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Why study angular momentum?
The angular momentum ladder operators in Hilbert space
The angular momentum ladder operators in their matrix representation
The angular momentum ladder operators in position space
The totally antisymmetric tensor and vector cross products
The angular momentum commutation relations in vector and component form
The L2 and Lz operators, their eigenkets, and eigenvalues in the Hilbert space
The L2 and Lz operators, their eigenkets, and eigenvalues in position space
The L2 and Lz operators, their eigenkets, and eigenvalues in their matrix representation
Obtaining the eigenvalues and the eigenkets using the ladder operators
Obtaining the eigenvalues and the eigenfunctions by solving the differential equation
Sketch and explain the semi-classical vector model for angular momentum for l=3
The uncertainty relations for Lx, Ly, and Lz
The spherical harmonics
Adrien-Marie Legendre, the Legendre equation, and the Legendre polynomials
Why study the hydrogen atom?
The asymptotic decay of the spatial wavefunctions for hydrogen
The n, l, and m quantum numbers for the hydrogen atom
Edmond Laguerre, the Laguerre equation, and the Laguerre polynomials
What is your favorite topic in quantum mechanics and why?
What bothers you about quantum mechanics and why?



Consider the paradigmatic hydrogen atom.

(a) Make a plot of the energy levels of the hydrogen atom. Plot the energy values En in
the vertical direction for n = 1, 2, 3, 4, 5. Plot the the orbital angular momentum
quantum number in the horizontal direction for l = 0, 1, 2, 3, 4. For each n, show every
allowed value of l. Label every energy level spectroscopically (1s, 2s, 2p, ...). Indicate
the m degeneracy of each l level. Show that the total degeneracy of each En is n2.

(b) Make a composite sketch showing the l = 0, 1, 2 effective potentials. Add the loca-
tions of the n = 1, 2, 3 energy levels to your sketch, and explain how the levels in the
different wells are lined up.

(c) Sketch just the l = 0 effective potential. Add the locations of the n = 1, 2, 3 energy
levels to your sketch. Sketch the radial wavefunctions for each of these energy levels
and label each wavefunction with the appropriate Rnl designation. Sketch the corre-
sponding probability distributions per unit volume |ψ(r)|2 dV. Sketch the correspond-
ing radial probability distributions 4πr2 |ψ(r)|2 dr.

(d) Sketch just the l = 1 effective potential. Add the locations of the n = 1, 2, 3 energy
levels to your sketch. Sketch the radial wavefunctions for each of these energy levels
and label each wavefunction with the appropriate Rnl designation. Sketch the corre-
sponding per unit volume and radial probability distributions.

(e) Sketch just the l = 2 effective potential. Add the locations of the n = 1, 2, 3 energy
levels to your sketch. Sketch the radial wavefunctions for each of these energy levels
and label each wavefunction with the appropriate Rnl designation. Sketch the corre-
sponding per unit volume and radial probability distributions.

(f) Sketch the three-dimensional probability distributions for n = 1, 2, 3. For each n, show
all allowed values of l and m.



Consider a hydrogen atom that is in the following superposition of its energy eigenkets
|nlm > at t = 0

|ψ(t = 0) >= N
[
|211 > +

√
2 |320 > +

√
3 |432 >

]
.

(a) Calculate the normalization constant N and write down the normalized time-dependent
state vector|ψ(t) >.

(b) If you measure the energy at time t, what are the possibilities and what are the prob-
abilities? Calculate the expectation value of the energy < E >. Calculate the uncer-
tainty in the energy ∆E.

(c) If you measure L2 at time t, what are the possibilities and what are the probabilities?
Calculate the expectation value < L2 >. Calculate the uncertainty ∆L2.

(d) If you measure Lz at time t, what are the possibilities and what are the probabilities?
Calculate the expectation value < Lz >. Calculate the uncertainty ∆Lz.



Consider the 2d simple harmonic oscillator.

In 2d Cartesian coordinates, the Hamiltonian is given by

H = − h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+

1

2
mω2(x2 + y2).

(a) Write down the time-dependent Schrodinger equation as a differential equation in
Cartesian coordinates. Separate the time and space variables to obtain the time-
independent Schrodinger equation. Separate the x and y variables.

(b) For the Cartesian case, show that the eigenenergies are given by

E = (nx + ny + 1)h̄ω.

In 2d polar coordinates, the Hamiltonian is given by

H = − h̄2

2m

[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂φ2

]
+

1

2
mω2r2.

(c) Write down the time-dependent Schrodinger equation as a differential equation in po-
lar coordinates. Separate the time and space variables to obtain the time-independent
Schrodinger equation. Separate the r and φ variables.

(d) For the polar case, show that the eigenenergies are given by

E = (nr + 1)h̄ω.

(e) The number of degenerate energy eigenstates for each energy is given by nr + 1. The
number of degenerate eigenstates is the same in the two coordinate systems:

There is 1 ground state:
Cartesian (nx = 0 and ny = 0)
Polar (nr = 0)

There are 2 first excited states:
Cartesian-1 (nx = 1 and ny = 0)
Cartesian-2 (nx = 0 and ny = 1)
Polar-1 (nr = 1 and Lz = +1)
Polar-2 (nr = 1 and Lz = −1)

Continue this list up to nr = 5.


