm-l. The Zeeman effect is, for instance, exploited in electron spin 
resonance (ESR) experiments, where a sample containing “free” electrons is 
subjected to a uniform magnetic field in the Tesla region and, simultaneously, 
an oscillating electromagnetic field in the G H z  region (1 G H z  = lo9 H a ) .  

If we don’t neglect the spin-orbit term as we have done above, then we 
have a more complicated situation, except for s levels which are unaffected by s,, because ~ ~ ~ , ~ ~ , ~ ~ ) Y o o  = ( O , O ,  0). Levels with t! f 0 are split into two new 
levels by ifso. They may be characterized by their j-values, j = I?* 4. Here, j 
is the angular-momentum quantum number corresponding to the angular mo- 
mentum p = i + 9. The wavefunctions of the new levels may be determined by 
procedures for coupling of angular momenta. Having determined these wave- 
functions, the effect of the Zeeman term may be found by ~ r t ~ r ~ t 2 o n  theory, 
provided the spin-orbit effect dominates (the ~ e # ~ - ~ e ~ ~  case). Otherwise, the 
spin-orbit term and the Zeeman term must be treated together by means of 
perturbation theory or the oariational method (the intermediate case), We 
have not yet discussed the procedures mentioned, so we shall not consider the 
effects of the spin-orbit term and the Zeeman term further, but only mention 
that the spin-orbit splittings are very small for light atoms but appreciable for 
heavier atoms. Thus, the splittings in hydrogen are of the order of fractions 

AE - = 6.9981 x 1O9Nz, - - h hc 

h 
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of a cm". It is of the order of hundreds of cm-' in iron, and much larger for 
very heavy atoms. For hydrogenic ions, the expression (10.76) for [ ( r )  leads 
to a Z4 dependence of the splittings. 

Let UB finally mention that the term e r  . E  in the Hamiltonian (10.86) gives 
rise to the so-called Stark effect which may likewise be studied by perturbation 
theory or the variational method (cf. Problem 12.3). 

10.6 The Pauli Equation 

In the previous sections, we have constructed the spin terms in the Hamiltonian 
for an electron in an external field by referring to the Dirac equation. In this 
description, the electron acquires an anomalous magnetic moment because of 
the special way the spin enters into the Hamiltonian (10.62). The Dirac equai 
tion was set up in 1928. The spin had, however, already been introduced by 
Uhlenbeck and Goudsmit in 1925, and Schrodinger presented his equation in 
1926. Needless to say, it was felt urgent to modify Schrodinger's equation so 
that it would also describe the effects due to spin. The modification came 
soon and was due to PaulLg He introduced the spin operators and their com- 
mutation relations, and by accepting the anomalous moment as an empirical 
fact he constructed what has become known as the Pauli equation. It may 
be reproduced from the equations above by replacing the spin operators by a 
set of two-by-two matrices and the spin functions by two-dimensional column 
vectors. 

Let UB put E = 0 in the Hamiltonian (10.86) and neglect the diamagnetic 
term. Let us also put gs = 2, 1 = h i ,  i = $&, and insert the resulting 
Hamiltonian in the Schrodinger equation set up in Eq. (10.18). With the 
expression (10.17) inserted for + ( T , c ) ,  this gives 

By referring to the general discussion on matrix algebra in Sec. 5.10, and in 
particular to the setup of Eq. (5.161), we may convert this equation into a 
matrix equation containing the Pauli spin matrices (10.43). This goes in a 
similar way as Eq. (10.45) was converted into the matrix equation (10.46), at 

QW. Pauli, Z. Phys. 43, 601 (1926). 
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the end of Sec. 10.3. The operator u .  B is thus replaced by the matrix 

h 

and the operator H,, is replaced by the matrix 

(10.98) 

Hence, Eq. (10.96) becomes 

This is Pauli's equation." It is, of course, equivalent to Eq. (10.96), but the 
spin-orbital ( P ~ ( T ) ( ; Y ( c )  + ~ z ( T ) @ ( c )  has been replaced by the two-component 
wavefunction ( ( P ~ ( T ) ,  ( P Z ( T ) ) ,  often referred to as a Pauli spinor. 

10.7 Angular-Momentum Theory and Rotations 

In closing this chapter, we point out that there is a close connection between 
angular-momentum theory and the group theory of rotations. This connection 
implies that the behavior of an angular-momentum eigenfunction under rota- 
tions is entirely determined by the values of its angular-momentum quantum 
numbers. It is, in particular, independent of the type of coordinates upon 
which the function depends. 

To illustrate the connection, let R,(u) be the operator that performs a 
rotation, u ,  about the z-axis. It can then be shown that 

'oActually, Pauli also introduced a relativistic modification of the fio term, but it was an 
incomplete modification and is hence ignored. 
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no matter which system the ket J J M )  represents. A rotation through 27r gives, 
in particular, 

fiz (2n) jJM) = e-2KiM ~ J M ) .  ( 10.10 1) 

The relation (10.101) has a very important consequence, for it shows that 

S I J M ) ,  M = 0, fl ,  f2,. . . 
+M}, M = &$,&$,&f,. . . Rz(2n) lJM) = { ( 10.102) 

As might be expected, there is a similar result for a rotation through 27r about 
any axis, This allows us to replace M by J in Eq. (10.102). So, we have the 
more general result 

+IJM),  J = 0,1,2, I a. 
J = 3, $, 4,. . . - i J M } ,  

&(2n)JJM) = { (1 0 I 103) 

Thus, angular-momentum kets with integral J-values remain unchanged after 
a rotation through 2n, whereas angular-momentum kets with half-integral J -  
values change sign. 

For half-integral J-values, this result violates the requirement that accept- 
able wavefunctions must be single-valued (cf. Sec. 3.2). This requirement 
seemed perfectly reasonable, yet we may repiace it by the milder one without 
having to change the formalism that we have developed so far. For when we ex- 
tract physical information from wavefunctions, and when we construct matrix 
elements of operators, we always work with combinations like $ t (q )$z (q ) .  So 
all that we really need require is that such combinations remain single-valued, 
and this will obviously be the case when $1 and $2 behave similarly under a 
rotation through 2n, i. e., they must both remain unchanged or both change 
sign. 
We conclude from the above discussion that the spin function of a fermion 

must change sign during a rotation through 2n about any axis. The spin 
function of a boson remains, however, unchanged. This interesting behavior of 
the eIementary particles has been fully verified, but due to the complexity of 
the experiments only fairly recently.ll 

With our new knowledge, we have to reexamine the argument of Sec. 8.3.2, 
wcording to which the m-value associated with an orbital angular momentum 

"H. RBuch, A. Zeilinger, G .  Badurek, A. Wilfing, W. Bauspiees, and U. Bonse, Phys, 
Lett. A 64, 425 (1976). 
S, A. Werner, R. Corella, A, W. Overhauser, and C. E. Eagen, Phys. Rev. Lett. 35, 1053 
(1975). 
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must be integral because of the requirement that Y(6,  q5 + 2n)  = Y(B,q5). So 
let us for the time being assume that it is possible to find “surface spherical 
harmonics” with half-integral l and m. We then go through the first part of 
Sec. 8.3.2 again and conclude that also the new functions must have the form 
(8 .46 ) ,  but m is now half-integral. Thus, there must exist 2L + 1 functions of 
the form (8 .83) .  To determine the form of the functions @e,(O), we proceed 
as in Sec. 8.3.6.  We find again Eq. (8 .86 ) ,  but when we start to operate with 
the e^+ operator to determine the remaining 2 l  functions, we sooner or later 
create functions with singularitites. What this means is, that we can easily 
construct eigenfunctions of iz with half-integral rn-values, but these functions 
do not behave properly under the action of iz and iy. 

As a simple example, let us write 

and then try to apply the step-up operator in the form (8.57). The result is 
readily found to be 

(10.105) 

This function has singularities at 6 = 0 and 0 = 7r and is therefore not an 
acceptable function. 

The above discussion leads again to the result that wavefunctions which 
solely depend upon the spatial variables must always be single-valued. But the 
spatial degrees of freedom taken alone do not suffice for a proper description 
of an elementary particle. It is essential that we also include the spin, and 
with spin included we do in fact encounter functions that change sign during 
a rotation through 2n.  

With this and the previous two chapters we have discussed the most im- 
portant aspects of the one-electron central-field problem and the one-electron 
spin problem. We shall now turn to the discussion of atoms with more than a 
single electron. 

Supplementary Reading 

The bibliography, entries [4], [8], [ll], [18], [19], [22], [23], [24], [26], and [27] . 
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Problems 
10.1. In connection with the general definition of an angular momentum, Eq. ( l O . l ) ,  
we wrote: 

J = (L, &, J,), 
implying that I,, 1, and 3, are the components of the angular-momentum vector j 
along the three coordinate axes. In accordance with this, we have that the component 
of j along an arbitrary axis defined by the unit vector 

n = (n,, nu, nz), nZ, + n i  + n2, = 1, 

is given by the operator 

n . j = n,j, + n,j, + n z j z .  

It is, therefore, of interest to derive an expression for the commutation relation [nl . 
j ,  n 2  j ] ,  where n1 and n 2  are two arbitrary unit vectors. Show that 

10.2. The spin functions a(<) and P(c )  are eigenfunctions of the operators P2 and 
li,. 

a. Determine the corresponding normalized eigenfunctions of li2 and iz. 

b. Similarly, determine the normalized eigenfunctions of i2 and P,. 

Hint: Add and subtract suitable pairs of relations in the set (10.30). 

10.3. Consider the spin function 

where ei6 is an arbitrary phase factor (6 real). 

a. Show that g(c) is eigenfunction of the operator n . 2  with eigenvalue 
$h, where n is the unit vector 

n = (sin u cos u, sin u sin u, COB u). 

b. An electron with the above spin function is said to be polarized in 
the direction n. 
Show that any spin function of the general form (10.16) describes an 
electron with a uniquely defined direction of polarization. 
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In Sec. 1.2 we described the theory of the chemical atom as it was developed 
during the nineteenth century. A principal event was the construction of the 
periodic table of the elements, in 1869. The position of an element in the 
periodic table is given by its atomic number, 2, and in the beginning of the 
twentieth century this number was experimentally identified with the number 
of electrons in the neutral atom, as we discussed it in Sec. 1.6. But it was 
not until 1921 that it became possible to understand the background for the 
periodic variation of chemical and physical properties with atomic number. 

246 
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As we mentioned it in Sec. 2.5, the explanation was given by Niels Bohr who 
constructed a qualitative model of the many-electron atom, according to which 
the electrons of the atom were arranged in rings about the nucleus. The proper 
quantum mechanical substitution for this ring structure is the shell structure 
of the atom. This shell structure, and its correlation with the chemical and 
physical properties of the elements, is described in most university text books 
on general chemistry. Accordingly, it primarily remains for us to establish the 
proper connection with the Schrodinger equation, so this is the aim of the 
present chapter. 

11.1 The Many-Electron Atom 
Throughout the present chapter, we shall neglect the spin-orbit coupling effects 
that we discussed in Sec. 10.4.3. They are relatively small and may always be 
included later, for instance by perturbation theory. The Schrodinger equation 
for a hydrogen-like atom with nuclear charge 2 is accordingly taken to be 

(11.1) 

For the present, we shall neglect spin altogether. The bound-state solutions of 
Eq. (11.1) are then the atomic orbitals (9.54), 

4%aLrr(.) = RnL (r)YL-fr (e,d),  (11.2) 

with the radial functions as given in Table 9.1 and the spherical harmonics as 
given in Table 8.1 or 8.2. The corresponding energies are given by the Bohr 
expression (9.18). The energy depends only on the principal quantum number 
n,  and the number of orbitals corresponding to the energy En is n2 (See Eq. 

For simplicity of notation, and for convenience in numerical work, we shall 
now completely adopt the atomic unats described in Appendix B, i.e., we shall 
choose the basic units such that me,  e ,  h,  and 4T€o all become equal to one. 
We may then put a0 equal to 1 in the expressions for the radial functions of 
Table 9.1, and Eq. (1  1.1) becomes 

(9.57)). 

(-p - f) $ ( T )  = E$(T).  (11.3) 

The operator -30' represents the kinetic energy of the electron, and -ZIT 
is the potential energy of the electron in the electrostatic field of the nucleus. 
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The Bohr expression (9.18) for the energy becomes En = -Z2/2n2, aa already 
emphasized in Sec. 9.5, Eq. (9.56). Figure 9.5 shows the lowest energy levels 
of the hydrogen atom (2 = 1) in atomic units. 

For an atom or ion with N electrons and nuclear charge Z we get the 
Schrodinger equation 

where 0 is the many-electron wavefunction, 

= @(T1,T2,. . . , T N ) .  (11.5) 

We have numbered the electrons from 1 to N and denoted the position vector 
of the ith electron with respect to the nucleus by r i ,  

T i  = (xi, Y i ,  G). (11.6) 

So, the expression for the Laplacian V; becomes 

(11.7) 

rjj is the distance between electron i and electron j, 

'ij = 1.i - T j l .  (11.8) 

The prime on the double sum in Eq. (11.4) indicates that terms for which i = j 
are omitted in the sum. But otherwise i and j run independently from 1 to N ,  
and the sum includes for instance both 1 / q 2  and 1/7-21 which are identical. 
The factor 5 ensures, however, that such two terms only count as one. Thus, 
the double sum is effectively a sum over pairs, 

N N  N N  

(11.9) 
1 -cct+. 2 i=lj=l '3 = cck i=l j > i  * 

In the Schrodinger equation (11.4), the term 

(11.10) 
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represents the kinetic energy of electron i plus its potential energy in the field 
of the nucleus. The term l/rjj represents the Coulomb repulsion between 
electron i and electron j .  As usual, the Schrodinger equation may be written 
in the form 

GiP = EiP, (11.11) 

the Hamiltonian being 

(1 1.12) 

Each (2, N) pair defines a separate Hamiltonian and a separate Schrodinger 
equation with its own set of eigenfunctions and energies. But it is only for 
the hydrogen-like atom ( N  = 1) that the problem may be solved exactly. 
To determine the electronic structure of all possible atoms and ions is con- 
sequently a formidable task. Yet it has by now become possible to calculate 
good wavefunctions for the lower states of almost any atom or ion, at various 
levels of approximations. But at present, we shall be content with some fairly 
qualitative considerations. 

11.2 Neglect of Electron-Electron Repulsion 
To get a first idea of the form of the solutions of Eq. ( l l . l l) ,  let us neglect the 
double sum in the Hamiltonian (11.12), i.e., let us replace i? by the simpler 
operator 

(11.13) 

and the Schrodinger equation (11.1 1) by the simpler Schrodinger equation 

j j ( O ) @ ( O )  = E(O)@.(O). (1 1.14) 

This is a great simplification, for Eq. (11.14) may be solved exactly by sep  
aration of variables. For if p!(~) ,  p z ( ~ ) ,  , . . are the usual solutions (11.2) of 
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the hydrogen-like equation (11.3) for the appropriate value of 2, with energies 
E?, E:, . . + , then the product function 

is a solution of Eq. (11.14) with the energy 

(11.16) 

for any set of indices k1, k2,. . . , kN. This is easily seen by insertion, which 
amounts to adding the following set of equations 

............ ........... I 

Eqs. (11.13~-~11.16) are characteristic for the description of a set of inde- 
pendent particles in quantum mechanics: The Hamiltonian is the sum of the 
Hamiltonians of the individual particles, and the total energy is the sum of 
the single energies. The wavefunction is, on the other hand, the product of the 
single- particle wavefunct~o~s. 

That the wavefunction is a product implies, in turn, that the N-electron 
probability distribution is the product of the single-particle distributions. To 
make the content of this statement clear, let us write 

with 

Let us then consider a general many-electron function of the type (11.15), say 

@ = 'Pl(Tl)Y)Z(TZ) * ' " P N ( T N ) ,  (1 1.20) 

where 91, p2, . . . , p~ are N one-electron functions (orbitals). They need not 
all be different, but each of them is supposed to be normalized to unity. We 
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f * .I p&(Tjv)pN(TAr)dvjv = 1 . 1 . .  . l  = 1. (11.22) 

Eq. (11.22) shows that @ is normalized to unity, and so we may safely 
consider a*@ as a probability density. The interpretation of this density is in 
turn that the quantity 

a*@& = @ ( T ~ , T z , .  . . , T N ) * @ ( T ~ ,  r 2 , .  . . , ~ j v ) d w l d v 2 .  . .dvN (11.23) 

is the joint probability of observing particle 1 in the volume element dvl around 
the point t -1,  particle 2 in the volume element dvz around the point T Z ,  etc. This 
interpretation applies whether @ is a product function or not, but when @ is in 
fact a product function of the type (11.20), then the joint probability factors 
into a product of single-particle probabilities, as shown by Eq. (11.21). In 
other words, the joint probability distribution is the product of single-particle 
distributions. This i s  the statistical expression of independence. 

Let us now return to the solutions of Eq. (11.14) for our simplified N -  
electron atom. The expression (9.56) for the energies of a hydrogen-like atom 
leads to the following expression for the energy E(O) of Eq. (11.16), 

(11.24) 

where n(k1) is the principal quantum number of the atomic orbital pil ,  etc. Eq. 
(11.24) shows that we get the lowest energy by putting all principal quantum 
numbers equal to 1. The ground-state solution is therefore 

do) = ( p y 8 ( ~ 1 ) ' p y S ( ~ 2 )  * .  . p y , ( ~ ~ ) ,  E(') = - 1 N . P .  2 (1  1.25) 

Eq. (11.25) leads, in particular, to the following ground states for the atoms 
H, He and Li 
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7s  7p 7d 7f 7g 

Q Q  
6s 6p 6d 6f 6g 

Q 5 5  
5s 5 p  5d 5f 5g 

5 Q Q  
4s 4p 4d 4f 

Q Q  
3s 3p 3d 

Q 
2s 2p 

1s 

7 h  7i 

6h 

I 

Figure 11.1: The n + l rule: 
According to Bohr’s aufbau principle, electrons are filled into orbitals 
in the order ls, 2s,2p,33,3p, 4s,3d,. . . N o  orbital may hold more than 
two electrons. 

where it is understood that the 1s functions for H, He and Li are different 
because of the 2 dependence of the radial function Rl , ( r )  (See Table 9.1). 

are all exact eigenfunctions of the simplified Schrodinger 

the only ones that are physically acceptable, is not. It is excluded by the 
so-called Pauli principle. We discuss this principle below, after a presentation 
of Bohr’s aufiau principle. 

@I, @: and 
equation (11.14) for the respective values of 2 and N .  Yet, and @He (0) are 

11.3 The Aufbau Principle 

The model of the many-electron atom which Niels Bohr constructed in order to 
explain the structure of the periodic table was based on detailed spectroscopic 
and chemical evidence. The principle behind the model is the aufbau principle 
which implies the following considerations, in the terminology based on orbitals 
of the central-field form (8.32) rather than the classical orbits used by Bohr. 

The formation of an atom may be viewed as the result of successive capture 
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n + t rule: 
The electron configuration of an element may be deter- 
mined by filling the orbitals after increasing values of n + l .  
For a fixed value of n + t, orbitals with lower n-values are 
filled first. 

and binding of electrons. Thus, the hydrogen atom is formed when the proton 
captures a single electron. The electron goes into the energetically lowest 
orbital which is the 1s orbital. We say that the hydrogen atom has the electron 
configuration IS'. 

For the helium atom, we start with an atomic nucleus with charge 2 (atomic 
units). The first electron that is captured goes into the 1s orbital, and so does 
the second electron. The electron configuration of He is accordingly ls2. 

Coming to the lithium atom, we start with a nucleus with charge 3. The 
capture of the first two electrons goes exactly as in helium, but when we come 
to the third electron, we are taught by spectroscopic evidence that it goes into 
the 2s orbital. Thus, the 1s shell is found to be filled, or closed, when it has 
received two electrons. The electron configuration of Li is therefore ls22s'. 

In the beryllium atom, the first three electrons are captured in the same 
way as in lithium. The fourth electron completes the 2s shell. The electron 
configuration of Be is ls22s2. 

Continuing with the heavier atoms, it is always found by spectroscopic and 
chemical evidence that no orbital can hold more than two electrons. Thus the 
three 2p orbitals can hold at most six electrons. They are filled successively by 
going through the elements B, C, N,  0, F, and Ne. The electron configuration 
of the neon atom is accordingly ls22s22p6. The filled shell is found to endow 
the atom with an enhanced stability; neon belongs to the noble gases. 

In Tables 11.2-11.4 we present the ground-state electron configuration of 
the elements with 2 = 1 to 2 = 108 (together with the so-called term symbol 
which will be discussed later). One might perhaps expect that the orbitals were 
filled in an order compatible with the energy level diagram for the hydrogen 
atom, shown in Figure 9.5. But this is not the case. Rather, it is found that 
the orbitals are filled according to the 

(1  1.27) 

~~ - ~~ 

The rule is only approximate, as a study of the tables shows, but it really 
works surprisingly well. A graphical illustration of the rule is presented in 
Figure 11.1. 

That the orbitals are filled in an order different from that expected by look- 
ing at Figure 9.5, is due to the interplay between nuclear-electron attraction 
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and electron-electron repulsion. We shall return to this point later, but first 
we must look for the reason why an orbital can hold at  most two electrons. 

11.4 Exchange Degeneracy 

According to the aufbau principle, a wavefunction like the @) of Eq. (11.26) 
is physically inaccessible because it describes a ls3 configuration. But this is 
an ad hoc argument, and we must look for a proper explanation. Let us begin 
by considering the function 

(11.28) 

where we have “lifted” electron 3 from the Is orbital to the 2s orbital, thus cre- 
ating a wavefunction of the l s22s1  electron configuration. Such a wavefunction 
is apparently in harmony with the aufbau principle. 

Still, there is a problem. For it was quite arbitrary that we lifted electron 
3 from the 1 s  orbital to the 2s orbital. We might equally well have changed 
the orbital for electron 1 or electron 2. Thus we realize that the l s22s1  con- 
figuration actually defines three wavefunctions with the same energy, namely, 

(Pls(T1)(P:s(Tz)(P;, 0 (T3)1 

@c - (PZ,(Tl)(.~s(.Z)‘P~,(Tg). 
&‘I = ( P ~ , ( T 1 ) ( P ~ , ( T 2 ) ( P ~ s ( T 3 ) r  E~~ ( 0 )  - - -- 51 5 ,  au (1  1.29) 

( 0 )  - 0 

If these wavefunctions are to give an approximate description of the ground 
state of the lithium atom as they stand, then the proper ground state should 
be three-fold degenerate. But the degeneracy is only found to be 2 and is, in 
fact, a spin degeneracy. 

At this stage we might get the idea that the Schrodinger equation which 
we set up for a rnany-electron atom is wrong. After all, it seems to lead to 
spurious solutions. This is, however, the wrong angle of approach. There is, in 
fact, nothing wrong with the Schrodinger equation. The difficulties are instead 
tied to a particular symmetry of the problem. 

This is the so-called permutation symmetry which expresses the fact that 
the Hamiltonian (1 1.12) , and also the Hamiltonian (1  1.13), is invariant under 
any renumbering, or permutation, of the electrons. We say that the Hamilto- 
nian is a symmetric operator. We have discussed the interplay between sym- 
metry and the Schrodinger equation in Secs. 4.5 and 4.7. The arguments here 
run very similarly. 
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Let be the operator that performs a definite renumbering of the N elec- 
trons in our problem. We have then that 

where (Pl, P 2 , .  . . , P_N) is a permutation of the numbers ( 1 , 2 , .  . . , N ) ,  and 
we have used that H is a symmetric operator. Assume now that 9 is an 
eigenfunction of k corresponding to the energy E ,  

h 

H @ ( T ~ , T ~ , .  . . ,TN) = E @ ( T ~ , T z , .  . . ,TN). (11.31) 

Applying the operator on both sides of the equation gives then 
.-. 

H @ ( T p i l T ~ 2 , . . .  , T P N )  = E @ ( T p i , T p z , . . .  ,TPN). (11.32) 

In words: If @ ( T ~ , T z , .  . . , T N )  is a solution of the Schrodinger equation with 
energy E ,  then so is @ ( ~ p l ,  r p 2  , . . . , T P N ) .  This argument holds for each of 
the N !  permutations ( P l ,  P 2 , .  . . , P N ) .  The level with energy E possesses 
therefore a degeneracy equal to the number of linearly independent functions 
that may be generated from @ ( T I ,  ~ 2 , .  . . , T N )  by permuting the N coordi- 
nates (We also count the identity permutation). The degeneracy is known as 
exchange degeneracy. 

Applying the above procedure to the function (11.28) and the Hamilto- 
nian k(O) leads immediately to the three functions given by Eq. (11.29). The 
exchange degeneracy is accordingly 3 in this case. 

But, as we mentioned above, this degeneracy is not observed. Nor are 
similar degeneracies observed for other many-electron systems. The reason 
was discovered by Dirac and Pauli:' 

Electrons are identical particles. (11.33) I 
What this means is that it is impossible to distinguish different electrons in 
a system individually from each other. The outcome of an experiment must 
therefore be independent of any attempt to label the electrons. 

To appreciate the implications of such a situation, let us consider the N -  
electron quantity (11.23), i. e., the joint probability of observing electron 1 in 

'P. A. M. Dirac, Proc. Roy. SOC. (London) A 112, 661 (1926); W. Pauli, 2. Phys. 43, 
601 (1927). 
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A many-electron wavefunction must be a n t i s y m ~ e t r ~ c ,  that 
is, it must change sign under the interchange of any pair of 
electrons. 

the volume element d v l  around the point T I ?  electron 2 in the volume element 
dvz around the point T Z ,  etc. According to the above requirement, this must 
be the same as the probability of observing electron 2 around TI and electron 1 
around 9-2, with the remaining electrons in the same positions as before. Thus, 
we must have that 

(11.37) 

For a real wavefunction, this leads to the requirement 

A similar condition must of course hold for the interchange of any pair of 
electrons. But when should we expect the plus sign to hold, and when the 
minus sign? 

The answer to this question relates to both real and complex wavefunctions 
and has the form of a postulate embracing both fermions and bosons {Sec. 
10.2). It has been fully vindicated: For a system of identical fermions we 
must always choose the minus sign, for a system of identical bosons always the 
plus sign. For electrons, which are fermions, we must choose the minus sign. 
A wavefunction that changes sign under the interchange of any two particles 
is called antisymmetrtc. Similarly, a wavefunction is called symmetric if it 
remains the same after such an interchange. For electrons, we thus have the 
fo~~owing fundamenta~ symmetry principle 

It was emphasized by Pauii2 that the interchange of a pair of elec~rons not 
only interchanges the positions and the momenta of the two particles, but also 
their spins. Hence, we cannot apply the principle correctly without worrying 

2See the reference of footnote 1.  



11.5. Pad’s Exclusion Principle. Slater Determinants 257 

about the spin. We must give up our attempt to describe a many-electron 
system by the spin-free solutions of Eq. (11.41, and instead consider how to 
construct proper spin-dependent solutions. This we shall do in the following 
section. 

In closing the present section, we note that the indistinguishableness of 
electrons correlates well with Heisenberg’s uncertainty relation (5.113). For 
this relation makes it impossible to specify the positions and velocities of the 
individual particles with sufficient accuracy to distinguish them from each other 
during a collective motion. 

1 1.5 Pauli’s Exclusion Principle. 
Slater D e t ~ r ~ ~ ~ a n ~ s  

It follows from what we learned in See. 10.2 that if we have an orthonormal 
set of spatial orbitals, then we obtain an orthonormal set of spin-orbitals of 
twice the size by muIt~plying each spatial orbital by a(c;) and by P ( c ) .  Let us 
consider N such spin-orb~taIs: $1(9:~, $z(E), . . . , $ ~ ( 9 : ) ,  where 9: = ( T , c )  as in 
Sec. 10.2. We may then form the N! product functions 

where 2 1  = ( T I ,  Q) is the combined space and spin variables for electron 1 etc., 
and ( P I ,  P2,. . . , P N )  is a permutation of the numbers 1 , 2 , .  . . , N .  We now 
form a specific linear combination of these N! product functions, namely, the 
determinant 

This many-electron wavefunction satisfies the antisymmetry requirement 
f o ~ m u l ~ t ~  in (11.37), for interchang~ng a pair of electrons amounts to inter- 
changing two columns in the determinant, and it is well known that the value 
of a determi~ant is mu~tipl~ed by -1 when two of its columns are inter~hanged. 

A determinant is also multiplied by -1 when two of its rows are inter- 
changed. Hence a determinant with two or more identical rows must van- 
ish. The wavefunction (11.39) i s  accordingly zero unless the I?  pin-orbita~s 
~~~~~, &(x), . . . , $ ~ ( ~ )  are all different. Also, it is not very d i ~ c u l t  to show 
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that the determinant is in fact the only antisymmetric linear combination of 
the product functions (11.38) that may be constructed. 

The determinant (11.39) is called a Sbater d e t ~ ~ ~ ~ n a n t ,  in honor of the 
American physicist John Clarke Slater who invented it. It allows us to elimi- 
nate the difficulties with the exchange degeneracy in a simple fashion. 

We note that when the spin-orbitals ?jl(x), $2(x), . . . , $ N ( E )  are members 
o€ an orthonormal set and all different, then the N !  product functions (11.38) 
will be normalized and mutually orthogonal. Hence the determinant (11.39) 
is also normalized (according to the theorem (4.76)). 
denote the normalized determinant by (4142 . . . $ N I  
depends on the variables (XI, 2 2 , .  . . , t ~ ) ,  

For simplicity, we shall 
and understand that it 

I . (11.40) 
I . . .  

We shall now reconsider the ground-state solutions of the simplified N-electron 
Schrodinger equation (11.14) in the light of the above analysis. 

The hydrogen atom: 
Before we introduced the spin, the ground state of the hy~rogen atom was 
found to be non-degenerate. It was described by the wavefunction &(T) .  Af- 
ter the introduction of the spin, the ground state becomes two-fold degenerate, 
the independent wavefunctions being the two spin-orbitals it)!, (x) and &(x), 
in the notation of Sec. 10.2, Eq. (10.21). 

The degeneracies of the excited states are likewise doubled, the degeneracy 
of the nth state now being 2n2. The 2n2 spin-orbitals describing the state are 

(1 1.41) 

as in Sec. 10.2. As usual, the quantum number ma is understood to be 112 
when the spin-function is a($) and -1/2 when the spin-function is p(c). Each 
spin-orbital is defined by four “quantum numbers”, (n, 1 , 7 ~ ,  ma). 

4nLytrn. (t) = ~ n t ( r ) ~ y t  ( ~ , C O )  { p($) 44 

The helium atom: 
The ground-state wavefunction for helium which we listed in Eq. (11.26) was 
the simple product function ( P : , ( T ~ ) ( P : ~ ( T ~ ) .  With the spin included, it is 
replaced by the four product functions 

$?s(%lIit)?a (g2) 2 $?, (~1)1PCi)s (22) 9 8 s  (‘1 I$?, ( ~ 2 )  8 F?* Cxl>FL (221. 
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Each of these product functions corresponds to the energy -4 au, and so does 
any linear combination of them. But the four product functions are not anti- 
symmetric, nor is the arbitrary linear combination so. The only antisymmetric 
wavefunction is the Slater determinant 

(1 1.42) 

This, then, is the proper ground-state wavefunction. The ground state is non- 
degenerate and corresponds to the electron configuration 1s'. 

Eq. (11.42) shows that the ground-state determinant factors into a two- 
electron spatial function and a two-electron spin-function. For systems with 
more than two electrons a similar factorization will in most cases be impossible. 

The lithium atom: 
If the lithium wavefunction of Eq. (11.26) is converted into a product of 
three spin-orbitals, at least two spin-orbitals will be identical for each product 
function. Hence, no antisymmetric wavefunction exists for the configuration 
ls3. This configuration is accordingly excluded. 

For the 1s22s1 configuration we have the three product functions of Eq. 
(11.29) aa our starting point. After the introduction of spin, they are con- 
verted into products of spin-orbitals, and these are again converted into Slater 
determinants. Thus, the spin-orbitals $ya, &, and give the determinant 

*LI,I (0, = IV1a +o 'pla -0 9 2 s  +o I, (1 1.43) 

while the spin-orbitals $Pa, GP8, and &!a give the determinant 

(1 1.44) 

The two Slater determinants both correspond to the energy -+ au, and the 
ground state is doubly degenerate. 

For the ground states of other atoms we may proceed in a similar way. Thus, 
the ground state of the beryllium atom is non-degenerate. It is described by 
the Slater determinant 

(11.45) +o -0  +o - 0  42 = 191, 'pls 9 2 s  P2s I. 
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The fact that no spin-orbital can occur more than once in a Slater deter- 
minant is known as Pauli’s exclusion princ2pie. For an atom, each spin-orbital 
may be characterized by four quantum numbers as in Eq. (11.41). Thus, we 
get the familiar formulation of the principle 

Pauli’s exclusion principle: 
No two electrons can have the same set of 
quantum numbers. 

(11.46) 

The principle may, of course, also be used for excited states where orbitals 
with higher quantum numbers enter into the determinant. 

We have now shown how we may derive the antisymmetric solutions of 
the simplified Schrodinger equation (1  1.14) and thus construct a rational cor- 
respondence with the aufbau principle. It is, however, entirely impossible to 
give anything like a qua~t2 ta t2~e  description of atoms as long as the electron- 
electron repulsion is neglected. Hence, we shall now leave the approximate 
Hamiltonian (11.13) and consider the problem of including the fact that elec- 
trons in an atom repel each other with strong forces. 

11.6 Including ~~ectron-~lectron Repulsion 
When the electron-electron repulsion (11.9)) is properly included in the many- 
electron Hamiltonian (11.12), it is no longer possible to  separate the variables 
associated with different particles, and the exact wavefunctions can no longer 
be written as Slater determinants derived from simple product functions. 

It is, however, often possible to obtain reasonably good approximate wave- 
functions in the form of Slater determinants built from atomic spin-orbitals of 
the form (11.41). Rut the radial functions &(P) are then no longer hydro- 
genic. They may be determined as the solutions of a one-electron Schrodinger 
equation in which the central field V ( T )  is a sum of the Coulomb field from the 
nucleus and a suitably averaged field from the electrons. 

The one-electron Schrodinger equation alluded to is a so-called Hartree- 
Fock equation. It may be derived by the variational method which we shall 
take up in the next chapter. The orbitals obtained by solving the Hartree-Fock 
equation are known as Hartree-Fock orbitals. We shall use the same notation 
for Hartree-Fock orbitals and approximations to them as for the orbitals of 
the preceding sections, but with the superscript removed. A similar remark 
holds for the determinants built from Hartree-Fock orbitals. Thus, we write 
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the Hartree-Fock wavefunction for the ground state of the beryllium atom as 

(1 1.47) 

Although a Slater determinant built from atomic Hartree-Fock orbitals 
quite often give a fairly good many-electron wavefunction, the function is by 
no means exact. One way to improve it is to replace the single determinant 
by a linear combination of determinants. These determinants will usually 
correspond to different electron configurations, and hence one talks about the 
method of configuration interaction. The coefficients in the linear combination 
are again determined by the variational method. 

Since a Hartree-Fock wavefunction is not exact, the electron density that 
may be derived from it is not exact either, although it is usually a quite good 
approximation to the true density. During configuration interaction the wave- 
function, and hence also the electron density, becomes improved. 

A different approach to  many-electron theory is the so-called density func- 
tional theory in which one focuses on the electron density rather than the total 
wavefunction, and requires that the true electron density be derivable from a 
single Slater determinant. The orbitals defining that determinant are known 
as the Kohn-Sham orbitals. They may be determined from a one-electron 
Schrodinger equation known as the Kohn-Sham equation. The Kohn-Sham 
orbitals are usually quite similar to the Hartree-Fock orbitals. 

We shall consider both the Hartree-Fock and Kohn-Sham descriptions in 
more detail later. But at present, we shall stick to the language of Hartree-Fock 
theory and close the present chapter with a section on approximate Hartree- 
Fock orbitals. 

11.7 Slater Type Orbitals 
The Hartree-Fock orbitals referred to above have the general form ( l l . Z ) ,  i. e., 
each Hartree-Fock orbital is the product of a radial function and a surface 
spherical harmonic, but the radial functions Rnt(r) can no longer be repre- 
sented by simple analytical expressions. But if high accuracy is not at issue, 
then it is of course possible to approximate the radial functions by simple 
analytical functions, and this is often done. 

The first set of simplified atomic orbitals for many-electron atoms was de- 
viced by Slater. He wrote, in atomic units, 

(1 1.48) 
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Table 11.1: Variationally determined orbital exponents Cnr 

2 

He 2 
Li 3 
Be 4 
B 5  
C 6  
N 7  
0 8  
F 9  

Ne 10 
Na 11 
Mg 12 
A1 13 
Si 14 
P 15 
S 16 
C1 17 
Ar 18 

1s 2s 
~ 

1.6875 
2.6906 
3.6848 
4.6795 
5.6727 
6.6651 
7.6579 
8.6501 
9.6421 

10.6259 
11.6089 
12.5910 
13.5745 
14.5577 
15.5409 
16.5239 
17.5075 

~ 

0.6396 
0.9560 
1.2881 
1.6083 
1.9237 
2.2458 
2.5638 
2.8792 
3.2857 
3.6960 
4.1068 
4.5100 
4.9125 
5.3144 
5.7152 
6.1152 

2P 

1.2107 
1.5679 
1.9170 
2.2266 
2.5500 
2.8792 
3.4009 
3.9129 
4.4817 
4.9725 
5.4806 
5.9885 
6.4966 
7.0041 

35 

0.8358 
1.1025 
1.3724 
1.6344 
1.8806 
2.1223 
2.3561 
2.5856 

3P 

1.3552 
1.4284 
1.6288 
1.8273 
2.0387 
2.2547 

with 

(11.49) 

<,,f is called the orbatal exponent. 
We see that the radial functions prescribed by Slater are of a similar form 

as the hydrogen-like functions in Table 9.1, but only the maximum power of 
r is included. Thus, the radial functions are all taken to be nodeless, and the 
nuclear charge Z is replaced by the screened nuclear charge Z - ant. The 
screening (or shielding) constant unf reflects the fact that the other electrons 
in the atom spend part of their time in the region between the nucleus and the 
electron considered, thereby effectively screening the nucleus from the electron. 

By combining the radial function (11.48) with the appropriate surface 
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spherical harmonic, a so-called Slater-type orbital (STO), results. Slater’s 
rules for d~termining the screening constant f5r a particular orbital are the 
f~llowing:~ 

(1) For a given atom, divide the orbitals into the following groups, 
each having a different screening constant: 1s; 2s,Zp; 3s,3p; 3 4  
4s, 4p; 4d; 4 f ;  5s,5p; etc. Thus the s and pt of a given shell are 
grouped together and get the same radial function, but the d and 
f are separated. The groups are considered to be arranged from 
inside out in the order named (note that this order is that of Figure 
9.5 rather than that of Figure 11.1). 
(2) The screening constant rnc is formed as the sum of the following 
contributions 

( a )  nothing from any group outside the one considered; 
( b )  an amount of 0.35 from each other electron in the 
group considered (except for the 1s group, where 0.30 is 
used instead); 
(c) if the group considered is an s , p  group, an amount 
0.85 from each electron in the next inner group, and 1.00 
from each electron still further in; but if the group is a d 
or f ,  an amount 1.00 from every electron inside it. 

Slater also assigned non-integer values to the n on the right-hand 
side of Eq. (11.48) for values of n larger than 3, but his rules are 
no longer used for such high n-values, 

To illustrate Slater’s rules, let us calculate the orbital exponents cn8 for the 
helium atom (2 = 2) and the carbon atom (2 = 6). The helium atom has the 
electron configuration 1s2, so we get immediately 

c i s  (2 - 0.30)/1 = 1.70. 

For the carbon atom, with the electron con~gurat~on ls22s22p2, we get 

Cis = (6 - 0.30)/1 =: 5.70, 

fa, = 52p = (6 - 3 x 0.35 - 2 x 0.85)/2 = 3.25/2 = 1.625, 

Slater obtained his rules from an empirical analysis of successive ioniza- 
tion energies and total energies of atoms. Over the years, his rules have been 

3.J. C. Slater, Phys. Rev. 38, 57 (1930). 
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modified and refined in various directions by different authors, but it is ques- 
tionable if these refinements are of lasting value. Now that computers are 
generally available, it is in fact more natural to determine orbital exponents 
by means of the variational method by procedures that will be illustrated in 
the following chapter. 

As shown in that chapter, the variational method leads to a CIJ value of 
1.6875 for helium. For carbon, one allows the 2s and 2 p  exponents to become 
different and finds 

Variationally determined orbital exponents for other atoms are available in 
the scientific l i t e r a t ~ r e . ~  For the lighter atoms, they are reproduced in Table 
11.1. For heavier atoms, it becomes an increasingly bad approximation to 
simulate a Hartree-Fock orbital by a simple Slater-type orbital. Reasonable 
approximations may, however, be obtained by using a linear combination of 
two or three Slater-type orbitals for each Hartree-Fock orbital instead. 
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Table 11.2: Ground-state electronic structure of the elements 1-36 

Z El~ment Symbof Con~guration Term 
n, 1 hydrogen H 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

helium 
lithium 
beryllium 
boron 
carbon 
nitrogen 
oxygen 
fluorine 
neon 
sodium 
magnesium 
aluminium 
siiicon 
phosphorus 
sulfur 
chlorine 
argon 
potassium 
caki u rn 
scandium 
titanium 
vanadium 
chromium 
manganese 
iron 
cobalt 
nickel 
copper 
zinc 
gallium 
germanium 
arsenic 
selenium 
bromine 

He 
Li 
Be 
B 
C 
N 
0 
F 
Ne 
Na 
Mg 
A1 
Si 
P 
S 
Cl 
Ar 
K 
Ca 
sc 
Ti 
V 
Cr 
Mn 
Fe 
c o  
Ni 
c u  
Zn 
Ca 
Ge 
As 
Se 
Br 

Is' 
ls2 
ls22sl 
1 2 2 2  
1 s22s22pl 
1s22s22p2 
1s22s22p3 
1 ~ ~ 2 ~ 2 2 ~ ~  
1s22s22p5 
1 s22s22p6 
[Ne]3s1 
[Ne]3s2 
[Ne]3s23p1 
[Ne13s23p2 
[Ne] 3 s2 3p3 
[He] 3 s2 3p4 
[Ne] 3s23p5 
[Ne]3s23p6 
[Ar]4s1 
[Ar]4s2 
[Ar]3d14s2 
[Ar]3d24s2 
[Ar]3d34s2 
[Ar]3d54s1 
[Ar]3d54s2 
[Ar]3d64s2 
[Ar] 3d74s2 
IAr]3d884s2 
[Ar]3d104s1 
[Ar] 3d1'4s2 

[Ar] 3d104s24p2 
[Ar] 3d104s24p3 
[Ar]3d104s24p4 
IAr13di04s24p5 

36 ~rypton Kr i Ari 3d1°4s2ip6 So 
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Table 11.3: Ground-state electronic structure of the elements 37-72 

Z Element Symbol Configuration Term 
37 rubidium Rb [K I] 5s' 2 s 1 / 2  

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

strontium 
yttrium 
zirconium 
niobium 
molybdenum 
technetium 
ruthenium 
rhodium 
palladium 
silver 
cadmium 
indium 
tin 
antimony 
tellurium 
iodine 
xenon 
cesium 
barium 
lanthanum 
cerium 
praseodymium 
neodymium 
promethium 
samarium 
europium 
gadolinium 
terbium 
dysprosium 
holmium 
erbium 
thulium 
ytterbium 
lutetium 

Sr 
Y 
Zr 
Nb 
Mo 
Tc 
Ru 
Rh 
Pd 

Cd 
In 
Sn 
Sb 
Te 
I 
Xe 
c s  
Ba 
La 
Ce 
Pr 
Nd 
Pm 
Sm 
Eu 
Gd 
T b  
DY 
Ho 
Er 
Tm 
Yb 
Lu 

A!? 

[Kr]5s2 
[Kr]4d15s2 
[Kr]4d25s2 
[Kr]4d45s1 
[Kr]4d55s1 
[K I] 4d6 5s 
[Kr]4d75s1 
[Kr]4d85s' 
[ K r] 4d1 
[Kr]4d105s1 
[Kr]4d105s2 
[Kr]4d10s25p1 
[Kr]4dl05s25p2 
[Kr]4d1'5s25p3 
[Kr]4d1'5s25p4 
[Kr]4d105s25p5 
[Kr]4dl05s25p6 
[ Xe] 6 s 
[Xe]6s2 
[Xe]5d16s2 
[Xe]4f' 5d16s2 
[Xe]4f36s2 
[Xe]4f46s2 
[Xe]4f56s2 
[Xe]4f66s2 
[Xe]4f76s2 
[Xe]4f75d'6s2 
[Xe]4f96s2 
[Xe]4f"6s2 
[Xe]4f1'6s2 
[Xe]4fl26s2 
[Xe]4f136s2 
[Xe]4f146s2 
[Xe]4f145d1 6s' 

72 hafnium Hf [Xe]4f145d26s2 3F2' 
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Table 11.4: Ground-state electronic structure of the elements 73-108 

73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 

tantalum 
tungsten 
rhenium 
osmium 
iridium 
platinum 
gold 
mercury 
thallium 
lead 
bismuth 
polonium 
astatine 
radon 
francium 
radium 
ac tinium 
thorium 
protactinium 
uranium 
neptunium 
plutonium 
americium 
curium 
berkelium 
californium 
einsteinium 
fermium 
mendeIevium 
nobelium 
lawrencium 
rutherfordium 
dubnium 
seaborgium 
bohrium 
hassium 

Ta 
w 
Re 
0s 
Ir 
Pt 
Au 
He; 
T1 
Pb 
Bi 
Po 
At 
Rn 
Fr 
Ra 
AC 
Tb 
Pa 
U 
NP 
Pu 
Am 
Cm 
Bk 
Cf 
ES 
Fm 
Md 
No 
Lr 
Rf 
Db 
sg 
Bh 
Hs 

Z Element Symbol Configuration Term 
[Xe]4f145d36s2 
[Xe~4fI45d46s2 
[Xe]4f1*5d56s2 
[Xe]4f145d66s2 
[Xe]4f145d76s2 
[Xe]4 f 145d96si 
[Xe]4f145d106s1 
{;Ye34 f 145d106s2 
[Xe]4f145d106s26p1 
~Xe~~f145d106s26p2 
[Xe]4f145d106s26p3 
~Xe]4f145d106s2~p4 
[Xe]4f145d106s26p5 
[Xe]4f145d'06s26p6 
[Rn]7s1 
[Rn)7s2 
[Rn] 6di 7s' 
[Rn]6d27s2 
[Rn]5f26d'7s2 
[Rn] 5f36d17s2 
[Rn]5f46d17s2 
[Rn]5fs7sz 
[Rn]5f77sz 
~Rn]5~76d17s2 
[Rn]5f97s2 
[Rn] 51" 7s2 
[Rn] 5f" 7s' 
[Rn~5f1'7s2 
[ Rn] 5f37s2 
[Rn]5f147s2 
[Rn] 5f147s2?p1 
~Rn]5f146~27s2 
[R11]5f'~6d~?s~ 
fRn15 f I46d47s2 
[Rn]5fi46d57s2 

267 
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Supplementary Reading 
The bibliography, entries [6], [7], [15], and [23]. 

Problems 
11.1. Table 11.1 lists a set of "best" orbital exponents for the phosphorous atom 
(2 = 15). Which values would be obtained by applying Slater's rules? 

11.2. In the following, we consider the wavefunction 
+ +  

Q = I$319'p2sl 

belonging to the excited 13'2s' electron configuration for the helium atom. The 
radial functions that define the cpls and (pzS orbitals are supposed to be of the form 
(11.48), with the orbital exponents determined by Slater's rules, as applied to the 
configuration 19'2s'. 

a, The electron configuration 1.9'29' gives rise to a total of four Slater 
determinants. Write down the three remaining determinants. 

b. Determine the values of the orbital exponents ClS and Cz9. 

c. The orbitals (pis and $ 3 ~ ~  are not mutually orthogonal. Determine 
the value of the overlap integral ( ~ p ~ ~ ( c p ~ ~ ) .  (Use the standard integral 
(9.23), and be aware that Eq. (11.48) merely gives the radial part of a 
Slater orbital.) 

d, We now construct a new 2s  orbital cp;, of the form 

Cp:, = $329 - XVlS. 

Determine the constant X such that (cplslp4,) = 0. 
This procedure is called Schmidt orthogonalization. It is a well known 
procedure in the field of linear algebra. (See also Problem 4.3.) 

e .  Write down the Slater determinant 
+ + I  

Q' = I $ 3 l S $ 3 Z S l  

and expand both this function and the original Q, in a similar way as 
done in Eq. (11.42). 

f. Show that Q og Q' are identical! 

g. The orbital cpLJ is not normalized to unity. Hence, write 

CP:, = N(cpzs  - h i s )  

and determine the normalization constant N such that 

($3:sI'p:.) = 1. 
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h. Also expand the three determinants found under a., in a similar way 
a8 done in Eq. (11.42). 

i .  As pointed out in the text, the symbol I$,a$zsl includes the prefactor 
G w h i c h  normalizes the determinant to unity, provided the orbitals plS 
and cp2* are mutually orthogonal. What is the proper prefactor in the 
present case, where cpls and pzS are non-orthogonal? 
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12.1 Introduction 

In the preceding chapters we have been able to solve a number of quantum 
mechanical problems by analytical means. Thus, we have determined the exact 
solutions of the time-independent Schrodinger equation for the particle in a box 
(Chapter 4), the harmonic oscillator (Chapter 7), and the hydrogen-like atom 
(Chapter 9). 

There are further quantum mechanical problems that lend themselves to an 
exact treatment, but the list is rapidly exhausted: The electronic Schrodinger 
equation may be solved exactly for the hydrogen atom and the H t  ion, but not 

270 
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for the helium atom and the H2 molecule. Also, we may solve the Schrodinger 
equation exactly for the harmonic potential and the Morse potential, but not 
for an exact diatomic potential (cf. Sec. 14.2). So, for the majority of problems 
it is necessary to turn to approximate methods in order to make progress. Most 
commonly, such methods are based either on numerical analysis, a variational 
principle, or perturbation theory. 

In perturbation theory, one writes the Hamiltonian in the form 

(12.1) 

where X is an expansion parameter and the solutions of the zero order problem 
defined by the Hamiltonian fi") are supposed to be known. It is then assumed 
that the effect of the perturbation AH +. . . is sufficiently small that 
the solutions of the full problem may also be expanded as a power series in A. 
This allows one to set up expressions by means of which the various terms in 
the expansions may be determined. 

The theory of perturbations is a powerful and indispensable tool for the 
solution of many problems, both time-dependent and time-independent ones. 
But we shall postpone a discussion of the theory to a later chapter. The present 
chapter is devoted to methods based on variational principles. 

- ( I )  ^(2) +A2H 

12.2 Variational Principles 
Variational principles play a fundamental role in theoretical physics and chem- 
istry. As an exact concept, they were first used in optics by the seventeenth 
century French mathematician Pierre de Fermat. He postulated the following 

Fermat's principle of least time: 
No matter to what kind of reflection or refraction a ray of 
light is subjected, it travels from one point to another in 
such a way as to make the time taken a minimum. 

(12.2) 

It is easy to demonstrate the validity of this principle for the particular case 
where the ray is reflected by a mirror. This is done in Fig. 12.1 by comparing 
the length of the actual path, for which the angles of incidence and reflection 
are equal, with the length of any other path. 

This example contains the essence of a variational principle: Each path 
is characterized by some numerical value, here its length, and the values for 
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Length of virtual path: SBO = M E 0  
MBO>MAO for B different from A 

Mirror 

Figure 12.1: Fermat’s principle. 

different paths are compared. The path for which the value is stationary (not 
necessarily a minimum as above) is the actual path. The other paths are called 
virtual paths. That the value is stationary for a given path is understood to 
mean that it remains unchanged under an infinitesima~ variation of the path. 

The laws of classical mechanics, in the elegant formulations by Lagrange 
and Hamilton, are most easily derived by variational principles, and so are 
Maxwell’s equations of electrodynamics. Also the Schrodinger equation may 
be derived from a variational principle. This holds for both the time-dependent 
equation and the time-independent equation. The variational principle for 
the time- independent equation is the simpler one and the only one we shall 
consider here. 

12.3 The Time-Independent Schrodinger 
Equation 

Let us consider a quantum mechanical system described by the Hamiltonian 3 
and let 9 be any square-integrable function of the coordinates of the system. 
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The expectation value of i? is then, by the definition (5.97), 

(12.3) 

The value of E varies of course with the form of 4 .  But we shall now assume 
that we have found a function 4 for which E is stationary. This means that 
the value of E remains unchanged when 4 is replaced by 4 + 6 4 ,  where 6Q is 
infinitesimal but otherwise arbitrary. We shall denote a stationary value o f f  
by E .  

The variation of E is generally defined as 

(12.4) 

That Q is known to be a function for which E is stationary, means that 6E is 
zero to  first order, i. e., it is zero when second-order terms in d\E are neglected 
on the right-hand side of Eq. (12.4). Putting the right-hand side equal to zero, 
and utilizing that a l b  - c / d  = 0 implies that ad = bc, gives to first order in S4 

- (4lfi14){(414) + (6414)  + ( 4 1 6 4 ) )  = 0. (12.5) 

Next, cancellation of equal terms and division by (414) gives 

(12.6) 

By using the definition of E ,  Eq. (12.3), and the fact that E is assumed to  be 
stationary (and hence to be denoted by E ) ,  we may write Eq. (12.6) as 

( 6 4 l f i  - E J 4 )  + (*.(I? - E ( S 4 )  = 0. (12.7) 

Since this equation must hold for any 6 4 ,  we may replace 6 4  by iS4 :  

-i(64II? - ElQ) + i ( 4 @  - E1dQ) = 0. (12.8) 

Multiplying this equation by i and adding it to Eq. (12.7) gives 

(S41fi - El*) = 0. (12.9) 

But this can only be true for arbitrary 6 4  if 

(fi - E ) 4  = 0. ( 12.10) 
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For if the integral (r39lg -E19) were found to be zero for a specific &I without 
Eq. (12.10) being fulfilled, then we could easily violate Eq. (12.9) by changing 
&\k. 

Eq. (12.10) is, of course, the tim~independent Schrodinger equation. We 
have thus shown that this equation may be derived from the variational prin- 
ciple 

(12.11) 

where L' is the expectation value of the energy. 

12.4 The Variational Method 
In continuation of the preceding section, we shall now show that E ,  the ex- 
p ~ t a t i o n  value of a9 defined by &. (12.31, is an absolute minimum when 
I is the true ground-state wavefunction, 90. This is the so-called variational 
theorem: 

The variational theorem states that 

for any square-integrable 9. 
The equality holds only if Jr = cJrko, where c is an arbitrary 
complex constant. 

(12.12) 

To prove the theorem, we take advantage of the fact that the eigenfunctions 
form a complete set (See Secs. 4.9 and 5.7). This implies that any 9 may of 

be written in the form 

tT! = CC,9, (12.13) 

Usually we don't know the explicit form of the eigenfunctions, nor are they 
needed for the proof. We do know, however, that the eigenfunctions are mu- 
tually orthogonal (this is the theorem f5.67)), and we may also assume that 
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they are normalized to unity. We may therefore write 

But because ED is the ground-state energy, we have that En - 230 2 0 for 
all n. Furthermore, cicn 2 0 for all n. The sum in the last expression is 
accordingly non-negative for any set of coefficients, and hence for any uir. The 
factor l/(Urlq) is inherently positive, so E - Eo is non-negative for any !B. We 
also see that the condition for € - Eo to be strictly zero, is that c, vanish for 
all n > 0, thus making itr equal to apart from a complex constant. This 
proves the validity of the variational theorem (12.12). 

The variational theorem is the basis for approximate ground-state calcula- 
tions by the Rayleigh-Ritz uoriational method. The idea behind this method 
is to use a trial ~ u n c t ~ o n  @ which depends on a set of variational parameters. 
The expectation value C is then evaluated as a function of these parameters, 
and by minimizin8 E with respect to the parameters one obtains the best ap- 
proximation to u i r ~  and EO that the form of @ allows. Let us illustrate this 
through a couple of examples. 

The hydrogen-like atom: 
Pretend that we don't know the ground-state wavefunction for the Hamiltonian 

(12.15) 

but that we guess afunction of the form exp(--(=r), i. e. , a S l a ~ e r - t ~ p e  1s o ~ ~ ~ a ~  
(Sec. 11.7), and treat C as a variational parameter. We add a normalization 
factor, and the trial function becomes 

(12.16) 

This f ~ ~ t i o n  is, in fact, the Rld(r )  of Eq. (11.48) m u I t ~ p ~ i ~  by ~ o o ( ~ ,  4 )  which 
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h 

equals m. The expectation value of H is found to be 

& = (cpl2lp) = g 2  - zc, (12.17) 

and since 

(12.18) 

we obtain the lowest value of & for C = Z. The best description based on a 
function of the form (12.16) is accordingly obtained when 

( 12.19) 

This is, of course, the exact solution. 
We would have been less fortunate if we had chosen a trial function of 

the form exp(-ar2) instead, a so-called Gaussian-type orbital (GTO). We 
normalize it to unity, 

and get 

(12.20) 

(12.21) 

The optimal description in terms of a Gaussian-type I s  orbital is then obtained 
when 

422  82' 
9A ' 3n 

E = -- = -0.4244Z'au. a = -  ( 12.22) 

This energy lies well above the true ground-state energy, so even the best 
Gaussian-type 1s orbital is a poor approximation to the true wavefunction. 

The helium-like atom: 
As an example of greater physical interest, because we cannot solve the problem 
exactly, let us consider the Hamiltonian (11.12) with N = 2, i. e., 

(12.23) 

'To perform the actual calculations behind this and the following example is the exercise 
of problem 12.1. 
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For 2 = 2, this is the Hamiltonian for the helium atom, for 2 > 2 it is the 
Hamiltonian for a positive ion with charge Z - 2. We take as our trial function 
a Slater determinant of the form (11.42), but with & ( T )  replaced by the more 
general Slater-type 1s orbital: 

(12.24) 

Our trial function is then 

where 

* ( T l , T 2 )  = (Pls(Tl)(Pls(TZ),  (12.26) 

and 

O ( c 1 , c z )  = fi (.(e1)P(ez) - P(c1).(c2)) * (12.27) 

Since the Hamiltonian is independent of the spin variables ~1 and c2 we get 

(12.28) & = (lkJipJ) = (*Ol$l@O) = (@p?p)(OlO) = (@Iil@), 
where we have used that 0 is normalized to unity, i. e., 

This relation is readily verified from the relations (10.13). 

normalized function, 
Next, we get, from Eqs. (12.23) and (l2.28),  and by using that (PI# is a 

= 2 (Pls(T) - -v2 - (Pl#(T)  + J, ( I : :  z I  ) 
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where the so-called Coulomb integral J is defined as 

(12.31) 

The one-electron integral in the last line of Eq. (12.30) is nothing but the 
integral (12.17), and it may be shown that J has the value 

1 
r12  

J = // ~ ~ I ~ ~ ~ ~ ( P I ~ ( T I ) J D I ~ ( T ~ ) - ( P I ~ ( T I ) ( P I ~ ( T z ) .  

J = i c .  (12.32) 

Hence we get 

E = 2 (fp - ZC) + g = cz - ( 2 2  - 5) C ,  (12.33) 

and 

(12.34) 

The best wavefunction of the form (12.25) is consequently obtained when 

C = Z - L .  16 ( 12.35) 

Its energy is obtained by inserting the value of c just obtained into the expres- 
sion (12.33). It is found to be 

dE 
4 
- = 2 { c  - (2 - &)} . 

E = -z2 + 5 2  a - 25 256 .  (12.36) 

For the helium atom (2 = 2), this becomes 

E H ~  = -- 729 au = -2.8477 au. (12.37) 

The experimental energy is known to be -2.9037au. The simple trial function 
(12.25) is accordingly able to reproduce this value to within less than 2%. Note 
that our calculated value of E lies above the exact value as it should according 
to the variational theorem (12.12). 

Also note that Eq. (12.35) applied to the helium atom (2 = 2) gives C = 
1.6875. This is just the value given for in Table 11.1, in accordance with 
the fact that the 1s orbital (12.24) derives from the radial function (11.48) by 
multiplication by Yoo(B,q5). 

The variational method is obviously a method of great strength. We shall 
now consider a variant of the method in which one works with trial functions 
of the form 

256 

m 

r=l  
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where the functions ar are supposed to be known from the outset. The vari- 
ational parameters are thus the expansion coefficients a,. This variant of the 
method is called the linear variational method, for obvious reasons. It is, for 
instance, by this method that we may construct molecular orbitals as linear 
combinations of atomic orbitals. 

12.5 The Linear Variational Method 
As mentioned above, we shall now consider a trial function of the form 

m 

(12.38) 
r=l 

where {el, Q 2 , .  . . , am} is a set of known functions, and the set of coefficients 
{al, a2,. . . ,am} serve as variational parameters. We get then 

and 
m m  m m  

(12.40) 
r= l  s=l  r=l  s=1 

where the H,, are the elements of the Hamiltonian matrix and the 27,s the 
elements of the overlap matrix, in the notation introduced in connection with 
Eq. (5.39) of Sec. 5.3. The expectation value of e, i. e., 

(12.41) 

appears then formally as a function of both the coefficients { a l ,  a2, . . . , am} 
and their complex conjugates {a:, a; , . .  . , a h } ,  but these two sets are of course 
not independent. 

Let us write 

(12.42) 

with and vr being real. 
must therefore require that 

Then ur and vr are truly independent, and we 
d€ldur and d&/dv, both be zero for all r .  The 
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derivatives may be determined by the chain rule: 

The conditions that they vanish may therefore be written 

a& a& - + - = o ,  
da, aa; 

= 0, a& a& i da, aa; 

or, by adding and subtracting the two equations, 

(12.44) 

(12.45) 

Thus, we may in fact treat the coefficients {al l  a2,. . . , a,,,} and their complex 
conjugates {a:, a; , . . . , at} as if they were truly independent parameters. 

Let a be one of these 2m parameters. We get then, from Eq. (12.41), 

- a& - - (Q1Q)iaQl~lQ) - (Ql@lQ)A(QtQ) 
aa (QW 

The condition for this to vanish is 

(12.47) 

When a is identified with af, and we insert the expressions (12.39) and 
(12.40) for (1ylglQ) and (QIQ) respectively, we get first 

and then 

(12.48) 

(12.49) 
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Identifying a with a, gives, on the other hand, 
m 

C(Ha,  - &S~,)U: = 0. 

But Eq. (5.7) shows that S,, = S;,, and since H is Hermitian we also have, 
by Eq. (5.42), that Ha, = H&. Eq. (12.50) may accordingly be written 

(12.50) 
s=1 

A 

m C(H:, - €s,,)a: = 0. 
s = l  

(12.51) 

But this equation is nothing but the complex conjugate of Eq. (12.49) and 
hence gives no new condition. 

The full condition, that Eq. (12.45) be satisfied for all T ,  reads consequently 

I 

( 12.52) 

where we have written E instead of E to indicate that Eq. (12.45) is satisfied. 
This is a set of simultaneous equations for the coefficients {al,  a2, .  . . , a m } .  

The problem of solving them is called the secular problem. 
The equations may be expressed as a single matrix equation: 

n , = [  ;] 
(12.53) 

The determinant 

I H m l - E S m l  H m 2 - E S m 2  . . -  H m m - E S m m  I 
(12.54) 

is called the secular determinant. Assume that its value is non-zero. The big 
matrix in Eq. (12.53) will then have an inverse. Multiplying Eq. (12.53) from 
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the left by this inverse matrix gives {al l  a 2 , .  . I }am} = {O,O,  . . . ,0} which is 
called the t ~ u z a ~  so~ut2on. It is of no interest to us, because the wavefunction 
f 12.38) that it defines, is everywhere zero. 

Non-trivial solutions of Eq. (12.53) exist only when the secular determinant 
vanishes, i. e., when 

det lHr, - ES,,\ = 0. (12.55) 

This equation is called the secular equation. It is an algebraic equation of the 
n t h  degree in E, and therefore has rn roots: 

E =  El 5 E 2  5 .,. 5 E m .  (12.56) 

They are the eigenvalues of Eq. (12.53). It is only for these eigenvalues that 
the secular problem (12.53) has non-trivial solutions. 

To determine the solution corresponding to the eigenvalue El, insert the 
value of El everywhere in Eq. (12,531 and solve for the unknown coefficients 
{al, a 2 , .  . . , am}. It  is obvious from the form of Eq. (12.53) that if the set 
{ a l ,  a2,. . I , a,} is a solution, then so is the set c{al,  a 2 , .  . . , am} where c i s  any 
complex constant. The wavefunction (12.38) is accordingly only determined 
to within an arbitrary constant. This is a familiar situation, and as usual it 
allows us to choose c such that 4 be properly normalized. The normalization 
integral is, of course, given by Eq. (12.40). 

Having determined a wavefunction 4 1  from the value of El, we may proceed 
in a similar way to determine a wavefunction 4 2  corresponding to Ez, and so 
on, until we have determined rn linearly indep~ndent wavefunctio~. If two 
or more E values in the list (12.56) are equal, we have a multiple root of the 
secular equation. Such a root is found to determine p linearly independent 
solutions, where p is the multiplicity of the root. Hence, the total number of 
linearly independent sotutions will always be m. 

In order to represent the energies of our physical problem, the eigenvalues 
that constitute the set {El ,  E 2 ,  . . . , Em} must be the expectation values of 2 
defined by the wavefunctions { @ I ,  4 2 , .  . . , Qm}. To see that this condition is 
actually fulfilled, multiply Eq. (12.52) by uf and sum over T .  This gives 

m r n  

r = l  a = l  

or, by observing Eqs. (12.39) and (12.40), 

(12.57) 

(12.58) 
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But this relation implies that 
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(12.59) 

and this is precisely the expectation value of i?, according to the usual defini- 
tion in Eq. (12.41). 

Thus, El must approximate the ground-state energy, and 91 must approxi- 
mate the ground-state wavefunction for our system. The other solutions of the 
secular problem approximate the energies and wavefunctions of excited states. 
By the variational theorem (12.12), El is an upper bound of the ground-state 
energy. It may be shown that the other energies in the list (12.56) likewise are 
upper bounds of excited state energies. 

Having studied the problem of finding approximate solutions of the Schra 
dinger equation as linear combinations of a set of known functions, it is worth 
realizing that in some favorable situations it may even be possible to express 
exact solutions in this way. Such solutions must of course also satisfy the 
equations (12.52), a fact that we already discussed at the end of Sec. 5.10 
on matrix algebra. But as shown in that section, the equations may then be 
derived in a much simpler way than the one used here. 

We have now presented the basic variants of the variational method, namely, 
the linear variational method (this section) and methods based on non-linear 
parameters (the examples of the previous section). In advanced applications, 
these two methods may be mixed, and this makes the variational method an ex- 
tremely powerful method of obtaining approximate solutions of the Schrodinger 
equation for even very complicated problems in the theory of atoms, molecules 
and solids. 

We close the present chapter with an important comment on the solution 
of the secular problem (12.53) in the presence of operators that commute with 
the H ~ i l t o n i ~ .  

12.6 Factorization of Secular Problems 
It often happens that many of the matrix elements in the secular problem 
(12.53) vanish. This may, for instance, be the case if there is an operator 
present that commutes with the Hamiltonian. Let .6 be such an operator. We 
have then 

(12.60) 
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Assume now, that the functions {@I,  @ 2 , .  . . , 9m) in (12.38) are eigenfunc- 
h 

tions of B with eigenvalues (61, b z ,  . . . b m I l  i .  e., 
h 

BQi, = b r @ r ,  T = 1 , 2 , .  . . (12.61) 

Assume also that B  ̂ is a Hermitian operator. We get then 

( Q r l i i 5 l Q i a )  - ( Q ~ I ~ G I + ~ )  = { ~ r l Z i j l + s )  - ( 6 @ r l f i l + s )  

= (b, - br) (GrI2lGs)  ( 12.62) 

where we have used the turn-over rule (5.42) and the fact that the eigenvalues 
of a Hermitian operator are real. 

Due to the assumption (12.60), the result in (12.62) must be zero, The 
matrix element (QT IHIQj) will consequently vanish whenever 6 ,  and b, are 
different. The only matrix elements of & that don’t necessarily vanish are the 
diagonal elements ( r  = s) and matrix elements between basis functions with 
the same eigenvalue of B^.2 

Assume, for instance, that we use the linear variational method within a 
four-dimensional function space, and that the basis functions 01 and (Q2 are 
eigenfunctions of B̂  with one and the same eigenvalue, and that @3 and f94 are 
eigenfunctions of 6 with another eigenvalue. The eigenvalue equation (12.53) 
becomes then 

h 

Hi1 - ESll H12 - ES12 0 0 a1 0 
H21 - Eszi H22 - ES22 0 0 

H 3 3 -  ES33 H 3 4 - E S 3 4  ~ [ 
~ = [ i ~ 

0 0 
0 0 H 4 3  - E S 4 3  H 4 4  - E S 4 4  

( 12.63) 

By direct substitution, one finds that the eigenvectors of this factorized eigen- 
value ~ r o 6 ~ e ~  are of the form (all a2,0,0) and ( O , O ,  as, u 4 ) ,  where (al, az) and 
( 0 3 ,  a4) are eigenvectors of the smaller secular problems 

Hi1 - ESII H1z - ES12 ) ( 
H21 - ESz~j21 

(12.64) 
H22 - ES22 ) = ( ) 

and 

H 3 3  - E S 3 3  ff34 - E S 3 4  ) ( :; ) = ( (12.65) ( H43- E S 4 3  H 4 4  - E S 4 4  ) 
2The reader will note that we have just rederived the theorem (5.74). 
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The functions that solve the secular problem (12.63) are consequently of 
the form al@1 + 0 2 9 2  and a3@3 + a4@4. The generalization of this finding is: 

Assume that we have some m-dimensional function space, 
and that i t  is possible to  choose a basis {@I , G2,. . I , am} in 
this space such that each basis function is an eigenfunction 
of a given Hermitian operator, i, that commutes with the 
Hamiltonian. Then only functions with the same eigenvalue 
for B can combine in a linear variationa~ calculation. As 
a result, the solutions of the secular problem will again be 
eigenfunctions of 6. 

A 

(12.66) 

Needless to say, this is a result of great value, both conceptually and compu- 
tat ionally. 

Supplementary Reading 
The bib~iography, entries [25], f26] , and [28]. 

Problems 
12.1. In the present exercise, we perform the instructive calculations behind the 
examples on the pages 275-278. Thus, we shall consider the Hamiltonian 

(atomic units), - 1  Z H = -,va - - 
2 f 

and evaluate its expectation value (8) for each of the two normalized trial functions 

a. Calculate the expectation value (p}  of the kinetic energy 
A T = -1V2 

2 

for cp og x, a8 function of 5 og a, respectively. 

b. Similarly, calculate the expectation value (0) of the potential energy 
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c. Next, form the expectation value (2) for each of the two trial fmc- 
tions. 

d. Determine the value of C, for which ( c p l f i l c p )  is minimal. 

e. Similarly, determine the value of a, for which (xli?lx) is minimal. 

f. For Z = 1, calculate the values of (cplfilcp) and (xlfilx) corresponding 
to the optimal values of (* og a determined above, 

g. Show that (?) = -$(s> for both of the optimized functions. 
This is the virsal theorem for the motion in a Coulomb potential. 
(For the motion in a harmonic potential, the virial theorem reads (9) =: 
(p), cf. Probtem 7.1.) 

h. Compare the graphs of the radial function R1, for the two optimized 
functions cp and x. 
Similarly, compare the graphs of the radial function Pid. 
(Use the standard integrals (6.31) and (9.23).) 

12.2. In continuation of the previous exercise, let us approximate the hydrogen 1s 
orbital by a function of the form 

( P ~ ~ ( T )  = aixl(r) +azxz(r), 

where xi(r) and x~(P) are normaIized Gaussian-type orbitals: 

in atomic units. 

a. The overlap integral Stz = (xtlxz) has the value 0.5554. 
Verify this value. 

b. By evaluating integrals similar to those in Problem 12.1, the matrix 
elements of the Hamiltonian 

are found to to be 
H I I  = -0.4141 au, 
H22 = 0.1564 au, 
H l z  = -0.4844au. 

Set up the secular problem defined by the trial wavefunction ( P ~ * ( T )  and 
determine the best approximation, E, to the ground-state energy. 
Does the determined E-value satisfy the variational theorem { 12.12)? 
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c. Find the coefficients (11 and (12 going with the determined energy 
value E, and write down the corresponding trial wavefunction ( P ~ , ( T ) ,  

properly normalized to unity. 

d. Compare the graphs of the radial functions R1, and A, from ( P I ~ ( T ) ,  

with the graphs determined in the previous problem. 

12.3. In this exercise, we consider the Stark effect and the Zeeman effect for a 
hydrogen atom with principal quantum number n = 3. In atomic units, the Bohr 
magneton (10.87) has the value 1/2, and the Hamiltonian (10.86) becomes 

where we have assumed that both the magnetic field J3 and the electric field E 
point in the direction of the positive z-axis. The spin-orbit coupling term and the 
diamagnetic term in the Hamiltonian have been neglected. 

a. Consider first the Zeeman effect, by putting E equal to 0. The re- 
sulting Hamiltonian is denoted f izeeman.  Show that the 18 spin-orbitals 
&tmlm, obtained by letting the quantum numbers L, mt, m, assume all 
allowed values, are eigenfunctions of In analogy with Table 
10.1, write down all the corresponding energies, and hence discuss the 
number of energy levels and their degeneracies. 

b. Next, consider the Stark effect, by putting B equal to 0. The resulting 
fhtdtonian is denoted f i s t a r k .  It is spin independent, and we therefore 
neglect the spin of the electron and merely consider the 9 spatial orbitals 
Q3(m4 obtained by letting the quantum numbers l ,  mt assume all allowed 
values. Using the linear variational method, we look for approximate 
eigedunctions of f i s t a r k  as linear combinations of the 9 (complex valued) 
orbitals 'patmc. The matrix corresponding to the operator z = r COB B is 
given below. 
Wnte down the form of the normalized orbitals v)sP0 and Q3d0 and verify 
that the matrix element ( ~ 3 ~ ~  IZl(p3do) = ( & p l r I R 3 d ) ( x ~ l  cos elKO) does 
have the value 3 6 .  

C. For two of the approximate eigenfunctions of Hst.,.k, one h d s  
A 

and 
1 

e2 = PO + 9-89 92 = - (d&3r + d&%po + V3do) I 6 
where co is the energy of a hydrogen atom without field (n = 3, eo = -1 18 

hartree). 
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By referring to Sec. 12.6, determine the remaining 7 approximate eigen- 
functions of f i s t a r k ,  together with their energies. Like cp1 and 992, the 
eigenfunctions should be properly normalized. 
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Now that we are familiar with the language of quantum mechanics and 
know how to describe atoms we are well prepared to discuss the structure of 
molecules. But beware, we are about to enter a ~ompiicated field. The name 
of molecules is legion, and each molecule hides a wonderful world all its own. 
We can make many generalizations, and we can divide molecules into separate 
classes; and in this way we gain solid fundamental understanding. But we 
must never forget that no two molecules are entirely alike. A molecule has 
several degrees of freedom and an incredible number of stationary states, and 
in many of these molecular eigenstates the various degrees of freedom interact 
in an intricate way. 

It is, however, found that the ground and lower excited states of most 
molecules submit to a fairly simple theoretical description. This is the so- 

289 
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called adaabatic description which is built on the conception that the electrons, 
because of their much smaller mass, move so much faster than the nuclei that 
they adjust to the motion of the latter almost instantaneously. Following this 
idea, one writes the wavefunction of a molecular eigenstate in the form 

(13.1) 

where 35 collectively denotes all electron coordinates and p all nuclear coordi- 
nates. In words: The probability amplitude 9 m o l ( % ,  p )  is supposed to be the 
product of the probability ampIitud~ ~ ( p )  for the nuclei to be at  the geometry 
p ,  and the probability amplitude 9 ( z ;  p )  for the eiectrons to be at the config- 
uration 2, assuming that the nuclei are at the geometry p .  K { P )  is the: nuclear 
~ a u e f u n c t ~ o n .  @(z; p )  is called the elect~onic ~auefune~2on.  As we shall see, 
it is determined by solving an electronic Schrlidinger equation with the nuclei 
clamped at  the geometry defined by p .  We have a new electronic Schradinger 
equation for each value of p .  Thus, ?I!(%; pf becomes a p~rametric function of 
P. 

The present chapter will be devoted to the problem of determining elec- 
tronic wavefunctions. Let us, however, first discuss the basis of the adiabatic 
deseri p tion. 

13.1 The Adiabatic Approximat ion 
Consider a system of N electrons and K nuclei, interacting through Coulomb 
forces. With the neglect of all spin terms its ~ a m i l t o n i ~  is, in atomic units, 

I 1 

(13.2) 

where i and j label the electrons, and g and fa the nuclei. Mg is the mass of the 
gth nucleus in atomic units, that is, the nuclear mass in units of the electron 
m w .  As usual, the primes on the summation signs indicate that terms for 
which the two indices become equal are omitted from the sums. 

The first term in the Hamiltonian (13.2) represents the kinetic energy of 
the nuclei, and the second term the repulsion between the nuclei. The third 
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term represents the kinetic energy of the electrons, and the fourth term the 
attraction between the electrons and the nuclei. Finally, the last term repre- 
sents the electron-electron repulsion. The full molecular Schrodinger equation 
is 

To arrive at approximate solutions of the form (13.1) we proceed as follows. 
We introduce an electronic Harniltonian, which we shall denote by fi. It 

is taken to be the sum of the three last terms of Hmol, i. e., we make the 
definition 

A 

g=1 i=l 

The Harniltonian (13.2) may then be written 

(13.4) 

(13.5) 

and the full molecular Schrodinger equation (13.3) takes the form 

We now insert the adiabatic expression (13.1) in this equation and proceed 
as we have done before, when a separation of variables was proposed (cf. Secs. 
4.1, 8.1 and 8.2). Thus, we divide the equation by U ( z ; p ) ~ ( p )  to  get 
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We have used that r?\k(z; p ) ~ ( p )  = ~ ( p ) i ? U ( z ;  p ) ,  which follows from the fact 
that the action of r? does not involve differentiations with respect to the nuclear 
coordinates. 

In the first term on the right-hand side of Eq. (13.7) the operators Vi act 
on both \k(x; p)  and ~ ( p ) .  However, we now make the assumption that U(z; p )  
varies sufficiently slowly with p that we may be allowed to neglect the action 
of Vi on \k (z ;p) .  Under that assumption Eq. (13.7) becomes 

Here, the only term that contains the electronic coordinates 2 is the second 
term on the left-hand side. Obviously, it must simplify to a function that is 
independent of x for the equation to be satisfied. We 
and get thereby the requirement 

H Q ( 2 ;  P )  = E(p)Q(z;  P )  

call this function E ( p )  

(13.9) 

Inserting this relation in Eq. (13.8) gives, after multiplication by ~ ( p ) ,  

where 

g=1 h=l  
(13.11) 

Eq. (13.9) is the electronic Schrodinger equation that we alluded to in 
the introductory remarks. It must be solved for each nuclear geometry. A 
definite nuclear geometry is obtained by clamping the nuclei a t  a particular 
set of values of the nuclear coordinates p. When the electronic Schrodinger 
equation is solved for all nuclear geometries, E(p) becomes a function of p .  This 
function, which we denote the electronic-energy function, defines an electronic- 
energy surface. To each point on the surface there corresponds an electronic 
wavefunction Q(z; p ) .  
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Adding the internuclear repulsion to the electronic-energy function leads to 
the function U ( p )  of Eq. (13.11). It is called the potenteal-energy function, and 
the surface it defines is called a ~ t e n ~ ~ a ~ - e n e ~ g y  surface (PES). Sometimes one 
also refers to V(p) as the electronic energy including internuclear repulsion. 

Eq. (13.10) may be interpreted as the Schrodinger equation for the nuclear 
motion. Obviously, the function V ( p )  serves as the potential energy function 
for the motion of the nuclei, or, as it is often said: “The motion of the nudei 
takes piace on the potential-energy surface.” 

Imagine, now, a certain conformation of the atomic nuclei and subject this 
conformation with its surrounding electrons to overall translations and rota- 
tions. Such transformations do not change inter-partic~e distances and leave, 
therefore, the electronic ~amiltonian (13.4) and the internuc~ear-repulsion en- 
ergy unchanged. The electronic wavefunction @(z; p )  and the potential-energy 
function V ( p )  are therefore independent of the orientation and location in space 
of the nuclear conformation. For a diatomic molecule this implies, in partic- 
uIar, that 9 ( z ; p )  and U ( p )  only depend upon the nuclear positions throug~ 
the internuclear distance R. 

This completes the derivation of the adiabatic description from the molec- 
uIar Schrodinger equation (13.3). The description is an approximate one, ob- 
tained by neglecting the action of V, on Q(z;p),  and thereby what may be said 
to be the dynamical interaction between the‘efectronic and nuclear motions. 
The validity of the adiabatic description must be separately judged in each ac- 
tual case. But as we indicated in the introduction, it i s  a good approximation 
for most molecules, for the states associated with the lower potenti~-ener~y 
surfaces. 

In using the plural form of the word surface, we realize that the electronic 
Schrodinger equation (13.9) has, not just one, but a whole series of solutions for 
each nuclear geometry. Thus, the adiabati~ description does in fact involve a 
set of electronic wavefunctions ?Irn (z; p) ,  with corresponding electronic-energy 
functions En ( p )  , corresponding potential-energy surfaces and potential-energy 
functions V, ( p )  , and with corresponding nuclear wavefunctions K n  ( p )  * 

It should be noted that electronic wavefunctions beIonging to different 
potential-energy surfaces are mutual orthogonal for each nuclear geometry. 
This follows from the general theorem (5.67), by realizing that the said func- 
tions are eigenfunctions of the same Hamiltonian, namely, the electronic Hamil- 
tonian H .  As always, we may take the electronic wavefunct~ons to be normal- 

A 
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ized to unity, and we may therefore write 

(13.12) 

Note, however, that there is no similar condition on nuclear wavefunctions 
associated with different potential-energy surfaces, because such functions are 
eigenfunctions of different Hamiltonians, specified by different U,, (p)  potentials 
in Eq. (13.10). On the other hand, Eq. (13.10) may have several eigenfunctions 
for the same U,, ( p )  potential, and these functions must be mutually orthogonal. 
To specify the different nuclear wavefunctions for a given Un(p) potential, 
additional indices are of course needed. These indices refer to the vibrational 
and rotational motions of the molecule, as discussed in the following chapter. 

The idea of separating the electronic and nuclear motions goes back to a 
famous paper by Born and Oppenheimer,l and the approximation of writing 
the total wavefunction in the form (13.1) is accordingly often referred to as the 
Born-Oppenheimer approximation. It should be noted, however, that Born 
and Oppenheimer's discussion only pertained to situations where V(p) has a 
minimum for some nuclear geometry PO, the so-called equilibrium geometry. 
Also, Born and Oppenheimer wrote the electronic wavefunction as 9 ( z ;  PO)  
rather than \E(z;p)  as we have done. Thus, they did not allow the electrons 
to follow the nuclei. By actuaIIy writing \E(c;p)  i t  becomes possible to de- 
scribe situations where the nuclei make large excursions from an equilibrium 
conformation, and also situations where no such conformation exists at all. 

Although the adiabatic description is a successful one, there are of course 
many situations where it is poor or breaks down completely. In such caaes one 
must take refuge in other methods. A possibility that is often used is to write 
the total molecular wavefunction in the form2 

~rno l (2 ,  P )  = \En (z; ( P I ,  (1 3.13) 

where the meaning of the eiectronic wavefunctions 9,(z;p) is the same as 
before, i. e., they are solutions of the electronic Schrodinger equation (13.6). 
By substituting the expansion (13.13) into the molecular Schrodinger equation 
(13.3), successively multiplying from the left with * : ( z i p ) ,  *z (x ;p ) ,  etc., and 
finally integrating over the electronic coordinates, one obtains a set of coupled 
differential equations from which the nuclear functions Kn(P) may be deter- 
mined. That the total molecular wavefunction has the form (13.13) implies, of 

n 

'M. Born and R. Oppenheimer, Ann. Phys. 84,457 (1927). 
2M. Born and K.  Huang, Dgnamical Theory of Crystal Lattices, Oxford, 1954. 



course, that the motion cannot be c o n ~ n e ~  to a single ~ t e n ~ ~ a l - e n e ~ ~  surface. 
This situation occurs, in particular, when different potential surfaces come 
close together for some nuclear geometry. 

The representation (13.13) is also a good starting point for the evalua- 
tion of approximate descriptions. A careful review, including a discussion and 
classification of different variants of the adiabatic approximation, has been 
presented by Ballhausen and H a n ~ e n . ~  In their notation, the description that 
we have presented constitutes the Born- Uppenheimer adiabatic approximation. 
Another important variant, denoted the Born-Huang adiabatic approximation, 
includes an additional term 

in the expression (13.11) for U ( p ) .  It emerges naturally as a contribution to 
the diagonal terms in the above-mentioned coupled equations, based on the 
representation (13.13). The numerical effect of the term is not large, but it 
does have the theoretically important effect of making the corresponding Bm0j 
in Eq. (13.10) an upper bound for the exact molecular ground-state energy, in 
B similar way as the expectation value t: in Eq. (12.12) is an upper bound for 
the exact ground-state energy Eo. 

We shall now leave the general discussion and study the solutions of the 
electronic Schriidinger equation (13.6) for some actual molecules. As the ex- 
pansion (13.13) suggests, we need the solutions of Eq. (13.6) regardless of the 
validity of the adiabatic approximation. 

13.2 ~ n e - E l ~ c t r ~ n  Diatomic Molecules 
Just as it was wise to study the hydrogen-like atom before many-electron 
atoms, BO it is wise to begin the study of diatomic molecules with the one- 
electron case. We consider, therefore, the motion of a single electron in the 
Coulomb fields of two fixed nuclei, A and B .  The electronic Hamiltonian (13.4) 
becomes 

(13.15) 

3C. J. Ba1ihausen and As. E. Hansen, Ann. Revs. Phya. Chem. 23, 15 (1972). 
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Figure 13.1: Coordinate systems for diatomic molecules. 
A and B are the atomic centers. 
internuclear distance. P is the field point of an electron. 

A 0  = O B  = R / 2 ,  where R is the 

where ra and rb are the distances from the electron to  the nuclei A and B ,  
respectively. We denote the internuclear distance by R and choose to  describe 
the electronic wavefunction in a coordinate system whose z-axis coincides with 
the internuclear axis. Three ways of choosing such a system are shown in Fig. 
13.1. 

For the hydrogen-like atom it was possible to separate the variables in 
the Schrodinger equation by introducing spherical polar coordinates. Such a 
separation is, in fact, possible for any central-field problem (Sec. 8.2). The 
potential-energy part of the Hamiltonian (13.15) for our one-electron diatomic 
molecule is not of the central-field type, and hence we can no longer separate 
the variables in spherical polar coordinates. It turns out, however, that it is 
possible to separate the variables by introducing so-called spheroidal coordi- 
nates (also called ellipsoidal coordinates). They are defined as follows 

ra + r b  J P=x /.a .n \  

where 4 has the same meaning as in spherical polar coordinates, i.e., 4 is the 
angle from the m-plane to the plane defined by ra and rb. The reverse relations 
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can be shown to be 

where z, and 2 are measured from the midpoint of the A - B bond, as in 
Fig. 13.1. 

In the notation of Appendix C, the spheroidal coordinates define an orthog- 
ona1, curvilinear coordinate system. The expressions for the volume element 
and the Laplacian may therefore be evaluated from the general expressions 
(C.14) and ((2.15) They are 

3 

(13.18) 

and 

. (13.19) p2 - Y2 

+ (p2 - 1) (1 - u2) w} 
We also get, from (13.16), 

(13.20) 

By inserting the expressions (13.19) and (13.20) into (13.15) we get the elec- 
tronic H ~ ~ i t o n ~ a n  in spheroidal coordinates, and hence the electronic Schro- 
dinger quation 

R R 
Po = y(p + u) ,  pb = y(p - v). 

fi$(PL, v, 4; R) = E(R)$(P,  VI 4; R). (13.21) 

As a first step towards solving this equation we note that the potential- 
energy part of the electronic ~amiltonian (13.15) is independent of the variable 
4. Thus, the eiectronic Hamiltonian only depends on 4 through the kinetic- 
energy operator, i .  e., through the Laplacian V2. From the explicit expression 
(13.19) for the Laplacian, it then follows that we may separate the variable 4 
from the variables p and u and write 

$(PI y ,  4;  R) = %, v ;  R)@(d), (13.22) 
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where (a(4) satisfies the equation 

(13.23) 

while F ( p ,  v ;  R) satisfies the equation 

V ( p ,  v ;  R )  is the potential-energy part of the Hamiltonian, 

and X2 is the separation constant. Writing the separation constant as X2 is, of 
course, dictated by hindsight, but it is really no limitation, for any constant 
may be written in this way (by allowing for complex values of A). 

Eq. (13.23) is familiar. It has the complete solution 

(a(4) = a1 cos Aq5 + a2 sin Aq5 
- - ble'x$ + bZe- ix4 .  (13.26) 

We must require that Q(q5 + 2 ~ )  = @(q5) ,  and hence that X be an integer 
(A = 0 , 1 , 2 , .  . .). There are, however no restrictions on the values of the 
coefficients a1 , a2 and bl , b z .  

Having solved Eq. (13.23), we must solve Eq. (13.24). For each value of 
A, this leads to a set of solutions which may be numbered by an integer n = 
1 , 2 , 3 , .  . . , such that the energy increases with n. Thus, we have the functions 
F,,x(p, v ;  R) and the corresponding energies Enx. 

By combining the solutions of Eqs. (13.23) and (13.24), we obtain the 
solutions of the electronic Schrodinger equation (13.21) on the form 

x = 0, 1 , 2 ,  . . . I 
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The energy levels are doubly degenerate for X # 0, and non-degenerate for 
A = 0. For X # 0, the two solutions may be distinguished by means of the 
index y. 

By analogy with the notation (9.5) used for atoms, one also introduces 
letter symbols for diatomic molecules: 

r I 
For the possible values of A, 

one often uses the letter symbols 
x = o , 1 , 2 , 3  ,... 

6, *, 8, 4, * * 

( 13.28) 

The physical meaning of X is that it measures the magnitude of the angular 
momentum about the internuclear axis. Let us introduce the operators 

According to Eq. (8.44), i, is the operator representing the angular momentum 
about the z-axis (the molecular axis). i: is the square of this operator, and 
ex, is a reflection operator. From the expression (13.19), it is seen that these 
three operators all commute with the Hamiltonian g. 

commutes with both i, and ex*. However, f, 
and eXa do not commute with each other. We have, in fact, that 

Further, it is obvious that 

a 
a4 

= 2ili-U,,. 
, . A  

(13.30) 

It follows that we have two sets of mutually commuting operators, namely, 
(g, t,tz) and (fi, c, uxz).  The commoneigenfunctions of the first of these sets 
are the complex functions given in (13.27), the eigenfunctions of the second 
set are the real functions. We have, in particular, 

iZFnx(p, V ;  R)efix+ = fXtcFnx(/i l  Y; R)ef”+, ( 13.3 1) 

and 

(13.32) 
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For any of the functions in (13.27) we have that 

in accordance with the statement presented above: the value of X gives the 
magnitude of the angular momentum about the internuclear axis. 

One should be careful to distinguish between the quantum number C used 
for atoms and the quantum number X used for diatomic molecules. In an atom, 
each component of the angular momentum commutes with the Hamiltonian. 
Hence, also the total angular momentumdefines a good quantum number, and 
this is the quantum number l .  In a diatomic molecule, it is only the angular 
momentum about the internuclear axis that commutes with the Hamiltonian. 
The square of the total angular momentum cannot have a sharp value. In an 
atom, there are 21+  1 linearly independent functions for a given value of C. 
In a diatomic molecule, there are just two linearly independent functions for a 
given value of A,  except for X = 0, in which case there is only one function. 

The conclusions we have arrived at  are not only valid for the eigenfunc- 
tions of the Hamiltonian (13.15). They are valid for the eigenfunctions of any 
Hamiltonian of the form 

h 1 
2 

H = - -v2+ V ( P a , T b )  

(13.34) 

This is the Hamiltonian for an electron in an axial field. For a one-electron 
diatomic molecule it has the form (13.15). For a many-electron diatomic 
molecule, it may be taken to be the effective Hamiltonian for a single elec- 
tron. The potential energy V( ra ,  rb) is then the sum of the Coulomb fields 
from the two nuclei and an effective axial field from the other electrons. The 
eigenfunctions of such a Hamiltonian are the equivalents of the Hartree-Fock 
or Kohn-Sham orbitals for atoms introduced in Sec. 11.6. They have the form 
(13.27). As in Sec. 11.6 we shall stick to the language of Hartree-Fock theory 
and refer to the orbitals as molecular Hartree-Fock orbitals. 

For the general axial potential, it is not possible to reduce the differential 
equation (13.24) further. But for a one-electron diatomic molecule the variables 
in the differential equation may be separated by writing 

1 = - p 2  + V ( p ,  v). 

Fnx(p, v ;  R) = X ( p ;  R)Y(v ;  R) ,  (13.35) 

and one obtains separate, albeit coupled, differential equations for X ( p ;  R) and 
Y (Y; R). 
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Figure 13.2: Lowest energy levels of H i  as functions of internuclear 
distance. Internuclear repulsive energy not included. 

In 1927, Byvind Burrau studied the electronic Schrodinger equation for the 
hydrogen molecular ion HQ (for which 2, = Zb = 1) in spheroidal coordinates. 
He proceeded by numerical integration and obtained the ground-state elec- 
tronic energy as a function of R.4 During the following years several attempts 
were made to solve the differential equations for X ( p )  and Y ( v )  analytically 
by means of power series expansions similar to those we have met for the har- 
monic oscillator (Chapter 7) and the hydrogen atom (Chapter 9). But the 
determination of the X ( p )  function for large values of p turned out to be a 
very difficult mathematical problem, and several erroneous conclusions were 
drawn in the literature. The problems were solved in 1933 by Jaff6 for the 
homonuclear case (2, = Zb),5 and in 1935 by Baber and Has& for the general 
case.' 

48. Burrau, Kgl. Danske Videnskab. Selskab Mat.-fys. Medd. 7, No. 14 (1927). 
5G. Jaff6, Z. Phys. 87, 535 (1934). 
6W. G. Baber and H. R. HassC, Proc. Camb. Phil. SOC. 31, 564 (1935). 
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Figure 13.3: Lowest energy levels of H i  as functions of internuclear 
distance. Internuclear repulsive energy included. 

Exact wavefunctions for one-electron diatomics are now abundant in the 
literature. We refer, in particular, to two extensive reviews7 and a general 
computer program for the calculation of energy eigenvalues,' 

As we have already pointed out, the potential-energy surfaces discussed in 
Sec. 13.1 become potential-energy curves for diatomic molecules (the potential- 
energy functions depend only upon R) .  The general form of such curves is 
well iIIustrated by Figs. 13.2 and 13.3 which show the lowest potential-energy 
curves for the hydrogen molecular ion. Figure 13.2 shows the electronic energy 
curves E n x ( R ) ,  which are the solutions of Eq. (13.21). Figure 13.3 shows the 

'D. R. Bates, K .  Ledsham and A. L. Stewart, Philos. Trans. Roy. SOC. A 246, 215 (1953). 
E. Teller and H. L. Sahlin, in: H. Eyring, D. Henderson and W. Jost, Physical Chemirtry, 
an Advanced Treatment, Vol. 5 ,  Academic Press, New York, 1970. 

8J. D. Power, Philos. Trans. Roy. SOC. A 274, 663 (1973); Program OEDM (QCPE233), 
available from Quantum Chemistry Program Exchange, Indiana University, Bloomington, 
Indiana 47405, U.S.A. 
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potential-energy curves Unx(R) defined by expression (13.8), which now reads 

Unx(R) = Enx(fi)  + 71 (13.36) 

~ 

The curves in Figs. 13.2 and 13.3 are labeled by the (n,X)-values of the 
electronic wavefunctions. But in addition, they are labeled g or a. This addi- 
tional labeling applies to all homonuclear molecules, i. e., molecules for which 
the atoms A and B are of the same type. In this case the electronic Hamil- 
tonians (13.15) and (13.34) have a center of symmetry (the point 0 in Fig. 
13.1), and as we already know from the discussion of the particle in a box and 
the harmonic oscilator, this causes the wavefunctions to be either even (label 
g )  or odd (label u) under inversion in this center. 

The spheroidal coordinates allow us to separate all three variables ( p ,  v 
and 4) for the one-electron diatomic molecule. But as already pointed out, the 
variables p and v cannot be separated in many-electron diatomic molecules. 
Hence these coordinates are not much used in the description of many-electron 
diatomic molecules. They are, however, very useful for the evaluation of certain 
integrals as we shall show later. 

We shall now turn to a very widely used representation of one-electron wave- 
functions (orbitals) for molecules. This is the representation as linear combina- 
tions of atomic orbitals. Such a representation is useful both for one-electron 
molecules and for many-electron molecules in the Hartree-Fock description. 

13.3 The LCAO Approximation 

As first mentioned in Sec. 4.8, the term orbital means one-electron function, or 
rather one-electron spatial function. An orbital in an atom is called an atomic 
orbital (AO), an orbital in a molecule is called a molecular orbital (MO). With 
spin included (as in Sec. 10.2), an orbital becomes a spin-orbital, either an 
atomic spin-orbital (ASO) or a molecular spin-orbital (MSO). 

It is often very convenient and useful to model an MO as a linear combi- 
nation of atomic orbitals (LCAO). We may then speak of an LCAO-MO. The 
general form of an LCAO-MO is 

rn 

(13.37) 
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where ( X I  , x 2 , .  . . , xm) is a set of AO’s. The way to determine the coefficients 
c,. is to apply the linear variational method that we described in Sec. 12.5. Let 
us see how this goes for the one-electron diatomic molecule. 

To model the ground-state MO corresponding to the Hamiltonian (13.15), 
we introduce the normalized 1s atomic orbitals 

(13.38) 

centered at  the atomic sites A and B. They are Slater-type orbitals (STOs) 
of the type discussed in Sec. 11.7. When i, = 2, and <b = zb, they are 
eigenfunctions of the atomic Hamiltonians -fv2 - Z,/r, and -fv2 - &/rb 
which dominate the behavior of r? close to the nuclei A and B,  respectively. 
If, therefore, we choose values for c, and i b  close to z, and zb, then a function 
of the type 

must essentially have the correct behavior close to A and close to B. So it must 
be a decent approximation to the true ground state MO for not too small R. 
We therefore take it as our trial function. 

The values of c1 and c 2  are at  our disposal. We must determine them such 
that the expectation value of I?, viz., 

(13.40) 

becomes a minimum. This condition leads to the secular problem discussed in 
Sec. 12.5. It reads 

Ha, - ESaa Hab - ESab ) ( z: ) = ( (13.41) 
Hba - ESba Hbb - E s b b  ) 

where 

(13.42) 
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We have used that the orbitals Is, and 1 S b  are normalized to unity, and that 
Sob = s b a  because Is, and 1 S b  are real. The matrix elements of H are 

h 

Haa = Irf I l s a )  

1s.) 

(13.43) 

1 s b )  1 (13.44) 

where we have inserted the values of the 1s one-center integrals that we already 
know from Eq. (12.17). That H,b equals Hb, follows from the fact that Ha& is 
real and H Hermitian (Hba = H:b). 

To proceed, we must choose a particular molecule. We take this to be the 
singly charged hydrogen molecular ion H;, so that we can make comparisons 
with the exact solution (Figs. 13.2 and 13.3). 

c- 

13.4 The Homonuclear Case. Ground State of 
H,+ 

In the homonuclear case (2, = zb), the symmetry of the problem makes us 
choose the two orbital exponents <, and c b  in (13.38) to be the same, so we 
Put 

c = <a = Cb. (13.46) 

It is then obvious that also Ha, and Hbb become equal. Let us introduce the 
notation 

1y = Ha, = H b b ,  

p = Hab = Hbar (13.47) 
s = S a b  = S b a .  
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Eq. (13.41) becomes then 

( 1 3.48) 

where we have used that S,, = Sbb = 1, because the orbitals (13.38) are 
normalized to unity. 

To obtain the values of E for which Eq. (13.48) has solutions, we must solve 
the secular equation corresponding to Eq. (12.55), i. e., 

(13.49) 

(a - E)2 - (p - ES)2 = 0. (13.50) 

This equation has two solutions for E. One is obtained by putting Q! - E: = 
-(/3 - ES) and is 

The other solution corresponds to a - E = ,L? - ES and is 

(13.51) 

(13.52) 

Having found the eigenvalues of the secular problem (13.48), we must de- 
termine the eigenvectors (c1 , ca) and hence the LCAO-MOs v, = c1 Is, + c2 1sb. 
Inserting the value of E+ into Eq. (13.48) gives 

as - @(a - c2) = 0, 
1+s 

(13.53) 

(13.54) 

which requires c1 and c2 to be equal. Hence, the LCAO-MO in question is 

(o+ = c(ls, + lab). (13.55) 
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In complete accordance with the discussion in Sec. 12.5, we have only been 
able to determine cp+ to within a constant c. Let us determine the constant 
such that cp+ is normalized to unity. The normalization integral is 

We choose c to be real and positive. The normalized LCAO-MO becomes then 

( 1 3.57) 

By inserting the other value, i.e. the E- of Eq. (13.52), into Eq. (13.48), 
we get in a similar way 

(13.58) 

By evaluating (cp+ Ip-) along the same lines as (cp+ Ip+) was evaluated in Eq. 
(13.56), one finds the result zero. Thus, cp+ and p- are orthogonal, in ac- 
cordance with our general knowledge (Sec. 5.4) that functions corresponding 
to different eigenvalues of a Hermitian operator are orthogonal. (p+ and cp- 
are, of course, not exact eigenfunctions of the Hamiltonian fi, but the orthog- 
onality property is equally valid for matrix problems involving only Hermitian 
matrices. This we shall not prove.) 

With the purpose of obtaining numerical values for E+ and E-, we shall 
now discuss the evaluation of the two-center integrals in Eqs. (13.42)-(13.45). 
It is fairly obvious from these expressions that a and P must be negative. 
Hence, we find that E+ < E - .  This implies that it is E+ that approximates 
the ground state energy and 'p+ that models the ground state MO. 

To evaluate the overlap integral S = (lsallsa), we invoke the spheroidal 
coordinates of Sec. 13.2. First we get, from Eqs. (13.38), (13.46) and (13.16), 
that 

(13.59) 
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CR 

Figure 13.4: The (fsa/ls~) overlap as function of CR. 
See Eq. (13.61). 

Next we get, with the volume element from Eq. (13.18), 

This expression involves only elementary integrations. Hence, we merely state 
the result 

(13.6 1) 

Figure 13.4 shows a graph of 5' as a function of SR, and hence as a function 
of R for a given C. We see that S equals 1 in the united-atom limit ( R  = 0 ) ,  as 
it should because S becomes the scalar product of a normalized function with 
itself in this limit. Moreover, S is a decreasing function of R and tends to zero 
in the separated-atoms limit ( R  + m). 

The two-center integrals in Eqs. (13.43)-(13.45) may be evaluated in a 
similar fashion, by also invoking the relations (13.19) and (13.20). We find 



13.4. The Homonuclear Case. Ground State of H i  309 

0.5 

LCAO (( = 1) 

. . . . . . . . . 0.0 

:;;; I I I I I I I I ,  I I ,  I l l l I I I I I ,  I ,  
-2.0 ' 

0 1 2 3 4 5 6 7 8  

R f bohr 

Figure 13.5: Electronic energies E(R)  of the ground state and 
lowest excited state of HZ. 

first 

(1 3.62) 

(Is,  i - ~ V z 1  ls,> = iC2(l+ CR - $C2R2)e-CR. 

and then, from (13.47) and (13.43)-(13.45), 

Q = 'c2 2 - cz - 

/3 = iC2 (( 1 + CR - $C2 R2)e-CR - 2CZ( 1 + <R)e-CR. 

(1 - (1  + CR)e-2CR), 
(13.63) 

By substituting the analytical expressions (13.61) and (13.63) for S, (Y 

and /3 into (13.51) and (13.52) we may calculate the energies E+ and E- as 
functions of R. The results of such a calculation are shown in Fig. 13.5 for 
the Ht ion, for which 2, = zb = 1.  The orbital exponent C was assigned the 



310 Chapter 13. Diatomic Molecules 

0 

c . 
-0.5 

-0.6 

-0.7 
0 

LCAO (( = I) 

Exact I- . . . . . . . . . 

R I bohr 

Figure 13.6: Exact and simple LCAO potential-energy curves 
U ( R )  for the ground state of HZ. 

value 1 for all R-values. The Figure also shows the exact energy curves of Fig. 
13.2 that our LCAO calculation approximates. It is seen that the approximate 
curves lie above the exact ones for all R, in agreement with the remarks a t  the 
end of Sec. 12.5. 

Next, we may add the nuclear repulsive energy 1/R to the curves of Fig. 
13.5 to obtain the potential energy curves U ( R )  defined by Eq. (13.23). Fig. 
13.6 shows these curves for the ground state of H t .  The curve labeled exact 
is of course the same as the ground-state curve in Fig. 13.3. 

The exact curve in Fig. 13.6 has its minimumat R = Re = 2.00 bohr. The 
corresponding energy is U (  Re) = -0.60263 hartree. At the separated-atoms 
limit ( R  + 00, the dissociation limit) we have U(m) = -0.50000 hartree which 
is the energy of a free hydrogen atom. We introduce the electronic dissociation 
energy D,  by the definition 

D, = U(m) - U(R,). (13.64) 

Its value is seen to be 

D, = 0.10263 hartree = 2.79 eV. (13.65) 
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The LCAO curve in Fig. 13.6 has its minimum at R = 2.49 bohr. The 
corresponding value of U(R,) is -0.56483 hartree, which gives D, = 0.06483 
hartree = 1.76 eV. The agreement with the exact values is not spectacular. 
Qualitatively, we may understand the differences as follows. 

The two E(R)  curves, i. e., the two lower curves in Fig. 13.5, come together 
in the separated-atoms limit. But for all finite distances, the LCAO curve lies 
above the exact curve. The difference between the two curves increases steadily 
as R diminishes, becoming very large in the united-atom limit. The slope of 
the LCAO curve is therefore smaller than the slope of the exact curve for 
all R. But since U(R) = E(R)  + 1/R, the minimum of a U ( R )  curve must 
occur where the derivative of the E(R)  curve cancels the derivative of the 1/R 
nuclear-repulsion curve, i. e. where the two derivatives have the same absolute 
value, but opposite signs. With the smaller slope of the LCAO curve this 
happens for a much larger R-value than for the exact curve. 

Thus, we learn that the behavior of the potential-energy curve in the valence 
region is closely connected with the behavior of the electronic-energy curve for 
small and large R-values. This result is of general validity for the theory of 
molecular shapes and binding energies. 

For the ground state of the H t  ion, it is a fairly simple matter to  improve 
the LCAO description so that it also describes the united-atom limit correctly. 
All that we need to do is to allow the orbital exponent C to vary with R. The 
way to do this is to treat C as a variational parameter for each value of R,  that 
is, we must apply the variational method to the energy expression (13.51).' 
When we do this, we find that C varies with R as shown in Fig. 13.7. The 
figure also shows the C values that come from varying the energy expression 
(13.52) for the first excited state." 

Fig. 13.8 compares the electronic-energy curves obtained by varying C, with 
the exact energy curves. The improvement is seen to be dramatic. Adding the 
1/R term to the ground-state's E(R) curve produces a minimum at R = 2.00 
bohr as for the exact curve. The electronic binding energy is found to be 
0.08651 hartree = 2.35 eV, a substantial improvement over the simple LCAO 
result. 

The reason behind the success of varying the ground-state C with R is that 
the description now becomes exact in both the separated-atoms limit and the 
united-atom limit. For in the separated-atoms limit the electron only senses 
a single nuclear charge, and the LCAO-MO (13.57) with C = 1 becomes the 
exact MO. In the united-atom limit we have a He+ ion. The exact ground- 

9B. N. Finkelstein and G .  E. Horowitz, Z. Phys. 48, 118, 448 (1928). 
loC, A. Coulson, Trans. Faraday SOC. 33, 1479 (1937). 
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Figure 13.7: Variationally determined orbital exponents for the 
two lowest states of H t  . 

state A 0  of this ion is a C = 2 hydrogen-like orbital, and this is exactly the 
A 0  into which the LCAO-MO (13.57) merges when R + 0. 

We are somewhat less fortunate with the description of the lowest excited 
MO which we describe by the LCAO-MO (13.58). As with the ground-state 
LCAO-MO we do get the correct MO in the separated-atoms limit, but as the 
energy curve in Fig. 13.8 shows, things go wrong at  the united-atom limit. The 
true MO becomes the 2p ,  atomic orbital of Het in this limit. But although 
the limiting form of the function (13.58) is also found to be a p ,  orbital, it 
turns out to be a p ,  orbital with the wrong radial dependence (a lp, orbital). 

Having seen how it is possible to give a decent description of the two lower 
states of the hydrogen molecular ion by the LCAO method, we shall now extend 
the description to other states. But first, a comment on notation is in order. 

We have so far labeled the energy levels as in Fig. 13.2 and Fig. 13.8. The 
u, orbitals are numbered lag, 2ug, 3ag, .  . . in the order of increasing energy. 
Similarly, the a, orbitals are numbered la,, 2a,, 3a,,. . . in the order of in- 
creasing energy. In another notation, usually referred to as the united-atom 
notation, the la, orbital is denoted lsag and the la, orbital is denoted 2pa, ,  
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Figure 13.8: Exact and best C LCAO electronic-energy curves 
for the two lowest states of H:. 

because these orbitals become helium 1s and helium 2 p  orbitals, respectively, 
in the united-atom limit. 

In yet another notation, the so-called separated-atoms notation, the la, 
orbital is denoted u g h ,  because the dissociated state obtained for very large 
values of R correlates with the 1s state of a hydrogen atom. The LCAO 
representation (13.57) is exact in the limit R + 00, with C = 1. Similarly, 
the lr, orbital is denoted a,ls; it has the same dissociation limit as ogls, as 
Fig. 13.5 shows. Figure 13.3 shows that the lo, state is a dissociative state: 
the potential-energy curve has no minimum. For this reason, the la, orbital 
is called an antibonding orbital. To emphasize the antibonding character of 
the orbital, it is often supplied with an asterix as superscript in the separated- 
atoms notation. Thus, one writes a:ls. The ogls orbital is called a bonding 
orbital, but no special symbol is introduced to indicate this. 

Similar equivalent notations are used for other molecular orbitals of a 
homonuclear diatomic molecule, 

The notation adapted in the following two sections will partially be the 
separated-atoms notation. 
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13.5 LCAO-MOs for Homonuclear Diatomics 
The order of the H; energy levels in Fig. 13.2 is influenced by the high de- 
generacies of the levels in the united-atom and separated-atoms limits. This 
is the degeneracy exposed in Fig. 9.5: the energy of a hydrogen-like atom de- 
pends only on the principal quantum number n.  In a many-electron atom, 
as described by the aufbau principle and Hartree-Fock theory (Secs. 11.3 and 
11.6), this degeneracy is lifted, and we get a new energy ordering based on 
the n + l? rule. Thus, we have the level order 1s < 2s < 2p < . . . rather than 
l s < 2 s = 2 p <  .... 

The order of the energy levels in the free atoms influences the order of 
levels in the molecules formed from the atoms. To describe the new ordering 
€or homonuclear diatomics with more than one electron, let us construct the 
following e ~ e m e n ~ a r ~  LCA 0-MOs which are generalizations of the functions 
'p+ and p- given by (13.57) and (13.58), 

(13.66) 

Here, S has a different meaning from one function to another, being the overlap 
integral between the two AOs with which it actually occurs in the list. Thus, 
s = (2&a12P&) for each of the functions tp(xu2pz) and ip(ng2p,). 

The L C A O - ~ 0 s  in the above list are real-valued. They are e ~ ~ e n f u n ~ t ~ o n s  
of fz, Ei, (= C ? ~ ~ ) ,  and the inversion operator i. However, they have been chosen 
so that they refer to a coordinate system slightly different from that of Fig. 
13.1, in the sense that the za and a, axes now are taken to point towards each 
other. Thus, the direction of zb in Fig. 13.1 is supposed to  be reversed, with 
the effect that the positive lobes of the 2p,, and 2p& orbitals become directed 
against each other and the overlap integral ( 2 ~ ~ ~  12p,b) becomes positive. 

The LCAOs in the list (13,66) are supposed to be reasonable first approxi- 
mations to the molecular orbitals of homonuclear diatomic molecules and ions 
formed from first- and second-row atoms (H, He, Li, Be, €3, C, N, 0, F, Ne). 
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. , 

Figure 13.9: Homonuclear diatomic standard LCAO-MOs formed from ls, 
29 and 2p AOs. 

They are labeled by their symmetries and their composition. For each pair 
(for instance cp(ug2p) and cp(uu2p)), energy expressions similar to  those of 
Eqs. (13.51) and (13.52) hold, and an orbital to the left in the list will have 
a lower energy than the corresponding orbital to the right. They are bonding 
and antibonding orbitals, respectively. Note the degeneracy with respect to 
the 2 and y labels on the A orbitals. Like any level with X # 0, a A level is 
always doubly degenerate. (Recall the discussion leading to Eq. (13.27).) 

Figure 13.9 shows the order of all the orbitals in the list (13.66), the an- 
tibonding orbitals being marked with an asterix. Note, however, that the 
notation used for the orbitals is that referring to the exact molecular orbitals. 
The orbital cp(a"2s) is, for instance, merely a first approximation to the exact 
orbital denoted 2uu or oZ2s. 

Figure 13.10 shows the form of the cp(ugls) and cp(cruls) LCAO-MOs for 
H t  through contour diagrams. 

Let us now improve on the description according to which the MOs for 



316 Chapter 13. Diatomic Molecules 

I 

I 

-3 -2 - 1  0 1 2 3 
- 2 , , , , , 1 , , , , , , , , , , , , , , 1 , , , , , r , , , , 1  

-1 I 
-3 -2 -1 0 1 2 3 

Figure 13.10: Contour curves in a plane through the internuclear axis for the 
(o(ugls) (bottom) and cp(u,ls) (top) orbitals for HZ at R = 2 bohr. C = 1. 

homonuclear diatomic molecules are given by the LCAO-MOs (13.66). To do 
so, we invoke the linear variational method and make the assumption that the 
MOs for molecules and ions formed from first- and second-row atoms can be 
represented as linear combinations of the form (13.37), with the sum including 
all Is ,  2s and 2 p  AOs on the two centers A and B ,  i.e., ten AOs in all. The 
LCAOs are thus to be determined by solving a 10 x 10 matrix eigenvalue 
problem of the form (12.53). In this way, we find the optimal MOs within the 
10-dimensional function space defined by the ten mentioned AOs. 

The ten AOs form a basis for the function space, and expressing the molec- 
ular orbitals in the form (13.37) is tantamount to referring them to the basis 
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formed by those ten AOs. Any set of ten linearfy independent functions within 
the space may, however, equally well serve as a basis. 

If the secular problem is set up in a new basis, the resulting LCAOs must 
become the same. So let us take the ten elementary LCAO-MOs (13.66) as 
a new basis. This is a so-called s y ~ ~ e t ~ ~ - u d a ~ ~ e d  basis, because each basis 
function is an eigenfunction for a set of operators that commute with the one- 
electron Hamiltonian. They are the operators fz, bcz and i. 

Let us now recall the discussion of Sec, 12.6. It says effectively that only 
functions with the same set of eigenvahes for the mentioned operators, i.e. 
functions with. the same symmetry characteristics, can combine in a linear 
variations1 calculation. This implies, first of all, that the separation into even 
and odd functions is exact. Next, we realize that the R orbitals are uniquely 
determined, But the three ug orbitals may “mix”. Thus, we should really look 
for three better MOs of the form 

(la,, 2a,, 3ug) = (agls, ug2s, bg2p) 

and similarly for the odd u orbitals, 

(lu,, ,2a,, 30;) (6: Is, a:2s,a:2p) 
b i z  b i3  

= (Cp(@uls), (P(gu2s)t c p ( ~ ~ 2 p ) ~  ( ii! b2Z b23 ) (13.68) 
632 b33 

This gives us two 3 x 3 secular problems to solve. 
But since a Is A 0  is energetically well separated from the 2s and 232 

AOs, we will always find that (uglsfglagls)  is much more negative than 
(ug2s1filcrg2s) and (ag2p(glug2p). And as an elementary study of secular 
problems shows, this implies very little mixing between the u g h  orbital and the 
other two. Thus, we may safely conclude that p(ugls), and similarly yt(cr,ls), 
are good LCAO-MOs. In other words, the coefficients ((112, a139 Q Z ~ ,  (131) and 
( 6 1 2 ,  b13, b 2 1 ,  b31) are very small. This leaves us with two 2 x 2 secular problems 
for the determination of orbitals of the form 
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and 

Here, the mixing may be appreciable, and may in fact cause the as2p MO 
in the drawing of Fig. 13.9 to move above the nU2p MO. This happens, for 
instance, in the diatomics built from the elements from the first half of the 
second row (see below). The kind of mixing occurring in (13.69) and (13.70) 
is called hybridization, because it effectively mixes the 2s and 2 p  AOs on 
the same center. That hybridization is more pronounced in the beginning of 
a period, reflects the fact that the energy difference between the 2s and 2p 
atomic orbitals increases toward the end of a period. 

With hybridization included, we may safely assume that the LCAO-MO 
picture given in this section is a reasonable one. We may therefore use it to de- 
termine electron configurations and determinantal wavefu~ctions for diatomics, 
in a similar way as we determined electron configurations and many-electron 
wavefunctions for atoms in Chapter 11. 

13.6 Electronic Structure of Homonuclear 
Di-atomics 

We shall now give a brief overview of the electron configurations €or first- and 
second-row homonuclear diatomics on the basis of the energy-level diagram in 
Fig. 13.9. We shall also consider the bond order of these molecules and ions. 
We define it by the expression 

Bond order = + X  

(number of electrons in bonding orbitals 
minus number of electrons in antibonding orbitals) 

(13.71) 

H2 has the electron configuration ( 0 ~ 1 s ) ~ .  The bond order is 1, correspond- 
ing to a single bond between the hydrogen atoms. 

He2 has the electron configuration (6,1s)2(u:1s)2. The bond order is 
0: He2 is an unstable molecule. But He$, with the electron configuration 
(~gls)2(~~l~)1? has a bond order of 

Liz has the electron configuration (ag1s)2(u: ~ S ) ~ ( U ~ ~ S ) ~ ,  which we shall 
write in the condensed form [He2](og2s)’. The bond order is 1. In accordance 
with this, Liz is found to be a stable species. 

just like H t t  and is a stable ion. 
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Be2 has the electron configuration [ H ~ ~ ] ( u , ~ s ) ~ ( u : ~ s ) ~  and a bond order 
of 0. It is not a stable molecule. 

In Bz, Cz and N2, the nu2p MO lies below the ug2p MO as discussed above. 
Thus, B2 has the electron configuration [He2](a,2~)~(~:2s)~(n,,2p)~ which we 
shall also write as [Be2](nu2p)2. The bond order is 1. 

There are two nU2p orbitals: the nU2p shell may contain four electrons. 
The electron configuration of C2 is therefore [Be~](n,,2p)~, and the bond in CZ 
is a double bond, the bond order being 2. 

For NZ we get the electron configuration [Be2](n,,2p)4(ug2p)2. The bond 
in Nz is a triple bond. 
02 has the electron configuration [ B e ~ ~ ( ~ , Z p ) ~ ( n , , 2 p ) ~ ( ~ ~ 2 p ) ~ .  The bond 

order is 2. Now the ug2p MO lies below the nU2p MO, but this has no effect 
on the electron configuration, since both orbital sets are fully occupied by 
electrons. It concerns the relative binding energies and hence the relative 
ionization energies associated with the orbitals. 

For Fa we get the configuration [Be2](~,2p)~(n,,2p)~(nI;2p)~, so the bond 
in Fa is a single bond. 

Finally, we get that Ne2 is [Be2](~,2p)~(n,,2p)~(n~2p)~(u:2p)~, with no 
bonding. 

Thus we see that simple molecular orbital theory is able to give a chemically 
correct description of the bond orders. This also allows us to explain other 
important features. It is found, for instance, that 0; has a shorter bond 
length than 02, whereas the bond in 0, is longer than in 0 2 .  This is in 
accordance with the respective bond orders 2!j, 2 and 1; for these species. 

Thus, several molecular properties may be accounted for by referring to 
the electron configuration, But, in the same way as for atoms, the electron 
configuration is not the whole story. The properties of a molecule is tied to the 
wavefunction, toward the setup of which the electron configuration is merely 
the first step. To go from the electron configuration to the wavefunction, the 
molecular orbitals must be combined with a and p spin functions to give spin- 
orbitals. These spin-orbitals are then used in the construction of antisymmetric 
many-electron wavefunctions, the antisymmetry being conveniently achieved 
through the construction of Slater determinants. 

An interesting case is the 02 molecule for which the ground configuration 
is an open-shell configuration, [Be2](as2p)2(n,,2p)4(7rI;2p)2. This implies that 
the configuration gives rise to several Slater determinants. A detailed analysis 
shows that there results three distinct electronic states with different ener- 
gies. Calculations show that the ground state is degenerate, with the spins of 
the two ni2p electrons being parallel. Thus, we predict that 02 should be a 
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'$1(21) $1(22) . * $1(2N) 

'$2(xl) $ 2 ( 2 2 )  . . .  $ 2 ( x N )  
. . .  . . .  . . . . . .  
$,Nfzl) $ N ~ 2 2 )  ' * *  $ N ~ 2 N )  

paramagnetic molecule which is in fact what one finds experimentally. The 
ability of molecular-orbital theory to give a straightforward explanation of this 
observation was one of the early successes of the theory, 

An outstanding property of a Slater determinant is worthwhile noticing at 
this place, namely, its invariance up to a factor under linear transformations of 
the defining spin-orbitals. To verify this property, consider the determinantal 
wavefunction (11.40), defined in terms of the spin-orbitals + I ,  $2,. . . .  $N. By 
a linear substitution we introduce N new spin-orbitals $1, $ h l . .  . .  $h, such 
that 

$:(21) $:(22) . . .  $:(XN) 
= A  $h(.l) 74c.2, * . .  $gW) 

. . .  . . .  . . . . . .  
$ ~ ( 2 1 )  $ ~ ( ~ 2 )  $&(EN) 

k = l  

The ( i , j ) t h  element in the determinant (11.40) is then 

N 
$i ( 2 j  ) = aik (xj ) * 

k = l  

(13.72) 

(13.73) 

a21 a 2 2  * * .  a2N 

. . . . . . . . . . . .  I = I  a N i  a ~ 2  . . .  ~ N N  

(13.75) 

Hence, a linear transformation of the type (13.72) merely leads to the multi- 
plication of the determinantal wavefunction with a constant, namely, the value 
of the determinant det(a;k). In the notation of Eq. (11.40) we may also write, 

1+1$2 - . * $ " I  =A/$:$ ;  .-.$kI- (13.76) 

The effect of the constant A is to ensure that the wavefunction remains nor- 
malized. 
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As an application of this result, let us construct the Slater determinant 
corresponding to the He2 electron configuration (vg 1s)2(v:1s)2. As discussed 
above, the cgls and c:ls orbitals are well represented by the elementary 
LCAO-MOs in the first line of the list (13.66). Hence, we get 

(13.77) 

where, as usual, + and - refer to the (Y and spin functions, respectively. 
This result shows that, whenever all LCAO’s that may be formed from a 
set of atomic orbitals are occupied by electrons, then the Slater determinant 
defined by the LCAO’s is the same as the Slater determinant defined by the 
original atomic orbitals, apart from a constant factor. Hence, the construction 
of LCAO’s is arbitrary in this case. 

When only some of the LCAO’s that may be formed from a set of atomic 
orbitals are occupied by electrons, as is usually the case, then the only linear 
transformations that leave the Slater determinant unchanged, are transforma- 
tions between the occupied orbitals. Performing such transformations lead to 
more or less localized molecular orbitals and they are often used, especially for 
polyatomic molecules. We shall not consider them further here. 

Supplementary Reading 

The bibliography, [26], [29] and [30]. 

Problems 

13.1. Study the contour diagrams in Fig. 13.10, and then consider the values of the 
orbitals along the bond axis (z = 0, y = 0, -m < z < m). 

a. Draw a graph of cp+(r) along the bond axis. Similarly, draw a graph 
of cp-(r). (Use the expressions (13.57) and (13.58).) 

b. Also draw graphs of the electron densities cp:, cp’_ and $(1s: + 1s;). 

C. Sketch the deformation densities 

to illustrate the electron displacements caused by the bond formation. 



322 Chapter 13. Diatomic Molecules 

13.2. Specify the electronic structure and bond orders in the €allowing groups of 
diatomic molecules and ions: 

( N i t  N2, N;), cs:, sz, ST), (Na:, Nan, Na,), 

and discuss on this basis the relative bond lengths within each group. 

13.3. In this exercise, we perform a simplified molecular-orbital calculation for LiH. 

E 

The molecular bond is supposed to be established between the 2s orbital, xa, of the 
Li atom and the 1s orbital, Xb, of the H atom. Thus, the electron configuration of 
the LiH mofecule becomes ls:i(p:, where the bonding orbital cp1 has the form 

(PI = C a X a  f CbXb. 

The corresponding  tib bonding orbital is 

VZ = chxo -k ClbXb. 

a. Determine the molecular-orbital energies, El and Ez, and calculate 
the values of the coefficients (cu,cb) and (ch,c;). Use the foIIowing set 
of semiempirical values and approximations: 

Ha4 = -5.40eV, Hbb = -13.60eVI Hab = (Haa f Hbb)Sab, 
S u b  = 0.475 (at the eq~librium distance). 

b. Check that cp1 and cpz are mutually orthogonal. 

13.4. The electron ~ o n f i g u r a t ~ o ~ ~  of boron (B) and aluminum (Al) are, respectively, 
1s22sz2p1 and [Ne]3s23p'. 

a. Determine the orbital exponent tp for B and the orbital exponent 
cap for A1 by applying Slater's rules. 
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Next, consider the molecule BH with the electron configuration 1s22s2cp2, where 1s 
and 2s are the same orbitals as in the free boron atom, while the molecular orbital 
cp has the form: 

x a  is the l a  orbital of the hydrogen atom and X b  is the 2p, orbital of the boron atom, 
The relative positions of the atoms and the orbit& are shown on the figure. 

‘p = C a X a  + C b X b .  

b. Determine the energy E of the orbital cp by assuming that 

Ha,  = -13.61 ev,  H b b  = -8.30 ev, H a b  = -2.35 eV. 

b t h e r ,  assume that x a  and X b  are normalized atomic orbitals, and 
neglect the overlap between them 

saa = 1, S b b  = 1, sa& = 0. 

c. Determine the coefficients C ,  and cb, requiring that the molecular 
orbital cp be normalized to 1. 

d, Corresponding to the bonding orbital cp there is an antibonding or- 
bital, 

Determine ch and c;, requiring that p’ be properly normalized. 

e. In a more precise description, one would write the bonding molecular 
orbital on the form 

Cp’ = ckxa 3- C b X b -  

( P = C l X a + c Z x b + C 3 f S  + C 4 2 3 1  

where 1s and 2s again are orbitals of the free boron atom. Make a 
qualified guess concerning the m a ~ t u d e s  of c3 and 9. 
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14.1 Introduction 
As a natural continuation of the previous chapter, let us now consider the 
vibration and rotation of a diatomic molecule in the adiabatic approximation. 
The point of departure is Eq. (13.10), which for a diatomic system becomes 

where r A  and r g  are the position vectors of nuclei A and B ,  respectively, and 
r is the internuclear distance (the same as R in Section 13.1). Eq. (14.1) is 
similar to Eq. (8.4) and may be treated in the same way. 

324 
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In our work on atoms and molecules sofar, the zero of energy has been 
the energy of infinitely separated electrons and nuclei at rest. In the present 
context, it is convenient to measure energies relative to the total energy of the 
separated ground-state atoms instead. Calling this energy Eatoms, we write - 

Em01 = Eatoma + ~ r n o l ,  ~ ( r ) =  Eatoms + C ( r ) .  (14.2) 

With these substitutions, Eq. (14.1) becomes 

Obviously, Eq. (14.3) also has the same structure as Eq. (8.4). 
In the following, we shall assume that we are dealing with a diatomic 

molecule in its electronic ground state. The potential-energy function C(T)  
is supposed to have a minimum at a certain internuclear distance, re .  This 
distance is referred to as the equilibrium bond length of the molecule, and the 
requirement that it is associated with a minimum of f i ( r )  implies that 

fi’(re) = 0 and fi”(re) > 0 (14.4) 

where the primes denote differentiations with respect to r .  
As a typical example, Figure 14.1 shows the potential-energy function 6 ( r )  

as calculated for the electronic ground state of the hydrogen molecule, H2.l 

When r is very large we deal with two free hydrogen atoms, and 6 ( r )  is then 
zero. Bringing the atoms together leads to the formation of a chemical bond 
and hence to a lowering of the energy, i. e., to a decrease of 6 ( ~ ) .  This decrease 
continues until the point r = re is reached, after which 6 ( r )  starts rising to 
infinity as a result of the strong repulsion between the nuclei for small values 
of r .  

Were it not for the dynamics of the nuclei, then r would settle at the value 
re and the energy of the molecule would be U ( r e ) .  But the nuclei cannot be 
brought to rest, so the energy of the molecule will be U ( r e )  plus the energy 
associated with the nuclear motion. 

The motion of the nuclei may be separated into translation, rotation, and 
vibration. Translation is the center-of-mass motion and rotation means rota- 
tion of the molecule about the center of mass, while vibration means oscillation 
of r about its equilibrium value T, .  

We begin with a direct attack on the vibrational problem and postpone the 
formal separation of variables until Section 14.3. 

and L. Wolniewicz, J .  Chem. Phys. 43, 2429(1965). 
‘The graph is based upon the results of an extremely accurate calculation by W. Kolos 
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8 I 

0 1 2 3 4 5 6 7 8  
r I bohr 

Figure 14.1: The ground-state potential-energy curve of the 
Hz molecule, referred to the ground-state energy of two H 
atoms. The minimum defines the equilibrium bond length, 
re = 1.401 a0 = 0.7414 A, and the electronic dissociation energy 
R, = -6(re] = 4.7477e~. 

14.2 The Vibrational Motion 
The vibrational position variable is the deviation of r from its equi~ibrium 
value. We denote this variable by x, i .  e., we put 

r = z + r e .  (14.5) 

The potential-energy function that the vibrator senses is the energy function 
@(r) as measured from its m~nimum value 6(re) .  We call this function V(z), 

~ ( x )  = V ( r ,  + z) - U ( r e ) .  (14.6) 

For the hydrogen molecule, we show the function V(z) in Figure 14.2 (solid 
curve). For negative values of 2, it rises to  infinity as x approaches the value 
-re, corresponding to  the internuclear distance T = 0. For positive values of 
x, it approaches the value 
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8 

6 5 

2 

0 
-2 0 2 4 6 a 

x I bohr 

Figure 14.2: The exact potential-energy function V ( z )  for the 
Ha molecule and its approximation by a harmonic potential and 
a Morse potential. 

which is the e l e c t ~ ~ 2 c  d i s s ~ i a ~ ~ o n  energy. De is also called the well d e ~ ~ h ,  for 
obvious reaaons. The two other curves in Figure 14.2 will be explained at the 
end of this section. 

We are now ready to present the Schrodinger equation for the vibrational 
motion. It has the form 

where +(z) is the vibrational wavefunction and E the Vibrational energy. The 
effective mass of the oscillator is the reduced mass, 

We note that if MA 5 MB then p varies between $MA (when MA = M B )  and 
M A  (when MB + 00). As we know, the reduced mass emerges in a natural 
way when the center-of- mass motion is eliminated. 
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The form of V(z ) ,  as exemplified by Figure 14.2, indicates that  the spec- 
trum of E will be discrete for E < De (bound states) and continuous for 
E > De (dissociative states), and this is in fact what one finds by solving Eq. 
(14.8). In general, it is impossible to solve this equation analytically. Indeed, 
V ( z )  is itself only known as a numerical function. There is nothing wrong with 
numerical functions, however, and both +(z) and E may be determined with 
great accuracy by the methods of numerical analysis. 

The physical accuracy is, however, never better than the accuracy with 
which the exact form of V ( z )  is known, and the theoretical calculation of the 
finer details of V ( z )  is for most molecules a formidable task. More often than 
not, one must therefore be content with reasonable approximations to V ( I ) .  
Now, one may very often obtain a first approximation without actually calcu- 
lating V ( z )  from first principles (which involves the solution of an electronic 
Schrodinger equation for each value of r ) .  For if the spectrum of E has been 
well determined experimentally, then methods exist by means of which one 
may deduce the gross features of V ( z ) .  

Such methods usually take their starting point in an expression for the 
spectrum of E of the form 

in which w e  = w/27rc, I ,  and ye are empirical parameters, such that I ,  is 
considerably smaller than 1, and ye is considerably smaller than ze. It is found 
that an expression of this kind is able to give a very good representation for 
many diatomic molecules, at  least when they reside in their electronic ground 
state. For the hydrogen molecule one finds 

we = 4401.21 cm-', 
2 e  = 0.027567, ye = 0.0001635, (14.11) { n,,, = 14. 

H2 : 

Thus the electronic ground state of the hydrogen molecule supports 15 vibra- 
tional states. For other molecules, nmax may be much smaller or much larger 
than this.2 

2The vibrational parameters for a very large number of diatomic molecules is given in: 
K .  P. Huber and G .  Herzberg, Molecular Spectra and Molecular Structure. IV. Constants 
of Diatomic Molecule$, Van Nostrand Reinhold, New York, 1979. 
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There are various methods by means of which one may deduce the gross 
features of V(x) from the energy spectrum, but we shall only consider the idea 
of using an approximating V(e) of a particular analytical form, with built- 
in parameters, but such that the Schrodinger equation (14.8) may in fact be 
solved analytically. A large number of such functions have been discussed by 
Steele and L i p p i n ~ o t t , ~  but we shall only consider the two most common ones. 

The simplest approximating potential is the harmonic potential defined by 
Eq. (7.3), i. e., 

VHarmonic (x) = kkx’, --oo < x < 00. (14.12) 

We have studied the Schrodinger equation corresponding to this potential in 
great detail in Chapter 7. It leads to the well-known energy spectrum given 
by Eq. (7.41), and we note that this expression coincides with the expression 
of Eq. (14.10) when we put ce and ve equal to zero. 

The energy spectrum of the harmonic oscillator differs from the vibrational 
energy spectrum of a real molecule in three important respects. Firstly, the 
energy levels are equally spaced. Secondly, there are infinitely many of them. 
And thirdly, the continuous spectrum is absent. Nevertheless, the lower part 
of the real spectrum is fairly well represented by the harmonic oscillator ex- 
pression, provided the molecule considered has a large number of bound states. 
The harmonic-potential approximation is accordingly much used for lower n- 
values, also because the wavefunctions are simple and easy to  work with. Note 
that in (14.12) the coordinate x is allowed to extend beyond its physical range, 
-re < z < 00. Also for this reason, applications of the harmonic-oscillator 
description should be restricted to low values of n. 

A much more realistic potential is the so-called Morse potential 

V M o y x )  = D, (1 - e - b z ) ’ ,  --oo < x < 00. (14.13) 

This potential goes so quickly to infinity for negative values of c that the motion 
of the particle is effectively limited to its physical range. It approaches the 
constant value D, for large c.  Thus, it has the same qualitative characteristics 
as a real vibrational potential with well depth 0,. The Schrodinger equation 
may again be solved analytically and the following expression obtained for the 

3D. Steele and E. R. Lippincott, Rev. Mod. Phys. 34, 239 (1962). 
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energy levels 

w = J-;. 2Deb2 

4 0 ,  
(14.14) 

n,,, largest integer smaller than X - 4, 1 A = & .  

A graph of the Morse potential and the associated energy spectrum is shown 
in Figure 14.3, in a dimensionless representation similar to the one defined by 
Eqs. (7.15) and (7.16) for the harmonic oscillator. Thus, the dimensionless 
coordinate Q is 

(14.15) 

where w is defined in Eq. (14.14). The dimensionless energy E is the energy 
measured in units of hw. The energy spectrum is very much like that of a real 
molecule. 

Let us now compare the exact V ( x )  for the hydrogen molecule with an ap- 
proximating harmonic potential and an approximating Morse potential. This 
is done in Figure 14.2 which is based upon the criterion that the three po- 
tentials have the same curvature, V”(O), at x = 0. This fixes the harmonic 
potential completely. For the Morse potential a second criterion has been used, 
namely, that it have the same well depth as the exact potential. The Morse 
curve is then also completely determined. 

We see from the figure that the Morse potential approximates the exact 
potential quite well. The minor differences between the two potentials can, 
however, not be neglected. We find, for instance, that the Morse potential for 
Hz supports two more vibrational bound states than does the exact potential. 

It is important to note that the approximating harmonic potential and the 
approximating Morse potential define the same angular frequency w .  For we 
have required that the two potentials have the same curvature, V ” ,  at z = 0, 
namely, the curvature of the true potential. Differentiating the expressions 

4For an overview see, for example, J .  P. Dahl and M. Springborg, J. Chern. Phys. 88, 
4535 (1988). 
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::I 
12 

h= 20 

-10 -5 0 5 10 15 20 25 30 35 40 
Q 

Figure 14.3: The potential-energy function and the energy levels 
for a Morse oscillator with 20 bound states. Dimensionless units 
as described in the text. 

(14.12) and (14.13) twice gives therefore 

k = 2D,b2. (14.16) 

The w’s defined by the harmonic-oscillator expression (7.5) and the Morse- 
oscillator expression (14.14) are accordingly the same, as claimed. 

Let us now calculate the value of w for the electronic ground state of the 
hydrogen molecule. From the data in the reference of Footnote 1 one finds 

k = V ( 0 )  = 10.0660eVai2 = 575.97Nm-’. ( 14.17) 

Furthermore, the mass of a hydrogen atom is 

mH = me + mp = 1.67353 x kg, (14.18) 

where we have inserted the values of me and mp from Eqs. (1.11) and (1.16) 
respectively. In calculating the reduced mass of the oscillator by Eq. (14.9) we 
must put MA = MB = m H .  This gives 

p = $mH = 8.36767 x 10-28kg. (14.19) 
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Hence, we get 
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w = \ iL  = 8.29655 x 1014s-l, 
P 

(14.20) 

and therefore also 

(14.21) we = - = 4404 cm-'. 

This value compares very favorably with the experimental value given in Eq. 
(14.1 1). 

In the above calculation we have explicitly used that the hydrogen nucleus 
consists of a single proton. The only thing that is used when the theoretical 
potential curve is determined from first principles is, however, that the charge 
of the nucleus is + e .  Hence we get the same curve for say HD and Da, where 
D is deuterium. Deuterium has the mass 

hW 
hc 

m D  = me + md = 3.34450 x kg (14.22) 

where we have used that the deuteron mass is 

md = 3.34358 x kg. (14.23) 

The different mass of deuterium causes we(H2), we(HD) and we(D2) to be sub- 
stantially different. Accordingly, the vibrational spectrum shows a pronounced 
isotope effect. 

Using the definition (14.9) we find in fact that 

(14.24) 
p(HD) = 1.11540 x 10-27kg, 

kg. 

Hence we get, by using the same value of k. as before, 

{ p(D2) = 1.67225 x 

w,(HD) = 3815cm-l, 
we(D2) = 3116cm-'. (14.25) 

The experimental values are 3813 cm-' and 3116 crn-l, respectively. 
Table 14.1 gives some spectroscopically determined constants for a selected 

series of diatomic molecules. The quantity Do is the experimental, or chemical 
dissociation energy, which differs from the electronic dissociation energy D, 
by the vibrational zero-point energy. The rotational constant Be is defined in 
Section 14.4. The parameter ye of Eq. (14.10) is not given in the table. For 
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Molecule 

H2 
~ H ~ H  
’Hz 
1H; 

1 ~ 3 5 ~ 1  

lH”F 
12C1H 
14N2 
2 3 ~ a 2  

69Ga35C1 
lg7Au2 
8 4 ~ r 2  

(cm- l )  (cm-l) (cm-l) (*A) (eV) 
4401.213 121.336 60.8530 0.74144 4.47813 
3813.15 91.65 45.655 0.74142 4.51383 
3115.50 61.82 30.4436 0.74152 
2321.7 66.2 30.21 1.052 2.65078 
2990.9463 52.8186 10.593416 1.274552 4.4336 
4138.32 89.88 20.9557 0.916808 5.869 
2858.5 63.02 14.457 1.1199 3.465 
2358.57 14.324 1.99824 1.097685 9.7594 
159.1245 0.72547 0.154707 3.07887 0.720 
365.3 1.2 0.1499045 2.201690 4.92 
190.7 0.420 0.028013 2.4719 2.30 
24.18 1.34 4.03 (0.0 157) 

Table 14.1: Constants of diatomic molecules. 
(Extracted from the reference of footnote 2.) 
we and Z e  are defined by Eq. (14.10). 
Be is defined in Section 14.4. 
re is the equilibrium bond length. 
DO = D, - Elib where D, is the electronic dissociation energy, and EGib is the 
vibrational zero-point energy. 

most molecules it has not been determined, or it has not been determined with 
sufficient accuracy. 

It is obvious from the table that the quality of the spectroscopic informa- 
tion about potential energy surfaces varies from molecule to molecule. The 
experimental recording of a spectrum may indeed be a very difficult undertak- 
ing, especially for molecules that only exist in low concentrations or at  very 
low temperatures. 

The quantum-mechanical calculation of good potential-energy functions 
from first principles is not an easy task either. But it is today an important 
alternative or supplement to spectroscopic measurements, and much progress 
in the study of molecules is due to a fruitful interaction between quantum- 
chemical calculations and spectroscopic experiments. 

We have so far treated the vibrational problem in a very direct way. Let us 
now go back to Eq. (14.3) and derive both the vibrational and the rotational 
problem from that equation. In light of the discussions in Chapter 8 this is a 
simple task, for as already said, Eq. (14.3) has the same structure as Eq. (8.4). 
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$'"'(T) + ~ ( T ) + ' " ' ( T )  = Erel$re'(~) 

14.3 The Vibrating Rotator 

(14.27) 

Proceeding as in Section 8.1, we begin by eliminating the center-of-mass motion 
and write 

Emol = Etrans + Erel 1 (14.26) I -  
where Etrans is the translational energy, and Ere' is the energy of the relative, 
or internal motion. As in Section 8.1, we need not consider the center-of- 
mass motion further. Let the wavefunction representing the relative motion 
be w re'(^). We have, then, the Schrodinger equation 

The problem defined by Eq. (14.27) is that of a particle with mass p moving 
in a central field, i .  e., a potential-energy field which only depends upon the 
distance to the origin. We have given a thorough discussion of the central- 
field problem in Chapter 8. We know, therefore, that if we introduce spherical 
polar coordinates, then +!J"'(T) may be factorized into the product of a surface 
spherical harmonic, depending on the angular coordinates (8,4), and a radial 
function of the variable T ,  

( 14.28) 

YJ,~(O,~) is a surface spherical harmonic, but we have used J rather than ! 
for the angular-momentum quantum number, to conform to ordinary pratice. 
The allowed values for J are the integers 0, 1, 2, . . . . The index - y ~  takes on 
25+ 1 values for a given value of J ,  in accordance with the discussion following 
Eq. (8.94). 

YJ,~ (8,4) is the rotational wavefunction. For a given J-value, the radial 
function P ( r )  = TR(T)  must be determined by solving the analog of Eq. (8.100), 
1. e., 

1 
= R(T)YJ,J  ('9 4) = ;P( r )YJ ,J  ('1 4) '  

P(T)  + ~ ( T ) P ( T )  = E r e l P ( ~ ) .  (14.29) 
h2 d 2 P ( r )  J ( J  + 1)A2 + 2p dr2  2pr2 

Let us now assume that the potential-energy function C ( T )  is of the type 
described in Section 14.1. It has a minimum for T = re .  Instead of the variable 
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r ,  we may then introduce the variable x which is the deviation of r from its 
equilibrium value re.  (The definition of x is given in Eq. (14.5)). We may 
also introduce the function V(x) which measures the potential energy from its 
minimumvalue according to Eq. (14.6). We see from Eq. (14.5) that dr = dz, 
and Eq. (14.29) may therefore be replaced by the following differential equation 
in x 

--- ” d2$(x) + J ( J  + $(x) + v(z)$(x) = [Ere’ - 5(re)]4(x), (14.30) 
2p dz2 2 p ( ~ , + x ) ~  

where 

Ere1-6(r,) - is the energy of the relative motion, referred to the potential-energy 
minimum U(re ) .  $(x) is the vibrational wavefunction. 

Solving Eq. (14.30) is a fairly complicated matter. We have a separate 
equation for each value of J ,  so the vibrational wavefunctions will be different 
for different J-values. An immense simplification is, however, obtained if we 
approximate the denominator 2p(re + x ) ~  in the second term by 2p:,  for the 
equation may then be written 

The factor in front of the wavefunction on the right-hand side of this equation 
is independent of r .  Let us write 

Eq. (14.32) becomes then 

2 2  
--- $?I + V(Z)$(X) = E”b$(z). 

ti 
2p dx 

(14.33) 

(14.34) 

Thus, we have obtained an equation which is independent of the rotational 
state. 

Apart from the notation for the eigenvalue, Eq. (14.34) is the same aa Eq. 
(14.8) which is the Schrodinger equation for the vibrational problem discussed 
in Section 14.2. Thus, the solutions of Eq. (14.34) may be labeled by a vi- 
brational quantum number n, with the values 0, 1,  2, . . . . The wavefunctions 
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obtained by solving Eq. (14.34) are &, and the corresponding energy values 
are Eiib. 

Combining the rotational and vibrational wavefunctions gives us the total 
wavefunction for the relative motion of the two atoms. It takes the form 

(14.35) 

The degeneracy of an energy level is 25 + 1.  Eq. (14.33) gives the expression 
for the energy, namely, 

1 
$rel(T) = ; ~ ~ ( T ) Y J V J  (0 ,d ) .  

where Ef;ot is the energy of rotation, and Eiib is the energy of vibration. 
The energy of vibration may to a good approximation be written on the 

form (14.10). The energy of rotation is the second term on the right-hand side 
of Eq. (14.33), 

(14.37) 

The quantity 

I = p r i  

is the moment of inertia. We may also write 

(14.38) 

(14.39) 

The constant Be has the unit of wavenumbers and is called the rotational 
constant. The value of Be is part of the experimental information given for a 
series of selected molecules in Table 14.1. 

Thus, the approximation introduced in going from Eq. (14.30) to Eq. 
(14.32) leads to a very simple picture of the relative motion of the two atoms 
in a diatomic molecule. The energy is the sum of three terms: the electronic 
energy 6 ( r e )  which binds the atoms together, the vibrational energy ,Tiib, and 
the rotational energy Eyt. The wavefunction is the product of a vibrational 
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wavefunction $J~(x) and a rotational wavefunction Y J ~ ~  (t9,d). The vibrational 
and rotational motions are completely uncoupled in this picture. 

The factor 1/r in the wavefunction (14.35) may to a good approximation 
be put equal to 1 / ~ ,  and assimilated in the normalization constant of the 
wavefunction. Doing so is, in fact, consistent with the approximation made in 
going from Eq. (14.30) to Eq. (14.32). The wavefunction becomes then 

(14.40) 
I I 

It is often convenient to consider 
tonian 

as the eigenfunction of a model Hamil- 

-vr -vib 
H = H + grotl (14.41) 

where 

(14.42) 

is the vibrational Hamiltonian, and 

H -rot = - /  h2j2 
21 

(14.43) 

is the rotational Hamiltonian. 
The vibrational Hamiltonian defines the Schrodinger equation (14.8) which 

we studied in Section 14.2. The Schrodinger equation defined by the rotational 
Hamiltonian is the differential equation for the surface spherical harmonics 
which we studied in Section 8.3. The Hamiltonian (14.42) is said to describe 
a vibmtor. The Hamiltonian (14.43) is said to describe a rigid rotator. The 
relative motion of the two atoms of our diatomic molecule is accordingly said 
to be described by a vibrating rotator. (Since the description does allow the 
molecule to  vibrate while it rotates, it is better not to talk about a vibrating 
rigid rotator.) 

The energy levels of a typical vibrator are shown in Fig. 14.3. The energy 
levels of the rigid rotator (Eq. (14.39)) are shown in Fig. 14.4. 

This is as far as we shall take the description of the diatomic molecule. 
The simple picture based upon the approximation introduced in going from 
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J =  5 
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~- 

Figure 14.4: Energy level diagram for the rigid rotator. 
Energies in units of hcB,. 

Eq. (14.30) to Eq. (14.32) goes a long way and is very useful for the interpre- 
tation of rotational and vibrational spectra. But the picture is, of course, an 
approxi~at ion,  and in detailed work it is necessary to go beyond it, 

14.4 On Rotational and Vibrational Spectra 
Since we have not studied the formal description of the interaction between 
molecules and photons, we are not prepared to discuss the rotational and vibra- 
tional spectra of diatomic molecules. A few remarks are, however, appropriate. 

In order that a photon may cause a transition from one energy level to an- 
other, its associated frequency must satisfy Bohr’s energy-frequency condition 
(2.54), i .  e., 

A E  = hv. (14.44) 

But in addition there are selection rules on An, the change in vibrational 
quantum number, and AJ, the change in rotational quantum number. These 
rules are 

An = 0 , & 1 , & 2 , .  . . , AJ = f l .  (14.45) 
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If the vibrator is harmonic, then the vibrational selection rule becomes An = 
0, fl. 

Transitions for which An = 0, generate pure rotational spectra which 
are observed as microwave spectra. Transitions for which An # 0, generate 
vibrational-rotational spectra which are observed as infrared spectra. 

Note that the rotational energy levels Eyt, measured in wavenumbers, 
according to Eq. (14.39) come at the values 

so that the difference between neighboring levels increases with J as 

This implies that if we consider transitions corresponding to An = 0 or to a def- 
inite change nl + n2 in the vibrational quantum number, then the rotational 
contribution will lead to a series of equidistant spectral lines, correponding to 
the just listed series of differences between neighboring rotational levels (pro- 
vided of course that a number of rotational levels are populated, and this is 
always the case at room temperature). The distance between neighboring lines 
is 2Be. By observing this difference, we may calculate the moment of inertia of 
the diatomic molecule from Eq. (14.39), and hence determine the internuclear 
equilibrium distance from Eq, (14.38). The formulae show, in fact, that 

(14.46) 

As an example, Table 14.1 shows that the Be value for the hydrogen 
molecule is 60.853 cm-' = 6058.3 m-l. The reduced mass, p,  is given by 
Eq. (14.19). Hence, we calculate re to be 0.74144 x m = 0.74144 A. This 
value is also given in Table 14.1. It agrees with the theoretical value listed in 
the caption of Fig. 14.1. 

It is important to note that spectra may be absent even though the condi- 
tions (14.44) and (14.45) are satisfied. A homonuclear diatomic molecule must, 
in fact, have a permanent dipole moment in order that microwave and infrared 
spectra be observed. Homonuclear diatomics without a dipole moment may be 
observed through their so-called Raman spectra (with selection rules different 
from those given above). For instance, the Be value for the hydrogen molecule 
must be determined from a Raman spectrum. 



340 Chapter 14. Vjbratjon and ~ o ~ a t i o n  of Diatomic ~ o l e c ~ ~ e s  

Supplementary Reading 
The bibliography, entries [4], [8], [ll], [18], and  (311. 

Problems 
14.1. Table 14.1 has 6 columns. Add, for some selected molecules, a new set of 
columns according to the following instructions 

Column 7. 
(cm-' ). 

Column 8. Determine EO in the Morse approximation (cm-'). 

Column 9. Determine the reduced mass p in u (use the table of isotope masses given 
below). 

Column 10. Calculate the force constant k (Nm-'). 

Column 11. Calculate the electronic dissociation energy De (in eV) with 80 deter- 
mined by the harmonic approximation. 

Column 12. Calcuiate De (in eV) with EO determined by the Morse appro~mation. 

Column 13. Determine nmax from the expression (14.14). 

Column 14. Calculate EF:;: and compare the result with the D, value calculated 
in Column 12. 

Finally, calculate we for 12C2H. 

Determine the zero-point energy EO in the harmonic approximation 

Isotope masses (u) (1 u = 1.66054 x kg) 

'H 2H "C 14N "F 23Na 35Cl ggGa 
1.008 2.014 12.000 14.003 18.998 22.990 34.969 68.926 
84 K r  lg7Au 

83.912 196.967 

Note that the values given in Table 14.1 have been determined experimentally, by 
interpreting spectra by means of expressions like (14.10), (14.39) and (14.43). The 
dissociation energy has, however, sometimes been determined by different means. In 
some cases, the number of spectral lines available has been small. The purpose of the 
present exercise is to extract further i~o rma t ion  from the experimental results by 
means of the theoretical expressions in the present chapter. Some of the results, in 
particular the values determined for nmax, must however be viewed with reservations. 
After all, our theory is a simplified one, and some experimental values, in particular 
the wexe values, may be quite uncertain. 
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itative. It merely referred to the concept of electron configurations. In the 
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present chapter, we shall extend the discussion so that also atomic term sym- 
bols, like those of Tables 11.2-11.4, may be included. 

Term symbols refer to total angular momentum quantum numbers. The 
values of these quantum numbers may be accounted for by the theory of 
angular-momentum coupling, in particular the coupling of two angular mo- 
menta referring to different degrees of freedom. These two angular momenta 
might, for instance, be the orbital angular momenta of two separate electrons 
in an atom, or it might be the spins of two separate electrons, or the orbital 
angular momentum and the spin of a single electron or a group of electrons. 
But the two subsystems involved might also be of a more complex nature. 

In the present chapter we discuss the types of angular momentum coupling 
that are implicit in the term symbols of Tables 11.2-11.4. We also discuss 
the coupling between the total electronic angular momentum and the angular 
momentum of the nucleus, and outline the connection between an atom's total 
angular momentum and the possibility of forming Bose-Einstein condensates. 

Angular-momentum coupling involves a change of basis in the function 
space for the composite system, from an uncoupled representation to a coupled 
representation. The change of basis is described by a unitary matrix, the 
elements of which are known as coupling coefficients. As a useful preliminary, 
we shall therefore begin with a general section on basis changes and unitary 
matrices. This section attaches naturally to the earlier Sec. 5.10 on matrix 
algebra. 

15.1 Orthonormal Bases and Unitary Matrices 
Let us consider a linear function space V of dimension m and introduce two 
different orthonormal bases in V ,  

{@r} = @ I , @ z , . . .  Yarn, ( @ t - ( @ s ) = & s ,  (15.1) 

and 

(6,) = 41,42,. . . ,6,, (6rI6.q) = hrs. (15.2) 

The connection between the two bases may be expressed by means of a matrix 
U: 

u11 u12 * . .  U1, 

u21 , , . u z z  . . . ' . .  , . . uzrn . . . ) , (15.3) 

urn1 urn2 urn, 

p1&2.. . ?im) = (0102.. . 0,) 
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Orthonormal bases are connected by unitary matrices. 
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(15.11) 

that is, 

(15.4) 

We get then, that 
m m  m m  m 

r=l  a = 1  r = l a = l  r = l  

where we have used that the basis GI, Q 2 , .  . . , am is orthonormal. Equa- 
tion (15.5) shows, that the condition that also the basis 6l1 6 2 1 . .  . , 6m be 
orthonormal becomes 

m C U:jUrj = Sij .  (15.6) 
r=l 

By introducing the Hermitian conjugate matrix Ut , with elements Ujr = 
U,:., we may write the condition (15.6) in the form 

U t U =  E (15.7) 

where E is the m x m unit matrix. Left multiplication by U and right multi- 
plication by U-' gives 

UUtUU- l=  uu-l, (15.8) 

UU' = E .  (15.9) 

That U" actually exists follows from the fact that the relation (15.3) may be 
inverted. Combining Eqs. (15.7) and (15.9) gives 

(15.10) 



344 Chapter 15. Atomic Term Symbols 

Note that Eq. (15.10) also shows that the inverse of a unitary matrix is the 
same as the Hermitian conjugate of the matrix. 

In terms of matrix elements, Eq. (15.10) becomes 

I m  z: ~ i , .  u;,. =: Sij , i, j = 1 , 2, . . . , m 
(15.12) 

These relations, which include Eq. (15.61, are a set of orthonormality refations 
for the rows and the columns of U .  

By multiplying Eq. (15.3) from the right with Ut and using Eq. (15.10), 
we note that the transforma~ion from the basis & I ,  62,. . . , &, to the basis 
@I, @z, .  . . , am may be written 

. . .  t 

. (15.13) 

Thus, the matrices U and Ut play symmetrical roles with respect to the two 
bases the connect. 

Note that the elements of the matrices U and U t  are nothing but the 
overlap integrals between the elements of the two bases. We have, in fact, that 

(15.14) 

To obtain the first of these relations, take the scalar product with @, on both 
sides of Eq. (15.4). This gives ( @ a l @ i )  = Usi, or (@,la,> = Urs .  The second 
reiation is obtained from the expression (15.13) in a similar way. 

As a simple illustration of the above relations, let us consider the I = 1 
functions of Tables 8.1 and 8.2. We get easily: 
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and 

We see that the two transformation matrices are unitary and, in accordance 
with the general relations (15.3) and (15.13), they are also the Hermitian con- 
jugates of each other. 

15.2 Coupling of Two Angular Momenta 
We shall now apply the concepts of the previous section to the problem of 
coupling of two angular momenta. We shall draw heavily on the discussion 
in Chapters 8 and 10 where we gave a fairly comprehensive treatment of the 
basic theory of angular momentum, and discussed its use in the description of 
the orbital angular momentum and the spin of a single particle. 

We begin by specifying the uncoupled representation referred to in the 
introductory remarks. 

15.2.1 The Uncoupled Representation 
Let us consider some particular angular momentum 

J l  = ( j l z ,  j l y ,  j l z )  (15.17) 

which may, for instance, be thought of as an orbital angular momentum or a 
spin angular momentum, but which may also be more general. The common 
eigenfunctions of j :  and jlz. are denoted 1 J1 MI). We shall consider the 2 J1+ 1 
dimensional function space V ( J 1 )  spanned by the 2 J1+ 1 functions correspond- 
ing to MI = J1, J1-  1 , .  . . , -J1, for a fixed value of J1. This function space is 
invariant under any operator built from the operators j l z ,  j ly  and jlz, that 
is, whenever such an operator acts on a function belonging to V ( J 1 ) ,  then the 
result also belongs to V (  51). 

Together with J1,  let us also consider another angular momentum 

J2 = ( j 2 2 ,  j 2 y ,  j 2 2 ) ,  (15.18) 

and a function space V ( J 2 )  spanned by the 2Jz + 1 functions IJ~Mz), for a 
fixed value of Jz. We assume that the two angular momenta considered refer to 
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The orthonormal basis ] ~ ~ M ~ ) I J ~ ~ z )  is called the uncoupled 
representation. It is determined by the independent, commut- 
ing operators $, j l , ,  Si, j z z .  

different degrees of freedom. This implies that each operator in the set (15.17) 
commutes with each operator in the set (15.18) whenever the operators work 
on functions that depend on both q1 and qz,  where q1 and qz are the variable 
sets associated with the two independent degrees of freedom. 

We consider now a function space which is invariant under all the angular 
momentum operators involved, i.e., both those of Eq. (15.17) and those of Eq. 
(15.18), and hence also any combination of them. The simplest type of such a 
space is the d ~ ~ c t - p r o d u c t  space 

V ( J 1 ,  J 2 )  = Y(J1)  x V ( J z ) .  (15.19) 

By definition of a direct-product space, V ( J 1 ,  J2) consists of all functions of 
the form 

= ~ J I M ~ ) I J ~ M ~ ) ~ M I M ~ ,  (15.20) 

with arbitrary complex coefficients C S M ~ M ~ .  Its dimension is (251 + 1)(2& + l), 
and the product functions I J ~ M I ) I J ~ M ~ )  form a natural orthonormal basis. 

MI Ma 

We note that 

~ ~ l J I ~ l } l J 2 M Z }  = Jt(J1+ l ) ~ 2 1 ~ ~ ~ ~ } l J z ~ z ) ,  
(15.21) { j ~ l J ~ ~ ~ ) I J 2 ~ 2 )  = J z ( J 2  4- 1 ) ~ z l J 1 M 1 ) ~ J 2 M 2 ) ,  

for all values of M I  and M2. This implies that 

j,Z)s) = J ~ ( J ~  -t 1)h2p) ,  j;ls) = J ~ ( J ~  + i )h21s) ,  (15.22) 

€or arbitrary values of a M , M a .  Any function in Y f J 1 , J z )  is accordingly an 
eigenfunction of both $ and j;, with the respective eigenvalues JI(J1 -I- l )h2 
and J z ( J 2  + l)h2. This is, of course, the justification for calling the function 
space Y (  51 , Jz) . 

Apart from this, the basis functions 1J1Ml)lJzM2) are eigenfunctions of 
the operators j t z  and j z Z ,  

j l z  I J1 MI ) I JzM2 } = Ml hi Jl Ml } I J2M2} f 
(15.23) 

This is in keeping with the fact that j:, jlz, ji, &z is a set of mutually com- 
muting operators, 

ij 22 1 JlMl)IJ2MZ) = M2filJlW)IJ2M2). 

(15.24) 
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In addition to the separate angular momenta J 1  and J a r  we shall now 
consider the total angular momentum obtained by vector addition of j, and 

J = Jl + J, = (j12 + jzt, jly + j2y , jlz + L). (15.25) 

A simple analysis, similar to the one represented by Eq. ( l O . l O ) ,  shows that 
j, , j,,, jz satisfy the usual angular-momentum commutation relations. Hence, 
J is a proper angular-momentum vector. We shall now consider the trans- 
formation from the basis IJ1M1)1J,M,) to a basis determined by the total 
angular momentum. The physical significance of such a transformation is the 
following. 

Assume that the Hamiltonian I? of our system commutes with all the o p  
erators listed in Eqs. (15.17) and (15.18). It will then also commute with 
the step-up and stepdown operators J1+, Jl-, J,+, Jz-. But the basis func- 
tions I51M1)IJ,M,) will successively be transformed into each other by these 
operators. So if one of them is an eigenfunction of H with energy El they 
will all be, and the energy level will in fact have a high degeneracy, namely 
(251 + 1)(2J, + 1). This follows from an argument similar to the one applied in 
Secs. 4.5 and 4.7 for a general symmetry operator. Let us repeat the argument 
here. 

Assume that I?* = E I  for some I, and that the operator fi commutes 
with H. We get then 

J, , 

^ ^ ^ ^  

HhI = hHQi = hEQi = EhQi. (15.26) 

But this equation shows exactly what we claimed, namely, that 69 is an 
eigenfunction of H with energy E whenever Qi is. 

Most often, the Hamiltonian will not commute with all the operators listed 
in Eqs. (15.17) and (15.18). But it will often commute with $, ji and the 
components (and hence also the square) of the total angular momentum J.  
In other words, the Hamiltonian may not commute with the 2, y and z com- 
ponents of the individual angular momenta, but only with the x, y and z 
components of the total angular momentum. States with different values of 
the total angular momentum may therefore well have different energies. Ac- 
cordingly, it is of great physical interest to consider the transformation from 
the uncoupled representation (15.24) to the so-called coupled representation, 
in which the basis is determined by the total angular momentum of the sys- 
tem. That such a transformation exists, follows from the fact that Y ( J 1 ,  J,) 
is invariant under the operators (15.25), so that we may determine common 
eigenfunctions of jZ and one of its components, say j,. 
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The orthonormal basis j J1JzJM)  is called the coupled repre- 
s ~ n ~ a ~ 2 ~ n .  It is determined by the independent, commuting 
operators ,Q I j:, J 2 ,  3,. 

15.2.2 The Coupled Representation 
The square of the total angular momentum (15.25) may be written 

sz = (jl, 3- j2,c)2 + (jly + Jzy)2 + fj,, + s 2 z ) 2  

= J ; + j ; + J l ’ J 2 + J z ’ J l  (15.27) 

= j :  + j ;  + 2 J ,  * J 2 ,  

where we have used that J,  . j 2  = j, Jl ,  which is true because operators 
referring to different degrees of freedom commute. 

Since 3,” and S,” commute with all the components of 31 and 3 2  they also 
c o m ~ u t e  with j ,  = j l ,  4- jz2. For the same reason they also commute with 
31 a j 2  and hence with j 2  (Use the last expression for j2 in Eq. (15.27)). The 
eigenfunctions of j 2  and j2 that we want to determine will accordingly also 
be e~genfunctions of j,” and $. This is really not surprising, for any f ~ ~ c t i o n  
in Y(J1,  J2) is. 

Thus, our alternative set of mutually commuting operators is 312, $, s2, 3,. 
The common eigenfunctions of these operators determine our new basis for 
V(J1 ,  Jz). We shall denote the new eigenfur~ctions by IJlJzJM): 

(15.28) 

Our problem is to determine which values of J that occur in UfJl, J z ) ,  and 
then to represent the basis functions of the coupled representation in terms of 
those of the uncoupled representation, that is, to determine the coefficients in 
the expansion 

I J i J z J M )  = ;Tz: ~ J ~ M ~ ~ ~ M Z ) ~ * ~ ~ ~ ,  (15.29) 

where we have written I J I M I J ~ N ~ )  instead of I J ~ M I ) J J ~ M ~ )  to  simplify the 
notation, 

IJ1 Ml J2 Mz } = lJ1 Ml ) I JzM2 ) . (15.30) 

From the discussion of Sec. 15.1, it follows that the coefficients C M ~ M ~  are 
the elements of a unitary matrix, and also that their values are the scalar 
products between the old and the new basis functions. Thus we have: 

Ml Ma 

CM, Ma = (J1 M1 JzM2 I J1 J z J M )  1 (15.31) 



15.2. Coupling of Two Angular Momenta 349 

and Eq. (15.29) becomes 

I J1 J2JM) = IJi Mi J2M2)( Ji Mi J2Mz IJi 5 2  JM) . (15.32) 
Mi Ma 

At this stage we note that addition of the two relations of Eq. (15.23) gives 

~ ~ J J ~ M I J ~ M ~ > = ( M ~  +M2)h)JiMiJ2M2) (15.33) 

which shows that the basis functions of the uncoupled representation are, in 
fact, already eigenfunctions of J, . But eigenfunctions corresponding to differ- 
ent eigenvalues of the same Hermitian operator are known to be orthogonal 
(See Sec. 5.4). The scalar products ( J I M ~ J ~ M ~ ~ J ~ J ~ J M )  are consequently 
zero, unless M = MI + M z .  Thus, Eq. (15.32) takes the simpler form 

IJiJzJM) = C IJlMiJ2M - M i ) ( J i M i J z M  - MiIJiJzJM). (15.34) 
M1 

For a given M-value, the number of terms in Eq. (15.34) is restricted by the 
requirement that M -  M1 lie within the range of M2, i. e., -52 5 M -  MI 5 52. 
In addition, we have of course that -J1 _< A41 _< J1. Thus, M I  must satisfy 
the conditions 

-J1 _< M I  5 J1 and M - Jz 5 M I  5 M -k J2. (15.35) 

According to  the first of these conditions, Mi can at most take 2J1+ 1 values, 
according to the second it can take at most 252 $. 1 values. The number of 
terms in the sum of Eq. (15.34) can accordingly never exceed the smaller of 
the two numbers 2J,+ 1 and 252 + 1. 

Let us, without loss of generality, assume that 52  5 J1. The maximum 
number of terms in the sum of Eq. (15.34) is then 2J2 + 1. The value of M 
will of course lie between J1 + J2 and -(J1 + J2). 

The connection between the values of M1 and M, and hence the number of 
terms in the sum of Eq. (15.34), is easily derived from the conditions (15.35). 
The result is shown in Table 15.1. 

The number of terms in the sum of Eq. (15.34) is equal to the number of 
linearly independent functions I J1JzJM)  that we may construct for a given 
M-value. Let us therefore imagine that we replace the word term(s) in Table 
15.1 by the word function(s). Then the table gives the number of functions 
with given M-values in the coupled representation. 

Let us now realize that each J-value in the coupled representation must 
be accompanied by the 25 + 1 M-values J ,  J - 1, . . . , - J .  Then the scheme 
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Table 15.1: Number, v. of terms in the sum of ES 
M 

J 1  + J z  
JI + J z  - 1 
J i  + J z  - 2 

Ji - Jz 

-( Ji - J 2 )  

- ( J i  + J z  - 2 )  
- (J i  + J z  - 1) 

-(Ji + J z )  

..' 

... 

M1 

Jl  

JI, Ji - 1 
J l , J 1 - 1 , 5 1 - 2  

. .  I . . .  

J1, J1 - 1,. . . , J1 - 252 
* * . * . .  

- ( J l ,  J1 - 1, , . .  ) J1 - 2J2) 
. . . . . .  

- (J i ,  Ji - 1 ,  Ji - 2 )  
- (J i ,  Ji  - 1 )  

- J1 

(15.34) 
v 
1 
2 
3 

252 + 1 
2J2 + 1 
2Jz + 1 

3 
2 
1 

. . .  

. . .  

predicts that there are 252 3- 1 possible values of J ,  namely, 

J = J1 + J2, J1 + 5 2  - l,J1 + 52 - 2 ,  . . . , J1 - Jz (15.36) 

and that each of these J-values occur just once. For J = J i  + JZ seizes one 
function in each row of Table 15.1. J = J,+ 5 2  - 1 seizes one functions in each 
row apart from the top and bottom rows. J = J1 + J2 - 2 seizes a function in 
each row apart from the two uppermost and the two lowest rows, etc. By the 
time J = J I  - JZ  has seized its functions, all functions are gone. This, then, 
proves the correctness of the series (15.36). 

In the above analysis, we assumed that JZ 5 JI. We can obviously remove 
this assumption by replacing the term J1- J Z  in Eq. (15.36) by IJI-JzJ. Thus 
we get the celebrated 

(15.37) 
Ctebsch-Gordan series: 

J =  J1 + J z , J l  + Jz - 1, J1+ J2 - 2 , .  . . , l J l  - J2j 

As an interesting exercise, let us count the number of basis functions di- 
rectly from the Clebsch-Gordan series, under the assumption that Jz  5 J1. 
The number of J-values is then 252 + 1. The total number of M-values is 
the sum of 2 J  + 1 over these J-values. The sum is an arithmetic p r o g r ~ ~ o ~  
with 2Jz + 1 terms, and with the first and last terms being 2(J1 + J z )  + 1 and 
2(J1 - J z )  + 1, respectively. The total number of M-values is therefore 

3 ( 2 J 2 + 1 ) { 2 ( J i + J z ) + 1 + 2 ( J i  - 5 2 ) + 1 } = ( 2 J 1 + 1 ) ( 2 5 2 + 1 ) .  (15.38) 
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If JI < JZ we would evidently get the same result. But this is exactly the 
dimension of Y(J1, J z ) ,  as it should be. 

The values of J, as given by the Clebsch-Gordan series, are often said to be 
given by the uec~~r-coup~ing method. One can represent the result pictorially 
by thinking of vectors of length J1 and 5 2  added vectorially, starting with the 
parallel cme which gives the resultant J1 + 52, and taking all possible values 
differing from this by integers down to I JI - J21 for the antiparallel case. 

The coeficients ( J ~ ~ ~ ~ z M ~ ~ J ~ J ~ ~ ~ )  in Eq. (15.321, i. e , ,  the elements of 
the unitary matrix which connects the coupled with the uncoupled representa- 
tion, are known as the Clebsch-Gordan coeficients or Wigner coeficients, or 
simply vector-cou~~ing coeficients. We shall now see how they can be easily 
evaluated in some simple cases. 

15.3 Vector-Coupli~g C o e ~ c ~ e n t s  by the 
Construct ion Met hod 

Because the ~ l e ~ s c h - G o r d ~  series (15.37) contains no J-value more than once, 
it is possible to perform the transformation from the uncoupled to the coupled 
representation solely from the stepup and stepdown relations (10.6) and the 
orthonormality relations (15.12). For angular momenta of low order this is a 
very practical method. We shall call it the construction method. 

To determine the functions I J1 J2 J M )  by this method, one begins by con- 
structing the 2( J1+ 52) + 1 functions with J equal to J1 f J z .  There is one such 
functio~ for each of the rows in Table 15.1. And since there is only a single 
function in the table with M = JI + J2, this must be iJ1 Jz,  J I  + Jz ,  JI + J2), 
1. e., 

To avoid cluttering, we have inserted a semicolon between the two angular 
momenta that are being added. We have also inserted optional commas. 

&om the function of Eq. (15.391, we may determine all the functions 
15152,51 + 52, M )  by using the stepdown relation of Eq. (10.6), in a simi- 
lar way a8 we used the step-up relation in Sec. 8.3.6.l Let us, for simplicity, 

'We used the step-up operator in Sec. 8.3.6, in order to get the standard distribution of 
signs in Table 8.1. Here, the generally accepted distribution of signs emerges when using the 
stepdown operator instead. 
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put ti = 1 and thus measure angular momenta in units of ti. We get then 

) J M  - 1) = l/d(J + M ) ( J  - M + l)S-IJM), (15.40) 

with J- = J1- + J z - .  This gives, with M = J ,  

IJlJZ, J 1  + J z ,  J 1  + JZ - 1) = l/dqGx)(L + L ) I J 1 J 1 ;  JZJZ) 

= 1/d- ( 6 l J i J i ;  J z J z  - 1)  + m(JiJi - 1;  J z J z ) )  ) (15.41) 

et cetera. 
Having determined the functions with J = J1 + J z ,  we may proceed to 

determine those with J = J1 + J2 - 1 The function with M = J1 + 52 - 1 
must be composed of the same functions as 15152, J1+ J z ,  J1 + J z  - 1)) but be 
orthogonal to it. This gives 

( J l J 2 ,  J 1  + J z  - 1, Jl + Jz - 1) 

= 1 / d m  ( a I J l J 1 ;  JZJZ - 1) - m I J 1 J 1  - 1; JzJz)) . (15.42) 

Successive operation with j- will generate the remaining functions with J = 
J1 + 52 - 1. 

In the process of constructing all the functions with J = J1 + Jz and 
J = J1 + Jz - 1,  we construct two functions with M = J1 + Jz - 2. But 
according to the third row of Table 15.1, a third function with this M-value 
exists. This is the function 15152, J1 + JZ - 2 , J l  + 52 - 2 ) ,  and we construct 
it by the requirement that it be orthogonal to the two functions we already 
know. Having constructed the new function, we may again start operating 
with j- and so on, until all functions of the coupled representation have been 
generated. 

This is a straightforward procedure, but we must be aware that it in- 
volves some phase choices beyond the Condon-Shortley convention which we 
described in Sec. 8.3.5: The first phase choice was made in Eq. (15.39), by 
not inserting a minus sign or a complex phase factor on the right-hand side of 
that equation. The second phase choice was made in writing down Eq. (15.42). 
The sign on the right-hand side was here implicitly chosen such that the matrix 
element of j l Z  between this function and the function with the same M, but 
a J-value higher by one unit, became real and positive. A similar criterion 
should be used to fix the phase of the function ) J 1 J z ,  J1+ Jz - 2, J1 + J2 - 2), 
etc. With these additional phase conventions, the functions in the coupled rep- 
resentation are uniquely determined, and we note that all the vector-coupling 
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coefficients become real, by construction. This implies, in turn, that the uni- 
tary matrix which they form becomes orthogonal. It may thus be inverted by 
a simple reflection in the main diagonal. 

For higher J-values, the direct construction method becomes cumbersome. 
But then other and more specialized methods based upon recursion relations 
and series expansions exist. The theory of vector-coupling coefficients is sur- 
prisingly rich, and far too extensive to be covered here in further detail.' Suffice 
it to say that the coefficients possess a number of symmetry properties with re- 
spect to interchange of quantum numbers. These symmetry properties stand 
out clearer when one introduces the so-called 3-j symbol, as defined by the 
relation 

Much of the literature on vector-coupling coefficients is accordingly a literature 
on 3-j symbols. 

But let us now determine a few Clebsch-Gordan coefficients by the con- 
struction method. The values of the Clebsch-Gordan coefficients depend, of 
course, only on the angular-momentum quantum numbers involved, not on 
the kind of physical system that the angular momenta might represent. It is 
accordingly in order to evaluate the coefficients by using the angular momenta 
with which one is most familiar, and that is the procedure we shall follow. 

15.3.1 Coupling of Two Spin Particles 
This is the simplest example of angular-momentum coupling, yet a very im- 
portant one. Let us think of two electrons and use the notation of Sec. 10.2. 
Thus, we write 

(15.44) 

Let us even write a(1) instead of a(ql), etc. The basis functions of the uncou- 
pled representation are then 

where we have also listed the value of ma, + maa for each basis function. 

2See, for instance, the bibliography, entries [16], [32] and [33]. 
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Let us denote the two-electron spin functions in the coupled representation 
by @~M~(Q,Q), or just @ ~ ~ ~ ( l , 2 ) .  We have, of course, that M s  = m,, + 
mS2. According to the C~ebsch-Gordan series (15.37), the total spin quantum 
number S may take two values, namely + f = 1 and $ - $ = 0. The spin 
functions corresponding to S = 1 are @11(1,2), 010(1,2) and @1-1(1,2).  They 
are said to define a traplet state. The spin function corresponding to S = 0 is 
@00(1,2). It defines a singlet state. 

By the method of the preceding section we get ~mmediate~y 

(15.46) 

and then, still with h put equal to 1, 

Operating once more with S- gives 

We have now found the three components of the triplet. The singlet spin 
function may then be determined as that paticular normalized linear cornbi- 
nation of a ( l ~ / 3 ~ 2 )  and P ( l ~ a ( 2 ~  which is orthogonal to the triplet €unction 
Oto(l,2).  We get immediate~y 

(15.49) 
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KlQ YllP Koa YlOP Yl-lcr Yl-1P (15.51) 
1 1 3 -- -- $ z z 2 2 2 

1 -1. 

To summarize, we have found that 

The coupling of two spin $ particles leads to a triplet 
state with the spin functions 

and a singlet state with the spin function 

@ o o ( l ,  2) = & {4 l )P(2 )  - P(1)42))  * 

(15.50) 

We note that we have encountered the singlet spin function before, namely, as 
the spin part of the wavefunction for the electronic ground state of the helium 
atom (Eq. (11.42)). 

The coefficients in the functions (15.50) are, of course, Clebsch-Gordan 
coefficients. They are tabulated in matrix form in Table 15.2. 

Y;l = YllCY, (15.52) 

and then, 

Y i l  = l/&(i- + i ) Y , , a  = &(Yl1P + fiY1ocr), (15.53) 
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Y i l  = &fiYllP - YlOC.). (15.54) 

Successive application of i- + ê - to these functions gives 

- -  Yil+ = &(JZYlOP + Yl-la),  Y f l  = Yl-lP, ( 15.55) 

and 

(15.56) 

The Clebsch-Gordan coefficients that may be read off the above expressions 

For a general [-value, we combine the 2L + 1 surface spherical harmonics 
are again tabulated in Table 15.2. 

x,, (B,c$) with the a and p spin functions. We get then, after some algebra, 

The Clebsch-Gordan coefficients that may be read off these expressions 
are not reproduced in Table 15.2. The table includes, on the other hand, the 
coefficients that one obtains by coupling two angular momenta with 51 and J 2  

both equal to 1. 

15.4 Angular Momenta in Many-Electron 
Atoms 

Having studied the rules for coupling of two angular momenta, let us now pro- 
ceed to the study of angular momenta in many-electron atoms. The problem 
is to determine a complete set of angular momentum operators that commute 
with the Hamiltonian and with each other, so that we may have common 
eigenfunctions of these operators and the Hamiltonian, in accordance with the 
general theorem (5.120). We continue to use atomic units. 
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15.4.1 The Total Orbital Angular Momentum 
With the neglect of relativistic effects, the Hamiltonian for an N-electron atom 
has the form (11.12), which we reproduce here, for convenience: 

N . N N .  

i=l i=l  j = 1  

1 z h( i )  = --02 - - .  
2 '  Ti 

( 15.58) 

The interpretation of the various terms in the Hamiltonian was given in Sec. 
11.1.  We shall now show that the total orbital angular momentum 

N 
L = C", (15.59) 

i=l 

already introduced in Eq. (10.8), commutes with k. But the individual angular 
momenta, like 21, do not. 

From our discussion of the central field problem in Chapter 8 we know 
that 2, commutes with h(1). It certainly also commutes with the operators 
h(2), . . . , h ( N )  which all refer to different particles. Hence, 21 commutes with 
the first sum in the Hamiltonian. 

With respect to the second part of the Hamiltonian, it is clear that 21 

commutes with those l/rjj terms for which both i and j are different from 1. 
Thus, we get 

(15.60) 

Exploiting the commutation relations of Sec. 5.2, and inserting an optional i ,  
it is straightforward to show that this becomes 

N 

i[@, i,] = T1 x c Fy' ( 15.6 1) 
j=2 

where 

(15.62) 

is the force that particle j exerts on particle 1. The right-hand side of Eq. 
(15.61) is the torque (moment of force) acting on electron 1, and Eq. (15.61) 
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is, in fact, the quantum-mechanical counterpart of the classical relation 

(15.63) 

We have now seen that the angular momentum of an individual electron 
fails to commute with I?. Consider, however, the commutator 

This commutator is zero, because F r )  is directed along the axis between elec- 
trons 1 and 2. Thus, 2, + 2 2  commutes with l/r12. In a similar way we can 
show that 2, + 23 commutes with l/r13, etc., and we arrive a t  the anticipated 
result : 

[I?, L] = 0. (15.65) 

The relation (15.65) implies that we may look for eigenfunctions of fi that are 
also eigenfunctions of L2 and, say Lz . Such eigenfunctions will not only satisfy 
the atomic Schrodinger equation 

I?* = E 4 ,  (15.66) 

but also the eigenvalue equations 

(15.67) L2\E=L(IJ+1)\E,  L = O , 1 , 2  , . . .  
LzQ = M L Q ,  M L  = L , L -  1 , . . .  , -L.  { 

One often uses the colloquial expression that L and ML are good quantum 
numbers. 

15.4.2 

We must now recall (Sec. 11.4) that not every solution of Eq. (15.66) gives an 
acceptable wavefunction. According to the fumdamental symmetry principle 
(11.37), Nature only allows the antisymmetric solutions to come into play, i.e., 
solutions for which 

The Total Spin Angular Momentum 

Pi j4  = -\E ( 15.68) 
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for all (i,j)-pairs. P i j  is the operator that interchanges electron i and j ,  

?jj!P(~i,. . . , ~ i , ,  . . , ~ j ,  . . . , XN) = *(XI , . . . , ~ j ,  . . . , xi, . . . , ZN). (15.69) 

Any permutation P of the N electrons can be written aa a product of trans- 
positions (interchanges of two electrons). If p is the number of transpositions 
required to generate P ,  then Eq. (15.68) is seen to imply that 

I F Q = ( - l ) W  I (15.70) 

which is a very convenient formulation of the antisymmetry requirement. 

We get then that 
Now, let B(1,2, . . . , N )  be an arbitrary operator for our N-electron system. 

FE(l,2,. . . , N )  = @ P I ,  P2 , .  . . , P N ) P  (15.71) 

where P1, P 2 , .  . . , P N  is the permutation defined by P. Obviously B fails to 
commute with P unless it is an operator that is symmetric in all electrons, 
such that g(P1, P2,. . . , P N )  = b ( l , 2 , .  , . , N ) .  

The operators 2, L2 and 2, are symmetric operators. Thus they commute 
with every P, and the eigenvalue equations (15.66) and (15.67) can be satisfied 
together with the eigenvalue equation (15.70). 

Since H does not contain any spin terms, any spin operator commutes with 
H. But it is only symmetric spin operators that commute with every P .  Thus 
only the total spin 

h 

h 

N 
s = p i  (15.72) 

i= l  

h 

is of interest in the search for good quantum numbers. Obviously, H commutes 
with S .  We may accordingly take \Ir to satisfy the eigenvalue equations 

(1 5.73) 
S 2 Q  = S(S  + 1)Q, 
S,Q = MSQ, M s = S , S - l ,  . . . ,  -S. { 

as a supplement to the eigenvalue equations (15.66) and (15.67). As one sees 
by repeated reference to the Clebsch-Gordan series (15.37), the possible values 
of S are (S = 4, %, . . . , G) when N is odd, and (S = O , l , .  . . , %) when N is 
even. 
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15.4.3 L-S Coupling 

For given values of L and S ,  the eigenvalue equations (15.66), (15.67) and 
(15.73) define a set of (2L + 1)(2S + 1) wavefunctions which, by arguments 
similar to those around Eqs. (15.25) and (15.26),are all degenerate. They are 
said to define an electronic term. 

Electronic terms are labeled by symbols of the type 2s+1LI where S is 
the spin quantum number in Eq. (15.73) and L the orbital angular momen- 
tum quantum number in Eq. (15.67). L-values are specified by letter symbols 
equivalent to those used for atomic orbitals, the only difference being that one 
always uses capital letters for terms. A list of the letter symbols in question 
was given in Chap. 9 (See the scheme (9.5)). The value of 2 s  + 1 is referred 
to as the multiplicity of the term. 

Thus, a term with L = 2 and S = 1 is denoted 3D,  a term with L = 3 and 
S = 3/2 is denoted 4 F ,  etc 

That the ( 2 L  + l)(25’ + 1) wavefunctions describing a given term all have 
the same energy is an exact statement as long as the Hamiltonian (15.58) is 
the exact Hamiltonian. But it never is. In the true Hamiltonian, there are 
additional terms, which are of relativistic origin, as discussed in Sec. 10.4.3 for 
the one-electron atom. A prominent term is the spin-orbit coupling term, 

N 

(15.74) 

with ((7) as given by Eq. (10.74). 
I t  is readily seen that the spin-orbit coupling term (15.74) fails to  commute 

with the Hamiltonian (15.58), to which it is an amendment. It is also easy to 
see that neither L nor S commutes with E8, .  Thus, L and S cease to be good 
quantum numbers. However, the vector sum 

J = L + S  (15.75) 

does commute with Hs0. Consequently, J and M will serve as good angular- 
momentum quantum numbers in the presence of spin-orbit coupling. 

As already mentioned in Sec. 10.4.3, spin-orbit coupling effects are found 
to  be quite small for light atoms, whereas they become appreciable for heavier 
atoms. Let us continue under the assumption that they are small. It is then 
possible to preserve the quantum numbers L and S ,  albeit not ML and M s ,  
by replacing H,, by an effective operator of the form 

h 

h 

fi;, = A S  * L, (15.76) 
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where X is a parameter. This operator commutes with the Hamiltonian (15.58) 
and with the operators L2 and S2, but not with the components of L and S .  
It also commutes with j 2  and the components of j .  

The effect of the operator $, is, consequently, to split a given "+'L 
term into a multiplet of levels characterized by the J-values L + S, L + S - 
1,. . . , IL - 5'1, in accordance with the Clebsch-Gordan series (15.37). The 
resulting levels are designated 2 s t 1 L ~ .  The number of levels in the multiplet 
equals the smaller of the numbers 2s + 1 and 2L + 1. 

As an example, a 3 D  term becomes a multiplet characterized by the levels 
3D3, 3D2 and 3D1. A 4F term splits into the levels 4F9/2, 4F7/2, 4F5/2, and 

The process of replacing the operator H,, by the effective operator H,, re- 
quires, of course, a few additional comments. It builds, first, on the assumption 
that the matrix representing the operator fia0 along the lines of Sec. 5.10 fac- 
torizes, that is, all matrix elements connecting functions belonging to different 
terms are neglected. We have, then, a situation like the one described in Sec. 
12.6, and we may diagonalize the spin-orbit operator separately within each 
term's (2L+1)(2S+1) dimensional function space. Next, it may be shown that 
the matrix elements of the operator fi,, within a given term are proportional 
to the matrix elements of S .2, with a constant of proportionality that varies 
from term to term. This is a result of the so-called Wigner-Eckart theorem 
which one encounters in more advanced presentations of angular-momentum 
t h e ~ r y . ~  The constant of proportionality is the parameter X in the effective 
operator Ha,,. Not only its magnitude, but also its sign, may vary from term 
to term. Its value may, of course, be calculated if proper wavefunctions are 
available for a given term. Alternatively, it may be treated as a semiempirical 
parameter to be determined by comparison with experimental atomic spectra. 

The multiplet structure generated by the spin-orbit coupling is referred to 
as atomic fine structure. The way it is accounted for by applying the Clebsch- 
Gordan series to the L and S quantum numbers of separate terms is known as 
L-S coupling, or Russell-Saunders coupling. By applying the operator identity 

h hl 
4F3/2. 

* I  

J 2  = @+ S)2 = L2 + s2 + 22.3, (15.77) 

we get the following expression for the relative energies of a given multiplet 

E ( J )  = $ X [ J ( J  + 1) - L ( L  + 1) - S(S + 1)) ( 1 5.78) 

3See, for instance, the bibliography, entry [16]. 
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The energy difference between neighboring levels becomes 

E ( J )  - E ( J  - 1) = XJ. (15.79) 

The observation that the separation between two adjacent levels of a multiplet 
is proportional to the higher J-value is known as the Landk interval rule. The 
multiplet is called normal when the energy increases with J (positive A). When 
the lowest energy occurs for the highest J-value (negative A),  the multiplet is 
said to be inverted. 

In the following chapter we shall establish the connection between the elec- 
tron configuration of an atom and its term structure. We shall see how to 
construct the atomic wavefunctions associated with a term, and also discuss 
how to write down proper expressions for the electronic energy cprresponding 
to these wavefunctions. We close the present chapter with some remarks on 
the coupling of electronic and nuclear angular momenta. 

15.4.4 Adding the Nuclear Angular Moment um. 
Bose-Einstein Condensates 

As emphasized in Sec. 1.7, the atomic nucleus is composed of protons and 
neutrons. Like the electron, these nucleons are spin 3 particles. The spins 
of the nucleons add together to form the total nuclear spin, described by the 
angular-momentum operator i. The corresponding quantum numbers are I 
and M I .  Nuclear energy separations are usually much larger than energy 
separations between the electronic states of an atom, so for our studies we 
may safely assume that the nucleus is found in its quantum-mechanical ground 
state. Hence, we may also assume that the quantum number I refers to this 
state. 

It is, of course, the electric charge of the nucleus which, through the 
Coulomb force, determines the number of electrons that may bind to the nu- 
cleus. But other properties of the nucleus have very little influence on the 
electronic structure of an atom. The finite size of the nucleus, the nuclear elec- 
tric quadrupole moment and the nuclear angular momenta all play very minor 
roles in this respect. They are not entirely negligible, though, and they give 
rise to effects that have analytical significanck in, for instance, electron spin 
resonance experiments on molecular radicals. The detailed form of the interac- 
tion terms is quite c~mpl ica ted ,~  and we shall not consider it here. But it is of 
importance to note that the primary effect of the nuclear angular momentum 

4See, for instance, the bibliography entries [S] and [34] 
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may be represented by a spin-orbit like contribution to the Hamiltonian of the 
form 

h A , .  

H h f = a I * J .  (15.80) 

The angular momentum vector 

F = I + J  ( 15.8 1) 

will accordingly commute with the Hamiltonian obtained by including the new 
interaction, and the quantum number F ,  with the values 

F = I +  J , I  + J - 1 , .  . . ,)I- J I ,  (15.82) 

will be a good quantum number. Thus, a J-level will be split into 21 + 1 or 
2 5  + 1 sublevels, with relative energies 

E ( F )  = i a [ F ( F  + 1) - 1(1 + 1) - J(J + l)]. (15.83) 

The parameter a is called the hyperfine constant , and the extra structure added 
to the elctronic levels is referred to as hyperfine structure. The value of a is usu- 
ally much smaller than the spin-orbit parameter A, typically a few thousandths 
of a wavenumber (cm- ') . 

The smallness of a implies that all sublevels will be populated unless the 
temperature is very small. As in Sec. 2.4, energy differences should be com- 
pared with the magnitude of kT. The value of kT corresponding to an energy 
equivalent of 1 cm-' is 

(15.84) T = -(100m-') = 1.4388K. 

To selectively populate a chosen hyperfine sublevel, one must accordingly work 
in the milli-Kelvin region or below. 

A very important qualitative consequence of the hyperfine coupling should 
be noted. Let us, for instance, consider the neutral Li atom, with its three 
bound electrons. As shown in Table 11.2, its electronic ground state is a 2S+ 
level, 80 J = 3. The naturally occurring isotopes of Li are 6Li (7.59%) and 7Li 
(92.41 %). The former isotope has a nuclear spin of 1, and the latter a nuclear 
spin of #. Thus, the hyperfine structure of a 6Li atom is characterized by 
( F  = #, i), whereas the hyperfine structure of a 7Li atom is characterized by 
( F  = 2, l ) .  But this implies that the 6Li atom is a fermion while the 7Li atom 
is a boson. The behavior of a cloud of Li atoms at extremely low temperatures 
is therefore very dependent on the kind of isotope that is involved. 

hc 
k 
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As discussed in Sec. 11.4, a system of fermions must be described by an 
antisymmetric wavefunction and a system of bosons by a symmetric wave- 
function. An antisymmetric wavefunction Q(1,2,, , . , N )  keeps particles out 
of each other's way because Q becomes zero when the general coordinates of 
two identical particles become the same. There is no such exclusion principle 
for bosons. In accordance with this, it should be possible to make a cloud of 
bosons form a so-called Bose-Einstein condensate, in which all atoms of the gas 
may be said to occupy a single energy level. This possibility has quite recently 
been realized, by confining the atoms in suitable magnetic fields while cooling 
them to temperatures in the micro-Kelvin or nano-Kelvin region, primarily by 
means of laser beams. Bose-Einstein condensates are at the basis of a rapidly 
developing new branch of physics, but here we must refer the reader to current 
review  article^.^ 

Examples of atoms for which Bose-Einstein condensates have been made 
are 7Li, 23Na, 87Rb, and 'H. These atoms all have a ' S +  electronic ground 
state. The nuclear spin of the first three atoms is z .  The nuclear spin of l H  is 

5. 
1 

5See, for instance: W. Ketterle, Physics Today 52, No. 12,  (1999), p.30; and K. Burnett, 
M. Edwards and C. W. Clark, ibid.  p. 37 
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Table 15.2: Vector-Coupling Coefficients 

1 J1 = 1,J2 = 5 

Mi M2 

1 

Mi M2 
1 1  

1 0  

0 1  

1 -1 

0 0  

-1 1 

-1 0 

0 -1 
-1 -1 

122) 121) 111) 120) (10) 100) 12 - 1) 11 - 1) 12 - 2) 
1 

JTfi 
fi -4 

f i f i f i  fi 0 -6 
fi-& fi 4 -4 

f i f i  
1 



366 Chapter 15. Atomic Term Symbols 

Supplementary Reading 
The bibliography, entries [15], [16], [32], [33], [34], [8]. 

Problems 
15.1. In the present exercise, we consider the total spin states of a system of three 
spin particles, that is, we want to construct eigenfunctions of 5’ and gz, where 

s = 8; + Liz + i3 
is the total spin of the three particles. 

a. Write down the eight spin functions of the uncoupled representation, 
1. e., 

4 1 ) 4 2 ) 4 3 ) ,  4 1 ) 4 4 P ( 3 ) ,  ‘ * 

Collect the functions in a scheme similar to the scheme (15.45) and show 
that the possible values of S are and i. Show that S = p only occurs 
once, whereas S = occurs twice. Distinguish the two S = i cases by 
indices a and b. 

b. Starting from the last function in the setup (15.50)’ together with 
the spin functions 4 3 )  and ,8(3), write down the spin S = i functions 
I$;>,, and 1; - ;).. 

c. Next, start from the three first functions in the setup (15.50) and 
add the spin functions 4 3 )  and P(3), by exploiting the vector-coupling 
coefficients of Table 15.2. Write down the form of the resulting functions 

and 

d. Show that the two sets of functions 

1 1  1 1  
and 

l - - ) b ?  2 2  1, - 5 ) b  

are linearly independent, and in fact mutually orthogonal. 

d. Which differences would occur in the form of the total spinfunctions 
if we had first coupled particles 1 and 3 according to the setup (15.50) 
and then added particle 3 afterwards? 
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Chapters 11 and 15. We do this by directing our attention to specific atoms, 
in particular the helium atom and the carbon atom. 

In the first section, we develop some useful rules concerning the action of 
operators on Slater determinants. We then discuss the problem of constructing 
proper term wavefunctions from the set of determinants that are compatible 
with a given electron configuration. 

Next, we develop a set of rules for evaluating matrix elements between 
Slater determinants, and use these rules to relate the term energies to  atomic 
one- and two-electron integrals. Finally, we discuss how the ground level of an 
atom may be determined by exploiting the celebrated Hund's rules. We also 
discuss the theoretical interpretation of Hund's rules. 

16.1 Operating on Slater Determinants 

As pointed out in Secs. 11.5 and 11.6, a fundamental building block in the 
construction of many-electron wavefunctions is the Slater determinant. It was 
introduced by Eqs. (11.39) and (11.40). Its general form is 

where $1,  $ 2 , .  . . , $N are N linearly independent 
sume that they form an orthonormal set, i. e., 

I . .. . . .  (16.1) 

($il$j) = hij 

The determinant (16.1) is then normalized to unity. 
By expanding the determinant we get: 

. . .  $ N ( z N )  I 
spin-orbitals. We may as- 

(16.2) 

where the sum is over all N !  permutations of the N electrons, and where it is 
understood that 

@ $ i ( z 1 ) $ 2 ( ~ 2 ) .  . . $ N ( ~ N )  = 1+h(Pz1)$2(Pz2) .  . .$N(PzN). (16.4) 

AS in Eq. (15.70), p is the number of transpositions required to generate the 
permutation defined by P .  
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It is expedient to define the so-called antisymmetrizer 

(16.5) 

We may then write Eq. (16.3) as 

D = d@, (16.6) 

where 

@ = $ i ( t 1 ) $ 2 ( 2 2 )  * . * $ N ( z N ) .  (16.7) 

@ is often called a Hartree product, in honor of the English physicist Douglas 
Rayner Hartree, who was an early pioneer in the calculation of atomic struc- 
ture. A Slater determinant may, accordingly, be called an antisymmetrized 
Hartree product. 

Let us now introduce an operator B which is symmetric in all N electrons. 
B will then commute with every P and hence also with d, 

[B,d]  = 0. (16.8) 

We get therefore 

As an important example, let us consider the case where E is a symmetric sum 
of one-electron operators, 

N 
B = c q i ) .  ( 16.10) 

i=l 

B@ will then be the sum of N new Hartree products. The first of these is 
obtained from Eq. (16.7) by replacing $1 by &$I, the second by replacing $2 

by &&, and so on. Eq. (16.9) becomes therefore 

(16.11) 
B l $ l $ Z . . . $ f n l = l ( b $ l ) $ 2  *..%!"I+ I$I(h!'Z)*..$'NI 

+ .  * * + I $ l $ 2 . .  * ( i $ N ) (  

As an application of this result, consider the case where each $j is an 
eigenfunction of 6, i. e., 

b$j = bi$j. (16.12) 
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Eq. (16.11) shows then that 

where 

N 

B = Cb,. ( 16.14) 
i = l  

The spin-orbitals used in the description of atoms are usually of the form 
(11.41), viz., 

(16.15) 

Let us choose to  let -yt mean mt. The spin-orbitals are then 

These spin-orbitals are eigenfunctions of l ,  and i,. Any Slater determinant 
built from them will accordingly be an eigenfunction of L, and S, , with eigen- 
values M L  and M s ,  which are the sums of the mi and ma quantum numbers 
for the individual spin-orbitals that define the determinant. 

In the following we shall draw on these results in our analysis of electronic 
terms. 

16.2 Term Wavefunctions 

16.2.1 The Helium Atom 

We have discussed the ground state of the helium atom in Secs. 11.5 and 12.4. 
The electron configuration is 11s2, and the only Slater determinant that can be 
constructed from this configdration is 

+ -  
Q = l 1 s l 4  = l 6 l s G l s l  

( 16.17) 1 .  = & I p  1s ( T l ) P ( C l )  ( P l s ( T 2 M C l )  
1 b l s ( T l ) 4 r l )  ( P l s ( T 2 ) 4 C 2 )  

As indicated, we shall freely drite 1s etc. for atomic orbitals instead of (pis etc., 
a practise we already introduked by Eq. (13.38). Often, we shall also write, for 



16.2. Term Wavefmc tions 371 

The ground con~guration of the helium atom is ls2. 

It gives rise to a *S term, with \E = (lslsl. 
+ -  

instance, ls(2) instead of ls(rz),  in analogy with a similar practice introduced 
for spin functions in Sec. 15.3.1. Finally, we shall freely avoid writing (zi) or 
(ri ,ci)  and just write (i) instead. 

In Sec. 11.5, Eq. (11.42), we took the 1s orbital to be a hydrogen-like orbital 
with 2 = 2, In Sec. 12.4, Eq. (12.24), we took it to be a similar orbital, a so- 
called Slater orbital, where 2 was replaced by the orbital exponent < = 27/16. 
The best 1s orbital (the Hartree-Fock orbital) is more complicated than this, 
but is still spherically symmetrical. We may assume that the 1s orbital in &q. 
(16.17) is the best possible orbital we can get. 

By apply~ng the results of the previous section we see immediately that 
llslsl is an eigenfunction of iz and Sz , in both cases with the eigenvalue 0. In 
other words, both ML and 1Ms are 0. The wavefunction describes a IS term: 

+ -  

(16.18) 

The same conclusion may easily be arrived at by expanding the determinant 
(16.17), in the same way as in Eq. (11.42): 

@ = cpls(~l)cpl,( T2) p 2 b(a)P(r2) - P(a)4ci)3.  + (16.19) 

Here, @ appears as the product of a two-electron spatial function with L and 
ML equal to zero, and a two-electron spin function. The spin function is 
identical with the singlet spin function 800(1,2) of Eq. (15.50). 

By L-S coupling, the quantum numbers L = 0 and S = 0 give J = 0. The 
complete designation for the ground state of the helium atom is therefore 'Sot 
in accordance with Table 11.2. 

By exciting an electron from the 1s shell to the 2s shell we arrive at the 
electron configuration lsl?,sl.l It gives rise to four determinants, all with 
ML = 0, and with Ms-values as indicated in the following scheme 

'As in Problem 11.2, the orbitals should be optimized for the electron configuration 
in question. In Problem 11.2, the 2.9 orbital was chosen as a simple Slater orbital which 
overlapped with the 1s orbital. Here, we assume that the two orbitals are the best possible 
ones, and that they are mutually orthogonal. 
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This scheme is similar to the scheme (15.45), and we conclude that the config- 
uration gives rise to a triplet state ( S  = 1) and a singlet state ( S  = 0). And 
since L must be zero, both of these states must be S states. Thus we get 

The configuration ls12s1 gives rise to a 3S 
term and a ' S  term. 

(16.21) 

The associated wavefunctions may be found by the standard methods of 
angular momentum theory. The operator S- = i l -  + i 2 -  is of the type (16.10), 
and its application to a Slater determinant follows the rule (16.11). Thus we 
get, in a self-explanatory notation 

and 

(16.23) 

The wavefunction 'Q has been obtained by requiring that it be orthogonal 
to the wavefunction 3 9 ( M s  = 0). In so doing, we have used that the Slater 
determinants formed from an orthonormal set of spin-orbitals form themselves 
an orthonormal set. This result will be proved in Sec. 16.3, as the lemma 
(16.40). 

By expanding the above determinants we also get 

( 3 q M s  = 1) = f i{ lS(1)2S(2)  - 2s(l ) ls(2)}cr( l )0(2) ,  

3Q(Ms = 0) = ; {ls(1)2s(2) - 2s(l)ls(2)} {(Y(l)P(2) + P ( l ) a ( 2 ) } ,  

3 q M s  = -1) = &{ls(1)2s(2) - 2S(l) ls(2)}p(l)p(2) ,  
( 16.24) 

and 

l1Sr = 4 {ls(1)2s(2) + 2s(l ) ls(2)}  {a(1)@(2) - @(1).(2)}. (16.25) 

Thus, each wavefunction factors into the product of a two-electron spatial 
function and a two-electron spin function in a similar way as the ground-state 
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wavefunction does (See Eq. (16.19)). A symmetric spatial function goes with an 
antisymmetric spin function and vice versa. The spin functions are recognized 
to be the same as the two-electron spin functions in the setup (15.50), as they 
must be. 

Having determined the wavefunctions of the two terms that originate from 
the 15'28' configuration we must also worry about the term energies. We shall, 
however, postpone the problem of evaluating these energies. It is found that 
the triplet state lies below the singlet state. 

Other excited configurations of the helium atom may be analyzed in a 
similar way as the ls'2s' configuration. The states of the helium atom fall 
in two groups, singlets and triplets. Experimentally, one observes spectral 
transitions within the group of singlet states and spectral transitions within the 
group of triplet states, but only extremely weak transitions (intercombinations) 
between the two groups of states. It looks in fact as if two different kinds of 
atoms were involved. For this reason one often refers to the singlet states as 
parahelium and to the triplet states as orthohelium. 

16.2.2 The Carbon Atom 

In this section we shall consider the terms that arise from the ground config- 
uration ls22s22p2 of the carbon atom. The three 2p orbitals give rise to six 
spin-orbitals, and the number of Slater determinants that we may construct is 
(i) = 15. They are listed below together with their ML; and Ms-values. For 

simplicity, we write 11 0 I instead of 11s 1s 2s 2s 2pl2pol, etc. This is motivated 
by the observation that closed shells donot contribute to the total values of 
Mr, and M s  (the shell sums over m, and ml are both zero). 

+ +  + - t -  t - 
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From the structure of this table we deduce that 

1 
( 16.27) The configuration ls22s22p2 gives rise to three terms: 

3 P ,  'D and ' S .  

The proper linear combinations of determinants which describe the wave- 
functions of the three terms are shown in Table 16.1. They are readily con- 
structed by means of the L- and S- operators. Thus, we can construct all 

functions belonging to the D term from 11 1 I by means of L - ,  and all func- 

tions belonging to the 3 P  term may be constructed from 11 01 by means of i- 
and s-. Finally, the wavefunction for the ' S  term may be constructed as a 
linear combination of the three determinants with M L  = M s  = 0, and such 
that it is orthogonal to the corresponding components of the D and P terms. 

+ -  
+ +  

The order of the term energies are found to be 

q 3 P )  < E(1D) < E('S) .  (16.28) 

Our next task is to find theoretical expressions for such term energies. To 
do so requires a set of rules for evaluating matrix elements between Slater 
determinants. We insert, therefore, a section on this problem. 

We continue to use the notation developed between Eqs. (10.21) and (10.25) 
of Sec. 10.2. 

16.3 Matrix Elements Between Slater 
Determinants 

Consider a set of spin-orbitals 

which is assumed to be orthonormal, 

(+il+j) = $Jr(x1)+j(x1)d~1 = S i j .  (16.30) J 
We shall derive rules for evaluating the matrix element 

( Q I ~ I Q ' )  = J 1 + 1 $ ~ z . .  .+rv~*p~+i+b. . . + ~ l d x  (16.31) 
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~ l e  16.1: Tg 

ML 

3P 1 

0 

-1 

1 

0 

-1 

1 

0 

-1 

lD 2 

1 

0 

-1 

-2 

' s  0 

MS 

1 

1 

1 

0 

0 

0 

-1 

-1 

-1 

- 

0 

0 

0 

0 

0 

0 

- 

wavefunctions for the p' cofiguratii 

Q 

l i  $1) 

+ -  
1-1 -11 
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N !  / ‘ $ ; ( x l ) ‘ $ ; ( x 2 )  ‘ ’  “ $ h ( x N ) p  

‘ $ i ( X l )  . . .  ‘ $ : ( X N )  

‘ $ ; V ( Z l )  . . .  ‘$ ;V(XN)  

. . . . . .  . . . d x  (16.32) 

d~ = d ~ i d ~ 2 . .  . d X N .  (16.33) 

‘$ : (x1 )  . . .  ‘ $ : ( x N )  
. . .  . . .  . . .  

‘$&(.1) * .  1 ‘$&(XN) 

A general term in the sum is 

( - 1 ) P -  / ‘$;  XI)'$; (P.2) . ’ . ‘ $ h ( p x N ) F  
N !  

‘ $ : ( P x l )  . . .  $ ‘ : ( P x N )  
= ( -1)P . .  . ... ... , (16.35) 

‘ $ & ( p x l )  . . . ‘ $ L ( p x N )  

While Eq. (16.31) involves a double summation over N !  terms, Eq 
only involves a single summation. 

dx . 

(16.36) 

( 16.36) 
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- 
Case 1. 

F = Fo, independent of electron coordinates. 

(QIFIQ') = FO if the sets &,&, . . .  , $ N  and 
$;, $;, . . . , $k are identical. Otherwise, the integral van- 
ishes. 

(16.37) 

This, and also the following results, are most easily obtained when we permute 
function indices instead of function arguments in evaluating the determinant 
in (16.36). The result is the same, for the function indices are the row indices 
of the determinant, while the function arguments serve as column indices; and 
a determinant and its transpose are known to have the same value. We get 

and thus 

= Fo c(-1)p($LI~;1)($z1$;2) * * .  ( $ N I $ ; N ) .  (16.39) 
P 

Because of the orthonormality condition (16.30) we get zero unless $bi = $Jj 

for all i ,  that is, the two determinants must be identical. When this is the case, 
only the identity permutation contributes. We have thus proved the lemma 
( 16.37). 

By setting Fo = 1, we obtain the result that the Slater determinant (16.1) is 
normalized to unity, a result we already derived in Sec. 11.5. More specifically, 
we have shown that 

The Slater determinants formed from the set (16.29) 
form themselves an orthonormal set. 

(16.40) 

Next, we shall treat the case where fi is a sum of one-electron operators. 
Examples are the first term in the Hamiltonian (15.58) and the spin-orbit 
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operator (15.74).The usual angular-momentum operators i, S and J are also 
of this type-but i2, S2 and j 2  are not. We get 

Case 2. 
N 

F = 

a. (9tPIQ') = 0 if ift and 9' differ in more than one spin- 
orbital. 

b. (SlplS') = ($k[fl$k} if W may be obtained from q by 
replacing ?+bk with ?&, all other orbitals the same. 

f (x i ) ,  a sum of one-electron operators. 
i = l  

N 

(16.41) 

From Eqs. (16.36) and (16.38) we see that the contribution of f(q) to the 
matrix element (~lil~) is 

Due to orthogonality, this contribution is zero unless 

which implies that at least N - 1 spin-orbitals are identical. A similar conclu- 
sion may be drawn when the operators ~ ( z z ) ,  f ( ~ 3 ) ~ .  . . , ~ ( z N )  are considered. 
We have thus proved the first part of (16.41). 

Let us then consider the case where 

Because a determinant changes sign when two of the defining functions are 
 interchange^, the order of the orbitals is of importance here. We follow the 
convention of placing $k and $; in identical positions. If this order is not 
present from the outset it is easily achieved by row transpositions in the de- 
terminant. However, each transposition irnplies a change of sign, so a factor 
of -1  may have to be multiplied onto the result. 
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When the k in Eq. (16.44) is different from 1, it is obvious that (16.43) 
cannot be fulfilled for any permutation, and the sum (16.42) must vanish. 
Only f ( 2 k )  can contribute to the integral (16.36). The contribution is 

~ ( - l ) p ( $ l l $ L 1 )  “ * ( $ k l . f l ? % k )  “’($Nl$LN)- (16.45) 

Due to orthogonality, only the identity permutation can contribute. It gives 
the contribution ( $ k l . f I $ ( o  which, then, is the value of (41$14’), as stated in 
(16.41). 

When we finally consider the diagonal element (41$[4), the expression 
(16.42) gives the contribution ($1 lfl$l), since the condition (16.43) is fulfilled 
for the identity permutation. Similarly, the contribution of f(x2) to the matrix 
element (4lpl4’) is ($21f1$2), etc. This proves the last part of the lemma 
(16.41). 

P 

The last case to be studied is 

Case 3. 
N N  + - 1 x ‘ j ( x i ,  zj) = ~ j ( x i ,  xj), a sum of two-electron 

i<j 
- 2  

(16.46) 

When applying (16.46), it is again important to note that a standard order, 
similar to that in (16.44), has been presupposed. 
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To derive the results in (16.46), we proceed in a similar manner aa when 
the results in (16.41) were derived. The operator g(z1, Q) gived the following 
contribution to the matrix element (@lklW), 

Due to orthogonality, the contribution is zero unless 

which implies that a t  least N - 2 spin-orbitals are identical. Hence, the first 
result in (16.46) follows. It is a straightforward exercise to go through the 
derivation of the remaining results, and we shall skip it here. 

An example of an operator of the type F in (16.46) i s  the electron-electron 
repulsion term in the Hamiltonian (15.58). 

This completes our derivation of rules for evaluating matrix elements be- 
tween Slater determinants. We stress that the rules we have derived only 
hold when the spin-orbitals (16.29) defining the determinants are mutually 
orthogonal. Rules have, however, also been derived for determinants built of 
non-orthogonal orbitals, but we shall not consider them here.2 

16.4 Energies of Atomic Terms 
We shall now derive expressions for the energies of a few atomic terms, un- 
der the assumption that the Hamiltonian is given by the expression (15.58), 
and that the term wavefunctions may be represented by means of Slater de- 
terminants in the way described in the previous section. We assume that all 
spin-orbitals are of the form (10.21), so that the ith spin-orbital may be written 

either  pi(^)^^^^ or ~ i ( ~ ) ~ ( ~ ~ .  Thus, the spatial orbital going with the ith 
spin-orbital is also given the index i. 

We use the following nomenclature for one-and two-electron integrals: 

= (+iIhI+i), hi = ( ~ i l f i ~ ~ i ) ,  (16.49) 

for instance, the bibliography, entrance 1341. 
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We see that 

hi = hi, Jij = J j j ,  Kij = Kjjd(msj,msj), (16.52) 

where the quantum number m8j as usual is understood to be a when the spin 
function associated with 'pi is a(<), and -3 when the spin function is ,L?(c). Jij 
and Jij are called Coulomb integrals, while I<:j and Kij are called exchange 
integmls. Due to the orthogonality between the a and the ,L? spin functions, the 
exchange integral Kijvanishes unless 'pi and 'pj have the same spin function 
associated with them, in which case it 'becomes Kij. 

The notation for general two-electron integrals is 

(?h $'j I & IlC'k $I ) = .f $: (2 1)$; ( 2 2 )  &$k (2 1)$I(%) dx 1 dzz, ( 16.53) 

in accordance with the last line of (16.46), and 

((oi(ojI&I'Pk(PI) = S S ( P ~ ( . l ) ( P j ' ( ~ z ) & ( P k ( ~ l ) ( P I ( ~ Z ) d V l d V z .  (16.54) 

Because, for instance, xi and xj are dummy indices over which we integrate, 
we have symmetry relations like 

($i$lj I & I$k'f!'I) = ($j $'i I & I$I$k) = ($'k $1 I & I$d'lj ) *  = (%h $'k & l$'j h)* 
(16.55) 

with similar relations for the integrals defined by (16.53). We see, in particular, 
that 

J!. 13 = J!. 3 % '  K ! .  13 = K!. 311 Jij = K!.  11 , (16.56) 

with similar relations between the unprimed integrals. 
With the above definitions, it is a straightforward matter to derive expres- 

sions for atomic term energies, by applying the rules of the previous section for 
evaluating matrix elements between Slater determinants. First, we look for a 
general expression for (DIE?ID) where D is a single Slater determinant of the 
form (16.1). We get immediately 

N 

or, by using that J,!j = K i j ,  

N . N N  

(16.57) 

( 16.58) 
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The various terms in the sums may be interpreted as follows: hi = hi gives the 
kinetic energy of an electron in the orbital pi plus the electrostatic attraction 
energy between the charge ditribution -pfpi and the atomic nucleus. J:j = Jjj 

is the dassical expression for the electrostatic repulsion energy between an 
electron with the charge distribution pfpi and an electron with the charge 
distribution @pj. The exchange integral Kij  reduces this repulsion energy for 
two electrons with parallel spin. 

It is interesting to note that the simple Hartree product (16.7) leads to the 
same energy expression as the determinant (16.1), apart from the contribution 
from the exchange integrals, 

( 16.59) 

Thus, we may say that the exchange terms originate as a result of the anti- 
symmetrization (16.6). 

By using the expression (16.57) and also the expressions for matrix elements 
of fi between different determinants, we arrive at the following results for a 
few selected atoms. 

16.4.1 The Helium Atom 

The energy of the ground state, as described by the wavefunction (16#17), is 

We recognize the expression (12.30) of Sec, 12.4. 

The excited configuration ls22s2 gives rise to a 3S and a '5' term. The 
wavefunctions associated with these terms were given in Eqs. (16.22) and 
(16.23). Using the MS = 1 component of the 3S term gives immediately 
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For the ' S  term we find 

(16.62) 

+ - ) I  - +  + -  - 2 (ls2sl+-lls2s) - (ls2sl+-12sls) ( + -  
= hi, + h28 + J18,28 + Ki8,28. 

Thus, we get 

E('S) - E(3S)  = 2K18,z8 (16.63) 

It can be shown that an exchange integral is always non-negative. The 
triplet term is accordingly predicted to have a lower energy than the singlet 
term. This prediction is borne out by experiment. The experimental singlet- 
triplet separation is found to be 0.79eV. The value calculated by Eq. (16.63) 
is somewhat larger than this. It depends on the actual form of the 1s and 2s 
radial functions. 

It must, of course, always be remembered that simple wavefunctions, like 
thoseof Eky. (16.22) and (16.23), only are approximations to the true wavefunc- 
tions. They are, however, good enough to give us a reasonable first description. 

16.4.2 The Beryllium Atom 
The ground state of the beryllium atom is described by the wavefunction 
(11.47), i. e., 

+ - + -  
= llSlS2s2sl. (16.64) 

It is obviously a ' S  state. Its energy is readily seen to be 

E(Be) = (2h8 + Jl8,ld) + ( 2 h  + J2+) + (4JiS ,28  - 2Ki8,2$). (16.65) 

It appears as the sum of three contributions: the energy of the 1s shell, the 
energy of the 2s shell, and the energy representing the interaction between the 
two shells. 
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A similar partition of the energy into intra-shell contributions and inter- 
shell contributions may be performed for other atoms. 

16.4.3 The Carbon Atom 

The ground electron configuration of the carbon atom, ls22s22p2 , corresponds 
to four electrons in the closed Is and 2s shells and two electrons in the open 
2p shell. The closed shells give an energy contribution of the same form as 
the expression (16.65), and it may be proved that the interaction between the 
closed shells and the 2 p  shell is the same for all the determinants in the setup 
(16.26) and for all states of Table 16.1. The term energies may consequently 
be written as a contribution, Eo, which is the same €or all three terms, 3 P ,  ' D  
and ' S ,  plus a contribution which varies with the term, but may be evaluated 
by neglecting the 1s and 2s orbitals. We get, €or example, from the ML = 
1, M s  = 1 wavefunction of Table 16.1, 

(16.66) 

where the subscripts refer to the me q u ~ n t u m  numbers, m in Table 16.1, and 
we have used that the integral (16.49) is the same for each 2 p  orbital. Similar 
expressions may be written down €or the other term energies, and when the 
involved two-electron integrals are actually evaluated one reproduces the ex- 
perimentally observed order of Eq. (16.28). The calculated energies depend, of 
course, on the form of the radial function, Rzp(r). The order of the terms may, 
however, be shown to be the same for all R2,(r). It is solely determin~d by 
the angular part of the two-electron integrals. One finds, in fact, the following 
expressions for the term energies 

where FO and F2 are reduced two-electron radial integrals. Such integrals play 
a large role in atomic  physic^,^ in particular in atomic spectroscopy where 
they often are treated as adjustable parameters. and II;; are both positive 
quantities, so the expression (16.67) does actually confirm the order of terms 
presented by Eq. (16.28). 

3 F ~ r  a detailed discussion with many examples, see the bibliography, entries [S] and [15]. 
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16.5 Hund’s Rules 
In the above examples, we found that the ground terms of the atoms He, 
Be and C are ‘ S ,  ‘ S  and 3 P ,  respectively. This is in accordance with the 
information in Table 11.2 which, together with Tables 11.3 and 11.4, gives the 
ground states of the neutral atoms. But we still have to add the J-value. From 
the discussion in Sec, 15.4.3 it is obvious that the J-value for He and Be must 
be zero, but for the 3 P  term of carbon we must choose between the multiplet 
levels 3P2, 3P1 and 3Po. The proper choice turns out to be 3Po. Thus, the 
multiplet is normal, in the sense discussed in connection with Eq. (15.79). 

For the majority of the atoms of the periodic table, the ground state may 
be determined by a set of rules known as Hund’s rules. The rules build upon 
the assumption that it is possible to define a dominant electron configuration 
for the ground state, with only one partly filled shell, and that the necessary 
information is contained in this configuration. To determine the ground state 
on this basis, proceed as follows: 

1. From a term analysis like that of Sec. 16.2.2, choose the maximum value 
of s. 

2. Choose the maximum value of L consistent with rule 1. 

3. If the shell is less than half full, choose J = Jmin = IL - SI. If the shell 
is more than half full, choose J = J,,, = J L  + Sl. 

With reference to the Land6 interval rule (15.79), we may say that a less than 
half full shell leads to a normal multiplet, whereas a more than half full shell 
leads to an inverted multiplet. 

As a closer study of Tables 11.2-11.4 will reveal, Hund’s rules work ex- 
tremely well. Sometimes the two first rules may even be used to determine the 
order of the lower excited states. This is, for instance, the case for the carbon 
atom, where the ‘D term is predicted to lie below the ‘ S  term because its 
L-value is higher, for the same S-value. 

Energy expressions like those of Eq. (16.67) for the carbon atom, indicate 
that the mechanism behind Hund’s two first rules is tied to the electron-electron 
repulsion energy. The popular argument has been the following. 

An acceptable many-electron wavefunction, Q, must be antisymmetric. In- 
terchange the positions and the spins of two electrons, and the value of Q must 
change sign. Therefore, Q must be zero for the situation of having two elec- 
trons with parallel spins occupy the same position in space. In other words, 
electrons with parallel spins are kept apart. As a result, the electron-electron 
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repulsion energy is lowered. The term with the highest S-values have more 
parallel spins, and consequently the lowest energy. High L-values implies pref- 
erential orbital motion which also tends to keep electrons out of each other’s 
way. The highest energy therefore corresponds to  the lowest values of both S 
and L. 

Unfortunately, it has turned out that this intuitive explanation of Hund’s 
rules is wrong, I t  is now understood that the explanation is more subtle. It 
is, in fact, found that the eIectron-electron repulsion energy is highest when S 
is large. A new explanation that often works is the following: The fact that 
electrons are kept apart implies, in the language of screening (Sec. 11.7), that 
the effective nuclear charge seen by an electron becomes more positive. As a 
result, the electrons are pulled closer to the nucleus. This lowers the electron- 
nuclear attraction energy, but also increases the electron-electron repulsion. 
However, the electron-nuclear attraction effect dominates, and high-spin states 
are thus favored. 

Energy expressions like those of Eq. (16.67) presuppose that the same or- 
bitals, and hence the same radial functions, are used everywhere in a setup 
like that of Table 16.1. Obviously, the alternative explanation just given cor- 
responds to retaxing this condition. Bgt apart from this, the amount of con- 
figuration interaction (see Sec. 11.6).m’ay vary from term to term. 

This completes our discussion of the Coknection between the electron con- 
~ g u r a t ~ o n  of an atom and its term structure, as described by its wavefunctions 
and corresponding energies. In the following chapter, we shall extend the dis- 
cussion to diatomic molecules. 

Supplementary Reading 
The bibliography, entries [S]’ [15], 1281, [34], [35]. 

Problems 
16.1. The electron c o n ~ g ~ a t i o n  of the t i t ~ u m  atom is [Ar]3d24s2 (Table 11.2). 

a. How many Slater determinants does this configuration give rise to? 

b. Perform a term analysis for the titanium atom, similar to the one 
performed for the carbon atom in See. 16.2.2. Show that the number of 
terms is five, and write down the proper term designations. 

c. By referring to Hund’s rules, verify that the ground state of the 
titanium atom is a 3F2 level, in accordance with Table 11.2. 
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16.2. The oxygen atom has the electron configuration 1s22s22p4. It is equivalent 
to the electron configuration of the carbon atom in the following sense: The carbon 
atom has 2 electrons in the 2p shell, the oxygen atom has two ‘holes’ in the same 
shell, that is, the number of electrons is two less than that of a filled 2p shell. 

a. Perform a term analysis for the oxygen atom, similar to the one per- 
formed for the carbon atom in Sec. 16.2.2. Show that the term structure 
is the same as for the carbon atom. 

b. By referring to Hund’s rules, verify that the ground state of the 
oxygen atom is a 3P2 level, in accordance with Table 11.2. 

c. The nickel atom is equivalent to the titanium atom by the same 
electron-hole criterion as used above. Compare the ground states of the 
nickel atom and the titanium atom on this basis, and compare again 
with Table 11.2. 
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In Chapter 13 we discussed the classification of molecular orbitals for di- 
atomic molecules. We shall now consider the construction of many-electron 
states deriving from configurations. We do this with the oxygen molecule as 
an example. 

17.1 The Oxygen Molecule. Term Analysis 
The problem is similar to the carbon atom problem treated in Chapter 16. The 
many-electron Hamiltonian (13.4) is independent of spin. Hence, S and M s  
are good quantum numbers. But the spherical symmetry that characterized 
the atomic problem has now been broken, and the quantum number L is no 
longer relevant. Instead, we have the quantum number A, which corresponds 

388 
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to X for the molecular orbitals and may take the same values. And in analogy 
with the nomenclature for orbitals, Eq. (13.28), we use the designations C, 
II, A, 0 ,  I?, . . . for states with A = 0 , 1 , 2 , 3 , 4 ,  ..., respectively. The states 
of the oxygen molecule may also be classified as even (9)  or odd (u )  under 
inversion in the midpoint of the bond. In addition, we shall see that C states 
may be either even (superscript +) or odd (superscript -) under the reflection 
b,, = eZz, defined as the reflection in the xz-plane, as in Secs. 13.2 and 13.5. 

The ground configuration of oxygen is (See Sec. 13.6): 

( ug 1 s ) 2  (0: 1 s ) 2  ( ug 2 4 2  (u: 2s)2 ( ug2p)2( 7r, 2 p ) y  n;, 2p)2. (17.1) 

It gives rise to 6 Slater determinants. In specifying these we discard the closed- 
shell orbitals ugls, .  . . , 7rU2p. We also choose to work with the complex ni2p 
orbitals, and for simplicity we call these orbitals nl and n-1, where the sub- 
scripts refer to the rnx  values. The definition of the complex orbitals is 

(17.2) 

where ?r, and 7ry are the 7rg2p, and 7rg2py orbitals discussed in Secs. 13.5 and 
13.6. The inverse of Eq. (17.2) is 

(17.3) 

The 6 Slater determinants arising from the above configuration are listed 
in the following table, together with the corresponding valiies of M A  and M s :  

Inln-ll I 0 

(17.4) 
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From the structure of this table we may deduce that 

The ground configuration of the oxygen molecule 
gives rise to three terms: 3C;, 'A, and 'C:. (17.5) 

All terms are even ( g ) ,  because an even number of odd orbitals are occupied. 
To verify the statement (1?.5), we note that the two entries with MA = f2 

show the presence of a term with A = 2 and S = 0, i. e., a la, term. The 
wavefunctions are 

Next, the two entries with Ms = f l  show the presence of a term with A =I 0 
and S = 1,  i. e., a 3C, term. The Ms = 0 component may be found by 
applying the S- operator. Hence, we get the wavefunctions 

(17.7) 

Finally, we may construct a term with A = 0 and S = 0, i. e., a 'C, term, as 
the orthogonal complement to the Ms = 0 function of Eq. (17.7), 

(17.8) 

To verify the superscripts - and + in (17.7) and (1?.8), respectively, re- 
member that Ci,= turns ?rl into r-1 and vice versa. We get, for' instance, 

(17.9) + +  + +  
&,{+.1 +.-I[ = IA-17r11= 1.1 7r-11. 

We shall evaluate the term energies in Sec. 17.3 and show that the relative 
< E('A,) < E('C$).  The 'C; term is accordingly the ordering is 

ground term of the oxygen molecule. 
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17.2 The Oxygen Molecule. 
Real Wavefunctions 

The determination of the wavefunctions just obtained was facilitated by work- 
ing with the complex orbitals T I  and r-1. It may, however, sometimes be 
convenient to express the wavefunctions in terms of the real orbitals (17.3) 
instead. 

Inserting the relations (17.2) into the wavefunctions (17.6) for the lAg term 
gives 

and 

(17.11) + -  1 + -  + -  + -  + -  
IT-1 T-11 = 7j (IT, T z l -  b y  Ky l  - +, T y l  - ilr, %I) a 

These wavefunctions are complex, but in analogy with Eq. (17.3) we may 
obtain a real set by simple addition and subtraction: 

For the Ms = 1 component of the 3C; term, Eq. (17.7), we get 

(17.13) 

The phase factor -i is of no physical significance, so we decide to represent 
the Ms = 1 component of the 3C; term by the determinant I$, $,I without 
the factor 4. The M s  = 0 and M s  = -1 components may also be found by 
insertion, but it is easier to apply the S- operator to  the MS = 1 component. 
All in all, we get 

+ +  1 +  .+ + + + +  
1x1 7r-11 = 5l(7rr + my)(7ro - i7rJ = -+, ?FYI. 
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The ' C i  wavefunction may be found from Eq. (17.8) by insertion, but it 
is simpler to note that orthogonality relations determines it as the orthogonal 
complement of the 

This completes the 

'Ag function \kc: 

(17.15) 

construction of the real oxygen wavefunctions. 

17.3 The Oxygen Molecule. Term Energies 
We shall now evaluate the energies of the 3C;, 'Ag and 'C$ terms, using the 
real wavefunctions of the previous section. As in Sec. 16.4.3 on the energies of 
the carbon atom, we may write the energies as the sum of a constant part 

€0 = Eo + 2h,, (17.16) 

which is the same for all terms, and the electron-electron interaction energies 
a8 evaluated with the two-particle wavefunctions. The latter energies are com- 
binations of two-electron integrals similar to those defined in Sec. 16.4. We 
shall, in particular, encounter the Coulomb integrals 

(17.17) 

and 

Jzy = ( r r r y l & l r z r y ) .  (17.18) 

The Coulomb integral Jyy is numerically equal to J,, because the orbitals T, 
and rY only differ by their directions in space. We shall also meet the exchange 
integral 

I G y  = ( ~ C r y l G I r y ~ z ) .  1 (1 7.19) 

The term energies are now easily written down, by drawing on the rules 
for evaluating matrix elements between Slater determinants (Sec. 16.3). Thus, 
the two wavefunctions of Eq. (17.12) give 

E"('A,) = €0 + +(J,, + Jyy - 21C,,) = €0 + J,, - I<,,, 
E"lAg) = €0 + +(2JZY + 21Gy) = €0 + JZY + ILy. 

(17.20) 
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The two energy expressions must be equivalent, for the energy of a degener- 
ate term cannot depend on the component wavefunction used to evaluate it. 
To show that the energy expressions are in fact equivalent, we focus on the 
exchange integral KZy and use that its value must be independent of the co- 
ordinate system in which it is evaluated. Assume, therefore, that we decide to 
evaluate Kzy in a coordinate system obtained from the original one by rotating 
it clockwise about the z-axis, through an angle of n/4. The IT, orbital then 
becomes &(IT, + ry), and the  IT^ orbital becomes f i ( - r ,  + ry). Inserting 
these expressions in the definition (17.19) gives 

Kzy = +((IT, + ry)(-xz + ~ ~ y ) l ~ l ( - ~ ~ z  t-11 + I T Y ) ( I T I T ,  + ry)). ( 17.2 1) 

By expansion, we encounter the integrals of Eqs. (17.17)-(17.19), plus the in- 
tegral ( T ~ I T ~ ~ & ~ I T , I T ~ )  = ( I T , I T , ~ & ~ I T ~ I T ~ ) .  However, the various contributions 
from the latter integral cancel out, so the final result becomes 

I<zg = 4 (J,, + Jyy - 2 Jzy) = 3 ( Jzz - Jzy ) . ( 17.22) 
Hence, we may write 

Jzy = J,, - 2K2y. (17.23) 

By inserting this expression for JZy into the second expression in Eq. (17.20), 
we see that the two expressions given in that equation are, in fact, equivalent. 
Thus, we may write 

E('Ag)  = €0 + J,, - Kzy. (17.24) 
Next we get, from any of the 3C; components in (17.14), 

J ~ ' ( ~ C , )  = 80 + Jzy - I i z y ,  (17.25) 
or, by inserting the expression (17.23) for J,,, 

E(3C,)  = €0 + J,, - 3KCy. (17.26) 

Finally, the 'C; term (17.15) gives 

E ( l C ; )  = €0 + !j(Jzz + J y y  + 2KZy) = €0 + Jzz + Kzy. (17.27) 

Summarizing the above results, we have found that 

(17.28) 
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We have thus confirmed the ordering mentioned at  the end of Sec. 17.1. But, 
more than this, we have derived transparent energy expressions for the three 
terms. 

These expressions predict that the three terms be equally spaced, the en- 
ergy difference between two neighboring terms being 2Kzy. However, it is 
found experimentally that the 'A, and 'C; terms lie 0.982eV and 1.636eV, 
respectively, above the ground state, 3C;. The experimentally observed spac- 
ing (0.654 eV) between the 'A, and 'C; terms is thus somewhat smaller than 
the experimentally observed spacing (0.982 eV) between the 3C; and 'A, 
terms. But qualitatively, the theoretical description has done quite well. 

As for atoms (Sec. 16.5), the theoretical result may be readily improved a t  
two levels. Firstly, we realize that we have tacitly assumed that all occupied 
molecular orbitals, and hence also 60, Jz z  and I(,,, are the same for all three 
terms of the oxygen molecule. This condition may be relaxed. The expressions 
(17.27) will then still be valid, but the values of 80, J,, and IC,, will differ 
from one term to another, and the constant spacing between the terms will be 
destroyed. 

The second level at  which the theoretical result may be improved is the con- 
figuration interaction level. At this level, the wavefunctions are represented as 
linear combinations of several Slater determinants, referring to different elec- 
tron configurations, with the coefficients of the linear combinations determined 
variationally. 

The discussion of this chapter has been tied to a single diatomic molecule, 
namely, the oxygen molecule. Other diatomics may, however, be discussed 
along similar lines. And most often, the discussion will be simpler, for the 
ground term of most diatomic molecules is a 'C+ term, for homonuclear di- 
atomics a term. 

As to the role of spin-orbit coupling, which we discussed in some detail for 
atoms in Sec. 15.4.3, it is of no less importance in molecules. Thus, it splits 
the various electronic terms into multiplets characterized by the eigenvalues 
of Lz  + Sz . The situation is, however, more complicated than this because L 
and S also couple to the rotational motion of the molecule. Obviously, the 
overall effect depends on the relative strengths of the various couplings, and 
each molecule must accordingly be treated as a separate case. We refer the 
reader to the literature for a detailed discussion of this problem.' 

Finally, it should be remembered that our discussion of molecules has been 
based on the adiabatic approximation which we discussed in Sec. 13.1. The 

'See the bibliography, entries [36], [37] and [38]. 
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validity of this approximation is usually better for states of low energy than 
for higher energy states. But it is always an approximation. To go beyond it 
in a general way is a very complicated matter. Again, we must refer the reader 
to the literature. 

Supplementary Reading 
The bibliography, entries [36], [37], [38]. 

lSee B. T. Sutcliffe, Adv. Chem. Phys. 114, 1 (2000). 
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We have now proceeded quite far in our understanding of the basic struc- 
ture of atomic and molecular quantum mechanics. With the last chapter we 
have completed the discussion of the connection between the idea of electron 
configurations and electronic terms. As a result, we finally understand how to 
construct reasonable approximations to proper many-electron wavefunctions, 
starting from orbitals, that is, one-electron wavefunctions. We shall now direct 
our attention to the problem of actually determining the best possible orbitals 
within this picture. 

This is a problem we have commented on at  various occasions, for atoms 
primarily in Sec. 11.6, and for molecules in Sec. 13.2. We have also pointed out 
that the notion ‘best possible orbitals’ is ambigious. As discussed in Sec. 11.6, 
we may take it to mean either Hartree-Fock orbitals or Kohn-Sham orbitals. 

In this chapter, we shall focus on the Hartree-Fock description. It is a 
description that has undergone many refinements during the years. It was 

396 
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originally introduced by the Russian physicist Vladimir Aleksandrovitj Fock’ 
and J .  C. Slater,2 as a completion of the originally intuitive method developed 
by D. R. Hartree3 on the basis of product functions like that of Eq. (16.7). 

We first discuss the Hartree-Fock method for a single determinant. We 
then introduce spin and equivalence restrictions and reach what is known as the 
conventional Hartree-Fock method. Finally, we comment on the correlation 
problem, i. e., the problem of going beyond the Hartree-Fock description. 

18.1 Hartree-Fock Method for a 
Single Determinant 

In the Hartree-Fock method for a single determinant, one assumes that the N -  
electron state under study may be reasonably well described by a wavefunction 
of the form (16 .1) ,  i. e . ,  

where $1, $ 2 , .  . . , $N is an orthonormal set of N spin-orbitals, 

( $ i l $ j )  = d i j .  (18.2) 

With reference to the variational theorem (12.12), the spin-orbitals should be 
chosen so as to make the expectation value of the Hamiltonian an absolute 
minimum. Those spin-orbitals are, per definition, the Hartree-Fock orbitals. 

Because of the orthonormality relations (18.2), D is normalized to unity. 
Thus, the expectation value of the Hamiltonian simply becomes (Dl f i lD) .  

We write the electronic Hamiltonian as 

(18.3) 

‘V. Fock, Z.  Phys. 61, 126 (1930). 
*J .  C. Slater, Phys. Rev. 35, 210 (1930). 
3D. R. Hartree, Proc. Cambridge Phil. SOC. 24 (1928). 



398 Chapter 18. The Hartree-Fock Method 

For a molecule, the Hamiltonian agrees with that of Eq. (13.4) which is the 
electronic Ilamiltonian for a fixed configuration of Ii' nuclei. For an atom, 
where Ii' = 1, we recognize the Hamiltonia~ (16.58). 

The expectation value (D]r?lD) may be written as in Eq. (16.58), 

N N N  

(Dl f i - (D)  = G hi + 1 z c ( J l j  - I<$!j) . 
i=l i= l  j=1 

The quantities in the expression for (D/@]D)  have the same meaning as in 
Sec. 16.4, except that h: now honors the presence of I< nuclei, that is, hi 
gives the kinetic energy of an electron in the spin-orbital $$ plus the energy of 
this electron in the field of Zi' fixed nuclei. 

As said above, the spin-orbitals $1, $2, . . . , +N should be determined such 
that (Dtl? ID) becomes an absolute minimum. This implies that the variation 
S(Dl@lD) should be zero. The expression for the variation is obtained as 
the first-order term in the expression (18.4) when each $i and $j therein are 
replaced by $i + S$i and $i + S+i. The result is 

(18.4) 

N 

i=l  

i=l 

We have used rewritings like 

N N  N N  

which involves renamings of summation indices, and draws on the first relation 
contained in Eq. (16.55). 
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The expectation value of the Hamiltonian is only given by the simple ex- 
pression (Dlr?lD) when the spin-orbitals $1 , $2, . , . , $N form an orthonormal 
set. It follows that these orbitals must be kept orthonormal during the varia- 
tion, if (18.5) all along is to represent the change in the expectation value of 
fi. This corresponds to the requirement 

d($il$j) = 0, i l j  = 1 , 2 , .  . . Nl (18.7) 

(SlliIlcj) + ($iId+j) = 0, i , j  = 1 , 2 , .  . . , N .  (18.8) 

A necessary condition for (Dlf i lD) to represent a minimum when evaluated 
with the spin-orbitals $1, &, , . . ,$N is then, that the expression (18.5) should 
vanish for any variation which is in accordance with (18.8). This condition 
leads, in a straightforward manner, to the Hartree-Fock equations. 

It is, howwever, expedient to simplify the notation still further by intro- 
ducing the so-called Hartree-Fock opemtor 

N 
F = h + x(j; - k;) 

where k is the one-electron operator defined in (18.3), and jj and 2; are 
integral operators defined through the relations 

(18.9) 
j = 1  

( 18.10) 

j,! is called a Coulomb opemtor. It may be interpreted as giving the electro- 
static porential from an electron in the orbital &. k; is called an exchange 
opemtor. It represents what is known as a non-local potential, a notation 
which refers to the fact that one must know $(z) at all values of z, in order to 
evaluate kj+(z) at a particular point. The Coulomb operator represents, on 
the other hand, a local potential. To evaluate jj$(z) it is sufficient to know 
$(z) at the point E .  

It is easy to verify that each of the operators A, jj and Kj are Hermitian. 
F is therefore also a Hermitian operator. 
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The expression (18.5) may now be written in the more compact form 

(18.11) 

and the condition that S(0lGlD) vanish becomes 

N 

C { (b+iI+I$i) + (+ilPlS$i)} = 0. ( 18.12) 
i=l  

The spin-orbitals for which S(DlGl0)  is a minimum are the Hartree-Fock 
orbitals. Eq. (18.12) represents a necessary condition on these orbitals, which 
implies that it is these particular orbitals that occur ic (18.12) and (18.8). We 
introduce the notation VI for the function space spanned by these orbitals, 
i. e., for the set of all functions of the form 

N 

( 18.13) 

The notion V I I  is used for the complementary function space, i. e., for the set 
of all functions of the form 

00 

$11 = C c p $ p .  (18.14) 
p = N + 1  

Here, the ‘unoccupied’ orbitals $ ~ + 1 ,  + ~ + 2 , .  . . have been so chosen that they 
form a complete orthonormal set of functions, when taken together with the 
‘occupied’ orbitals $ 1 ,  $ 2 , .  . . , $ N .  In other words, any function $(z) may be 
written as 

N M 

(18.15) 

We express this symbolically as 

V = VI  @ V I I .  (18.16) 

For the coefficients in (18.15) we have the usual expressions 
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in analogy with Eq. (5.140). We use Roman subscripts for functions in V I ,  
Greek subscripts for functions in V I I .  

The condition (18.12) must be satisfied for the set of all possible variations 
(S&, d?,b2,.. . , S $ N )  which are consistent with (18.8). It must therefore hold 
for any particular instances. For our purpose, it is sufficient to consider a 
variation of the form 

S$i = C$A, S$k = 0, k # i. (18.18) 

This variation will certainly satisfy (18.8), since $A belongs to V I I  (cf. our 
convention concerning subscripts). 

Inserting (18.18) in (18.12) gives 

Replacing c by ic gives instead 

or, after multiplication by i, 

Adding and subtracting Eqs. (18.19) and (18.21) shows then that 

These relations must hold for any $ ~ j  in V I  and any $A in V I I .  
The implication of this result is that the expansion 

N 

( 18.19) 

(18.20) 

(18.21) 

(18.22) 

( 18.23) 

must terminate after the Nth term. For in the same way as in Sec. 5.10, Eq. 
(5.151), we get 

(1 8 2 4 )  
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while Eq. (18.22) shows that ( $ ~ ~ ~ @ ~ $ i ) ,  and hence c p i ,  is zero. Eq. (18.23) 
becomes accordingly 

(18.25) 

The N equations (18.25) are the Hartree-Fock equations which the spin- 
orbitals $1 , $ 2 ,  . . . , $N have to satisfy. We note that the orbitals-through 
the operators j,! and defined by Eq. (18.10)-also occur in the definition 
of the Hartree-Fock operator F. The Hartree-Fock equations are, therefore, a 
set of coupled integro-differential equations. 

The coefficients f k i ,  for which Eq. (18.24) gives explicit expressions, are the 
elements of a Hermitian matrix (because F is Hermitian). They are usually 
referred to as Lagrangion multipliers. This designation refers to the fact that 
Eq. (18.25) may be derived by requiring that the quantity 

(18.26) 

be a minimum for arbitrary variations ( S $ l , 6 $ 2 ,  . . . , S $ N ) .  This method draws 
on a general way of handling constraints (in the present case (18.8)), due 
to the eighteenth century, French mathematician Joseph Louis Lagrange. A 
comparison of the method applied here and the method of Lagrange is given 
el~ewhere.~ 

At this stage we recall the theorem, proved in Sec. 13.6, Eq. (13.76), that a 
Slater determinant-apart from a factor-is invariant under a linear transfor- 
mation of the spin-orbitals that define it. This implies, apparently, that any 
set of N orthonormal spin-orbitals in Vr must satisfy a set of equations of the 
form (18.25), for any such set defines the same determinant. 

It is now easy to show (vide infra) that F is independent of the way in 
which the orthonormal set $1, $2,. . . , $N is chosen within V I .  In other words, 
F is an invariant. This implies, in particular, that the matrix { f k i }  may be 
diagonalized by a unitary transformation. Hence, suitable linear combinations 

N 

(18.27) 
j = 1  

4J. P. Dahl, H. Johansen, D. R. Truax, and T. Ziegler, Chem. Phys. Letters 6, 64 (1970). 
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~ 

F$i = ~ $ i ,  i = 1 , 2 , .  . . , N .  (18.28) 

The preservation of orthonormality is secured by the requirement that Uji be 
a unitary matrix, as discussed in detail in Sec. 15.1. 

The canonical form is apparently the simplest of the equivalent forms in 
which the Hartree-Fock equations may appear. As a consequence, this form 
plays a preferred role in many applications of the theory. In addition, Eq. 
(18.28) looks much like a one-electron Schrodinger equation. It is thus through 
the canonical form that one comes closest to the ideas of the so-called indepen- 
dent particle model according to which each electron finds itself in a stationary 
state, determined by an effective potential from the nuclei and the remaining 
electrons. 

The actual solution of the Hartree-Fock equations is usually carried out by 
the Self-Consistent Field method (SCF method). This is an iterative proce- 
dure by which one begins by guessing a ‘reasonable’ set of occupied orbitals 
$1, $2, .  . . , $N. With these functions, one constructs the Hartree-Fock oper- 
ator (18.9) and solves the equations (18.28) with as a fixed operator. In 
this way, a new set of orbitals is arrived at. These allow the construction of 
a better F with which Eq. (18.28) may again be solved, etc. The iteration 
is stopped when the difference between the orbital sets from successive steps 
become insignificant. The Hartree-Fock field is then said to be self-consistent. 
In practise, it is often necessary to apply special techniques to achieve self- 
consistency . 

We close the present section by verifying the above made assertion that F 
is invariant under a unitary transformation of the form 

N 

+j = C Ulj&, j = 1 , 2 ,  . . . , N .  (18.29) 
I=1 

We do this by showing that the quantity 
N 

+Y(z, z‘) = C $j(z)$;  (2’) (18.30) 

is an invariant. This is an equivalent problem, for a comparison with the ex- 
pression (18.9) shows that F depends upon the orbitals $1, $2, . . . , +N through 
this quantity. 

j=1 
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Inserting (18.29) in (18.30) gives 

N N N  

k = l  I=1  
N 

(18.31) 

where Eq. (15.12) has been used in going from the first to the second line. The 
form invariance of y(z, x'), and hence of F, is now evident. 

The quantity y(z,z') is called the one-electron density matrix. It is a 
central entity to which we shall return in the next chapter. 

18.2 Spin Restrictions 
To determine the most general solutions of the Hartree-Fock equations (18.28), 
as spin-orbitals of the form (10.171, is a very complicated task. Usually, one 
imposes the restriction that the spin-orbitals be eigenfunctions of C, , that is, 
they must be of the form (10.21). Let us assume that n spin-orbitals have EL: 

spin while the remaining N - n spin-orbitals have /3 spin. The determinant 
(18.1) becomes then 

(18.32) + +  + -  = I%$%***(Pnpn+l . . . @ N I *  

Such a determinant is an eigenfunction of S,, with the eigenvalue 

n'rs = n - t N ,  (18.33) 

in the usual atomic units. Conversely, it may be shown5 that any N-electron 
determinant which is an eigenfunction of s,, with this eigenvalue, is of the from 
(18.321, or else it can be brought on that form through a transformation of the 
type (13.76). To find the energetically most favorable determinant of the form 
(18.32) is therefore equivalent to solving the variational problem d(D@fD} = 
0, with the subsidiary condition that D be an eigenfunction of S, with the 
eigenvalue n - t N .  

5P.-0. Lowdin, J. Appl. Phys. Suppl. 33, 251 (1962). 



18.2. Sph Restrictions 405 

It is quite easy to see how the Hartree-Fock equations are modified when, 
besides the orthonormality conditions (18.2) , we impose the restriction that 
D is to  be varied only within the class of determinants which have n spin- 
up orbitals and N - n span-down orbitals. The expression (18.11) for the 
variation of (Dlr?.(D) will still hold. But the expression (18.9) for the Hartree- 
Fock operator may be simplified by introducing purely spatial Coulomb and 
exchange operators, jj and Kj. In accord with the notion of Sec. 16.4, we 
define 

(18.34) 

With all spin-orbitals being of the form (10,21), we may perform the integration 
over the spin variable in (18.10) to get 

(18.35) 

Thus, the exchange operator 
different from that of $j itself. 

operator (18.9) as 

annihilates all spin-orbitals with spin functions 

As one easily verifies, these results allow us to write the Hartree-Fock 

N n N 

P = i + c jj - c kj( 3 + &) - c kj( 3 - 2,). (18.36) 

This operator commutes with 3,. That the Hartree-Fock orbitals are supposed 
to be eigenfunctions of i, is therefore a consistent assumption (cf. the theo- 
rem (5.120)). The expression (18.24) for Ekj also shows that the Lagrangian 
multipliers connecting a spin-up orbital with a spin-down orbital must be zero 
(Apply the theorem (5.74) with F replaced by i2 and G by P ) .  This im- 
plies, in turn, that it becomes possible to eliminate the spin functions in the 
Hartree-Fock equations and write, instead of (18.25), 

j = 1  j = 1  j=n+l 

n 

k = l  
N (18.37) 
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where we have introduced spin-up and spin-down Hartree-Fock operators by 
the definition 

N n 

j=1 j-1 
N N 

(18.38) 

j = 1  j=n+l  

We may now perform unitary transformations like (18.29) within the or- 
bital sets (pi, p2,. . . , pn) and (pn+l ,  pn+2,. . . , p ~ )  separately, to obtain the 
equations (18.37) in the canonical form 

(18.39) 

These equations are, then, the Hartree-Fock equations associated with a de- 
terminant of the form (18.32). 

We observe that F T  and @' become identical if the exchange terms are 
neglected, or if these terms happen to be the same in the two operators, The 
two sets of equations in (18.39) have the same solutions in such cases. In 
other words, the spin-up and spin-down orbitals are taken from the same set 
of spatial orbitals. But the general case makes and p$ different, and the 
spin-up orbitals do not go with the same set of spatial functions as the spin- 
down orbitals. One talks about different orbitals for different spins (DODS). 
It should be noticed that the spin-up orbitals are mutual~y orthogonal, as are 
the spin-down orbitals, but there are no orthogonality conditions between the 
two types of orbitals. 

The SCF theory based on (18.39) is referred to as Unrestricted Hartree-Fock 
(UHF) theory. In the case of atoms, one even uses this designation with one 
more restriction imposed, namely, that the spin-orbitals in the determinant D 
of Eq. (18.32) should be also eigenfunctions of &. An equivalent way of putting 
this is to require that D be an eigenfunction of iz, with a definite eigenvalue 
ML.  The new restriction may be treated in exactly the same manner as the spin 
restriction, by observing that the Hartree-Fock operator now also commutes 
with j z .  
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18.3 Conve~tional Hartree-Fock Theory 

The most widely used version of Hartree-Fock theory operates with spin- 
orbitals of the form (lO.Zl), but requires in addition that the spatial orbitals 
reflect the full symmetry of the operator A ,  defined in Eq. (18.3). This means 
that the spatial orbitals are eigenfunctions of i2 in the atom, and eigenfunc- 
tions oft!: in the diatomic molecule. In a general molecule, they must span 
irreducible representations of the point group defined by the nuclear frame- 
work. Such spatial orbitals are called symmetry orbitals, and the restrictions 
involved are referred to as symmetry restrictions. 

The symmetry restrictions are augmented by equivale~ce restrictions, ac- 
cording to which all spatial orbitals are to be taken from an orthonormal set 
with the property that if 'pi is a member of the set, so is any partner of 'pi. 

Partners are here defined as functions that transform into linear combinations 
of each other under the action of angular-momentum operators and/or symme- 
try operations. Furthermore, it is required that the spin-up and the spin-down 
orbitals should be taken from the same set of spatial orbitals. This leads to 
the well-known concept of doubly occupied orbitals: each spatial orbital may 
occur twice in the same determinant, once associated with an a spin function, 
once with a P spin function. 

The use of symmetry orbitals makes it possible to construct total wave- 
functions which themselves honor the symmetry of the problem, as linear 
combinations of a minimum number of determinants. These wavefunctions 
correspond closely to the atomic and moIecuIar many-eIectron wavefunct~ons 
that we constructed in Chapters 16 and 17. 

The Hartree-Fock theory associated with such a description of electronic 
states is known as C o n ~ e n t ~ o n a ~  ~ a r t r ~ e - ~ o c ~  theory or Restricted Hartree- 
Fock (RHF) theory. In order to see how the basic equations are modified by 
the additional constraints, let us consider an N-electron state described by a 
single determinant of the form 

D = (18.40) 

in which rn orbitals are doubly occupied. The variation of (Dlg lD)  is still 
given by (18.111, and the form (18.36) still applies. We obtain therefore, by 
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observing the definitions (18.38), 

This is a special case of the more general expression 

(18.43) 

for which the condition SE = 0 leads to the Hartree-Fock equations 

n 

Fi(pi = C ~ j i c p j ,  i = 1,2 ,  . . I , n, (18,44) 
j = 1  

with {+} being a Hermitian matrix. This result may be derived by the use 
of methods similar to those applied in Sec. 18.1, as shown elsewhere.s The 
characteristic feature of (18.44) is that each orbital has its own Hartree-Fock 
operator. 

Thus we obtain, from (18.42), the following equations 

sSee the reference of footnote 18.4. 



18.3, Conventjon~ ~ ~ t r e e - F o ~  Theory 409 

As usual, we may reduce these equations further by performing unitary trans- 
formations on the set of orbitals defining L). However, only such transforma- 
tions are allowed that leave m orbitals doubly occupied. This implies that 
we may perform unitary transformations within the sets PI, cpz, * .  . , Pm and 
tpm+l, . . , , yn separately, but no mixing between the sets is a~lowed.~he canon- 
ical form of (18.45) is therefore 

f 18.48) 

Thus, not all o ~ - d i a g o n ~  multipliers may be eIiminated' 
An important exception is obtained when n = m, in which case k'r and 

F$ become identical. The determinant (18.40) now has n doubly occupied 
orbitals, and we may write 

(18.47) 

The presence of off-di~gona~ multip~iers is characteristic of open-shell sys- 
tems where not all orbitals are doubly occupied. Their mission is to ensure 
orthogonality between orbitals with different occupancy. If the multipliers 
were neglected, the orbitals would, as a rule, no longer be orthogonal, for they 
would then be eigenfunctions of different Hermitian operators. However, if 
some symmetry is present in the system, off-diagonal multipliers only occur 
between orbitals with the same symmetry. Mu~tipliers between orbitals of dif- 
ferent symmetries vanish due to the theorem (5.74) (cf. the discussion between 
Eqs. (18.30) and (18.37)). 

In closing this section, let us emphasize that most Wartree-Fock calculations 
work with orbitals that are expanded in basis sets of non-orthogonal functions, 
usually Slater- or Gaussian-type orbitals (cf. Secs. 11.7 and 12.4). Thus, the 
Harttee-Fock equations become a set of matrix equations, usually referred to 
as Roothaan's ~ u a t i o n a ,  in honor of the Dutch-Ameri~an physicist Clemens 
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C. J.  Roothaan whose pioneering work has been very inf l~ent ia l .~  

18.4 The Correlation Problem 
The importance of the Hartree-Fock method and the concepts it introduces is 
very great. Nevertheless, we do not obtain an exact solution to the electronic 
Schrodinger equation by this method. For the ground state, it is easy to set up 
a simple measure for the accuracy of the method by drawing on the variational 
theorem (1'2.1'2). This theorem ensures us that the Hartree-Fock energy, E H F ,  
lies above the exact ground-state energy, Eo. The quantity 

is therefore a reasonable measure for the accuracy. It is called the correlation 
enetyy. For the helium atom and the hydrogen molecule it amounts to -1.1 eV. 

The problem of improving the description beyond the Hartree-Fock de- 
scription, with the ultimate goal to reach the exact solution of the Schrodinger 
equation, is known as the co~~e la taon  p ~ b ~ e ~ .  The first step may be taken 
by constructing linear combinations of a moderate number of determinants by 
including determinants corresponding to different electron configurations, as 
discussed in Sec. 11.6. This is the method of limited configuration interaction. 
The coefficients in the linear combination are determined by the variational 
method. In a refined version of the method, one writes down the explicit en- 
ergy expression for the linear combination of determinants and determines the 
orbitals and the coefficients by varying this expression directly. This method is 
known as the ~ u l t z - C o n ~ g u r a ~ i o n  Self-Consistent Field (MCSCF) method. A 
powerful variant is the so-called Complete Active Space Self- Consistent Field 
(CASSCF) method. 

With modern computers, one may go far beyond the Hartree-Fock descrip- 
tion and the description based upon configuration interaction with a moderate 
number of determinants. One may add more and more orbitals, add flexibiliy 
to  the orbitals by means of built-in parameters, and then construct linear com- 
binations of the many, many determinants defined by the orbitals. In this way 
it becomes possible to treat difficult systems with success and to account for 
many fine details of electronic structure. 

It should be emphasized that these extensive methods often draw on the 
theory of the symmetric groups (permutation groups) and the unitary groups. 

'C. C ,  3.  Roothaan, Rev. Mod. Phys. 23, 69 (1951). 
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They involve advanced numerical methods and, finally, they are far from always 
formulated directly in terms of Slater determinants. 

The correlation problem may also be attacked by other powerful methods. 
Especially noteworthy are the procedures based on Many- Sody Perturbation 
Theory (MBPT) and the so-called Coupled-Cluster (CC) methods. 

The methods we have discussed or referred to above are all so-called ab 
initio methods. By this we mean that the methods attempt to solve the 
many-electron Schrodinger equation as strictly as possible, using only the fun- 
damental constants as well as the mass and charge of the nuclear particles from 
experiment. The many-electron wavefunction is at the forefront of the descrip- 
tion. In the next chapter we shall discuss a method which instead focuses on 
the electron density. This method is also referred to as an a6 initio method. 

Supplementary Reading 
The bibliography, entries [as], [28], [34], [39], [40]. 
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Following the discussion of Hartree-Fock theory in the previous chapter, we 
shall now turn to density-functional theory (DFT). As emphasized at the end 
of the previous chapter, this description of electronic structure focuses on the 
electron density rather than the wavefunction. It is essentially a ground-state 
theory, in the sense that it rests on the variational theorem (12.12) which only 
applies to the ground state of an atom or a molecule.' 

To suspend the wavefunction is, of course, a radical undertaking. It is, 
however, well known that the energy of an N-electron system may be expressed 
in terms of the so-called two-electron density matrix. In the Hartree-Fock 
approximation, it may even be expressed in terms of the one-electron density 
matrix. The diagonal terms of this matrix give the electron density. Hence, 

' In systems with symmetry, the variational theorem may be applied to the lowest state 
of each symmetry. The same holds for density-functional theory. 

412 
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the gap between Hartree-Fock theory and density-functional theory is smaller 
than it might at  first be thought. 

The common ground of Hartree-Fock theory and density-functional theory 
is the field of density matrices. The present chapter aims at putting this 
assertion in perspective. We begin therefore with a section on reduced density 
matrices and the role they play in determining the energy of an N-electron 
system.2 Next, we consider the density matrices when the wavefunction is 
a single determinant, which is the Hartree-Fock case. We then proceed to 
density-functional theory and its justification, which rests on the so-called 
Hohenberg-Kohn theorem. In the final section we derive and discuss the Kohn- 
Sham equations which form the DFT basis for a self-consistent determination 
of the electron density. 

19.1 Reduced Density Matrices 

Having introduced the wavefunction Q ( T , ~ )  in Sec. 3.1, we commented on 
its physical interpretation in Sec. 3.4. Assuming that the wavefunction was 
normalized to unity, we interpreted g * ( ~ , t ) Q ( ~ , t )  as a probability density in 
position space. But we also underlined the fact, that far from all informa- 
tion about the quantum-mechanical state of the particle is contained in this 
quantity. We referred, in particular, to the linear momentum of the particle 
and contended that we need the full information contained in Q ( T ,  t )  to make 
statistical predictions about the linear momentum. This point was explicitly 
illustrated in Secs. 6.2 and 6.3, with the wavefunction (6.29) as an example. It 
may also be well ilustrated by evaluating the expectation value of the Hamil- 
tonian (3.16). 

To conform to the notation of the previous sections, let us write (P (T )  for 
a single-particle spin-free wavefunction. (We suppress its possible dependence 
on time.) Let us also write the Hamiltonian as 

1 A = --v2 2 + W ( T ) ,  (19.1) 

in atomic units. For an electron moving in the electrostatic field from I( nuclei, 

2For a general discussion of reduced density matrices see, in particular: 
K. Husimi, Proc. Phys. Math. SOC. Japan 22, 264 (1940). 
P.-0. Lowdin, Phys. Rev. 97, 1474, 1490, 1509 (1955). 
R. McWeeny, Rev. Mod. Phys. 32, 335 (1960). 
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the form of V ( T )  is determined by the last term in Eq. (18.3), i. e., 
K -  

(19.2) 

But it may also contain contributions from, for instance, external electric fields. 
In what follows it is expedient to refer to V ( T )  as the external potential. 

For the expectation value of the Hamiltonian we get 

where 

P ( T )  = P(T)P* (19.4) 

is the probability density in position space. We shall refer to it as the electron 
density. 

To evaluate the expectation value of the external potential, it suffices to 
know the electron density p ( ~ ) .  But this is not sufficient for evaluating the 
expectation value of the kinetic energy-which depends on the momentum 
operator. We need the wavefunction itself or, equivalently, the so-called density 
matrax 

P ( T , T ' )  = P(T)'p*(TO. (19.5) 

Like the electron density, it is bilinear in the wavefunction. Its diagonal ele- 
ments, obtained by putting (T = T ' ) ,  define the electron density. 

P(', = P ( T ) .  (19.6) 

In terms of the density matrix, Eq. (19.3) may be written 

(A) = J [ ( - ~ v ~ ) P ( T ,  T ' ) ~ r t = r d u  + J v ( T ) p ( T ) d v ,  (19.7) 

where we put r' = T after operating with the kinetic-energy operator, but 
before completing the integration. 

Let us now consider an N-electron system in a state described by the wave- 
function 9 ( z l , x 2 , .  . . , ZN). We shall derive reduced expressions for the expec- 
tation values of operators like 

(19.8) 
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and 

(19.9) 

These are the kind of operators for which we evaluated matrix elements be- 
tween Slater determinants in Sec. 16.3. Here, we consider the expectation 
values for a general N-electron wavefunction. Let us first treat the operator 

We begin by noting that each f^(zi) conributes equally to (QlklQ). We 
F. 

have, for instance, 

4*(~1,22,. . . , ZN)~^(ZZ)@(Z~, 22,. . . , Z N ) ~ Z I ~ Z ~  * * * d X N  

= /B*(r., zl,. . . ,2~)f(21)4(22,~1,. . . , z~)dzldz2.. -dzN 
J 

= /Q*(zl,22,. . . , Z N ) ~ ( C ~ ) \ E ( Z ~ , Z ~ ,  . . . ,z~)dzldz2..-dz~. (19.10) 

We have renumbered the coordinates over which we integrate, and next used 
that both Q and \E* change sign under the interchange of particles 1 and 2. In 
all, we get 

(QlFlQ) = 

N 9*(21,22,. . . , z N ) ~ ( z ~ ) Q ( z ~ , z ~ ,  . . . , z N ) ~ z ~ ~ z ~ . - - ~ z N .  (19.11) J 
Defining the so-called reduced one-electron density matrix 

(19.15) 
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is the spinless one-electron density matrix. Its diagonal elements give the 
electron density P ( T ) ,  as in Eq. (19.6). We note that 

p ( r ) d v  = y(z,x)dz = N .  1 s  ( 19.16) 

The expectation value of the operator G, Eq. (19.9), may similarly be 
written 

where 

is the reduced two-electron density matrix. We shall only need the expres- 
sion (19.17) when g ( x 1 , z z )  = 1/r12. G is then the operator representing the 
electron-electron repulsion energy, 

(19.19) 

and the expression (19.17) simplifies to 

(19.20) 
r12 

where 

The quantity p ~ ( 7 - 1 , ~ ~ )  is the two-electron density. It  is normalized to the 
number of electron pairs, 

We note that 
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and 

PZ(+l, T2)dVZ = - ( N  2 - l)P(Tl). s (19.24) 

Collecting the above results, allows us to write the expectation value of 
the Hamiltonian (18.3) in terms of reduced density matrices. We rewrite the 
Hamiltonian as 

N N N N  

i=l i=l  

K 
. (Ti )  = - c - 2, , 

g=1 r i g  

and get 

(19.25) 

This is a fundamental result. In deriving it, we have used relations like those 
of Eq. (19.10). We argued that these relations hold because Q is an anti- 
symmetric wavefunction. It is, however, obvious that they also hold if Q is a 
symmetric wavefunction. Hence, the expression (19.26) does not distinguish 
between fermions and bosons. 

19.2 Single Slater Determinant 
It is instructive and of great interest to specify the one- and two-electron 
density matrices for the single Slater determinant (16.1). This may be done 
by drawing on the expressions (16.41), case c, and (16.46), case d. For the 
expectation values of the operators (19.8) and (19.9), those expressions give 

(19.27) 
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and 

We have included the mutually cancelling k = 1 terms in the double sum. 
Comparing the expressions (19.13) and (19.27) yields immediately 

(19.29) 

If D is of the form (18.32), such that each spin-orbital may be written as ( P ( T )  

times an (Y or a /3 spin function, the definition (19.15) gives 

(19.30) 

(19.31) 

Previously, we have used this expression on intuitive grounds as, for instance, 
in Eq. (4.77). 

Next, a comparison between the expressions (19.17) and (19.28) yields 

N N  1 
%,22,2:,.6) = 5 ~ c [ + k ( ~ l ) $ ( ( ~ 2 ) $ ; ( ~ : ) 1 1 ; ( 2 6 )  

k = l  1=1 
(19.32) 

- $ k ( 2 1 ) + 1 ( 2 2 ) ~ ; ( 2 ~ ) $ ; ( 2 6 ) ]  

1 
2 = - [ Y ( ~ 1 1 4 ) Y ( % 4 )  - Y(Z1 ,  4 ) Y ( C 2 ,  .;)I. 

The diagonal becomes 

1 
q z l ,  2 2 , 2 1 ,  2 2 )  = ~ [ Y ( " l , 2 1 ) Y ( 2 2 ,  2 2 )  - Y ( 2 1 , 4 Y ( Z 2 , . 1 ) 1 .  (19.33) 

Integration over the spin variables, as in Eq. (19.21), gives then 
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Inserting the above results in (19.26) leads to the following expression for 
the energy of a single determinant 

I 

35) 

Thus, the energy, El of a single determinant can be evaluated, once we know 
the oneelectron density matrix r(z1,zi). We say that E is a functional of 
y(z1, zi). It is consistent with this result that also the Hartree-Fock operator 
is determined by ?(XI, zi), as we found at  the end of Sec. 18.1. 

When D is of the form (18.32), so that P ( T , T ' )  may be written as in Eq. 
(19.30), the above expression becomes 

Let us write Eqs. (19.35) and (19.36) as 

E = T i En, + J + Ez. ( 19.37) 

In accordance with an earlier discussion, following Eq. (16.58), the various 
terms in this expression may be interpreted as follows: T is the kinetic energy 
of the N electrons. Ene is the potential energy of the electrons in the external 
field (the field of the nuclei). J is the self-energy of the electron distribution 
p ( ~ ) .  Ez is the exchange term. With reference to Eq. (16.58), we have that 

(19.38) 
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The form of En, in (19.35) and (19.36) is exactly the classical expression 
for the interaction of a continuous charge distribution with an external field. 
Similarly, J is the classical expression for a continuous charge distribution’s 
interaction with itself. It amounts to the interaction of N 2 / 2  pairs. But since 
a point charge does not interact with itself, the correct number of interacting 
pairs is only N(N - 1)/2, Thus, J contains a non-physical interaction of N / 2  
pairs. This self-interaction corresponds to the diagonal terms in the sums of 
Eq. (19.38). The diagonal terms in the first sum is cancelled by the diagonal 
terms in the second sum, because Jii = Kii. (This is the last relation in 
Eq. (16.56).) An important part of the exchange term, E,, has therefore the 
mission of removing the self-interaction. The remainder of the exchange term 
reduces the repulsion energy between electrons with parallel spins, relative to 
the interaction between those with opposite spin (an effect of the antisymmetry 
built into a determinantal wavefunction). 

These considerations will be suggestive for a rewriting of the general ex- 
pression (19.26) in the following sections. 

19.3 The Hohenberg-Kohn Theorem 

The expression (19.26) shows that the expectation value of r? for an N-electron 
system may be evaluated without knowing the full N-electron wavefunction. 
What we need is an explicit expression for the two-electron density matrix. 
For a single determinant, Eq. (19.35) shows that an explicit expression for the 
one-electron density matrix will do. 

In 1964, the American physicists Pierre Hohenberg and Walter Kohn showed 
the remarkable theorem that the ground-state energy of an N-electron system 
is a functional of the one-electron density p ( ~ ) . ~  They turned this observation 
into a variational theorem for the ground-state energy in terms of the density 
instead of the many-electron wavefunction. 

To prove the Hohenberg-Kohn theorem, construct the N-electron Hamil- 
tonian (19.25) for two different external potentials, V ( T )  and v ’ ( T ) ,  differing in 
more than just an additive constant. We call the two Hamiltonians i? and r?’, 
and note that 

N 

ii - ii’ = C [ V ( T i )  - .’(Pi)]. (19.39) 

3P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964). 
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h -1  

We assume that the electronic ground states corresponding to H and H are 
non-degenerate. We denote the respective normalized ground-state wavefunc- 
tions by \E and W, and the corresponding ground-state energies by E and El. 
Thus, we have 

fiq = Et,b, fi’q’ = El$‘. (19.40) 

Expressions for the one-electron densities, p ( r )  and p ’ ( r ) ,  can be easily written 
down by exploiting Eqs. (19.12), (19.15) and (19.6). We shall now show that 
these two densities cannot be identical. 

To this purpose, we invoke the variational theorem (12.12) and write 

(Olfi‘l‘u) > E‘, (g’l@l!’) > E.  (19.41) 

We have used that \k’ is an approximate wavefunction with respect to H and, 
conversely, that \E is an approximate wavefunction with respect to H . From 
Eq. (19.40) we also get 

h 

h I  

(41fiIq) = E ,  (Wlfi’lW) = El. (19.42) 

By combining the four relations in (19.41) and (19.42) we get 

(Slii’ - GI*) + (WIG - fi‘p’) > 0, (19.43) 

and hence, by exploiting Eq. (19.39), 

/ [ v ’ ( . )  - v(.)]p(.)dv + [v(.) - v’(.)]p’(T)dv > 0. J (19.44) 

Putting p‘(.) = p ( ~ )  makes the left-hand side of this relation zero. The re- 
lation is then self-contradictory, and we conclude that p ( ~ )  and p‘(.) cannot 
be identical when v ( ~ )  and TI’(.) are different, in accordance with what we 
claimed above. 

For each v ( r ) ,  there is a p ( ~ )  satisfying the condition 

p(.)dv = N. (19.45) 

Allowing for all types of external potentials, not just potential fields from 
nuclei, it is reasonable to assume that the relation v ( r )  + p ( r )  covers all 
smooth densities satisfying Eq. (19.45). This assumption has been shown to 
be correct under quite general conditions. Hence, p(v )  determines ~ ( v ) .  But 

s 
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when v(r) is known, as in (19.25), then so is the N-electron Hamiltonian R.  
Solving the Schrodinger equation gives us the ground-state wavefunction $. 
Degeneracies may occur, and may be dealt with, but we shall assume that the 
ground state is non-degenerate. Knowing 9 allows us finally to evaluate the 
ground-state energy E and cast it in the form (19.26). Thus, we may write 

E = E[pl, (19.46) 

and express this relation by saying that E is a functional of p .  This is the 
~ o h e n ~ e r g - ~ ~ o h n  theorem. 

Let us now settle on some fixed external potential. We know then, from 
the variational theorem (12.12), that (Qlfil4) is a minimum for the exact 
ground-state wavefunction. Hence, we conclude that 6 E[p] vanishes when we 
vary p about the exact p ,  while keeping the external potential fixed. E[p] is 
a minimum with respect to such variations. This is the variational theorem 
associated with the Hohenberg-Kohn theorem. 

The Hohenberg-Kohn theorem does not give us a prescription for evaluating 
the functional E[p] .  An appropriate transformation of the. expression (19.26) 
allows us, however, to give explicit expressions for important parts of E b ] ,  as 
we shall see in the next section. 

19.4 The Kohn-Sham Equations 

Let us, in analogy with Eq. (19.34), write the two-particle density in Eq. (19.26) 
as 

where C2(~'1,~2)  is a two-electron c o ~ ~ u ~ z o n  ~ u n c ~ z o ~ .  Eq. (19.26) becomes 
then 

As we pointed out in connection with Eq. (19.26), the look of this expression 
is the same for fermions and bosons. The fact that electrons are fermions is 
therefore buried in the form of p ( ~ ,  T') and C ~ ( T I ,  r z ) .  
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As to the first term in (19.48), it was suggested by Kohn and Sham4 that it 
be expressed in a form similar to the first term in Eq. (19.36), plus a remainder. 
Furthermore, they suggested that the remainder be combined with the last 
term in (19.48) to give a new term, E,,, denoted the exchange-correlation 
energy. The expression (19.48) is thus transformed into 

(19.49) 

I .  . 2 J J r12 

Obviously, there is no simple expression for E,&]. 
The orbitals ( P ~ ( T ) ,  p2(r), . . . , p ~ ( r )  are the Kohn-Sham orbitals. With 

the spin dependence added through (Y and /3 spin functions in the usual way, 
they are supposed to form an orthonormal set. By the expression (19.30), 
they define a fermion density matrix for a Slater determinant of the form 
(18.32). This density matrix is, however, not supposed to be the correct density 
matrix for our N-electron system. Nevertheless, it is required that its diagonal 
elements be correct, so that 

N 

P ( T )  = C p i ( r ) p r ( f ) .  (19.50) 
i= l  

is the exact one-electron density. 
There are many ways of representing P ( T )  in the form (19.50). But we 

now require that the orbitals ( P ~ ( T ) ,  p2(r), . . . , p ~ ( r )  be self-consistent field 
orbitals, satisfying a one-electron equation obtained by varying the expression 
(19.49). 

By varying p ( r )  about the exact p( r ) ,  we get 

(19.51) 

where dEb]/dp(r) is called the functional derivative of E[p] .  We require that 
6E[p] be zero for all variations that preserve the number of particles, that is, 
for all variations that satisfy 

J d p ( r ) d w  = 0, ( 19.52) 

‘W. Kohn and L. J. Sham, Phys. Rev. 140, A 1133 (1965). 
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which is obtained from Eq. (19.45). It is obvious that GE[p] will be zero for any 
6 p ( r )  that satisfies Eq. (19.52) if & ~ [ p ] / & p ~ r )  is a constant. If & ~ ~ ] / & ~ ( r )  is 
some non-constant functionl then SE[p] might well be zero for some variation 
S p ( r ) .  It would, however, be easy to  find a neighboring S p ( r )  that would make 
SE[p] different from zero. Hence, we conclude that 

(19.53) 

where 1-1 is a constant. Adapting a thermodynamic terminology, we call p the 
chemical potential. 

To proceed, we invoke Eq. (19.50) and write 

N N 

~ P ( T )  = ~ ~ i { r ) ~ ~ ~ ~ ~ ~  -t C ~ ~ ( ~ ) & ~ j ~ r ) .  (19.54) 

We then go through a number of steps similar to those of Sec. 18.1, and end up 
with a set of equations that parallel the Hartree-Fock equations (18.28). To 
write them down, we note that Eq. (18.28) formally derives from the.expression 
(18.12) by keeping only the term (&,6ilfil$,). This amounts to putting 

i=l i=l 

d p ( r )  = ~ ~ ( ~ ) & ~ ~ ( ~ ) .  (19.55) 

With this & p ( r ) ,  Eq. (19.49) leads to the following expression for SE[p]I 

SE[p] = / { - gv2 $. .(.) + .C(.) + . , c ( T ) } ~ ~ ( r ~ & ~ ~ ( r ) l  (19.56) 

where 

and 

(19.57) 

(19.58) 

U C ( T )  is the ~~~~~~~ ~ t e ~ t ~ a ~ .  It is given by the classical expression for 
the electrostatic potential at T due to the electron distribution p ( ~ ) .  Strictly 
speaking, the expression should be preceded by a minus sign, because the 
electron is negatively charged. It is, however, convenient to stick to the present 
sign convention. Since v,,(T) derives from the exchange-correlation energy, it 
is called the exchange-correlation potential. 
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We now put the expression (19.56) equal to zero. Adding the orthonormal- 
ity conditions for the orbitals, and performing a unitary transformation similar 
to that of Eq. (18.27), we obtain the Kohn-Sham equations 

(19.59) 

As discussed in connection with Eq. 18.10, the Hartree-Fock equations are 
complicated by the fact that the Hartree-Fock operator contains exchange 
operators that represent non-local potentials. The Kohn-Sham equations are 
much simpler in this respect, since all potentials that occur in (19.59) are local. 
The problem is, of course, that since no simple expression exists for E,,[p], no 
simple expression exists for o,,(T) either. Apart from this, the Kohn-Sham 
equations are solved in a self-consistent way by methods similar to those used 
for the Hartree-Fock equations. In particular, extensive use is made of basis-set 
expansions of the orbitals. 

To get exact results from Hartree-Fock theory, it is necessary to  add a 
significant amount of configuration interaction. In contrast to this situation, 
the results obtained by solving the Kohn-Sham equations are supposed to be 
exact, that is, one obtains the correct ground-state energy and the correct 
ground-state density by solving these equations. But the form of E,,[p], and 
hence of v=,(T) is needed. Today, quite elaborate expressions for E,,[p] have 
been determined, by combining general insight in electronic-structure theory 
with careful parametrization based on experimental results for selected atoms 
and molecules. 

Current expressions for EzC[p] are frequently presented in the form 

E,c[Pl = 1 €ze[PIP(r )dv ,  (19.60) 

where coe[p] is referred to as the exchange-correlation energy per electron. I t  is 
usually represented as a function containing various powers of p( r )  and V P ( T ) .  
Often, it contains separate contributions for densities associated with cr and p 
spin, so that non-degenerate states may also be dealt with. 

Supplementary Reading 
The bibliography, entries [34], [39], [41]. 



Appendix A 

Complex Numbers and 
Quantum Mechanics 

The time-dependent Schrodinger equation (3.1) contains the imaginary unit i ,  
and so does the time-dependent wavefunction of a stationary state, Eq. (3.5). 
The imaginary unit also appears in the Schrodinger operators of Sec. 3.3. In 
addition, coefficients in superpositions like that of Eqs. (4.88) and (4.89) will 
generally be complex. Thus, complex numbers are omnipresent in quantum 
mechanics. 

Complex numbers have also an important role to play in the classical sci- 
ences, for instance in the description of wave motion and devises based on 
alternating electric currents. But in all such cases one ends up by taking the 
real or imaginary part of a complex number, and complex numbers may be 
avoided altogether, at  the expense of elegance of description. 

It is true, of course, that probabilities 
must always be real, and so must the magnitude of a quantity that can be 
measured. But the probability amplitudes that determine these quantities 
cannot be restricted to the domain of the real numbers. Accordingly, one 
often meets complex wavefunctions in the applications of quantum mechanics. 

We must, of course, refer the reader to the mathematical text books if he or 
she feels uncomfortable with complex numbers. Most complex wavefunctions 
that we encounter in this text are, however, quite simple and donot go beyond 
the complex exponential function 

Not so in quantum mechanics. 

426 
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i 

Figure A.l :  The unit circle in the complex plane. 

Here, w = u + iv is a general complex variable. Its real part is u and its 
imaginary part w.  Both u and v are real and i2 = -1. The complex conjugate 
of w is W* = u - i v ,  and the magnitude of w is 

1,1=&GJ=\/;12?2. ( A 4  

G= eu. (A.3) 

The magnitude of the complex number ew defined by Eq. ( A . l )  is seen to be 

= ~ e u - i u e u + i u  = 

We also refer to e" as the modulus of the complex number ew . v is called its 
argument. 

By comparing the Taylor expansions of eiu and e-;" with the Taylor ex- 
pansions of cosv and sinv, one finds that 

eiu = cos v + isin v ,  
e-" = cos v - i sin v. 

Combining these equations gives us Euler 's relations, 
1 
2 
1 '  
2i 

cosw = - (eiu +- e - i u )  , 

sinv = - (e lu  - e-") . 
P . 5 )  

The first of the expressions (A.4) shows that the complex number eUeiu 
lies on the circle of radius e' , centered on the origin of the complex plane, the 
argument II being the angle measured on this circle from the positive real axis. 
Clearly, the argument is only determined modulo 2n. Hence, 

, n = 0, fl, f2,. . . ( A 4  ei(u+2nn) - - ,iu 
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The complex exponential function (A . l )  is consequently periodic with the pe- 
riod 2 r i .  

The values of the function eiu all lie on the unit circle in the complex plane. 
Note, in particular, the following special values 

e f 2 n i  - 0 - - e  -1,  
e f n i  - 

e n i / 2  = 
- -1, 

i, 
e - s i / 2  - . - - a .  



Appendix B 

Atomic Units 

B. l  The International System of Units (SI) 

The following are excerpts from a manual prepared by the International Union 
of Pure and Applied Chemistry (IUPAC).l 

By convention physical quantities are organized in a dimen- 
sional system built upon seven base quantities, each of which is 
regarded as having its own dimension. These base quantities and 
the symbols used to denote them are as follows. 

Physical quantity Symbol for quantity 
length 1 
mass m 
time t 
electric current I 
thermodynamic temperature T 
amount of substance n 
luminous intensity I" 

All other physical quantities are called derived quantities and are 
regarded as having dimensions algebraically derived from the seven 
base quantities by multiplication and division. 

Example: 
dimension of (energy) = dimension of (mass x length' x time-'). 

'I. Mills, T. Cvitas, K. Homann, N. Kallay, and K. Kuchitsu, Quantities, Unit8 and 
Symbols in Physical Chemistry, Blackwell, London, 1988, Secs. 1.2 and 3.1. 

429 
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The International System of units (SI) was adopted by the 11th 
General Conference on Weights and Measures (CGPM) in 1960. I t  
is a coherent system of units built from seven SI base units, one 
for each of the seven dimensionally independent base quantities: 
they are the metre, kilogram, second, ampere, kelvin, mole, and 
candela, for the dimensions length, mass, time, electric current, 
thermodynamic temperature, amount of substance, and luminous 
intensity, respectively . . . The SZ derived units are expressed as 
products of powers of the base units . . . 

It is recommended that only SI units be used in science and 
technology (with SI prefixes where appropriate). Where there are 
special reasons for making an exception to this rule, it is recom- 
mended always to define the units in terms of SI units. 

On the background of these excerpts, we shall now introduce an alternative 
set of units which is more practical in most quantum-chemical work. 

B.2 Atomic Units 

The Schrodinger equation for the electron in a hydrogen atom (with infinitely 
heavy nuclear mass) is 

cf. Chapter 8. me is the mass of the electron, 

me = 9.10938 x 10-31kg, 

e is the elementary electric charge, 

e = 1.60218 x 10-19C, 

ti is Planck's constant (the quantum of action) divided by 21r, 

tL = 1.05457 x 10-34J s, 

and 4TEo is 47r times E O ,  the so-called permittivity of vacuum, 

4neo = 1.11265 x 10-"F m-l.  
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We also list the Bohr radius, 

a0 = -- ta2 4neo - - 0.52918 x 10-"m. 
me e2 

The SI values of these physical quantities are obviously awkward to work 
with because of the large negative powers of 10, and hence it is natural to 
choose new base units instead of the meter, the kilogram, the second, and the 
ampere. 

We choose these base units such that the values of the four dimensionally 
jndependent quantities me, e, h, and ~ A E O  all become equal to 1. Eq. (B.6) 
then shows that the value of a0 also becomes 1. The resulting system of units 
is called atomic units. 

It is not necessary to choose an explicit set of four quantities as base quan- 
tities. Some possible choices are: (mass, charge, action, permittivity), (mass, 
charge, action, length), and (mass, charge, length, energy). In accordance with 
this, we don't attach specific names to the various units. We simply talk about 
the au of mass, the au of charge, the au of action, etc. Exceptions are the au 
of length, which is also called the bohr, and the au of energy, which is also 
called the hartree. 

Thus we write: 

me = 1 au of mass, 
e = 1 au of charge, 
ti = 1 au of action, 
4n&o = 1 au of permittivity, 
00 = 1 au of length = 1 bohr, 
EO = -1/2 au of energy = -1/2 hartree, 

where EO defines the ground state solution of Eq. (B.l), 

It is even quite common practice simply to write au, without an accompanying 
qualifier, In the spirit of the IUPAC recommendations this is certainly bad 
practice. 

In defense of such practice, we may take the point of view that all physical 
quantities involved may be considered to have the same dimension, and hence 
that only one unit, au, is needed. To do so is, of course, quite heretical, 
but it is the kind of sin that many scientists commit. After all, one may 
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always refer to the words by convention in the opening remarks of Sec. (B.1). 
In atomic units, the numerical values of atomic and molecular quantities are 
freed of the annoying large negative powers of ten. In writing equations, a 
further simplification is achieved if it is assumed that all quantities are actually 
measured in atomic units. For then we need no longer write the quantities of 
value 1 explicitly. Thus, the Schrodinger equation (B.l)  may be written 

By solving this equation, we automatically get the energies in hartrees and the 
distances in bohrs. If we so desire, we may then convert the results to SI units 
via Eq. (B.6) which shows that 

1 bohr = 0.529177 x 10-"m, P.9 )  

and via the following definition of the so-called hartree energy Eh, 

2 

Eh = -2Eo = (&) 5 = 4.35975 x lO-"J, (B.lO) 
h2 

which shows that 

1 hartree = 4.35975 x 10-l8J. (B. l l )  

The conversion of other au values to SI values is easily accomplished by 
referring to a typical combination of fundamental constants. Thus it follows 
from Eq. (2.59) in the form 

(B.12) 

that the electron in a hydrogen atom (with infinitely heavy nuclear mass), 
moving in the first classical Bohr orbit, has a momentumof 1 au of momentum 
and a velocity of 1 au of velocity. The expression for the velocity is obtained 
from Eq. (B.12) by dividing by me, and thus we get ( Z  = 1 and n = 1) 

1.05457 x 10-34J s 
(9.10939 x 10-31kg) x (0.529177 x 10-lOm) 

1 au of velocity = 

= 2.18768 x 106m s-'. (B.13) 

It is also easy to derive, from the content of Sec. 2.5, that the time of revolution 
in the first Bohr orbit is given by 

t l  = 27r (9) fi" = 21r x 2.41888 x 10-17s. 
me 

(B.14) 
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Hence, 

1 au of time = 2.41888 x 10-17s. 

By referring to the so-called fine-structure constant, 

e2  1 1 
a = -- = 7.29735 x lod3 = - 

4T&o ch 137.036 ’ 
we also find that c, the speed of light, equals 137.036 au. 

(B.15) 

(B.16) 



Appendix C 

Curvilinear Coordinate 
Systems 

The transition from a set of Cartesian coordinates (x, y, z )  to a set of curvi- 
linear coordinates (q1,42,43) is defined by three continuously differentiable 
transformation equations, 

2 =Z(91,92 ,93) ,  Y = Y(91,92,93), z = z(91,92,93) (C.1) 

91 = Ql(2, Y, 21, 9 2  = 42(x, Y, z ) ,  93 = 93(x,  Y, 2). (C.2) 

with inverses, 

By this transformation, a point P in space may be equivalently labeled by its 
Cartesian coordinates (x, y, z )  and its curvilinear coordinates (91, 9 2 , 4 3 ) .  

If we move away from the point P to an adjacent point P’, both sets of 
coordinates undergo infinitesimal changes. These changes are connected by 
the equations 

where all derivatives must be evaluated a t  the point P .  

by the quadratic differential form 
The distance, ds, between P and P’ is called the line element. It is given 

434 
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where 

(C.5) 
ax ax a y  ay at at 

gij = -- +-- +-- 
%i &j aqi aqj aqi aqj 

The functions g i j ( q l , q z , q 3 )  define the components of the so-called metric ten- 
sor.  

We note that g i j  is the scalar product between the two vectors, ti and tj, 
defined by the ith and j t h  columns of the above matrix. Thus, 

We may consider these vectors to be centered at the point P.  They give the 
directions to  the neighboring point obtained when only one of the q-coordinates 
is varied. From Eq. (C.3) we get for instance, that (dql ,dqz ,dq3)  = (dq,O,O) 
implies that d r  = ( d x ,  dy ,  d z )  = t l d q .  Thus, we may consider t l ,  t 2  and t 3  as 
a set of local basis vectors centered at  P .  Obviously, it will simplify matters 
if these vectors are mutually orthogonal. For this to be the case we must have 
that 

g i j  = ti . t j  = 0 if i # j 

The curvilinear coordinate system is then said to be orthogonal. We shall 
restrict ourselves to this case in the following. The determinant, g ,  of the 
metric tensor is then 

The length of the vector ti is 6, and the volume spanned by the three 
orthogonal t-vectors is accordingly equal to 4. The volume element, d v ,  at 
the point P is therefore 

It is also easy to see that 4, apart from a possible minus sign, is the value of 
the determinant associated with the transformation matrix of Eq. (C.3), the 
so-called Jacobian. To see this, multiply the said matrix with its transpose 
and use the orthogonality relation (C.7) to show that the product matrix has 
the determinant g .  Use finally that a matrix and its transpose have the same 
determinant. 
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ds2 = dr2 + r2d02 + r2 sin2 6 d42 

We have now found the expression for the volume element in orthogonal 
curvilinear coordinates. Further analysis leads to expressions for other geo- 
metrical quantities as well. One finds, in particular, that the Laplacian of a 
function u is expressed as follows 

, (C.14) 

a 2 u  a 2 U  a 2 u  
V 2 U G  7+-+ - ax  a y 2  a z 2  

With this result at  our disposal, we may express the Schrodinger equation 
and other partial differential equations containing the Laplacian in a variety 
of useful coordinate systems. 

For spherical polar coordinates (Sec. 8.2) we have that 

x = rsinOcos4, 
y = rsinBsin4, 
z = rcos8. 

(C.11) 

Hence, we find, 

(C.15) 

and 

a 2 u  2 a u  v2u  = - + -- + 
dr2 r d r  
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It is also of importance to know how the gradient of a function may be 
expressed in curvilinear coordinates. The gradient of u is defined as 

((3.17) 

To express it in the new coordinates, we simply use the well-known chain rule 
for partial differentiation and get 

To evaluate the matrix in Eq. (C.18) let us, as a very special case, put u 
equal to x and subsequently use that dx/dx = 1,  dx/dy = 0, d x / d t  = 0. Eq. 
(C.18) becomes then 

Two similar equations are obtained by putting u equal to y and z ,  respectively. 
Together, the three equations show that the product of the matrix in Eq. (C.18) 
and the matrix in Eq. (C.3) equals the unit matrix. We may therefore evaluate 
the matrixin Eq. (C.18) as the inverse of the matrix in Eq. (C.3). As remarked 
in the discussion following Eq. (C.9), the determinant of that matrix is either 
+,/ji or -4, so the inversion is easy to carry out. In the case of spherical 
polar coordinates we find 

(Z’ay’8;) = (2, $ 1  $) ( r 1 sin 4 1 sin 0 cos 4 sin 0 sin 4 cos 0 
1 1 1 
- cos Ocos 4 - cos 0 sin 4 

r r 
1 C O S ~  

r sin0 r sin0 

-- sin6 

0 

au au du 

-- 

(C.20) 

The difference between the transformation properties of the two vectors 
(dx, dy, dz)  and (duldx, du/ay, du/dz)  is worth noticing. According to Eq. 
(C.3) the former transforms as a column vector, whereas the latter according 
to Eq. (C.18) transforms as a row vector. The difference is a fundamental one. 
In the language of tensor calculus, (dx, dy, dz) is a contravariant vector and 
(au/&, d u l d y ,  au/az) is a covariant vector. 
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Let us finally consider the ~ e c ~ o ~  o ~ e ~ a ~ ~ r  

el= -ir x V, (C.21) 

with the Cartesian components 

(C.22) 

and the square 

We want to express these operators in spherical poIar coordinates. 
We may refer to the koperators as the dimensionless a n g ~ ~ a r - ~ o m ~ ~ t ~ m  

operators, for a comparison with Eqs. (5.28) and (5.29) shows that 

where i = (la, lv, fz) represents the angular momentum of a particle with posi- 
tion vector r 

To evaluate, say we simply combine the information in Eq. (C.ll) with 
that in Eq. (C.20), and get 

du sin6 du = irsinBsin# cos0- - -- ( dr T df? 

-+-T--- 
T 88 rsin88# 

au 
d r  

cos 6 sin # bu 

au du 
=I isin(b- +icot8cos(b- 

80 a#' (C.25} 
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Thus, we are led to the following expressions 

(C.26) 

To evaluate i2, we note that 

we then perform the trivial differentiations, and add the results from the eval- 
uation of e u  and j :u. The final result is 

(C.28) 

This is seen to be the same operator as that occurring in Eq. (C.16). Thus, 
we have derived the following important expression for the Laplacian 

(C.29) 

We have now reached the goal of expressing the operators we need in spher- 
ical polar coordinates. The methods we have used are widely applicable and 
apply to other curvilinear coordinate systems as well. But at this stage we 
must refer the reader to the rich literature on curvilinear coordinates for fur- 
ther theorems and results.’ 

ISee, for example: 
H. Margenau and G. M. Murphy, The Mathematics of Physics and Chemistry, 2nd Ed., Van 
Nostrand, New York, 1956, Chapter 5; 
P. Moon and D. E. Spencer, Field Theory Handbook, Springer-Verlag, Berlin, 1971. 
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Surface Spherical 
Harmonics and Special 
Functions 

As mentioned in Sec. 8.3.6, the %-dependence of the surface spherical harmonics 
is that of the associated Legendre functions P!""'(z). Considered as a function 
of cos 6, P!"'(z) is defined as 

where Pt(cos 6) is a Legendre polynomial 

We have, for instance, 

PO(COS6) = 1, 

p2(cos6) = ;(3cos2e - I) ,  { p3 (COS 6) = (5 C O S ~  6 - 3 cos 6) .  

(D.3) 
(cos 6 )  = cos 6 ,  

The associated Legendre function Pj"' (cos 8) is a solution of the differential 
equation 
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and it is easy to verify that this is the differential equation that originates from 
the differential equation (8.38) for the surface spherical harmonics, i. e., 

when one inserts a function of the form @(e) exp(fim$), @ ( O )  cos(lml+), or 
@(O)sin(lml4). This is the form of the functions in Table 8.1 and Table 8.2. 

With the proper normalization factor included, one finds the expression 

. (D.6) 

The sign factor in the expression is in accordance with the Condon-Shortley 
phase convention (Sec. 8.3.5). It is equal to -1 when m is positive and odd, 
otherwise it equals +l. 

For further information about the associated Legendre functions, we refer 
to the 1iterature.l 

ISee, for instance, Chapter 8 in the reference of footnote 2.11. The reader is warned that 
the same notation may sometimes cover differences in sign and magnitude of incorporated 
constants. 
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The &Function 

Consider the following family of Gaussian  function^, 

(E.1) 
-a%&= Ga(u) = z e  I 

co 
Ga(26)du = I, F.2)  J_, 

represented in Fig. E.l  by graphs for three different values of a.  AS the vafue 
of a increases, G,(u) becomes more and more localized about 26 = 0, and at 
the same time the height of the function becomes larger and larger, conserving 
the value of the ~ n t ~ g r a ~  (E.2). We have, in fact, that 

G,(O) -+ 00 as a 00. P . 3 )  

The limit function G,(ztf is certainly not a proper function. It has, however, 
turned out to be extremely useful to accept it as a g e n e ~ ~ 2 ~ e ~  function. 

This generalized function coincides with the so-cailed &-€unction introduced 
by Dirac.' It is denoted by 6(u) and may be defined solely by its properties, 
without reference to a limit function as above. First and foremost, these prop- 
erties are 

S ( U f  = 0 for 26 # O ,  
(E'4 

'P. A. M. Dirac, The Principles of Quantum Mechanics, the bibliography, entry [12]. 
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From these properties we get, for any function f(u),  

For the integrand vanishes for all u # UO.  Hence, we may replace flu) by f(uo) 
and take f(u0) outside the the integral, which then has the value 1 according 
to Eq. (E.4). 

In addition to the properties (E.4) we also assign the following property to 
the delta function 

~1 qau) = --6(u) 

This property ensures that 6(u) may be treated like an ordinary function j ( u )  
in the relations 

l c O  
f (au)du  = - f ( a u ) d b 4  = Ic0 f ( u ) W ,  a > 0. (E.7) 1: I f f 1  SW -cQ 

The property (E.6) also implies that 6(u) is an even function with respect to 
inversion in the point I = 0, 

S(-u) = &(a) 
I I 

For further properties of d(u) we refer to the reference of footnote 1. We 
also point out that in contemporary mathematics one often refers to the delta 
function as a so-called distribution.z 

Besides the family of Gaussian functions, Fig. E.1 shows two more families 
of functions which have the d-function as limit function. They are the family 
of Lorentzian functions, 

for which the d-function is obtained by letting the parameter b tend to zero, 
and the following family of functions for which the &function is obtained by 

%ee, for example, I. Richards and H. Youn, Theory of Distributions: ~1 non-technical 
~ n ~ ~ ~ u ~ ~ ~ o ~ ,  Cambridge University Press, 1990. 
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letting the parameter c tend to  infinity 

1 sin(cu) 
Sc(2l) = ;y , c > o .  (E.lO) 

Thus, we may write 

lim G,(u) = S(u), (E.l l)  
a+cu 

lim &(ti) = 6(u) ,  
b+O 

lim Sc(u) = 6(u) ,  
C+CU 

(E.12) 

(E.13) 

Obviously, there are many ways of representing the delta function as a limit 
function. I t  is, for instance, also of interest to  note that 

(E.14) 

which is related to  Eqs. (E.10) and (E.13). 
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U 

Figure E.l: Three families of functions for which Dirac's &function is a limit 
function. (a): Gaussians, Eq. (E.l) ,  (b): Lorentzians, Eq. (E.9), (c): The 
family of Eq. (E.lO). 
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