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Figure 2: Two neighbouring paths.

However, this argument must be rethought for one exceptional path: that which extrem-
izes the action, i.e., the classical path, g.(t). For this path, S[q. + 1] = S[g.] + o(n?). Thus
the classical path and a very close neighbour will have actions which differ by much less than
two randomly-chosen but equally close paths (Figure 3). This means that for fixed closeness

paths interfere q

cl

constructively

paths interfere

destructively

t

Figure 3: Paths near the classical path interfere constructively.

of two paths (I leave it as an exercise to make this precise!) and for fixed , paths near the
classical path will on average interfere constructively (small phase difference) whereas for
random paths the interference will be on average destructive. '

Thus heuristically, we conclude that if the problem is classical (action > &), the most
important contribution to the PI comes from the region around the path which extremizes
the PI. In other words, the particle’s motion is governed by the principle that the action is
stationary. This, of course, is none other than the Principle of Least Action from which the
Euler-Lagrange equations of classical mechanics are derived.



(1) convsTRV T ALl PATHS

4
£ .
The (fecsceat f ot .
£
~x
L *
(L) CALCVLATE THE AcTidnN
[ 4
L{x,n,t)l= T =V
CLASSIcaL P ATH HAS MIN AU M ACTON

PHYSI1c S ¢S wWHiErg| THE
LEBAST AcTIsN |is

(q BATAEME Reotied s

CLASsrcAlL PATH

- > PATH 11

22



(3) caAccvearg Tui paoracaTor

Z . Ss[xo]/g
(o
ot

ynNIT

Fond %
ya

/"

CiacLE

ST ATIONARY

Re U

PHASE CoHERAENCE

lscapcrraaL - S ]

am——

h

< T

LPHRASE

1z



m h

IA

AS

while o Hechriema pffrack | go A Lpth

,Q,L(;(Z/) "’Q'?

THE. CLARSS/ICcAC PATH

9
~

% = vt -t

13



CALCULATE  THR AcTION Fop THE  ceAlSicac pPATH
/
Scl. = f L dt
]
/
) J Lot dt

\L

N

n

A

"
v)-

3

Now

CEeT'S 00 A NoN CeAsSecadc PATH

L
=z £
d~
- -~ = 2t
4 Van 1€

14

(sl



!
THE DIFFRRARNCL. Y THE mMmASS.

RASE BacrLc /M'VLOO?_

L (200) (1 amis) (1)

Scu *

’

= /60 B /0”1‘,‘

aS = éSCL_-.: 3;(:4"?1? > mh

50, ABASEBAce myST STAY ArTRAMECY Cceosg

70 THE CeRCSrchce pPATH!

ECECTRON m ~ IO-L-?,‘

e = L (10F) (1) (1)

= 5 A IO-LJ’ .y\?m

‘LSA(_" 'L'tl- <4n”r)

S0, EtLEcTaon Wwice Fletoew THE NeV <€LACs,

prrr!

cAc

1 £



374

Likewise, the function x*(x,t) characterizes
the experience, or, let us say, experiment to
which the system is to be subjected. If a different
region, 7'’ and different Lagrangian after ¢, were
to give the same x*(x,¢) via Eq. (16), as does
region R", then no matter what the preparation,
¥, Eq. (14) says that the chance of finding the
system in R" is always the same as finding it
in 7/, The two ‘‘experiments” R’ and "' are
equivalent, as they yield the same results. We
shall say loosely that these experiments are to
determine with what probability the system is
in state x. Actually, this terminology is poor.
The system is really in state y. The reason we
can associate a state with an experiment is, of
course, that for an ideal experiment there turns
out to be a unique state (whose wave function is
x(x, £)) for which the experiment succeeds with
certainty.

Thus, we can say: the probability that a
system in state y will be found by an experiment
whose characteristic state is x (or, more loosely,
the chance that a system in state y will appear
to be in x) is

2

’ f (2, O, f)dx (17)

These results agree, of course, with the prin-
ciples of ordinary quantum mechanics. They are
a consequence of the fact that the Lagrangian
is a function of position, velocity, and time only.

6. THE WAVE EQUATION

To complete the proof of the equivalence with
the ordinary formulation we shall have to show
that the wave function defined in the previous sec-
tion by Eq. (15) actually satisfies the Schroedinger
wave equation. Actually, we shall only succeed
in doing this when the Lagrangian L in (11) is a
quadratic, but perhaps inhomogeneous, form in
the velocities #(£). This is not a limitation, how-
ever, as it includes all the cases for which the
Schroedinger equation has been verified by ex-
periment,

The wave equation describes the development
of the wave function with time. We may expect
to approach it by noting that, for finite ¢, Eq. (15)
permits a simple recursive relation to be de-
veloped. Consider the appearance of Eq. (15) if

R. P. FEYNMAN

we were to compute ¢ at the next instant of time:

1 &
V(xey1, t+€) = eXP[—ﬁ‘ 2 S, x,-)]
Rt

f==—00

d.’XJk dxk_l
X._.
4

(159

This is similar to (15) except for the integration
over the additional variable x; and the extra
term in the sum in the exponent. This term
means that the integral of (15’) is the same
as the integral of (15) except for the factor
(1/A4) exp(i/#)S(%xq1, xx). Since this does not
contain any of the variables x; for ¢ less than £,
all of the integrations on dx; up to dx;_1 can be
performed with this factor left out. However,
the result of these integrations is by (15) simply
Y(xr,-t). Hence, we find from (15%) the relation

Y(xet, tHe)
=fexp[%S(xk+1, xk)]zlz(xk, Hdx,/A. (18)

This relation giving the development of ¢ with
time will be shown, for simple examples, with
suitable choice of 4, to be equivalent to
Schroedinger’s equation. Actually, Eq. (18) is not
exact, but is only true in the limit ¢—0 and we
shall derive the Schroedinger equation by assum-
ing (18) is valid to first order in e. The Eq. (18)
need only be true for small ¢ to the first order in e.
For if we consider the factors in (15) which carry
us over a finite interval of time, T, the number
of factors is T/e. If an error of order € is made in
each, the resulting error will not accumulate
beyond the order é(T/¢) or Te, which vanishes
in the limit.

We shall illustrate the relation of (18) to
Schroedinger’s equation by applying it to the
simple case of a particle moving in one dimension
in a potential V(x). Before we do this, however,
we would like to discuss some approximations to
the value S(xiy1, x;) given in (11) which will be
sufficient for expression (18).

The expression defined in (11) for S(xiy1, ) is
difficult to calculate exactly for arbitrary e from
classical mechanics. Actually, it is only necessary
that an approximate expression for S(x41, ;) be
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which may not be zero. The question is still
more important in the coefficient of terms which
are quadratic in the velocities. In these terms
(19) and (20) are not sufficiently accurate repre-
sentations of (11) in general. It is when the
coefficients are constant that (19) or (20) can be
substituted for (11). If an expression such as
(19) is used, say for spherical coordinates, when
it is not a valid approximation to (11), one
obtains a Schroedinger equation in which the
Hamiltonian operator has some of the momentum
operators and coordinates in the wrong order.
Equation (11) then resolves the ambiguity in the
usual rule to replace p and ¢ by the non-com-
muting quantities (%/2)(9/9q) and g in the classi-
cal Hamiltonian H(p, ¢q).

It is clear that the statement (11) is inde-
pendent of the coordinate system. Therefore, to
find the differential wave equation it gives in
any coordinate system, the easiest procedure is
first to find the equations in Cartesian coordinates
and then to transform the coordinate system to
the one desired. It suffices, therefore, to show the
relation of the postulates and Schroedinger’s
equation in rectangular coordinates.

The derivation given here for one dimension
can be extended directly to the case of three-
dimensional Cartesian coordinates for any num-
ber, K, of particles interacting through potentials
with one another, and in a magnetic field,
described by a vector potential. The terms in
the vector potential require completing the square
in the exponent in the usual way for Gaussian
integrals. The variable x must be replaced by
the set x® to x®K where x®, x®, x® are the
coordinates of the first particle of mass m;, x@,
x®, x® of the second of mass m., etc. The
symbol dx is replaced by dx®dx® . . .dx®0, and
the integration over dx is replaced by a 3K-fold
integral. The constant A4 has, in this case, the
value A = 2nher/m)}(2rhei/my)t- - - Qrhel/my)t
The Lagrangian is the classical Lagrangian for
the same problem, and the Schroedinger equation
* resulting will be that which corresponds to
the classical Hamiltonian, derived from this
Lagrangian. The equations in any other coordi-
nate system may be obtained by transformation.
Since this includes all cases for which Schroed-
inger’s equation has been checked with experi-
ment, we may say our postulates are able to
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describe what can be described by non-relativistic
quantum mechanics, neglecting spin.

7. DISCUSSION OF THE WAVE EQUATION

The Classical Limit

This completes the demonstration of the equiv-
alence of the new and old formulations. We
should like to include in this section a few re-
marks about the important equation (18).

This equation gives the development of the
wave function during a small time interval. It is
easily interpreted physically as the expression of
Huygens’ principle for matter waves. In geo-
metrical optics the rays in an inhomogeneous
medium satisfy Fermat’s principle of least time.
We may state Huygens’ principle in wave optics
in this way: If the amplitude of the wave is
known on a given surface, the amplitude at a
near by point can be considered as a sum of con-
tributions from all points of the surface. Each
contribution is delayed in phase by an amount
proportional to the ##me it would take the light to
get from the surface to the point along the ray of
least ttme of geometrical optics. We can consider
(22) in an analogous manner starting with
Hamilton’s first principle of least action for
classical or ‘‘geometrical’’ mechanics. If the
amplitude of the wave ¢ is known on a given
“surface,” in particular the “surface’ consisting
of all x at time ¢, its value at a particular nearby
point at time ¢+ ¢, is a sum of contributions from
all points of the surface at ¢. Each contribution is
delayed in phase by an amount proportional to
the action it would require to get from the surface
to the point along the path of least action of
classical mechanics.!®

Actually Huygens' principle is not correct in
optics. It is replaced by Kirchoff's modification
which requires that both the amplitude and its
derivative must be known on the adjacent sur-
face. This is a consequence of the fact that the
wave equation in optics is second order in the
time. The wave equation of quantum mechanics
is first order in the time; therefore, Huygens'
principle s correct for matter waves, action re-
placing time.

e

16 See in this connection the very interesting remarks of
Schroedinger, Ann. d. Physik 79, 489 (1926).
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The equation can also be compared mathe-
matically to quantities appearing in the usual
formulations. In Schroedinger’s method the de-
velopment of the wave function with time is

given by

(31)

which has the solution (for any e if H is time
independent)

Y(x, t+e) =exp(—ieH /)Y (x, ¢).

Therefore, Eq. (18) expresses the operator
exp{—17eH/k) by an approximate integral oper-
ator for small e.

From the point of view of Heisenberg one con-
siders the position at time ¢, for example, as an
operator X. The position x’ at a later time ¢+ e can
be expressed in terms of that at time ¢ by the
operator equation

x' =exp(teH /h)xexp — (ceH /%).

(32)

(33)

The transformation theory of Dirac allows us to
consider the wave function at time ¢+ ¢, ¥(x’, t+¢),
as representing a state in a representation in
which x’ is diagonal, while ¥(x, f) represents the
same state in a representation in which x is
diagonal. They are, therefore, related through the
transformation function (x’ Ix)g which relates
these representations:

Y, 1 = f (/| ) (,0) .

Therefore, the content of Eq. (18) is to show that
for small ¢ we can set

(x'|x)e=(1/A4) exp(ES(x’, x)/k)
with S(x/, x) defined as in (11).

(34)

The close analogy between (x'|x). and the

quantity exp(2S(x’, x) /%) has been pointed out on
several occasions by Dirac.! In fact, we now see
that to sufficient approximations the two quanti-
ties may be taken to be proportional to each
other. Dirac’s remarks were the starting point of
the present development. The points he makes
concerning the passage to the classical limit A—0
are very beautiful, and I may perhaps be excused

for briefly reviewing them here.

R. P. FEYNMAN

First we note that the wave function at x’’ at
time ¢’ can be obtained from that at %’ at time
t by

Y, ¢ = lef f

7 1
Xexp[; > S(xigs, xz)J
=0

. ‘p( ) odJCl dxi_,
XU, )= —
A A

(35)

where we put xo=x" and x;=x" where ]e -
(between the times ¢ and #’ we assume no re-
striction is being put on the region of integration).
This can be seen either by repeated applications
of (18) or directly from Eq. (15). Now we ask, as
h—0 what values of the intermediate coordinates
xicontribute most strongly to the integral? These
will be the values most likely to be found by ex-
periment and therefore will determine, in the
limit, the classical path. If % is very small, the
exponent will be a very rapidly varying function
of any of its variables «;. As x; varies, the positive
and negative contributions of the exponent
nearly cancel. The region at which x; contributes
most strongly is that at which the phase of the
exponent varies least rapidly with x; (method of
stationary phase). Call the sum in the ex-
ponent .S;

Jj—1

S= 2 S(xiy1, x).

fu=0

(36)

Then the classical orbit passes, approximately,
through those points x; at which the rate of
change of S with x; is small, or in the limit of
small %, zero, i.e., the classical orbit passes
through the points at which 8.5/8x;=0 for all x;.
Taking the limit ¢—0, (36) becomes in view
of (11)

S= f L&), x(0)dt. (37)

g

We see then that the classical path is that for
which the integral (37) suffers no first-order
change on varying the path. This is Hamilton's
principle and leads directly to the Lagrangian
equations of motion.
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