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The energies of the ground and first excited states are
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Problem 6.2 ?

Show how one obtains the expressions of: (a) (n/ |r—2|nl) and (b) (nl [r~Ynl); that is, prove
(6.176) and (6.175).

(6.209)

Solution
The starting point is the radial equation (6.120),

W Uy 10+ DR? &
2ur?

2# dr? . _] Uni(r) = EnUn(r), (6.210)

which can be rewritten as
() 1U4+1) 2uet 1 u?e
Unu(r)  r2 B2 r B2’

where Uni(r) = r Ru(r), U%(r) = d*Un(r)/dr? and E, = pe*/(2h*n?).
(a) To find (r=2) , let us treat the orbital quantum number / as a continuous variable and
take the first / derivative of (6.211):

o [Un(M] _2+1 24%*
Uua(r)] — r2 B3’

where we have the fact that n depends on / since, as shown in (6.138), n = N + 1 + 1; thus
an/al = 1. Now since [,° U4 () dr = [° 2Rzl(r) dr = 1, multiplying both sides of (6.212)

by Uy 2 (r) and integrating over r we get

* () o0 1
A nl() [Un;( )] r=(21+1)A U,?](r);—z-dr— 3 / U,%I(r)dr (6.213)

or to ()
00 ” B —1—
/0 VA2 [Unl( )]dr—(zz+1)<nl -

The left-hand side of this relation is equal to zero, since

Uy(r) [ U\ (r) o 6Un1(r) _
/) nl() [Unl(r)]dr—A Uni(r) 5l dr /0 Uy (r) dr = 0. (6.215)

We may therefore rewrite (6.214) as

(6.211)

(6.212)

h%n3

2,4
nl>— 2ue’ (6.214)

1 2u%et
hence
1 2
nl -3 nl)= Y7 (6.217)
r n3 (2l + 1)a§
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354 6. THREE-DIMENSIONAL PROBLEMS

since ap = h2/(ué?).
(b) To find (') , we need now to treat the electron’s charge e as a continuous variable in
(6.211). The first e-derivative of (6.211) yields

d [Un(7  4uel  4u%ed (6218)
oe [Uu(ry] W2 r  ma2’ .

Again, since [§° UZ(r)dr = 1, multiplying both sides of (6.218) by U (r) and integrating
over r we obtain

o0 o [Un(r 4ue [ 1 4u’e® [
/0 Ufz(r)ge-[iz]dr=——ff/0 U (r)-dr + ”e/O UX(rdr, (6219)

Unl(r) hz h4n2
or to 5 3
o0 o [U%(r) 4ue 1 4u“e
Ui(r)—= | 22 ldr = =2 (n1|-1nl ) 6.220
/o "l(r)ae [Unl(r)] 4 K2 <n " >+ h4n2 ( )

As shown in (6.215), the left-hand side of this is equal to zero. Thus, we have

4ue 4u?el 1
—;2—- <nl nl> = —-—h4n2 - nl ;

nl> = —21—- (6.221)
n

a0

1

v

since ag = A2%/(ue?).

Problem 6.3 /

(a) Use Kramer’s recursion rule (6.177) to obtain (6.173) to (6.175) for (nl|r~|nl), (nl|r|nl)
and (nl|r2|nl).

(b) Using (6.217) for (nl|r~2|nl) and combining it with Kramer’s rule, obtain the expression
for (nl|r—3|nl).

(c) Repeat (b) to obtain the expression for (nl|r—4|nl).

Solution :
(a) First, to obtain (nl |r"1 | nl ), we need simply to insert & = 0 into Kramer’s recursion rule
(6.177):

niz (nl er’ nl) —ag (nl Ir_l l nl> =0, : (6.222)
hence .
1 1
<nl - nl> = ;—270. (6.223)

Second, an insertion of k = 1 into (6.177) leads to the relation for (nl |r|nl):
2 0 aj 2 -1
= (nl Ir|nl) = 3a <nl Ir |n1)+ '} [(21+ 1)2 — 1] <nl lr lnl) —o, (6.224)
n 4

and since (! [r~1| nl) = 1/(n%ap), we have

(nl |r| nly = % [3n2 10+ 1)] a. (6.225)

- %
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Third, substituting of ¥ = 2 into (6.177) we get

3 2 ag 2 _ 42 0

5 <n1 |r | n1> ~ Say (nl Ir| i) + 2 [(21 F1)2 - ] (nl Ir Inl) —0, (6.226)

which when combined with (n/ |r| nl) = 3 [3n? — (I + 1)] ao yields

(nl

We can continue in this way to obtain any positive power of r: {nl |r¥| nl).
(b) Inserting £ = —1 into Kramer’s rule,

r2

1
nl) = 5n? [5n2 +1-310+ 1)] a2. (6.227)

0+ ag (nl 'r_2' n1> - % [(21 + 12— 1] at <n1 |r—3| nl), (6.228)
we obtain
<nl ri3 n1> = m<nl rlz n1>, (6.229)

where the expression for (n/ |r~2| nl) is given by (6.217); thus, we have

1 2
<n1 = nl> = 3 (6.230)
r n{(+ 1)+ Dag
(c) To obtain the expression for (nI |r‘4l nl) we need to substitute £ = —2 into Kramer’s

rule:
_;15 (|| mt) + 30 (=3 ) 32‘%- [@+ 02 —4](w|~|m) =0. (6231

Inserting (6.217) and (6.230) for (nI lr‘zl nl) and (nl |r‘3| nl), we obtain

(o

We can continue in this way to obtain any negative power of r: (nl |r*|nl).

1

nl
r4

> 4[3n% — 11 + 1)] 6.232)

TSI DRI+ D[+ ) —4]a

Problem 6.4

An electron is trapped inside a infinite spherical well ¥ (r) = 0, r=a

400, r>a.’

(a) Using the radial Schrédinger equation, determine the bound eigenenergies and the cor-
responding normalized radial wave functions for the case where the orbital angular momentum
of the electron is zero (i.e., / = 0).

(b) Show that the lowest energy state for / = 7 lies above the second lowest energy state for
[=0.

(c) Calculate the probability of finding the electron in a sphere of radius a/2, and then in a
spherical shell of thickness a/2 situated between r = q and r = 3a/2.

-
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358 6. THREE-DIMENSIONAL PROBLEMS

To obtain the total wave function Wnim (*), we need simply to divide the radial function by a
factor 1/+/47 factor, because in this case of / = 0 the wave function wy,e0(r) depends on no
angular degrees of freedom, it depends only on the radius:

2 1 arnr(r—a)
Ruo(r) = [ 0\/ ==y S5 1 a<r<b (6.250)

elsewhere.

1
WnOO(r) = «/Z;L'—

Problem 6.6 (

(a) For the following cases, calculate the value of  at which the radial probability density
of the hydrogen atom reaches its maximum: (i) n = 1,/ =0,m = 0 (i)n=2,l=1,m=0
Gi)l=n—1,m=0.

(b) Compare the values obtained with the Bohr radius for circular orbits.

Solution
(a) Since the radial wave function for n = land! = 0is Rypo(r) = 2a0_ 32 g/ 4 the
probability density is given by

4 5 _
Pio(r) = r}{Rio@)* = ;rze /a0 (6.251)
0

(1) The maximum of Pyo(r) occurs at ry

dP 2rf
100} o — 2 —TL—0 = r=ao (6.252)
dr a0

r=ri

(i1) Similarly, since Ra1(r) =1/ (2«/6ag/ 2)re"’ /220 we have

1
Pou(r) =P Ru ()PP = ——rie™7/®. (6.253)
24a;
The maximum of the probability density is given by
dP y '
2OV ) = 42-2=0 = rn=4a (6.254)
ar  |,—, ao

(iii) The radial function for / = n — 1 can be obtained from (6. 163):

: 2 \*? 1 2r \D _ 2
Ro(-1y(r) = — | — — e/mapnt (). (6.255)
nag V2n[2n — D!P \nao nhap

From (6.152) and (6.153) we can verify that the associated Laguerre polynomial L%Z:} is a con-
stant, L%ﬁ:i (y) = —(2n — 1)!. We can thus write Ru(z—1)(r) as Rn(u—1)(r) = Aprt—le~r/nao,
where A4, is a constant. Hence the probability density is given by

Pan=1)() = P2 Rugu—ny (r)* = Azr?"e™2/m0, (6.256)
The maximum of the probability density is given by

dPn(n—l)(r)
dr

2p2n
—0 = 2P =0 = r,=rla. (6.257)
nag

r=ry
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Figure 6.5 The probability density P () = a3r4e" /a0 /24 is asymmetric about its maximum
r2 = 4ag; the average of 7 isr21 = 5ap and the width of the probability density is Ara; = +/5ay.

(b) The values of r, displayed in (6.252), (6.254), and (6.257) are nothing but the Bohr
radii for circular orbits, 7, = n2ag. The Bohr radius r, = nag gives the position of maximum
probability density for an electron in a hydrogen atom.

Problem 6.7
(a) Calculate the expectation value (r)2; for the hydrogen atom and compare it with the
value r at which the radial probability density reaches its maximum for the state n = 2,/ = 1.
(b) Calculate the width of the probability density distribution for r.

Solution
(a) Since Ry (r) =re /2% 24a3 the average value of 7 in the state Ry (r) is
1

" e = B [ e
2 = —— rle r = — we 'du =
24a8 0 24 Jo

120ag
24

= Sap; (6.258)

in deriving this relation we have made use of f0°° x"e *dx = nl.

The value r at which the radial probability density reaches its maximum for the state n = 2,
I = 1is given by r, = 4ay, as shown in (6.254).

What makes the results ro = 4ap and ()21 = 5ag different? The reason that (r),; is
different from ; can be attributed to the fact that the probability density P, (r) is asymmetric
about its maximum, as shown in Figure 6.5. Although the most likely location of the electron
is at ro = 4ay, the average value of the measurement of its location is (r)21 = 5ap.

(b) The width of the probability distribution is given by Ar = Jrda — (r)%1 , Where the

expectation value of 2 is

2 ® 352 1 [ 1 6lag )
(ro)a1 =/0 r Rzl(")d"=F/) roexp{ ——r|)dr = Y = 30aq;. (6.259)

ag a0 a;

Thus, the width of the probability distribution shown in Figure 6.5 is given by

Arat = [ (rho — ()2 = /302 — (5a0)* = /5ao. (6.260)
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Table 6.7 Hydrogen energy levels and their degeneracies when the electron’s spin is ignored.

n I orbitals m &n E,
1 0 S 0 1 —e2/(2ap)
2 0 s 0 4 —e? /(8ap)
1 p -1,0,1
3 0 s 0 9 —e2/(18ag)
1 p -1,0,1
2 d -2,-1,0,1,2
4 0 s 0 16 —e? /(32aq)
1 p —-1,0,1
2 d -2,-1,0,1,2
3 f -3,-2,-1,0,1,2,3
5 0 s 0 25 —e? /(50ap)
1 p -1,0,1
2 d -2,-1,0,1,2
3 f -3,-2,-1,0,1,2,3
4 g —4,-3,-2,-1,0,1,2,3,4

6.3.5.3 Degeneracy of the Bound States of Hydrogen

Besides being independent of m, which is a property of central potentials (see (6.55)), the
energy levels (6.140) are also independent of /. This additional degeneracy inl is not a property
of central potentials, but a particular feature of the Coulomb potential. In the case of central
potentials, the energy E usually depends on two quantum numbers: one radial, n, and the other
orbital, /, giving E;. ,

The total quantum number » takes only nonzero values 1,2,3,.... As displayed in Ta-
ble 6.7, for a given n, the quantum / number may vary from 0 to » — 1; and for each /, m can
take (2/ + 1) values: m = —I,—I + 1,...,1 — 1,1. The degeneracy of the state n, which is
specified by the total number of different states associated with n, is then given by

n—1 .
gn=> @+1)=n’ (6.164)
=0

Remarks

e The state of every hydrogenic electron is specified by three quantum numbers (», [, m),
called sing-particle state or orbital, [nlm). According to the spectroscopic notation, the
states corresponding to the respective numerical values / =0, 1,2,3,4, 5, ... are called
the s, p, d, f, g, h, ... states; the letters s, p, d, f refer to sharp, principal, diffuse, and
fundamental labels, respectively (the letters g, h, ... have yet to be assigned labels, the
reader then is free to guess how to refer to them!). Hence, as shown in Table 6.7, for

b
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a given n an s-state has 1 orbital [#00), a p-state has 3 orbitals [n1m) corresponding to
m = —1,0, 1, a d-state has 5 orbitals |n2m) corresponding tom = —2,—1,0, 1, 2, and
SO on.

o If we take into account the spin of the electron, the state of every electron will be specified
by four quantum numbers (n, /, m;, ms), where mg; = :}:% 1s the z-component the of the
spin of the electron. Hence the complete wave function of the hydrogen atom must be
equal to the product of a space part or orbital Wnim, (7,8, 9) = Rni(r)Yim, (0, ¢), and a

spin part |%, ms>:

. 1 1
\Pnlmlms (r) = Wnlml(ra 0, (0) "i, :t‘2‘> = Rnl(r)Ylml(e, (0)

11
S :
: 2> (6.165)

Using the spinors from Chapter 5 we can write the spin-up wave function as

anlmI %(r) = ¥nim; (r9 0’ ¢) 'E’ §> = Ynim; ( 0 ) = ( ’z)ml ) s (6166)
and the spin-down wave function as

0
Ynim;

o 1 1 0
lI’,,Iml_%(r) = Ynim (1,6, 9) ‘E, _‘2'> = Ynim ( 1 ) = ( ) s (6.167)

For instance, the spin-up and spin-down ground state wave functions of hydrogen are

given by
"3/2 —rjap
\Pm%(?)z( vioo )2( (waa% e/ ) 6.168)
_ 0 ‘ 0
\le_%(r) = ( V100 ) = ( (l/\/;)ao_a/ze_r/ao ) (6169)

e When spin is included the degeneracy of the hydrogen’s energy levels is given by
n—1 .
2 2(21 +1) = 2n?, (6.170)
1=0

since, in addition to the degeneracy (6.164), each level is doubly degenerate with respect
to the spin degree of freedom. For instance, the ground state of hydrogen is doubly de-
generate since ‘¥, 1 () and Y00 - ! () correspond to the same energy —13.6 eV. Sim-

ilarly, the first excited state is eightfold degenerate (2(2)?> = 8) because the eight states
¥, 00 i%(?), ¥, i%(F), Y0 j:%(?) and ¥,, _, +3 (7) correspond to the same energy
—13.6eV /4 = —3.4¢eV.

6.3.5.4 Probabilities and Averages %

When a hydrogen atom is in the stationary state v, (r, 8, @), the quantity |y, (r, €, v) 12 d3r

represents the probability of finding the electron in the volume element d°r, where
- 4
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d*r = r? sin Odr dd dp. The probability of finding the electron in a spherical shell located
between r and r + dr (i.e., a shell of thickness dr) is given by

T 2
Pu(r)ydr = (/ sin0d0/ do |wnm(r, 6, (p)|2)r2dr
0 0

n 2
— | Rur)2r2dr /0 sind do /) Y20, 9)Yim @, 0) do

=| R (r)1*r2dr. (6.171)

If we integrate this quantity between r = 0 and r = a, we obtain the probability of finding the
electron in a sphere of radius a centered about the origin. Hence integrating between r = 0
and r = oo, we would obtain 1, which is the probability of finding the electron somewhere in
space.

Let us now specify the average values of the various powers of r. Since W, (r, 8, ¢) =
Rni(r)Yim(8, ), we can see that the average of »* is independent of the azimuthal quantum
number m:

(nlmlrklnlm) = /rkl Ynim(r, 0, ¢)|2r2 sin 8 dr df dy

00 T 2z
= / r**2| Ry (r) [Pdr / sin d@ /0 Yim©, 0)Yim 0, ) dop
0 0

o0
=/ rk+2|R,,1(r)I2dr
0
= (nl | r¥|nl). , (6.172)

Using the properties of Laguerre polynomials, we can show that (Problem 6.2 page 353)

it rint) = = [3% =10+ 1)) o, e
(nl|r? | nl) = %nz [5n2+1—3l (1+1)] as, (6.174)
1
(nllr M nl) = ——, (6.175)
n* ag
2 .
(nllr 2nl) = ——— (6.176)

n3Q + a3’

where aq is the Bohr radius, ag = A%/(ue?). The averages (6.173) to (6.176) can be easily
found from Kramer’s recursion relation (Problem 6.3 page 354):

k+1
n2

Equations (6.173) and (6.175) reveal that 1/(r) and (1/r) are not equal, but are of the same
order of magnitude:

2
(nllr¥inly — 2k + Dag(rlr*=nl) + %9 [(21 + 12— k2] (Il 2|nly = 0. (6.177)

(r) ~ n’ag, (6.178)

This relation is in agreement with the expression obtained from the Bohr theory of hydrogen:
the quantized radii of circular orbits for the hydrogen atom are given by r, = n%ag. We will

-
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show in Problem 6.6 page 358 that the Bohr radii for circular orbits give the locations where
the probability density of finding the electron reaches its maximum.
Next, using the expression (6.175) for (r—!), we can obtain the average value of the Coulomb
potential
1 21
(V(r)) = —é <—> S (6.179)

r ap n?’

which, as specified by (6.140), is equal to twice the total energy:

En=iry) = - (6.180)
=—(V(r)) = —— —. )
) 2ag n?

This is known as the virial theorem, which states that if V(ar) = a"V(r), the average expres-
sions of the kinetic and potential energies are related by

(T) = g(V(r)). (6.181)

For instance, in the case of a Coulomb potential ¥V (ar) = a™! V(r), we have (T') = —%( vy,
hence E = —3(V) + (V) = L(¥).

Example 6.3 (Degeneracy relation for the hydrogen atom)
Prove the degeneracy relation (6.164) for the hydrogen atom.

Solution

The energy E, = —e?/(2agn?) of the hydrogen atom (6.140) does not depend on the orbital
quantum number / or on the azimuthal number m, it depends only on the principal quantum
number 7. For a given n, the orbital number / can take n—1values:1=0,1,2,3,...,.n—1;
while for each /, the azimuthal number m takes 2/ +1valuessm = -1, -1 +1,...,1— 1,17.
Thus, for each n, there exist gn different wave functions Wnim(7), which correspond to the same
energy E,, with

n—1 n—1 n—1
g,,=Z(21+1)=Zl + 2> I=n+2n(n—1)=n (6.182)
1=0 =0 1=0 .

Another way of finding this result consists of writing 21;01 (27 +1) in the following two equiv-
alent forms: :

gn = 1+3+5+7+~-+(2n—7)+(2n—5.)+(2n—3)+(2n—1), (6.183)
gn = n—1+@1=3)+ Q-5+ Q=T+ +7+5+3+1, (6.184)

and then add them, term by term:
28, = C2m)+ )+ 2n)+ Q2n) +--- + (2n) + 2n) + (2n) + (2n). (6.185)

Since there are n terms (because / can take »n values: / = 0,1,2,3,...,n — 1), we have
2gn = n(2n) hence g, = n?.




