Qualitative Questions

1 For the following four topics include a sketch the potential and the wavefunctions with your description in words
2 | The transmission and reflection coefficients for a potential step up

3 | The transmission and reflection coefficients for a potential step down

4 | The transmission and reflection coefficients for a potential well (down)

5 | The transmission and reflection coefficients for a potential barrier (up)

6 | Why study the square well?

7 | Sketch the first four energy eigenfunctions for the square well in x-space

8 | Sketch the corresponding first four probability densities for the square well in x-space

9 | Sketch the first four energy eigenfunctions for the square well in p-space

10 | Sketch the first four energy eigenfunctions for the square well in E-space

11 | Obtaining the eigenfunctions for the square well

12 | Obtaining the eigenenergies for the square well

13 | The past, present, and future time evolution of a 1d free-particle Gaussian wave packet
14 | The spreading of a Gaussian wave packet and the dispersion of empty space for matter waves
15 | The eigenstates of momentum for the one-dimensional free particle

16 | The phase velocity and the group velocity for the one-dimensional free particle

17 | The minimum uncertainty state for the free particle

18 | Why study the harmonic oscillator?

19 |Sketch the first four energy eigenfunctions for the harmonic oscillator in x-space

20 | Sketch the corresponding first four probability densities for the harmonic oscillator in x-space
21 | Sketch the first four energy eigenfunctions for the harmonic oscillator in p-space

22 | Sketch the first four energy eigenfunctions for the harmonic oscillator in E-space

23 | Obtaining the eigenenergies for the harmonic oscillator via the separation of variables

24 | Obtaining the eigenfunctions for the harmonic oscillator via the separation of variables
25 | Charles Hermite, the Hermite equation, and the Hermite polynomials

26 | Factoring the Hamiltonian for the harmonic oscillator

27 | The ladder operators for the harmonic oscillator in Hilbert space

28 | The ladder operators for the harmonic oscillator in position space

29 | Obtaining the eigenenergies for the simple harmonic oscillator using the ladder operators
30 | Obtaining the eigenfunctions for the simple harmonic oscillator using the ladder operators
31 | The minimum uncertainty state for the harmonic oscillator

32 | The zero-point energy and the zero-point motion of the harmonic oscillator




Superposition States in the Square Well

Consider a particle moving in the infinitely deep square well.

The initial state vector is a superposition of the first excited state | 2 > and the second excited state | 3 >

[¥(0) >=N[|2>+][3>].

Calculate the normalization constant N.
Express the normalized time-dependent state vector |¢(t) > in terms of the energy eigenkets.

Express the normalized time-dependent position-space wavefunction ¢(x,t) =< x[t)(t) > in terms of
the energy eigenfunctions in position space.

Sketch the first-excited-state wavefunction v, (z,0) and the corresponding probability density |t)o(z, 0)|?
inside the well.

Sketch the second-excited-state wavefunction 3 (x, 0) and the corresponding probability density |3 (z, 0)|?
inside the well.

Sketch the interference-cross-term o (z, 0) 13(x, 0) cos(wsat) inside the well.

Explain how the sum of these three functions (d, e, and f) produces the time-dependent motion of the
particle in the well.

Using the applet at http://falstad.com/qmld or your own software, make some sketches of the position-
space probability density versus time. Your sketches should show the position-space probability density

when < x > is maximum, zero, and minimum.

Use the applet at http://falstad.com/qmld or your own software, to show that the oscillation frequency
of the position-space probability density is w3z = w3 — ws.

If the position is measured at time t, what results can be found, and with what probabilities will these
results be found?

If the energy is measured at time t, what results can be found, and with what probabilities will these
results be found?

Calculate the expectation value of the energy < E(t) > and the uncertainty in the energy AFE(t)



COMPLEMENT A,

(if)  We see that, for large n, although the absolute value of the momentum is
well-defined, its sign is not. This is why 4P, is large: for probability distri-
butions with two maxima like that of figure 3, the root-mean-square
deviation reflects the distance between the two peaks; it is no longer related
to their widths.

2. Evolution of the particle’s wave function

Each of the states | @, >, with its wave function @,(x), describes a stationary
state, which leads to time-independent physical predictions. Time evolution
appears only when the state vector is a linear combination of several kets | @, .
We shall consider here a very simple case, for which at time + = 0 the state vector

[ Y(0) > is:

Iw<0)>=—}£[|<p1> o] )

a. WAVE FUNCTION AT THE INSTANT ¢

Apply formula (D-54) of chapter IIT; we immediately obtain :

2

1 ~~i—n’it —21——2'1
S [e 2ma? | 0, > + ¢ ma \ ¢, >] (15)

/2

or, omitting a global phase factor of | y(7) >:

(1) > =

1 .
Iw(t)>oc—ﬁ[l<m> +eT ] 0, 5] (16)
with:
E, — E, 3n*h
Wy = = 17
21 - - (17)
b. EVOLUTION OF THE SHAPE OF THE WAVE PACKET
The shape of the wave packet is gi'vgn by the probability density:
1 1
(x, ) = 3 @1(x) + 3 @3(x) + @4(x) @5(x)cos w1 (18)

We see that the time variation of the probability density is due to the interference
term in ¢,¢,. Only one Bohr frequency appears, v,; = (E; — E,)/h, since the
initial state (14) is composed only of the two states | @, > and | ¢, ). The curves
corresponding to the variation of the functions ¢, @3 and ¢, ¢, are traced in
figures 4-a, b and c.
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PARTICLE IN AN INFINITE POTENTIAL WELL
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FIGURE 4

Graphical representation of the functions @} (the probability density of the particle in the
ground state), @3 (the probability density of the particle in the first excited state) and ¢,0,
(the cross term responsible for the evolution of the shape of the wave packet).

Using these figures and relation (18), it is not difficult to represent graphically
the variation in time of the shape of the wave packet (cf. fig. 5): we see that the
wave packet oscillates between the two walls of the well.
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t = njw,, t= 3n/2w,, t = 2n/w,,
FIGURE 5

Periodic motion of a wave packet obtained by superposing the ground state and the first excited state
of a particle in an infinite well. The frequency of the motion is the Bohr frequency w,,/2x.
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COMPLEMENT Ay,

c. MOTION OF THE CENTER OF THE WAVE PACKET

Let us calculate the mean value { X )(¢) of the position of the particle at
time ¢. It is convenient to take:

X' =X —ap2 (19)

since, by symmetry, the diagonal matrix elements of X' are zero:

, ¢ a\ . ,[7nx
Coy | X |¢1>OCL <x—§>sm2<7>dx=0

<¢2|X'|¢2>ocj (x—§>sin2<2—zf>dx=o (20)

We then have:

(X)) =Re{e ™n'Co, | X |90} (21)
with:
a
<901|XI|§02>=<(P1|X|(P2>_§<(P1|‘P2>
2Jw . WX . 2nx
=2 | xsin— sin——dx
alj, a a
- _@_ (22)
9n?
Therefore:
a 16a
(X >(t)=— ——=cos w,t (23)

2 97?

N/
N | A AN

2nfw,,

FIGURE 6

Time variation of the mean value { X ) corresponding to the wave packet of figure 5. The dashed
line represents the position of a classical particle moving with the same period. Quantum mechanics
predicts that the center of the wave packet will turn back before reaching the wall, as explained by
the action of the potential on the “edges” of the wave packet.
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PARTICLE IN AN INFINITE POTENTIAL WELL

The variation of { X M(¢) is represented in figure 6. In dashed lines, the
variation of the position of a classical particle has been traced, for a particle moving
to and fro in the well with an angular frequency of w,, (since it is not subjected to
any force except at the walls, its position varies linearly with ¢ between 0
and a during each half-period).

We immediately notice a very clear difference between these two types of
motion, classical and quantum mechanical. The center of the quantum wave
packet, instead of turning back at the walls of the well, executes a movement of
smaller amplitude and retraces its steps before reaching the regions where the
potential is not zero. We see again here a result of §D-2 of chapter I: since the
potential varies infinitely quickly at x = 0 and x = g, its variation within a domain
of the order of the dimension of the wave packet is not negligible, and the motion
of the center of the wave packet does not obey the laws of classical mechanics
(see also chapter III, § D-1-d-y). The physical explanation of this phenomenon
is the following : before the center of the wave packet has touched the wall, the
action of the potential on the “edges™ of this packet is sufficient to make it turn
back.

COMMENT :

The mean value of the energy of the particle in the state () >
calculated in (15) is easy to obtain:

1 1 5
asis:
1 1 17
which gives:
y 3
H :§E1 (26)

Note in particular that { H », { H* ) and AH are not time-dependent ; since 4
is a constant of the motion, this could have been foreseen. In addition, we see from
the preceding discussion that the wave packet evolves appreciably over a time of
the order of :

At ~ 27
@, (27)
Using (26) and (27), we find :
3 h h
AH.m_§E1x§E—1_5 (28)

We again find the time-energy uncertainty relation.
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Transmission and Reflection

Consider the transmission and reflection coefficients for a potential with two steps down as shown
in the attached figure.

(a) Sketch the components of the wavefunctions in each region.
(b) Write down the functional form of the wavefunction in the three regions.

(c) Match the boundary conditions on the wavefunctions at each step to obtain the corresponding
set of two equations relating the amplitudes.

(d) Match the boundary conditions on the derivatives of the wavefunctions at each step to obtain
the corresponding set of two equations relating the amplitudes.

(e) Naively, there are six unknowns, but only four equations. Explain how we use these four
equations to solve the problem.

Now consider the transmission and reflection coefficients for the single step up potential that we
discussed in class.

(f) Use the applet at http://phet.colorado.edu/simulations, or your own program, to compute
reflection and transmission R(FE) and T'(E) values versus E. Plot your computed R(E) and
T(FE) curves and compare them with the plot shown in class.
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SHO Superposition States
Consider a particle moving in a simple harmonic oscillator potential.

The initial state vector is a superposition of the ground state | 0 > and the first excited state | 1 >

[(0) >= \/§|0>+\/§|1>.

(a) Express the normalized time-dependent state vector |1)(t) > in terms of the energy eigenkets.
(b) Calculate < z(t) > using ladder operators.

(c) Calculate < z2(t) > using ladder operators.

(d) Calculate Ax(t) using your results above.

(e) Write down—but do not calculate—the position-space integral that you would need to evaluate in order
to obtain < z(t) >.

(f) Write down—but do not calculate—the position-space integral that you would need to evaluate in order
to obtain < z2(t) >.

(g) Compare and contrast solving this problem using Dirac notation—i.e., using ladder operators in the
Hilbert space—with solving the problem by explicitly calculating the integrals.

Now consider the simple harmonic oscillator in energy eigenket |n > .
(h) Calculate < x(t) > using ladder operators.
(i) Calculate < z%(t) > using ladder operators.
(j) Calculate < p(t) > using ladder operators.
(k) Calculate < p?(t) > using ladder operators.
(1) Explain why your results do not depend on time.
(m) Use your results above to calculate AzAp.
(n) Explain why the ground state is a minimum uncertainty state.

(o) Explain why the excited states are not minimum uncertainty states.





