The First Way: Changing the Basis

Consider a system described by the Hamiltonian H

me (7 0)

and by a second observable operator 2

At t = 0, this system is initially in the state | ¥)(¢ = 0) > represented by N (i)

(1) Change the basis so the Hamiltonian is diagonal in the new basis. Then H becomes
H= ((1) —01)

(2) Transform € into the new basis.

(3) Transform | ¢(t = 0) > into the new basis.

(4) Follow the procedure for the case where H is diagonal illustrated in the old exams.



The Second Way: Without Changing the Basis

Consider a system described by the Hamiltonian H

me (7 0)

and by a second observable operator 2

At t = 0, this system is initially in the state | ¥)(¢ = 0) > represented by N (i)

(a) Calculate the normalization constant N.

324—42:5280]\7:%

(b) Find the eigenvalues and the normalized eigenvectors of the Hamiltonian operator.

1
eigenvalue Fy = 1 with eigenvector | B} >= — (1>

V2 \1

1
eigenvalue F, = —1 with eigenvector | Fy >= — ( 1 )

V2 \ —1

(¢) Find the eigenvalues and the normalized eigenvectors of the Omega operator.
1
1
1
—1

eigenvalue w; =1 with eigenvector | wy >=

eigenvalue wy = —1 with eigenvector | wy >=

Sl- sl



(d) Write down the ¢ = 0 state vector | 1(0) > in the energy eigenbasis

()= (%) =5 (1) o ()

a+b=06V2 a—b=08V2 a=0.7V2 b=—-0.1vV2

| (0) >= 0.7<1> —0.1 (_11)

(e) Write down the corresponding time-dependent state vector | ¥ (t) >.

| (t) >=0.7 (}) exp(—i(1)t/h) — 0.1 (_11) exp(—i(=1)t/h)

(f) If you were to measure the energy at time ¢, what results could you obtain?

You would always obtain one of the energy eigenvalues E =1 or £ = —1

(g) With what probabilities would you obtain them?
PE=1)=|<E=1]y(@) >
P(E=—1)=|< E = —1] $(t) >

(h) What would the state vector be right after an energy measurement?

It would be in the corresponding energy eigenstate | E=1>or | E = -1 >

(i) If you were to measure the omega-ness at time ¢, what results could you obtain?

You would always obtain one of the omega eigenvalues w =1 or w = —1

(j) What would the state vector be right after an omega measurement?

It would be in the corresponding omega eigenstate | w=1>or |w = —1 >
(k) With what probabilities would you obtain them?

Plw=1)=|<w=1]|y(t)>[*

Plw=-1)=|<w=—1]%(t) >



(1) Example calculation P(w=1) = |[<w =1]|9(t) >|*> =

2

_ ‘ %(Li)* [0'7 (1) exp(—i(1)t/h) — 0.1 (_11> exp(—z'(—l)t/h)]




QUANTITATIVE ASPECTS (130 points)

Consider a system described by the Hamiltonian H and by a second observable
operator A with

H= {(1) _01} and A = [(1) é],which is initially in the state | ¥(t =0) >= N B}

mmulate the normalization constant N.

ind the eigenvalues and the eigenvectors of the Hamiltonian operator. Whether
you find them by inspection, or by full calculation, show that they work!

[/(,o)/find the eigenvalues and the eigenvectors of the Lambda operator. Whether you
find them by inspection, or by full calculation, show that they work!

Malculate the 2 x 2 matrices that represent the two projection operators
Pg, =| Ei >< E; | and P, =| \; >< ), | for i =1 and for i = 2.

e}"Show that the eigenvectors of H and the eigenvectors of A both form a basis for
the two dimensional space by showing that the sum of each of their projection
operators is the identity operator, i.e., that I= 3 Pg. = Y. Py,.

(/MO H and A commute? I'm not looking for a yes or no answer: please show that
they do commute. or that they do not commute.

you were to measure the energy at time ¢ = 0, what results would you obtain,
and with what probabilities would you obtain them?

(_{B)yIf instead you were to measure the lambda-ness at time ¢ = 0, what results would
you obtain, and with what probabilities would you obtain them?

//Gf)/Calculate the expectation values of H and A at ¢ = 0 and show that they
agree with the probabilities and the eigenvalues you obtained above, i.e., that
<H>= ZEl P(E,) and that < A >= Z)\-‘ P()\,)

(j) Calculate AH and AA and show that your results agree with the values you
obtained above, i.e., that AQ = /3" P(w;) (wi— < §2 >)2 for @ = H and A.

L (" Sketch P(E;) versus E and P(X;) versus );. Indicate your values of <H > and
AH and your values of < A > and AA on the respective sketches.

ow expand | ¥(0) > in the energy eigenbasis and calculate the time evolution

of | ¥(t) >.

Mly, calculate the results and the probabilities that would be obtained for
energy measurements and for A measurements at time ¢t. Explain why the energy

measurements are time independent, but the A\ measurements are not.
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