
NR Path Integrals

Two formulations of classical mechanics

Hamiltonian formulation

H = T + V

=> Schrodinger equation formulation of QM

Lagrangian formulation

L = T - V

=> Path integral formulation of QM

Ten good things about the path integral 

formulation

One bad thing about the path integral 

formulation





Michio Kaku lists seven advantages of the path 

integral formulation of quantum mechanics:

1. The path integral formalism yields a simple, covariant 
quantization of complicated systems with constraints, such 
as gauge theories.  While calculations with the canonical 
approach are often prohibitively tedious, the path integral 
method yields the results rather simply, vastly reducing the 
amount of work.

2. The path integral formalism allows one to go easily back 
and forth between the other formalisms, such as the 
canonical or the various covariant approaches.  In the path 
integral approach, these various formulations are nothing but 
different choices of gauge.

3. The path integral formalism is based intuitively on the 
fundamental principles of quantum mechanics.  Quantization 
prescriptions, which may seem rather arbitrary in the 
operator formalism, have a simple physical interpretation in 
the path integral formalism.

4. The path integral formalism can be used to calculate 
nonperturbative as well as perturbative results.

5. The path integral formalism is based on c-number fields, 
rather than q-number operators.  Hence, the formalism is 
much easier to manipulate.

6. At present, there are a few complex systems with 
constraints that can only be quantized in the path integral 
formalism.

7. Renormalization theory is much easier to express in terms 
of path integrals.

M. Kaku  QFT: A modern introduction (1993)



(8) Can derive the Schrodinger equation from the path integral

(9) Can apply the path integral to the entire universe

(10) Path integral provides a deeper and more intuitive view of QM



I went to a beer party in the Nassau Tavern in Princeton. There was a 
gentleman, newly arrived from Europe (Herbert Jehle) who came and sat 
next to me. Europeans are much more serious than we are in America 
because they think a good place to discuss intellectual matters is a beer 
party. So he sat by me and asked, "What are you doing" and so on, and I 
said, "I'm drinking beer." Then I realized that he wanted to know what 
work I was doing and I told him I was struggling with this problem, and I 
simply turned to him and said "Listen, do you know any way of doing 
quantum mechanics starting with action--where the action integral comes 
into the quantum mechanics?" "No," he said, "but Dirac has a paper in 
which the Lagrangian, at least, comes into quantum mechanics. I will show 
it to you tomorrow."

Next day we went to the Princeton Library (they have little rooms on the 
side to discuss things) and he showed me this paper. Dirac's short paper in 
the Physikalische Zeitschrift der Sowjetunion claimed that a mathematical 
tool which governs the time development of a quantal system was 
"analogous" to the classical Lagrangian.

Professor Jehle showed me this; I read it; he explained it to me, and I said, 
"What does he mean, they are analogous; what does that mean, 
analogous? What is the use of that?" He said, "You Americans! You 
always want to find a use for everything!" I said that I thought that Dirac 
must mean that they were equal. "No," he explained, "he doesn't mean 
they are equal." "Well," I said, "let's see what happens if we make them 
equal."

So, I simply put them equal, taking the simplest example . . . but soon 
found that I had to put a constant of proportionality A in, suitably adjusted. 
When I substituted . . . and just calculated things out by Taylor-series 
expansion, out came the Schrödinger equation. So I turned to Professor 
Jehle, not really understanding, and said, "Well you see Professor Dirac 
meant that they were proportional." Professor Jehle's eyes were bugging 
out -- he had taken out a little notebook and was rapidly copying it down 
from the blackboard and said, "No, no, this is an important discovery."

Feynman's thesis advisor, John Archibald Wheeler (age 30), was equally 
impressed. He believed that the amplitude formulation of quantum 
mechanics--although mathematically equivalent to the matrix and wave 
formulations--was so much more natural than the previous formulations 
that it had a chance of convincing quantum mechanics's most determined 
critic. Wheeler writes:

































Many years later Feynman and Dirac met one more time. They 

exchanged a few awkward words---a conversation so remarkable 

that a physicist within earshot immediately jotted down the 

Pinteresque dialog he thought drifting his way:

I am Feynman.

I am Dirac.

(Silence)

It must be wonderful to be the discoverer of that equation.

That was a long time ago.  (Pause)   What are you working on?

Mesons.

Are you trying to discover an equation for them?

It is very hard.

One must try.























Path integral gives us insight into 
the extremely nonlocal nature of 
quantum mechanics.

So, why not teach the path integral method 

from the very beginning?

Path integral is much more difficult than 

Schrodinger equation for simple NRQM 

problems, viz., hydrogen atom and spin.

On the other hand, easier or comparable to the 

canonical method for relativistic problems.



















Path Integral Formulation
Sum over Histories Formulation
Lagrangian Formulation
Amplitude Formulation
Feynman (1941; age 23)

The probability to go from a to b is the square 

of an amplitude

The amplitude is the weighted sum over all 

possible ways to go to b from a

S is the classical action





Chapter I.2

Path Integral Formulation
of Quantum Physics

The professor’s nightmare: a wise guy in the class

As I noted in the preface, I know perfectly well that you are eager to dive into
quantum field theory, but first we have to review the path integral formalism
of quantum mechanics. This formalism is not universally taught in introductory
courses on quantum mechanics, but even if you have been exposed to it, this chapter
will serve as a useful review. The reason I start with the path integral formalism
is that it offers a particularly convenient way of going from quantum mechanics
to quantum field theory. I will first give a heuristic discussion, to be followed by a
more formal mathematical treatment.

Perhaps the best way to introduce the path integral formalism is by telling a
story, certainly apocryphal as many physics stories are. Long ago, in a quantum
mechanics class, the professor droned on and on about the double-slit experiment,
giving the standard treatment. A particle emitted from a source S (Fig. I.2.1) at time
t = 0 passes through one or the other of two holes, A1 and A2, drilled in a screen
and is detected at time t = T by a detector located atO. The amplitude for detection
is given by a fundamental postulate of quantum mechanics, the superposition
principle, as the sum of the amplitude for the particle to propagate from the source
S through the hole A1 and then onward to the point O and the amplitude for the
particle to propagate from the source S through the hole A2 and then onward to
the point O.

Suddenly, a very bright student, let us call him Feynman, asked, “Professor,
what if we drill a third hole in the screen?” The professor replied, “Clearly, the
amplitude for the particle to be detected at the point O is now given by the sum
of three amplitudes, the amplitude for the particle to propagate from the source S
through the hole A1 and then onward to the pointO, the amplitude for the particle
to propagate from the source S through the hole A2 and then onward to the point
O, and the amplitude for the particle to propagate from the source S through the
hole A3 and then onward to the point O.”

The professor was just about ready to continue when Feynman interjected again,
“What if I drill a fourth and a fifth hole in the screen?” Now the professor is visibly
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8 I. Motivation and Foundation
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losing his patience: “All right, wise guy, I think it is obvious to the whole class that
we just sum over all the holes.”

To make what the professor said precise, denote the amplitude for the particle
to propagate from the source S through the hole Ai and then onward to the point
O as A(S → Ai →O). Then the amplitude for the particle to be detected at the
point O is

A(detected at O)=
∑
i

A(S → Ai →O) (1)

But Feynman persisted, “What if we now add another screen (Fig. I.2.2) with
some holes drilled in it?” The professor was really losing his patience: “Look, can’t
you see that you just take the amplitude to go from the source S to the hole Ai in
the first screen, then to the hole Bj in the second screen, then to the detector atO ,
and then sum over all i and j?”

Feynman continued to pester, “What if I put in a third screen, a fourth screen,
eh? What if I put in a screen and drill an infinite number of holes in it so that the
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screen is no longer there?” The professor sighed, “Let’s move on; there is a lot of
material to cover in this course.”

But dear reader, surely you see what that wise guy Feynman was driving at.
I especially enjoy his observation that if you put in a screen and drill an infinite
number of holes in it, then that screen is not really there. Very Zen! What Feynman
showed is that even if there were just empty space between the source and the
detector, the amplitude for the particle to propagate from the source to the detector
is the sum of the amplitudes for the particle to go through each one of the holes
in each one of the (nonexistent) screens. In other words, we have to sum over the
amplitude for the particle to propagate from the source to the detector following
all possible paths between the source and the detector (Fig. I.2.3).

A(particle to go from S to O in time T ) =∑
(paths)

A
(
particle to go from S to O in time T following a particular path

)
(2)

Now the mathematically rigorous will surely get anxious over how
∑
(paths) is

to be defined. Feynman followed Newton and Leibniz: Take a path (Fig. I.2.4),
approximate it by straight line segments, and let the segments go to zero. You can
see that this is just like filling up a space with screens spaced infinitesimally close
to each other, with an infinite number of holes drilled in each screen.
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Figure I.2.4
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Fine, but how to construct the amplitude A(particle to go from S toO in time T
following a particular path)? Well, we can use the unitarity of quantum mechanics:
If we know the amplitude for each infinitesimal segment, then we just multiply
them together to get the amplitude of the whole path.

In quantum mechanics, the amplitude to propagate from a point qI to a point qF
in time T is governed by the unitary operator e−iHT, whereH is the Hamiltonian.
More precisely, denoting by |q〉 the state in which the particle is at q, the amplitude
in question is just 〈qF | e−iHT |qI 〉. Here we are using the Dirac bra and ket
notation. Of course, philosophically, you can argue that to say the amplitude is
〈qF | e−iHT |qI 〉 amounts to a postulate and a definition of H . It is then up to
experimentalists to discover that H is hermitean, has the form of the classical
Hamiltonian, et cetera.

Indeed, the whole path integral formalism could be written down mathemat-
ically starting with the quantity 〈qF | e−iHT |qI 〉, without any of Feynman’s jive
about screens with an infinite number of holes. Many physicists would prefer a
mathematical treatment without the talk. As a matter of fact, the path integral for-
malism was invented by Dirac precisely in this way, long before Feynman.

A necessary word about notation even though it interrupts the narrative flow: We
denote the coordinates transverse to the axis connecting the source to the detector
by q , rather than x , for a reason which will emerge in a later chapter. For notational
simplicity, we will think of q as 1-dimensional and suppress the coordinate along
the axis connecting the source to the detector.

Dirac’s formulation

Let us divide the time T into N segments each lasting δt = T/N . Then we write

〈qF | e−iHT |qI 〉 = 〈qF | e−iHδte−iHδt . . . e−iHδt |qI 〉
Now use the fact that |q〉 forms a complete set of states so that

∫
dq |q〉〈q| = 1.

Insert 1 between all these factors of e−iHδt and write

〈qF | e−iHT |qI 〉

= (
N−1∏
j=1

∫
dqj)〈qF | e−iHδt |qN−1〉〈qN−1| e−iHδt |qN−2〉 . . .

. . . 〈q2| e−iHδt |q1〉〈q1| e−iHδt |qI 〉 (3)

Focus on an individual factor 〈qj+1| e−iHδt |qj〉. Let us take the baby step
of first evaluating it just for the free-particle case in which H = p̂2/2m. The
hat on p̂ reminds us that it is an operator. Denote by |p〉 the eigenstate of p̂,
namely p̂ |p〉 = p |p〉. Do you remember from your course in quantum mechanics
that 〈q|p〉 = eipq? Sure you do. This just says that the momentum eigenstate is
a plane wave in the coordinate representation. (The normalization is such that∫
(dp/2π) |p〉〈p| = 1.) So again inserting a complete set of states, we write




