NR Path Integrals

Two formulations of classical mechanics

Hamiltonian formulation
H=T+V
=> Schrodinger equation formulation of QM

Lagrangian formulation
L=T-V
=> Path integral formulation of QM

Ten good things about the path integral
formulation

One bad thing about the path integral
formulation






Michio Kaku lists seven advantages of the path
integral formulation of quantum mechanics:

1. The path integral formalism yields a simple, covariant
quantization of complicated systems with constraints, such
as gauge theories. While calculations with the canonical
approach are often prohibitively tedious, the path integral
method yields the results rather simply, vastly reducing the
amount of work.

2. The path integral formalism allows one to go easily back
and forth between the other formalisms, such as the
canonical or the various covariant approaches. In the path
integral approach, these various formulations are nothing but
different choices of gauge.

3. The path integral formalism is based intuitively on the
fundamental principles of quantum mechanics. Quantization
prescriptions, which may seem rather arbitrary in the
operator formalism, have a simple physical interpretation in
the path integral formalism.

4. The path integral formalism can be used to calculate
nonperturbative as well as perturbative resulits.

5. The path integral formalism is based on c-numbeer fields,
rather than g-number operators. Hence, the formalism is
much easier to manipulate.

6. At present, there are a few complex systems with
constraints that can only be quantized in the path integral
formalism.

7. Renormalization theory is much easier to express in terms
of path integrals.

M. Kaku QFT: A modern introduction (1993)



(8) Can derive the Schrodinger equation from the path integral
(9) Can apply the path integral to the entire universe

(10) Path integral provides a deeper and more intuitive view of QM



I went to a beer party in the Nassau Tavern in Princeton. There was a
gentleman, newly arrived from Europe (Herbert Jehle) who came and sat
next to me. Europeans are much more serious than we are in America
because they think a good place to discuss intellectual matters is a beer
party. So he sat by me and asked, "What are you doing" and so on, and I
said, "I'm drinking beer." Then I realized that he wanted to know what
work I was doing and I told him I was struggling with this problem, and I
simply turned to him and said "Listen, do you know any way of doing
quantum mechanics starting with action--where the action integral comes
into the quantum mechanics?" "No," he said, "but Dirac has a paper in
which the Lagrangian, at least, comes into quantum mechanics. I will show
it to you tomorrow."

Next day we went to the Princeton Library (they have little rooms on the
side to discuss things) and he showed me this paper. Dirac's short paper in
the Physikalische Zeitschrift der Sowjetunion claimed that a mathematical
tool which governs the time development of a quantal system was
"analogous" to the classical Lagrangian.

Professor Jehle showed me this; I read it; he explained it to me, and I said,
"What does he mean, they are analogous; what does that mean,
analogous? What is the use of that?" He said, "You Americans! You
always want to find a use for everything!" I said that I thought that Dirac
must mean that they were equal. "No," he explained, "he doesn't mean
they are equal." "Well," I said, "let's see what happens if we make them
equal."

So, I simply put them equal, taking the simplest example . . . but soon
found that I had to put a constant of proportionality A in, suitably adjusted.
When I substituted . . . and just calculated things out by Taylor-series
expansion, out came the Schrodinger equation. So I turned to Professor
Jehle, not really understanding, and said, "Well you see Professor Dirac
meant that they were proportional." Professor Jehle's eyes were bugging
out -- he had taken out a little notebook and was rapidly copying it down
from the blackboard and said, "No, no, this is an important discovery."

Feynman's thesis advisor, John Archibald Wheeler (age 30), was equally
impressed. He believed that the amplitude formulation of quantum
mechanics--although mathematically equivalent to the matrix and wave
formulations--was so much more natural than the previous formulations
that it had a chance of convincing quantum mechanics's most determined
critic. Wheeler writes:






RICHARD FEYNMAN AT LA CANADA
HIGH SCHOOL: FEYNMAN'’S LAST
PUBLIC PERFORMANCE

John S. Rigden

The only time I talked with Richard Feynman was on November 14,
1987—three months plus one day before he died. On that occasion, he
was obviously ill, yet his spirit animated the high school auditorium
where our panel sat.

For me, it started in late September or early October. I was sched-
uled to give a colloquium at California Polytechnic State University, San
Luis Obispo on Thursday, November 12. Sometime around October 1, I
got a call from a member of the physics department at San Luis
Obispo. I shall never forget the question posed to me: would I be will-
ing to stay an extra couple of days, go to a meeting in the Los Angeles
area, serve on a panel at the meeting, and “fill in for Feynman!” 1
laughed and said, ‘“Right. I'll fill in for Feynman. You've got to be kid-
ding.” The explanation followed: Feynman had agreed to serve on this
panel, but he was too ill and had to withdraw. In typical Feynman
fashion, he did not want his name to appear on the program so only a
few people knew of his potential participation. When I learned that the
subject to be discussed by the panel was, “What High School Physics
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Should Include,” I agreed to be a panel member. Besides, I thought,
someday I can tell my grandchildren: I once filled in for Richard
Feynman.

On November 12 I was in San Luis Obispo. Sometime during that
day, a telephone call came to the physics department informing my
hosts that Feynman was feeling better and would participate in the
meeting on Saturday (November 14). On hearing this, I immediately
offered to withdraw from the panel and happily listen to Feynman and
the other panel members from the audience. “No,” I was told, “your
name is on the program. We shall simply add another chair.”

Two days later, on November 14, I stood in the foyer of the audito-
rium of La Cafiada High School in La Canada, California. About 30
minutes before the meeting was to begin, I saw David Goodstein, a Cal
Tech physicist, and Richard Feynman coming up the sidewalk and they
entered the foyer. (As I looked at Feynman I was shocked. I had at-
tended a lecture Feynman gave in 1983 and the change in his appear-
ance from that earlier time was jolting.) David saw me and, since we
know each other, he walked to me with Feynman at his side. “Dick
Feynman,” David said, “this is John Rigden.” And with that, David
walked away.

I remember the thoughts that raced through my mind as I stood
there alone with Feynman: ‘“What do I say to this guy? What do I call
him? I can’t call him Dick, I won't call him Professor Feynman.” In a
nervous way I blurted out,

“Feynman, what are you doing here? I'm taking your place.”

“Ohhhbh,” said Feynman, “you’re taking my place. Then I'll leave.”

“No, no, Feynman,” I said quickly, still coping with my nervousness,
“You stay. You might say something useful.” At that, we both laughed.
That was how my only conversation with Richard Feynman began.

My friends who knew Feynman tell me that my irreverent remarks
were probably a good way to start our conversation. They may be
correct. In any event, Feynman and I had a free flowing discussion for
the next 30 minutes. At one point I said,

“That was a nice letter you wrote to David Mermin."”

Feynman looked at me and said, “Who’s Mermin?”

Who’s David Mermin? A little background explanation is needed.
Mermin is a physicist at Cornell University. But that’s not so important.
The significant fact is that Mermin wrote a paper entitled “Bringing
Home the Atomic World: Quantum Mysteries for Anybody.” This paper
was published in the American Journal of Physics in October 1981
during my tenure as editor. It was a wonderful paper. With only arith-
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degeneration of the physics. So I think anytime you try to
teach the subject without teachers who love the subiject, it
is doomed to failure and is a foolish thing to do.”

“I was on the [mathematics] curriculum committee some
years ago and the State had to look at everything that any-
body presents—it’s kind of a democratic law. And so all
kinds of little plans for how to teach elementary arithmetic
were sent in and they were all wonderful. One used match-
sticks, another teaches base 2, another makes little cross-
word puzzles with numbers. And the wonderful thing was
that every one of these methods were successful. In every
case there was evidence of this—they tried it in a class and
it worked well. The only trouble is, we are not sure if it
would work in a class when we don’t know if the ideas are
communicated to someone whose expertise is not in this
area, or they hadn’t invented the idea or had no enthusi-
asm for it. It was always the one who invented it—who
loved the subject and had special students or even ordi-
nary students but who had a special attitude and was going
to try a new way to teach it. There was a certain enthusi-
asm and a special relationship between the teacher and
the students which was a kind of excitement, and unless
that excitement exists between the teacher and student
then I don’t think education is worthwhile and it's better
not to try education under these circumstances.”

Another question posed to the panel was, “How are we going to get
more people to take physics?” Feynman began his response by saying
that students should not be required to take physics.

If they are required, “...not only will we have a lot of phys-
ics teachers who don’t know physics, but we will have...
students in their classrooms who are not interested in the
subject and when you have a very large number of stu-
dents who are not interested in the subject, the whole fla-
vor of the class disappears.”

Feynman went on:

“I want to add one other thing. I hear a good deal about
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teaching physics, that it’s a difficult subject. I think if you
look at it a little bit differently it’s the same thing. What is
physics?”’ Feynman asked. Then he answered his question:
“It's supposed to be a description of the physical world.
Now if you think, T'm not going to be teaching physics,
rather I'm going to be telling [students] about the physical
world.” Does that give you a different idea? What is the
physical world like? Does that mean we...start [the course]
and spend 2/3 of our time with falling bodies...?”

Again Feynman asked a question:

“What tells you as much as possible about the physical
world? We can make a list of things about the physical
world that are...delightful. One of the things about the
physical world is...that an object falls in uniform acceler-
ation. Let’s look at [this] a little bit...you know with the
torques and angular momentum. That's not so delightful
as the fact that everything is made out of atoms. [Knowing
about atoms] you can understand what evaporation is and
freezing and when it evaporates its becomes cooler be-
cause the fast ones leave and so forth. And in one picture,
[the atomic picture] you get a whole lot of ideas. Maybe if
we would think in terms of telling what the physical world
is like so that they can understand it better.”

Feynman went on talking about teaching physics:

“...its a way of thinking about teaching: what you’re trying
to describe is the wonders and the way things actually are
and later on you can talk about the falling bodies after a
bit. You don’t need to know a hell of a lot—just a little
[about the] elasticity of colliding molecules—because they
have no friction they never stop, they go on forever. Put a
few molecules together that they attract each other. [In
this view] you have a tremendous amount of understand-
ing of the world. It might be possible to concentrate on
those things and it won’t be quite as difficult for the stu-
dents.”



Feynman was gazing at a rainbow. As if he had never seen one before. Or
maybe as if it might be his last.

| approached him cautiously and joined him in staring at the rainbow. It
wasn’t something | normally did—in those days.

“Do you know who first explained the true origin of the rainbow?” | asked.

“It was Descartes,” he said. After a moment he looked me in the eye.
“And what do you think was the salient feature of the rainbow that inspired
Descartes’s mathematical analysis?” he asked.

“| give up. What would you say inspired his theory?”

“I would say his inspiration was that he thought rainbows were beautiful...”

—FroM FEYNMAN'S RAINBOW

ACCLAIM FOR FEYNMAN'S RAINBOW

“An accessible portrait of a brilliant man.”

—STEPHEN HAWKING, AUTHOR OF THE THEORY OF EVERYTHING AND
A BRrier HiIsTORY oF TIME

“An exhilarating book...one that reflects the radiance of its subject and so

warms even as it instructs.”
—DAvVID BERLINSKI, AUTHOR OF A TOUR OF THE CALCULUS

“Like their celebrated quarks, the lives of scientists are strongly confined and
shaped by the interplay of ‘truth,” ‘beauty,” and ‘strangeness.” FEYNMAN’S
RAINBOW offers a rare glimpse into this fascinating world. | enjoyed every
page of it.”

—FRITJOF CAPRA, AUTHOR OF THE TAO OF PHysics

ISBN 0-446-53045-X

||( ‘l ‘|| Il
9"780446"530453 ‘I H




JOHN 8. RIGDEN 157

trical phenomena. It’s kind of mysterious how a television
works.”

When the panel discussion ended, people from the audience
swarmed to the stage of the auditorium and surrounded Feynman.
They started asking Feynman questions, physics questions. As I
watched, I realized I was witnessing something extraordinary. Feyn-
man’s energies grew as he responded to question after question. The
outside corners of his eyes were creased by the smiles that played over
his face as he talked about physics. His hands and arms cut through
the air with increasing vigor as their motions served to complement,
even demonstrate, his explanations.

“I have a question,” a man said and, as he positioned himself in
front of Feynman. He held a long copper tube in his left hand and two
metal cylinders in his right hand.

“All right,” said Feynman, “I'll answer, but if there’s a trick, I might
miss it.”

“No trick,” said the physicist and with that he released one of the
metal cylinders and it fell rapidly through the copper tube and onto the
floor. Then he released the second metal cylinder: it fell s*[*o*w*I*y
through the tube and the questioner dramatically moved his right
hand to the bottom of the copper tube and caught the cylinder as it
emerged.

“It’s a magnet,” said Feynman.

“That’s right,” said the physicist holding the tube, “‘but that’s not the
question. Suppose the tube were a superconductor. With no A losses,
how do you account for the energetics of the falling magnet?” It was a
great question, Feynman was challenged, and his virtuoso perfor-
mance continued.

I was not surprised by Feynman’s deftness as I watched him—his
reputation in such impromptu situations was well known. It was the
enjoyment he exuded as he stood there talking physics with an eager,
receptive group of physics teachers that moved me. It was an enjoy-
ment I could feel. When the session ended and Feynman, along with
David Goodstein, walked out of the La Catfiada High School auditorium,
I had the feeling that I was standing on holy ground.

Earlier, in the foyer before the panel session began, I had told
Feynman that I thought he had cheated the public in his book Surely
You're Joking.

“Who are you,” said Feynman in response, “to tell an au-
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thor that you don’t like his book and that he cheated the
reader?”

“If there is one thing about your life that holds it together,”
I said, “it is your love of physics and that doesn’t come
through your book.”

Immediately, Feynman shot back, ‘“That was deliberate.”
“That’s how you cheated the public,” I said.

After a just-discernable pause, Feynman said, “That’s the
next book.”

When I heard of Feynman'’s death, early in the morning on February
16, I experienced an eerie sense of personal loss and, with sadness, I
thought of the “next book,” a book that Feynman would never write.

The panel session at La Cafiada High School was Feynman’s last
public appearance. During the months prior to this meeting, Feynman
experienced a succession of physical heights and depths which took
him from feeling relatively good to feeling very bad. He had canceled
his agreement to appear on the panel during one of his bad times, but
a few days before the meeting he was once again feeling well enough to
reaffirm his commitment. So he had his secretary, Helen Tuck, call the
organizer of the panel session to indicate his willingness to participate.
In spite of his deteriorating health, high school physics was a subject
Feynman would choose to discuss and La Catiada High School was a
place Feynman would choose to come. It is somehow fitting that
Feynman'’s last public appearance was in a high school auditorium
discussing what should be taught in high school physics.



THE YOUNG FEYNMAN

John Archibald Wheeler

i

This chap from MIT: Look at his aptitude test ratings in mathe-
matics and physics. Fantastic! Nobody else who’s applying here at Prin-
ceton comes anywhere near so close to the absolute peak.” Someone
else on the Graduate Admissions Committee broke in, “He must be a
diamond in the rough. We've never let in anyone with scores so low in
history and English. But look at the practical experience he’s had in
chemistry and in working with friction.”

These are not the exact words, but they convey the flavor of the
committee discussion in the spring of 1939 that brought us 21-year-old
Richard Phillips Feynman as a graduate student. How he ever came to
be assigned to this 28-year-old assistant professor as grader in an un-
dergraduate junior course in mechanics I will never know, but I am
eternally grateful for the fortune that brought us together on more
than one fascinating enterprise. As he brought those student papers
back—with errors noted and helpful comments offered—there was
often occasion to mention the work I was doing and the puzzlements
I encountered. Discussions turned into laughter, laughter into jokes
and jokes into more to-and-fro and more ideas.

John Archibald Wheeler is Joseph Henry Professor of Physics, Emeritus, Prin-
ceton University, and Ashbel Smith and Jane and Roland Blumberg Professor,
Emeritus, University of Texas at Austin.
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action principle in classical mechanics. I was learning from these dis-
cussions with Feynman that the integrated action of classical theory, in
a sense more precise than ever before appreciated, is—apart from a
universal factor, #=1.054X10"%" g cm®/sec—only another name for
the phase of the probability amplitude associated with the classical
history.

V1smng Einstein one day, I could not resist tel]mg him about Feyn—k
man’s new way to express quantum theory. ‘Feynman has found a
‘beautiful picture to understand the probability amplitude for a dynarn— :
ical system to go from one specified configuration at one time to an-
other specified configuration at a later time. He treats on a footing of
absolute equality every conceivable history that leads from the initial
state to the final one, no matter how crazy the motion in between. The
‘contnbunons of these histories differ not at all in amphtude, only in
phase And the phase is nothing but the classmal action integral, apart
from the Dirac factor, #. This prescnpnon reproduces all of standard
;quantum theory. How could one ever want a simpler way to see what
quantum theory is all about' Doesn’t this marvelous dlscovery make
you wﬂhng to accept quantum theory, E ofessor Einstein?”’ He replied
in a serious voice, “I still cannot believe that God plays dice. But
maybe,” he smiled, “1 have earned the mght to make my rmstakes =

Undeterred I pers1sted and still do, in regarding Feynman’s PhD
thesis as marking a moment when quantum theory for the first time
became simpler than classxcal theory I began my upcommg graduate ‘
course in classmal mechamcs with Feynman s idea that the micro-

scopic pomt part:lcle makes its way from A to B, not by a unique
history, but by pursumg every conceivable history with dernocraﬁcally ~
equal probability amphtude. Only out of Huygens's principle, only out
of the concept of constructive and destructxve interference between
these contrlbunons-—and this only in an apprommanon——could one
understand the existence of the classical history. Feynman sat there

and took the course notes, of Wthh 1 still have a muneographed copy

On many a puzzlmg point he helped us both to find new light by
k‘dxscussmns in class and out.

Any Career for the Kid from Far Rockaway?

While Richard was working on his thesis, his father, Melville Arthur
Feynman, sales manager for a medium-sized uniform company, made
a brief call on me in my office one day. How important he had been in



DICK FEYNMAN—THE GUY IN THE
OFFICE DOWN THE HALL

Murray Gell-Mann

I hope someday to write a lengthy piece about Richard
Feynman as I knew him (for nearly 40 years, 33 of them as
his colleague at Caltech), about our conversations on the
Jundamental laws of physics, and about the significance of
the part of his work that bears on those laws. In this brief
note, I restrict myself to a few remarks and I hardly touch
on the content of our conversations.

When I think of Richard, I often recall a chilly afternoon in Altadena
shortly before his marriage to the charming Gweneth. My late wife,
Margaret, and I had returned in September 1960 from a year in Paris,
London and East Africa; Richard had greeted me with the news that he
was “catching up with me”—he too was to have an English wife and a
small brown dog. The wedding soon took place, and it was a delightful
occasion. We also met the dog (called Venus, I believe) and found that
Richard was going overboard teaching her tricks (leading his mother,
Lucille, with her dry wit, to wonder aloud what would become of a

Murray Gell-Mann is the Robert A. Millikan Professor of Theoretical Physics at
the California Institute of Technology.
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Thus it would have pleased Richard to know (and perhaps he did
know, without my being aware of it) that there are now some indica-
tions that his PhD dissertation may have involved a really basic ad-
vance in physical theory and not just a formal development. The path
integral formulation of quantum mechanics may be more fundamen-
tal than the conventional one, in that there is a crucial domain where
it may apply and the conventional formulation may fail. That domain
is quantum cosmology.

Seeking Rules for Quantum Gravity

Of all the fields in fundamental physical theory, the gravitational
field is picked out as controlling, in Einsteinian fashion, the structure
of space-time. This is true even in a unified description of all the fields
and all the particles of nature. Today, in superstring theory, we have
the first respectable candidate for such a theory, apparently finite in
perturbation theory and describing, roughly speaking, an infinite set of
local fields, one of which is the gravitational field linked to the metric
of space-time. If all the other fields are dropped, the theory becomes an
Einsteinian theory of gravitation.

Now the failure of the conventional formulation of quantum me-
chanics, if it occurs, is connected with the quantum mechanical
smearing of space-time that is inevitable in any quantum field theory
that includes Einsteinian gravitation.

If there is a dominant background metric for space-time, especially
a Minkowskian metric, and one is treating the behavior of small quan-
tum fluctuations about the background (for example, the scattering of
gravitons by gravitons), then the deep questions about space-time in
quantum mechanics do not come to the fore.

Dick played a major part in working out the rules of quantum grav-
ity in that approximation. It so happened that I was peripherally in-
volved in the story of that research. We first discussed it when I visited
Caltech during the Christmas vacation of 1954-55 and he was my host.
(I was offered a job within a few days—such things would take longer
now.) I had been interested in a similar approach, sidestepping the
difficult cosmological issues, and when I found that he had made con-
siderable progress I encouraged him to continue, to calculate one-loop
effects and to find out whether quantum gravity was really a divergent
theory to that order. He was always very suspicious of unrenormaliz-
ability as a criterion for rejecting theories, but he did pursue the re-
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At this stage, we may admit the possibility of summing over all
topologies of space-time (or of the corresponding space-time with a
Euclidean metric). If that is the correct thing to do, then we are imme-
diately transported into the realm of baby universes and worm-holes,
so beloved of Stephen Hawking and now so fashionable, in which it
seems to be demonstrable that the cosmological constant vanishes. In
that realm the path integral method appears able to cope, and it re-
mains to be seen to what extent the conventional formulation of quan-
tum mechanics can keep up.

For Richard’s sake (and Dirac’s too), I would rather like it to turn out
that the path integral method is the real foundation of quantum me-
chanics and thus of physical theory. This is true despite the fact that,
having an algebraic turn of mind, I have always personally preferred
the operator approach, and despite the added difficulty, in the absence
of a Hilbert-space formalism, of interpreting the wavefunction or den-
sity matrix of the universe (already a bit difficult to explain in any case,
as anyone attending my classes will attest). If notions of transforma-
tion theory, unitarity and causality really emerge from the mist only
after a fairly clear background metric appears (that metric itself being
the result of a quantum mechanical probabilistic process), then we
may have a little more explaining to do. Here Dick Feynman’s talents
and clarity of thought would have been a help.

Turning Things Around

Richard, as is well known, liked to look at each problem, important
or unimportant, in a new way—“turning it around,” as he would say.
He told how his father, who died when he was young, taught him to do
that. This approach went along with Richard’s extraordinary efforts to
be different, especially from his friends and colleagues.

Of course any of us engaged in creative work, and in fact anyone
having a creative idea even in everyday life, has to shake up the usual
patterns in some way in order to get out of the rut (or the basin of
attraction!) of conventional thinking, dispense with certain accepted
but wrong notions, and find a new and better way to formulate some
problem. But with Dick, “turning things around” and being different
became a passion.

The result was that on certain occasions, in scientific work or in
ordinary living, when an imaginative new way of looking at things was
needed, he could come up with a remarkably useful innovation. But on
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Around a Mental Block

Princeton was celebrating the bicentennial of its founding with a grand
explosion of pomp that fall: parties, processions, and a series of formal
conferences that drew scholars and dignitaries from long distances. Dirac
had agreed to speak on elementary particles as part of a three-day session
on the future of nuclear science. Feynman was invited to introduce his
one-time hero and lead a discussion afterward.

He disliked Dirac’s paper, a restatement of the now-familiar difficulties
with quantum electrodynamics. It struck him as backward-looking in its
Hamiltonian energy-centered emphasis—a dead end. He made so many
nervous jokes that Niels Bohr, who was due to speak later in the day, stood
up and criticized him for his lack of seriousness. Feynman made a heartfelt
remark about the unsettled state of the theory. “We need an intuitive leap
at the mathematical formalism, such as we had in the Dirac electron
theory,” he said. “We need a stroke of genius.”

As the day wore on—Robert Wilson speaking about the high-energy
scattering of protons, E. O. Lawrence lecturing on his California accel-
erators—Feynman looked out the window and saw Dirac lolling on a patch
of grass and gazing at the sky. He had a question that he had wanted to
ask Dirac since before the war. He wandered out and sat down. A remark
in a 1933 paper of Dirac’s had given Feynman a crucial clue toward his
discovery of a quantum-mechanical version of the action in classical me-
chanics. “It is now easy to see what the quantum analogue of all this must
be,” Dirac had written, but neither he nor anyone else had pursued this
clue until Feynman discovered that the “analogue” was, in fact, exactly
proportional. There was a rigorous and potentially useful mathematical
bond. Now he asked Dirac whether the great man had known all along
that the two quantities were proportional.

“Are they?” Dirac said. Feynman said yes, they were. After a silence he
walked away.

Feynman’s reputation was traveling around the university circuit. Job
offers floated his way. They seemed perversely inappropriate and did nothing
to help his mood of frustration. Oppenheimer had invited him to California
for the spring semester; now he turned the invitation down. Cornell pro-
moted him to associate professor and raised his salary again. The chairman
of the University of Pennsylvania’s physics department needed a new chief
theorist. Here Bethe stepped in paternalistically: he had no intention of



Many years later Feynman and Dirac met one more time. They
exchanged a few awkward words---a conversation so remarkable
that a physicist within earshot immediately jotted down the
Pinteresque dialog he thought drifting his way:

I am Feynman.

1 am Dirac.

(Silence)

It must be wonderful to be the discoverer of that equation.
That was a long time ago. (Pause) What are you working on?
Mesons.

Are you trying to discover an equation for them?

It is very hard.

One must try.
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and just calculated the integral by means of the Taylor series expansion, thus
working out the Schrodinger equation

< not V(x)>¢(x, t)=ih%|p(x, f). (6.12)

2mdx?

Feynman turned to Jehle, who did not quite follow, and told him that Dirac
meant that they were proportional. Herbert Jehle had taken out a little
notebook and was rapidly copying it down from the blackboard, and said,
‘No, no, this is an important discovery. You Americans are always trying to
find out how something can be used. That’s a good way to discover things!’ #2

In the fall of 1946, Princeton University was celebrating its bicentennial, on
the occasion of which numerous festivities, including various series of lectures
were organized. In one of these sessions, devoted to science and organized by
Eugene Wigner, Feynman was invited to introduce Dirac and, after his
lecture, comment upon it. ‘It was like the ward-heeler of the 54th district (in
New York City) introducing the president of the United States. Dirac sent me
his paper, in his own handwriting, to read and I had to comment on it. After
Dirac’s lecture, I made my comments; I tried to simplify Dirac’s very technical
talk for the benefit of high school teachers and others who were not familiar
with the things that Dirac had talked about. But the other physicists, like Bohr
and Weisskopf, who were there did not give a damn about these other people,
and they criticized my attempt to ‘explain Dirac’ in my simplified way. After I
had made my criticism, people were standing around and discussing Dirac’s
paper, and I looked through the window and saw that Dirac was lying on the
lawn outside looking up in the sky. I had never really sat and talked to him
before then. But there was this question which I very much wanted to ask him,
so I walked up to him and said: ‘Professor Dirac, you wrote in a paper* in
which you taik about the analogy between exp (ieL) and the difference between
two points. He said, “yes.” I said, “Did you know that they are not just
analogous, they are equal or rather proportional.” He said, “Are they?” I said,
“Yes.” “Oh, that’s interesting,” was his comment. I wanted to know whether I
had discovered something or not, but he had never sat down to find out
whether they were equal or proportional. He just said, “No, I didn’t know, are
they? That’s interesting!” That was the first time I talked to him personally.’ !

In his paper Dirac was not able to complete this line of his investigations on
quantum mechanics because his point of view was based on the opinion that
the correspondence between the function K and the exponent of the classical
action function is only an approximate semiclassical relation. From the very
beginning of relativistic quantum mechanics it had been recognized that the
expression exp[(i/h)S] gave the semiclassical approximation to the exact
quantum wave function. Therefore Dirac was looking for a proper and exact
quantum analog of Hamilton’s principal function S, and he found relations
between the corresponding exact quantum Hamiltonian wave function and
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other quantum operators. Another step in this direction was taken by
Edmund Whittaker.?* Up to then this approach seems to have been quite
formal and did not lead to any essentially new results. Hence, the crucial
formal step to Feynman’s new method was to look at the limit when ¢ goes to
zero. In this limit one reaches an exact result for infinitesimal times.

Thus Feynman found the relation between the Lagrangian and quantum
mechanics, which was an important result of his dissertation, but still for
infinitesimal times. Several days later, when he was lying in bed, he worked out
the next fundamental step. Feynman described it as follows: . . . I'm lying in
bed—I can still see the bed. And I can’t sleep too well. And the bed was next to
the wall. I got my feet up against the wall, leaning my head off on one side of the
bed. You know that kind of stuff. And I'm picturing this thing and m putting
more and more lengthy times, I have to do this again and again, and so I've got
this exponential iL times again, times again, integrate it, integrate it. But the
product of all the exponentials is the exponential of the sum of the L’s, which is
the action. So I go, AAAAAHHHHH, and I jumped, “That’s the action!” That
was a moment of discovery!’!

Now Feynman was able, by using N times the formula (6.11), to obtain
exactly the right result for the function K(X, T; x, t). He had to construct the
expression

N-1 d N d L
J . Jexp((i/h) Y LGy =51~ 1), 0] (rm—r,-)) Do

(6.13)

where t=0,t,,¢t,,...,ty_, ty=T are certain instants of time, which divide
the time interval from the initial instant ¢ to the final instant T into a large
number of small intervals from ¢, to ¢, , of duration ¢ (i=1, 2, ..., N), such
that ¢;=t+ie. Then, in the limit when ¢ goes to zero, we reach the exact
quantum function K. In this limit, the expression in the exponent in equation
(6.13) resembles Riemann’s integral for the classical action functional:

A =Ilim <N_1 LGy =X/ W1 — 1), X1 ] (G4 g _ti)>' (6.14)

e—=>0 \i

Feynman’s conclusion was that equation (6.11) ‘is equivalent to Schréd-
inger’s differential equation for the wave function . Thus, given a classical
system described by a Lagrangian, which is a function of velocities and
coordinates only, a quanturn mechanical description of an analogous system
may be written down directly, without working out a Hamiltonian.’?*

This approach thus promised to solve the main problem, which Feynman
was trying to attack in his thesis: that is, the quantization of a classical system
without knowing its Hamiltonian. In addition, it turned out that he obtained a
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CHAPTER 2

The main features of Eq. (2.3.6) are the following.

(1) The problem of two mutually interacting particles has been transformed to
that of two fictitious particles that do not interact with each other. In other words,
the equations of motion for r do not involve rcm and vice versa, because Z(r, §;
fom, fom) = Z(r, 1) + L(rem, fem ).

(2) The first fictitious particle is the CM, of mass M =m,+m,. Since rcm is a
cyclic variable, the momentum pcm = Mfcm (Which is just the total momentum) is
conserved as expected. Since the motion of the CM is uninteresting one usually
ignores it. One clear way to do this is to go to the CM frame in which fcm=0, so
that the CM is completely eliminated in the Lagrangian.

(3) The second fictitious particle has mass y=mm,/(m;+m,) (called the
reduced mass), momentum p = ut and moves under a potential ¥(r). One has just to
solve this one-body problem. If one chooses, one may easily return to the coordinates
r, and r, at the end, using Egs. (2.3.1) and (2.3.2).

Exercise 2.3.1.* Derive Eq. (2.3.6) from (2.3.5) by changing variables.

2.4. How Smart Is a Particle?

The Lagrangxan formalism seems to ascribe to a partxcle a tremendous amount
of foresight: a particle at (x;, #) destmed for (xy, tf) manages to calculate ahead of

time the action for every poss1ble path linking these points, and takes the one W1th‘

the }east actlon But this, of course, is an illusion. The particle need not know its
entire. trajectory ahead of time, it needs only to obey the Euler—Lagrange equations
at each instant in time to minimize the action. This in turn means just following

Newton s Iaw which is to say, the partlcle has to sample the potential in its immediate

v101mty ana accelerate in the direction of greatest change

"Our esteem for the particle will sink further when we learn quantum mechanics.

We wﬂl discover that far from following any kind of strategy, the particle, in a sense,
goes from (x,, ;) to (xs.t7) along all possible paths, giving equal we;ght to each!

How itis that despite this, classical partxcles do seem to follow x (¢) is an lnterestmg
‘ quest1on that will be answered when we. come to the path mtegral formahsm 0f

quantum mechamcs

2.5. The Hamiltonian Formalism

In the Lagrangian formalism, the independent variables are the coordinates Ji
and velocities ¢;,. The momenta are derived quantities defined by

(2.5.1) -

e



Path integral gives us insight into
the extremely nonlocal nature of
quantum mechanics.

So, why not teach the path integral method
from the very beginning?

Path integral is much more difficult than
Schrodinger equation for simple NRQM
problems, viz., hydrogen atom and spin.

On the other hand, easier or comparable to the
canonical method for relativistic problems.



Preface

These are lecture notes of a course on path integrals I gave at the Freie
Universitat Berlin during the winter 1989/1990.. My mterest in tlns sub-
Ject. dates back to 1972 when the late R.P. Feynman drew my attention
to the unsolved pa.th mtegral of the hydrogen atom. [ was spendmg my
sabbatical year at Caltech and Feynman confessed to me his embarrass-
ment that he could not solve the path 1ntegra1 of this most fundamental
quantum system. This made him quit teachmg the entire subJect in: hxs
course on quantum mechanics as he had initially done e In a d!scussxon he
said to me: “Kleinert, you figured out all that group theory stuff of the
hydrogen atom, why don’t you solve the path mtegral"’ He was referrlng to
my 1967 Ph.D. thesxs where I had demonstrated that all dynamlcal ques-
tions of the hydrogen atom could be answered t usmg only operations within
the dynamical group O(4,2). Indeed, in that work the four-dlmensxonal
oscillator played a crucial role and the rmssmg steps to the solution of the
‘path integral were later found to be very few. After returning back ‘home to
Berlin I forgot all about the problem since I was busy using path integrals
in another context, developing a direct field theoretic passage from quark
theories to a collective field theory of hadrons.® Later I was applying this
theory to condensed matter (superconductors, superfluid *He) and nuclear
physics, where I introduced path integral techniques to set up a field theory
of collective phenomena.*

. 'Quoting from the preface of the textbook R.P. Feynman and A.R. Hibbs, Quantum
Mechanics and Path Integrals, McGraw Hill, New York 1965: “By the same time, Dr.
Feynman's approach to teaching the subject of quantum mechanics evolved somewhat
away from the initial path integral approach.”

2H. Kleinert, Fortschr. Phys. 6, 1, (1968), and Group Dynamics of the Hydrogen
Atom, Lectures presented at the 1967 Boulder Summer School, published in Lectures in
Theoretical Physics, Gordon and Breach, N. Y., 1968, Vol X B, ed. by A.O. Barut and
W.E. Brittin.

3See my 1976 Erice lectures, Hadronization of Quark Theories, published in Under-
standing the Fundamental Constituents of Matter, Plenum press, New York, 1978, ed. by
A. Zichichi.

4H. Kleinert, Phys. Lett. B 69, 9 (1977); Fortschr. Phys. 26, 565 (1978); 30, 187, 351
(1982).
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viii k Preface

The hydrogen problem came up agam in 1978 when [ had ‘to teach a
course on quantum mechanics. At that time it had become customary to
give in such a course at least a brief mtroductlon into path mtegrals and to
explain. the concept of quantum ﬂuctuatxons ‘At the same time, L.H. Duru
Jomed my group as a postdoc from Turkey on'a Humboldt fellowshxp ‘Since
he was familiar with the quantum mechanics of the hydrogen atom I'sug-

gested to him the collaboration on the path integral. He quickly acquired:
the basic techniques and very soon we found the most important ingredient

of the solution:® The transformation of time in the path integral to a new

‘path dependent pseudot:me, combined thh a transformation of the coordi-

_nates to “square-root coordmates”, to be eXplamed in: Cha.pters 13 and 14,
Unfortunately, we were able to perform these transformations only in a very
formal way which led to the correct result, as we now know, due to good for-
tune. Our procedure was soon criticized® because of the sloppy treatment
of the time slicing. A proper treatment could, in principle, have rendered
unwanted corrections which we had simply ignored. Some authors went
through a detailed time-slicing procedure,” but the correct result emerged
only by transforming the measure of path integration inconsistently. In fact,
when I calculated the corrections according to the standard rules I found
them to be zero only in D = 2 dimensions.® The same treatment in D = 3
dimensions gave non-zero corrections which spoiled the beautiful result and
left me puzzled. Only very recently I happened to locate the place where
the D = 3 treatment failed: It was the transformation of the time-sliced
measure in the path integral from the original cartesian to the auxiliary
“square-root coordinates” in which the system becomes harmonic and in-
tegrable. In contrast to D = 2, the D = 3 transformation is non-holonomic
and introduces not only curvature but also torsion. This suggested that the
transformations of the time-sliced measure had a hitherto unknown depen-
dence on torsion. Thus it was essential to find first the correct path integral
for a particle moving in a space with curvature and torsion. This was a
non-trivial task since already in a space with curvature only, the literature
was ambiguous giving several prescriptions to choose from which differed
by multiples of the curvature scalar added to the energy.® The ambigu-

SL.H. Duru and H. Kleinert, Phys. Lett. B 8, 30 (1979), Fortschr. Physik 30, 401
(1982).

5G.A. Ringwood and J.T. Devreese, J. Math. Phys. 21, 1390 (1980).

"R. Ho and A. Inomata, Phys. Rev. Lett. 4§, 231 (1982), A. Inomata, Phys. Lett. A
87, 387 (1981).

8H. Kleinert, Phys. Lett. B 189, 187 (1987); contains also a criticism of Ref. 7.

B.S. DeWitt, Rev. Mod. Phys. 29, 337 (1957), K.S. Cheng, J. Math. Phys. 19, 1723
(1972), H. Kamo and T. Kawai, Prog. Theor. Phys. 50, 680, (1973), T. Kawai, Found.

Phys. 5, 143 (1975), H. Dekker, Physica 1094, 586 (1980), G.M. Gavazzi, Nuovo Cimento

A 101, 241 (1981), M.S. Marinov, Physics Reports 60, 1 (1980).
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ities are path integral analogs of the so-called operator ordering problem
in quantum mechanics. When trying to apply any of the existing prescrip-
tions to spaces with torsion, I always ran into disaster finding non-covariant
answers. So, something had to be wrong with all of them. Guided by the
idea that in spaces with constant curvature the path integral should give the
same result as the operator quantum mechanics based on the commutation
rules of the generators of angular momentum I was eventually able to find a
consistent quantum equivalence principle for path integrals,’® thus giving a
unique answer also to the operator ordering problem. This finally enabled
me to solve the leftover problem of the D = 3 Coulomb path integral, the
absence of the finite time-slicing corrections. The detailed demonstration
will be presented in Chapter 13 of this book. In Chapter 14, I treat a
variety of one-dimensional systems which have become soluble by the new
techniques.

Special emphasis will be given, in Chapter 8, to instability (path col-
lapse) problems of Feynman’'s time sliced path integral in the presence
of singular potentials. A general stabilization procedure is presented in
Chapter 12 which has to be applied whenever centrifugal barriers, angular
barriers, or Coulomb potentials are present.!!

Another project which Feynman suggested to me, the improvement of
a variational approach to path integrals given in his book Statistical Me-
chanics (Benjamin, Reading, 1972; Section 3.5), found a faster solution.
We started work during my sabbatical stay at the University of California
at Santa Barbara in 1982 when Feynman came on a visit. After a few
meetings and discussions the problem was solved and the preprint drafted.
Then, unfortunately, Feynman’s illness prevented him from reading the fi-
nal proof of the paper. He was able to do this only three years later when
I came for another sabbatical leave to the University of California at San
Diego and the paper could finally be submitted.?

Due to the recent interest in lattice theories I have found it useful to
present the solutions to the harmonic path integrals all at the level of finite
time slices, without going immediately to the continuum limit as done in
other texts. This should help to understand some typical lattice effects seen
in Monte Carlo simulations of various systems.

The path integral description of polymers is introduced in Chapter 15
where stiffness as well as the famous excluded-volume problem are discussed
and parallels are drawn to path integrals of relativistic particle orbits. This
chapter may be a good preparation to presently ongoing research in the

19H. Kleinert, Mod. Phys. Lett. A 4, 2320 (1989), Phys. Lett B 296, 315 (1990).
114, Kleinert, Phys. Lett. B 224, 313 (1989).
12R.P. Feynman and H. Kleinert, Phys. Rev. 4 34, 5080, (1986).
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A path integral for spinning particles is developed. It is a one-particle theory, equivalent to the usual
quantum mechanics. Qur method employs a classical model for spin which is quantized by path integration.
The model, the spherical top, is a natural one from a group-theoretic point of view and has been used before
in a similar context. The curvature and multiple connectedness of the top coordinate space [ SO(3)] provide
some interesting features in the sum over paths. The Green’s function which results from this procedure
propagates all spins, and recovery of the usual Pauli spinors from this formalism is achieved by projection

to a specific spin subspace.

1. INTRODUCTION
"ECENTLY, Feynman who mvented the sub]ect,
had thls to say about path mtegrals1 ’

e path mtegrals suffer most grleveusly from a

~ gerious defect. They do not permit a dxscussmn of )

“spin operators . . . in-a simple and lucid way. . .
Nevertheless, spin is a simple and vital part of real

“quantum mechanical systems. It is a serious Ermta-
tion that the half-integral spin of ‘the electron does
1ot find a snnple and ready representatton,

This representation, for the nonrelatmstlc case, is
our present concern. The formulation is in terms of a
classical model for spin which is familiar and non-
controversial, and our efforts will be directed at path
integration of this model.

To our knowledge, existing path-integral theories for
spin? concentrate on the statistical aspects of the
problem and as such are most naturally expressed as
field theories. The spin properties of the fermions or
bosons of these theories are somewhat secondary and
not especially transparent. It would appear that non-
relativistically spin and statistics are separate questions
and that a simple spin theory should concentrate on
just that, leaving the complications of several particles
to other considerations. Our goal is then a one-particle
theory with optional second quantization.

The idea behind our approach is simple. In principle,
there is no difficulty in using path integrals to get the
spin of a polyatomic molecule composed of spinless
atoms. By a change of variables it is possible to describe
this path integral as being over translational, rotational;
and internal coordinates. The second of these gives rise
to total spin. To get the simplest spinning object we
throw away the extra internal coordinates and append
to translational coordinates only rotational variables.
This will also give half-integral spin since, as is well
known, the “‘ideal” top, as opposed to a bound state of
several particles, possesses all spins (j=0, 3, 1, ---).

* Work supported in part by the National Science Foundation
and the Army Research Office, Durham.

1R. P. Feynman and A. R. Hibbs, Quanium Mechanics and
Path Integrals (McGraw-Hill Book Co., New York, 1965), p. 355.

?See J. R. Klauder, Ann. Phys. (N Y.) 11, 123 (1960 and
references quoted therein,
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The word “top” is used here because this is the
archetype of a mechanical object described by rotational
coordinates. Thus the position of a top is determined by
a rotation (e.g., that which brings it from some fiducial
position), which is to say that its position is given by
an element of the group SO(3).

In fact, the relation between half-integral spins and
the rotation group is particularly direct in the context
of path-integral theory.® Ray representations of SO(3)
arise because its fundamental group is not trivial—
i.e., there are paths in the group which are not deform-
able into one another. The connection between homo-
topy theory and representation theory is made via
possibly multivalued functions defined on the group
manifold. In path integral theory we work directly
with the paths. Distinct homotopy classes of paths
enter the sum over paths with arbitrary relative phase
factors. The selection of these phase factors gives rise
to the various multivalued representations. Between
given endpoints in SO(3) there are two classes of paths.
Depending on the relative sign with which these are
added one obtains the propagator for a top of integral
or half-integral spin. Incidentally with this viewpoint
the distinction between an ideal top and an #-body
bound state is evident. As long as the latter can in
principle come apart its total coordinate space is R®";
which is simply connected (and therefore only integral
spins are allowed).

Another approach to spin theory can be obtained
through the use of a Hamiltonian, and Bacry* presents
a classical phase space and in fact uses fewer coordinates
for his spinning particle than we shall. Nevertheless, our
desire is to extend Feynman’s theory in its most
pristine form: a classical system with Lagrangian and
variational principle. Furthermore, it is not clear that
path integral computations in phase space are feasible
for any but the most trivial coordinate systems.

Recovery of the usual Pauli spinor formalism from
the top theory described above is easily accomplished
by projection to a fixed angular momentum subspace.
Similarly the behavior of this top in the presence of an

3 M. Hamermesh, Group Theory (Addxson-Wesley Publishing
Co., Inc., Reading, Mass 1962), pp. 3

‘H Ba.cry, Argonne Natxonal Labora.tory report, 1966 (un<
published) ; also H, Bacry, Commun. Math, Phys. 5, 97 (1967).
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Preface

This book originated in a course given at the Technion some 10 years ago:
during my first stay, as a visitor, in Israel. Things were different then. Path
integrals were not in the mainstream of anything, and I think those who
studied this topic did so more from an aesthetic turn of mind than for
practical reasons. Either that, or they still carried forth the ideas of the
1950s when path integration had its great, early successes. My own interest
in the subject is accidental—while reading an article in Schwinger’s reprint
collection on quantum electrodynamics the pages slipped and the book fell
open to Feynman’s Reviews of Modern Physics paper. This I read, and
resolved, as a thesis topic, to try to produce a path integral for spin.

Path integration has come a long way in the 1970s. In statistical
physics it was the basic framework for the first formulation of the renor-
malization group transformation. It is used extensively in studying systems
with random impurities. In particle physics it is basic to the instanton
industry and finds application in studies of gauge field theory (even though
some of the methods used had been developed for other problems in the
1960s). In chemical, atomic, and nuclear physics path integrals have been
applied to semiclassical approximation schemes for scattering theory. And
in rigorous studies of quantum field theory and statistical mechanics the
functional integral is used again and again.

This is a book of techniques and applications. My aim is to say what
the path integral is and then by example to show how it can and has been
used. The approach is that of a physicist with a weakness for but not an
addiction to mathematics. The level is such that anyone with a reasonable
first course in quantum mechanics should not find difficulty although
some of the applications presuppose specialized knowledge; even then, on
topics of special interest to me I have supplied background material
unrelated to path integrals.

The implications of path integrals for a general understanding of
quantum mechanics have been beautifully expounded in Feynman’s origi-

vii
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nal Reviews of Modern Physics paper and in his book on path integrals with
Hibbs. For this reason 1 have touched only lightly on these matters. The
Feynman-Hibbs book also includes many applications of path integration,
some of which have been given brief treatment here. The emphasis in that
volume is on applications developed by Feynman himself, and while they
form a considerable body of knowledge there is still enough left over for
the present book.

The first part of the book develops the techniques of path integration.
Our basic derivation of the path integral presents it as a mathematically
justified consequence of the usual quantum mechanics formalism (via the
Trotter product formula). Of course we also talk of summing the quantity
exp(iS/h) over all paths, despite the lack of rigorous justification for such
terminology. In fact some of our work makes extensive use of this view.

Nevertheless, while I have been willing to work without the full blessings:

of theorems at every step, I have tried to avoid some of the pitfalls that
path integrals offer to the unwary. In particular there is a good deal of
discussion of the relation (Adistance)*~(Atime), a central property of
paths entering the Feynman sum over histories. Some of the usual quan-
tum formalism is recovered from the path integral but no great emphasis 18
placed on this goal. The explicitly solvable path integrals— the harmonic
oscillator and variations thereof—are written out, and it is thus shown that
the awesome task of summing over paths can in fact occasionally be done.
At this early stage we also introduce the Wiener integral, formal first
cousin of the path integral and legitimate integral over paths. Here we are
able to indulge in an occasional rigorous proof and present a calculation of
a first passage time, illustrating the profound connection provided by the
Wiener integral between probability and potential theory.

The choice of applications that appear in this book requires a special
apology. For a topic to be treated here, I had to first know about it, next
understand it (or think I did), then find it amusing, exciting, fundamental,
or possessing some similar quality, and finally have the time to present it.
There are undoubtedly works that satisfy the third of my criteria but miss
out on some other count. Section 32, being a brief treatment of some
omissions, reflects the fact that the book had to be finished some time
although many beautiful applications would not appear.

As to the applications that do appear.... A lot of space is devoted to
the semiclassical approximation. Although the mathematical justification
for the stationary phase approximation to the functional integral is not
strong, this is an important application, at least in terms of consumer
interest. Also, one of the features of Feynman’s formulation of quantum
mechanics that first impressed me was that the correspondence limit
(#i—0) was a wave of the hand away (via the stationary phase approxima-
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tion). Of course converting the hand waving arguments to mathematics is
still an uncompleted job, but that does not detract from the beauty of the
ideas. I must also confess that I am drawn to the semiclassical approxima-
tion not so much by consumer interest but rather by the way in which so
many different strands of nineteenth and twentieth century mathematics
are brought together. Between Sections 11 and 18 the following topics—all
relevant to the matter at hand—are taken up: (1) variational principles of
classical mechanics and minimum (rather than merely extremum) proper-
ties of paths—the Jacobi equatiorf; (2) the Morse index theorem; (3)
asymptotic analysis, order relations, and so on; (4) Sturm-Liouville theory;
(5) Thom’s catastrophe theory; (6) uniform asymptotic analysis. ‘

~ Starting from semiclassical results it is not difficult to derive both
approximations for scattering theory (Section 19) and a path integral
theory of optics (Section 20). The optics calls for some unnatural defini-
tions but I think the reward is worth the temporary inelegance: semiclassi-
cal results for path integrals lead at once to geometrical (and even
physical) optics with a possibility of getting Keller’s “geometrical diffrac-
tion” theory too (that possibility is suggested but not carried out in this
book).

Probably the most famous early application of path integration is to
the polaron and we treat that here too. What makes the polaron special
from the standpoint of selling path integrals is that it is one of the few
places where the path integral not only helps you discover an answer, but
also remains the best way to calculate the answer even after you know it. 1
like the polaron because it is a tractable field theory; the benefits obtained
from using the path integral are entirely analogous to those gotten in
quantum electrodynamics, but for the latter all steps are more difficult
because of the infinities, the vector character of the field, and gauge
problems. Results of the path integral treatment of Q.E.D. are mentioned
briefly in Section 32. ‘ ; .

Three sections are devoted to the problem of formulating a path
in;egr‘al for spin. Not surprisingly 1 place - the ‘most. emphasis on the
approach I myself have worked on. To be honest, if 1 had to solve the
problem of a hydrogen atom in a magnetic field 1 ‘would not use this
formalism. Nevertheless, ‘the method shows:there is some way to treat spin
by path integrals. It would also appear that some. of the connections to

“homotopy theory developed in the course of working out a path integral
for spin are turning out to be important in gauge theories. Unfortunately,
path integral treatments of gauge theories get only the briefest mention in
this book; this is one of the gaps I especially regret.

The section on relativistic propagators is both central to the book and
an incidental side topic. It is central, because if you wish to think of path
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Path-Integral Methods

In Chapters 7 and 8 we applied the canonical quantization operator for-
malism to derive the Feynman rules for a variety of theories. In many
cases, such as the scalar field with derivative coupling or the vector field
with zero or non-zero mass, the procedure though straightforward was
rather awkward. The interaction Hamiltonian turned out to contain a
covariant term, equal to the negative of the interaction term in the La-
grangian, plus a non-covariant term, which served to cancel non-covariant
terms in the propagator. In the case of electrodynamics this non-covariant
term (the Coulomb energy) turned out to be not even spatially local,
though it is local in time. Yet the final results are quite simple: the Feyn-
man rules are just those we should obtain with covariant propagators, and
using the negative of the interaction term in the Lagrangian to calculate
vertex contributions. The awkwardness in obtaining these simple results,
which was bad enough for the theories considered in Chapters 7 and 8,
becomes unbearable for more complicated theories, like the non-Abelian
gauge theories to be discussed in Volume II, and also general relativity.
One would very much prefer a method of calculation that goes directly
from the Lagrangian to the Feynman rules in their final, Lorentz-covariant
form.

Fortunately, such a method does exist. It is provided by the path-
integral approach to quantum mechanics. This was first presented in the
context of non-relativistic quantum mechanics in Feynman’s Princeton Ph.
D. thesis,! as a means of working directly with a Lagrangian rather than a
Hamiltonian. In this respect, it was inspired by earlier work of Dirac.? The
path-integral approach played a part (along with inspired guesswork) in
Feynman’s later derivation of his diagrammatic rules.? However, although
Feynman diagrams became widely used in the 1950s, most physicists
(including myself) tended to derive them using the operator methods of
Schwinger and Tomonaga, which were shown by Dyson in 1949 to lead
to the same diagrammatic rules that had been obtained by Feynman by
his own methods.

The path-integral approach was revived in the late 1960s, when Faddeev
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and Popov* and De Witt®> showed how to apply it to non-Abelian gauge
theories and general relativity. For most theorists, the turning point
came in 1971, when 't Hooft® used path-integral methods to derive the
Feynman rules for spontaneously broken gauge theories (discussed in
Volume II), including in particular the theory of weak and electromagnetic
interactions, in a gauge that made the high energy behavior of these
theories transparent. Soon after, as also discussed in Volume II, it was
discovered that the path-integral method allows us to take account of
contributions to the S-matrix that have an essential singularity at zero
- coupling constant and therefore cannot be discovered in any finite order
of perturbation theory. Since then, the path-integral methods described
here have become an indispensable part of the equipment of all physicists
who make use of quantum field theory.

At this pomt the reader may be wondering why if the path-integral
method is so convenient we bothered in. Chapter 7 to introduce the
canonical formalism. Indeed, Feynman seems at first to have thought
of his path-integral approach as a substitute for the. ordxnary canonical
formulation of quantum mechamcs ‘There are two reasons for starting
with the canonical formalism. The ﬁrst is a point of principle: although
the path-integral formahsm prov1des us with manifestly Lorentz-invariant
~d1agrammat1c rules, it does not make clear why the S-matrix calculated
in this way is unitary. As far as 1 know, the only way to show that the
path-integral formalism ylelds a umtary S-matrix is to use it to reconstruct
the canonical formahsm, in which umtanty is obvious. There is a kind
of conservation of trouble here; we can use the canonical approach in
‘which unitarity is obvious and Lorentz invariance obscure, or the path-
mtegral approach, which is manifestly Lorentz-invariant but far from
‘mamfestly unitary. Since the path-integral approach is here derived from
the canomcal approach we know that the two approaches yield the same
S-matrix, so that the S-matrix must mdeed be both Lorentz—mvanant and
unitary.
~ The second reason for introducing the canonical formalism first is
more practical: there are important theories in which the simplest ver-
sion of the Feynman path-integral method, in which propagators and
interaction vertices are taken directly from the Lagrangian, is simply
wrong. One example is the non-linear o-model, with Lagrangian density
Y =—3 gk/(qS) cbk@“qb/ In such theories, using the naive Feynman rules
derived dlrectly from the Lagrangian density would yield an S-matrix that
is not only wrong but even non-unitary, and that also depends on the
way in which we define the scalar field.” In this chapter we shall derive
the path-integral formalism from the canonical formalism, and in this way
we will see what additional sorts of vertices are needed to supplement the
simplest version of the Feynman path-integral method.
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Path Integral Formulation

Sum over Histories Formulation
Lagrangian Formulation
Amplitude Formulation

Feynman (1941; age 23)

The probability to go from a to b is the square
of an amplitude

The amplitude is the weighted sum over all
possible ways to go to b from a

S is the classical action






Chapter 1.2

Path Integral Formulation
of Quantum Physics

The professor’s nightmare: a wise guy in the class

As I noted in the preface, I know perfectly well that you are eager to dive into
quantum field theory, but first we have to review the path integral formalism
of quantum mechanics. This formalism is not universally taught in introductory
courses on quantum mechanics, but even if you have been exposed to it, this chapter
will serve as a useful review. The reason I start with the path integral formalism
is that it offers a particularly convenient way of going from quantum mechanics
to quantum field theory. I will first give a heuristic discussion, to be followed by a
more formal mathematical treatment.

Perhaps the best way to introduce the path integral formalism is by telling a
story, certainly apocryphal as many physics stories are. Long ago, in a quantum
mechanics class, the professor droned on and on about the double-slit experiment,
giving the standard treatment. A particle emitted from a source S (Fig.1.2.1) attime
t = 0 passes through one or the other of two holes, A; and A,, drilled in a screen
andis detected at time ¢ = T by adetector located at O. The amplitude for detection
is given by a fundamental postulate of quantum mechanics, the superposition
principle, as the sum of the amplitude for the particle to propagate from the source
S through the hole A; and then onward to the point O and the amplitude for the
particle to propagate from the source S through the hole A, and then onward to
the point O.

Suddenly, a very bright student, let us call him Feynman, asked, “Professor,
what if we drill a third hole in the screen?” The professor replied, “Clearly, the
amplitude for the particle to be detected at the point O is now given by the sum
of three amplitudes, the amplitude for the particle to propagate from the source S
through the hole A and then onward to the point O, the amplitude for the particle
to propagate from the source S through the hole A, and then onward to the point
O, and the amplitude for the particle to propagate from the source S through the
hole A; and then onward to the point O.”

The professor was just about ready to continue when Feynman interjected again,
“What if I drill a fourth and a fifth hole in the screen?”” Now the professor is visibly

7
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losing his patience: “All right, wise guy, I think it is obvious to the whole class that
we just sum over all the holes.”

To make what the professor said precise, denote the amplitude for the particle
to propagate from the source S through the hole A; and then onward to the point
O as A(S — A; — 0O). Then the amplitude for the particle to be detected at the
point O is

A(detected at 0)= Y~ A(S — A; — O) (1)

1

But Feynman persisted, “What if we now add another screen (Fig. 1.2.2) with
some holes drilled in it?” The professor was really losing his patience: “Look, can’t
you see that you just take the amplitude to go from the source S to the hole A; in
the first screen, then to the hole B I in the second screen, then to the detector at O,
and then sum over all i and j?”

Feynman continued to pester, “What if I put in a third screen, a fourth screen,
eh? What if I put in a screen and drill an infinite number of holes in it so that the
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screen is no longer there?” The professor sighed, “Let’s move on; there is a lot of
material to cover in this course.”

But dear reader, surely you see what that wise guy Feynman was driving at.
I especially enjoy his observation that if you put in a screen and drill an infinite
number of holes in it, then that screen is not really there. Very Zen! What Feynman
showed is that even if there were just empty space between the source and the
detector, the amplitude for the particle to propagate from the source to the detector
is the sum of the amplitudes for the particle to go through each one of the holes
in each one of the (nonexistent) screens. In other words, we have to sum over the
amplitude for the particle to propagate from the source to the detector following
all possible paths between the source and the detector (Fig. 1.2.3).

A (particle to go from S to O intime T') =

Z A (particle to go from S to O in time T following a particular path) 2)
(paths)

Now the mathematically rigorous will surely get anxious over how ) is
to be defined. Feynman followed Newton and Leibniz: Take a path (Fig. 1.2.4),
approximate it by straight line segments, and let the segments go to zero. You can
see that this is just like filling up a space with screens spaced infinitesimally close
to each other, with an infinite number of holes drilled in each screen.

Figure 1.2.4
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Fine, but how to construct the amplitude A (particle to go from S to O intime T
following a particular path)? Well, we can use the unitarity of quantum mechanics:
If we know the amplitude for each infinitesimal segment, then we just multiply
them together to get the amplitude of the whole path.

In quantum mechanics, the amplitude to propagate from a point g, to a point g
in time 7 is governed by the unitary operator e ~*#/7, where H is the Hamiltonian.
More precisely, denoting by |g) the state in which the particle is at ¢, the amplitude
in question is just (gp|e T |q;). Here we are using the Dirac bra and ket
notation. Of course, philosophically, you can argue that to say the amplitude is
(qrle HT |q;) amounts to a postulate and a definition of H. It is then up to
experimentalists to discover that H is hermitean, has the form of the classical
Hamiltonian, et cetera.

Indeed, the whole path integral formalism could be written down mathemat-
ically starting with the quantity (gz|e~#T |q,), without any of Feynman’s jive
about screens with an infinite number of holes. Many physicists would prefer a
mathematical treatment without the talk. As a matter of fact, the path integral for-
malism was invented by Dirac precisely in this way, long before Feynman.

A necessary word about notation even though it interrupts the narrative flow: We
denote the coordinates transverse to the axis connecting the source to the detector
by g, rather than x, for a reason which will emerge in a later chapter. For notational
simplicity, we will think of ¢ as 1-dimensional and suppress the coordinate along
the axis connecting the source to the detector.

Dirac’s formulation

Let us divide the time 7" into N segments each lasting 6t = T/N. Then we write

—iHT —1H8te—tH8t . .e—tHcSt

(qrle lgr) = (qrle lgr)

Now use the fact that |¢g) forms a complete set of states so that f dqglg){ql = 1.
Insert 1 between all these factors of e #% and write

—iHTl

(grle qr)

N—1
= ([T [ daptarte™ an_ian-i1e ™ lay ) -
j=1

—iHét

< qole lg1) (g1l e % |q;) 3)

Focus on an individual factor (g;,|e"#% |g;). Let us take the baby step
of first evaluating it just for the free-particle case in which H = p?/2m. The
hat on p reminds us that it is an operator. Denote by |p) the eigenstate of p,
namely p |p) = p |p). Do you remember from your course in quantum mechanics
that (g|p) = ¢/P4? Sure you do. This just says that the momentum eigenstate is
a plane wave in the coordinate representation. (The normalization is such that
J(dp/27)|p){p| = 1.) So again inserting a complete set of states, we write





