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Separating Radial and Angular Dependence
In this and the following three sections, we illustrate how the angular momentum and magnetic

moment quantum numbers enter the symbology from a calculus based argument. In writing
equation (10–2), we have used a representation, so are no longer in abstract Hilbert space. One of
the consequences of the process of representation is the topological arguments of linear algebra are
obscured. They are still there, simply obscured because the special functions we use are orthogonal,
so can be made orthonormal, and complete, just as bras and kets in a dual space are orthonormal
and complete. The primary reason to proceed in terms of a position space representation is to
attain a position space description. One of the by–products of this chapter may be to convince
you that working in the generality of Hilbert space in Dirac notation can be considerably more
efficient. Since we used topological arguments to develop angular momentum in the last chapter,
and arrive at identical results to those of chapter 11, we rely on connections between the two to
establish the meanings of of l and m. They have the same meanings within these calculus
based discussions.

As noted, we assume a variables separable solution to equation (10–2) of the form

ˆ(r; µ; `) = R(r)Y (µ; `): (10 − 5)

An often asked question is “How do you know you can assume that?” You do not know. You
assume it, and if it works, you have found a solution. If it does not work, you need to attempt
other methods or techniques. Here, it will work. Using equation (10–5), equation (10–2) can be
written

1
r2

@

@r

(
r2 @

@r

)
R(r)Y (µ; `) +

1
r2 sin µ

@

@µ

(
sin µ

@

@µ

)
R(r)Y (µ; `)

+
1

r2 sin2 µ

@2

@`2 R(r) Y (µ; `) − 2m

h̄2

[
V (r) − E

]
R(r)Y (µ; `) = 0

⇒ Y (µ; `)
1
r2

@

@r

(
r2 @

@r

)
R(r) + R(r)

1
r2 sin µ

@

@µ

(
sin µ

@

@µ

)
Y (µ; `)

+R(r)
1

r2 sin2 µ

@2

@`2 Y (µ; `) −
2m

h̄2

[
V (r) − E

]
R(r)Y (µ; `) = 0:

Dividing the equation by R(r)Y (µ; `), multiplying by r2, and rearranging terms, this becomes
{

1
R(r)

@

@r

(
r2 @

@r

)
R(r) −

2mr2

h̄2

[
V (r) − E

]}

+
[

1
Y (µ; `) sin µ

@

@µ

(
sin µ

@

@µ

)
Y (µ; `) +

1
Y (µ; `) sin2 µ

@2

@`2 Y (µ; `)
]

= 0:

The two terms in the curly braces depend only on r, and the two terms in the square brackets
depend only upon angles. With the exception of a trivial solution, the only way the sum of the
groups can be zero is if each group is equal to the same constant. The constant chosen is known
as the separation constant. Normally, an arbitrary separation constant, like K, is selected and
then you solve for K later. In this example, we are instead going to stand on the shoulders of
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The use of these generating functions was illustrated in example 11–26 as intermediate results in
calculating spherical harmonics.

The first few Legendre polynomials are listed in table 10–1. Our interest in those is to generate
associated Legendre functions. The first few associated Legendre polynomials are listed in table
10–2.

P0(x) = 1 P3(x) = 1
2

(
5x3 − 3x

)

P1(x) = x P4(x) = 1
8

(
35x4 − 30x2 + 3

)

P2(x) = 1
2

(
3x2 − 1

)
P5(x) = 1

8

(
63x5 − 70x3 + 15x

)

Table 10 − 1: The First Six Legendre Polynomials:

P0;0(x) = 1 P2;0(x) = 1
2

(
3x2 − 1

)

P1;1(x) = −
√

1 − x2 P3;3(x) = −15
(√

1 − x2
)3

P1;0(x) = x P3;2(x) = 15x
(
1 − x2

)

P2;2(x) = 3
(
1 − x2

)
P3;1(x) = −3

2

(
5x2 − 1

)√
1 − x2

P2;1(x) = −3x
√

1 − x2 P3;0(x) = 1
2

(
5x3 − 3x

)

Table 10 − 2: The First Few Associated Legendre Polynomials:

Two comment concerning the tables are appropriate. First, notice Pl = Pl;0. That makes
sense. If the Legendre equation is the same as the associated Legendre equation with m = 0, the
solutions to the two equations must be the same when m = 0. Also, many authors will use
a positive sign for all associated Legendre polynomials. This is a different choice of phase. We
addressed that following table 11–1 in comments on spherical harmonics. We choose to include a
factor of (−1)m with the associated Legendre polynomials, and the sign of all spherical harmonics
will be positive as a result.

Finally, remember the change of variables x = cos µ. That was done to put the differential
equation in a more elementary form. In fact, a dominant use of associated Legendre polynomials is
in applications where the argument is cos µ. One example is the generating function for spherical
harmonic functions,

Yl;m(µ; `) = (−1)m

√
(2l + 1)(l − m)!

4…(l + m)!
Pl;m(cos µ) eim` m ≥ 0; (10 − 10)

and
Yl;−m(µ; `) = Y ∗

l;m(µ; `); m < 0;

where the Pl;m(cos µ) are associated Legendre polynomials. If we need a spherical harmonic with
m < 0, we will calculate the spherical harmonic with m =

∣∣m
∣∣, and then calculate the adjoint.

To summarize the last three sections, we separated the angular equation into an azimuthal
and a polar portion. The solutions to the azimuthal angle equation are exponentials including the
magnetic moment quantum number in the argument. The solutions to the polar angle equation
are the associated Legendre polynomials, which are different for each choice of orbital angular
momentum and magnetic moment quantum number. Both quantum numbers are introduced into

337

Larry Sorensen
Highlight

Larry Sorensen
Highlight



The Reduced Mass

Equation (10–2) describes a single particle in a central potential. The hydrogen atom is a two
body problem, and the potential is not central but is dependent upon the distance between the
nucleus and the electron. Were we able to anchor the nucleus to a stationary location we could
designate an origin, equation (10–2) would be an accurate description. This is not possible, but
we can reach a similar end by picturing the center of mass being anchored to a fixed location. If
we use the reduced mass in place of the electron mass,

„ =
mp me

mp + me
;

the radial coordinate r accurately describes the distance between the nucleus and the electron.
The effect in equation (10–2) is cosmetic; where there was an m representing me, it is replaced
by „. Because the proton is about 1836 times more massive than the electron, the reduced mass
is nearly identically the electron mass. Many authors simply retain the electron mass. Since the
center of mass is not actually anchored, a second set of coordinates is required to track the center
of mass using this scheme. This consideration and other details of reducing a two particle problem
to a one particle problem are adequately covered in numerous texts, including Chohen–Tannoudji5,
Levine6, and many classical mechanics texts.

Solution of the Radial Equation
The radial equation (10–6) using the reduced mass and the Coulomb potential, V (r) = −e2=r,

is

1
R(r)

d

dr

(
r2 d

dr

)
R(r) −

2„r2

h̄2

[
−

e2

r
− E

]
− l(l + 1) = 0

⇒
d

dr

(
r2 d

dr

)
R(r) −

2„r2

h̄2

[
−

e2

r
− E

]
R(r) − l(l + 1)R(r) = 0

⇒ d

dr

(
r2 d

dr

)
R(r) +

[2„r2

h̄2
e2

r
+

2„r2

h̄2 E − l(l + 1)
]
R(r) = 0: (10 − 18)

The plan is to get (10–18) into a form comparable to equation (10–16), and we already know the
solutions are equation (10–15). We will be able to glean additional information by comparing the
equations term by term. The energy levels of the hydrogen atom and the meaning of the indices
of the associated Laguerre polynomials, which will be quantum numbers for the hydrogen atom,
will come from the comparison of individual terms.

We will make three substitutions to get the last equation into the form of equation (10–16).
The first is

y(r) = r R(r) ⇒ R(r) =
y(r)
r

: (10 − 19)

5 Cohen–Tannoudji, Diu, and Laloe, Quantum Mechanics (John Wiley & Sons, New York,
1977), pp. 784–788.

6 Levine, Quantum Chemistry (Allyn and Bacon, Inc., Boston, Massachusetts, 1983), pp. 101–
106.
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per table 10–4. Then to get L1
3(x),

L1
3 = −

d

dx
L4(x)

= − d

dx

(
x4 − 16x3 + 72x2 − 96x + 24

)

= −
(
4x3 − 48x2 + 144x − 96

)

= −4x3 + 48x2 − 144x + 96;

per table 10–3.

Associated Laguerre polynomials are not orthogonal but associated Laguerre functions of
the type

Φk
j (x) = e−x=2xk=2Lk

j (x)

are orthogonal on the interval 0 ≤ x < ∞, so can be made an orthonormal set. Again, the Φk
j (x)

are not solutions to the associated Laguerre equation but are solutions to a related equation.

We are specifically interested in a slightly different associated Laguerre function than the usual
first choice indicated above, i.e., we are interested in

yk
j (x) = e−x=2x(k+1)=2Lk

j (x): (10 − 15)

These are also not solutions to the associated Laguerre equation, but they are solutions to

yk′′

j (x) +
(

−1
4

+
2j + k + 1

2x
− k2 − 1

4x2

)
yk

j (x) = 0: (10 − 16)

The reason for our interest in (10–16) and its solutions (10–15), is that equation (10–16) is a form
of the radial equation, so the radial functions R(r) we seek are Rn;l(r) = A yl

n(r), where A is
simply a normalization constant.

Example 10–6: Show equation (10–15) satisfies equation (10–16).

Unlike some of the toy problems given as examples, this example is a critical connection...unless
you take our word for it, and then you should skip this. We are going to use the result of this
example as a direct link to the solution of the radial equation. We are going to simplify the notation
to minimize clutter, and will explain as we go.

To attain the second derivative, we need the first derivative, and use the notation

y = e−x=2x(k+1)=2v;

for equation (10–15) where v = Lk
j (x), because the indices do not change and only serve to add

clutter, and we can remember the independent variable is x. The first derivative is

y′ = −
1
2
e−x=2x(k+1)=2v + e−x=2

(
k + 1

2

)
x(k−1)=2v + e−x=2x(k+1)=2v′

=
[
−1

2
v +

(
k + 1
2x

)
v + v′

]
e−x=2x(k+1)=2

⇒
(
ex=2x−(k+1)=2

)
y′ = −

1
2
v +

k + 1
2x

v + v′:
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Making this substitution in the first term and evaluating the derivatives

d

dr

(
r2 d

dr

)
R(r) =

d

dr

(
r2 d

dr

)(
r−1) y(r)

=
d

dr
r2

[(
−r−2) y(r) +

(
r−1) d y(r)

dr

]

=
d

dr

[
−y(r) + r

d y(r)
dr

]

= −d y(r)
dr

+
d y(r)

dr
+ r

d2 y(r)
dr2

= r
d2 y(r)

dr2 :

The substitution serves to eliminate the first derivative. We would have both a first and second
derivative if we had evaluated the first term using R(r). With this and the substitution of
equation (10–19), equation (10–18) becomes

r
d2 y(r)

dr2 +
[2„re2

h̄2 +
2„r2

h̄2 E − l(l + 1)
] y(r)

r
= 0

⇒
d2 y(r)

dr2 +
[2„e2

r h̄2 +
2„E

h̄2 −
l(l + 1)

r2

]
y(r) = 0:

The second substitution is essentially to simplify the notation, and is

( †

2

)2
= −2„E

h̄2 (10 − 20)

where the negative sign on the right indicates we are looking for bound states, states such that
E < 0, so including the negative sign here lets us have an † which is real. The last equation
becomes

d2 y(r)
dr2 +

[2„e2

r h̄2 −
†2

4
−

l(l + 1)
r2

]
y(r) = 0:

The third substitution is a change of variables, and notice it relates radial distance and energy
through equation (10-20),

x = r† ⇒ r =
x

†
; (10 − 21)

⇒ dr =
dx

†
⇒ d2 y(r)

dr2 =
d

dr

d y(r)
dr

= †
d

dx
†
d y(x)

dx
= †2

d2 y(x)
dx2 ;

so our radial equation becomes

†2
d2 y(x)

dx2 +
[2„e2†

x h̄2 −
†2

4
− †2

l(l + 1)
x2

]
y(x) = 0

⇒
d2 y(x)

dx2 +
[

−
1
4

+
2„e2

h̄2†x
−

l(l + 1)
x2

]
y(x) = 0; (10 − 22)

and equation (10–22) is equation (10–16) where

l(l + 1) =
k2 − 1

4
; (10 − 23)
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the respective differential equations as separation constants. Since we assumed a product of the
two functions to get solutions to the azimuthal and polar parts, the solutions to the original angular
equation (10–7) are the products of the two solutions Pl;m(cos µ) eim`. These factors are included
in equation (10–10). All other factors in equation (10–12) are simply normalization constants. The
products Pl;m(cos µ) eim` are the spherical harmonic functions, the alternating sign and radical
just make the orthogonal set orthonormal.

Associated Laguerre Polynomials and Functions
The azimuthal equation was easy, the polar angle equation a little more substantial, but you

will likely percieve the solution to the radial equation as plain, old heavy! There is no easy way to
do this. Our approach will be to relate the radial equation to the associated Laguerre equation,
for which the associated Laguerre functions are solutions. A popular option to solve the radial
equation is a power series solution, for which we will refer you to Griffiths3, or Cohen–Tannoudji4.

Laguerre polynomials are solutions to the Laguerre equation

x L
′′

j (x) +
(
1 − x

)
L

′

j(x) + j Lj(x) = 0:

The first few Laguerre polynomials are listed in table 10–3.

L0(x) = 1
L1(x) = −x + 1
L2(x) = x2 − 4x + 2
L3(x) = −x3 + 9x2 − 18x + 6
L4(x) = x4 − 16x3 + 72x2 − 96x + 24
L5(x) = −x5 + 25x4 − 200x3 + 600x2 − 600x + 120
L6(x) = x6 − 36x5 + 450x4 − 2400x3 + 5400x2 − 4320x + 720

Table 10 − 3: The First Seven Laguerre Polynomials:

Laguerre polynomials of any order can be calculated using the generating function

Lj(x) = ex dj

dxj
e−x xj :

The Laguerre polynomials do not form an orthogonal set. The related set of Laguerre functions,

`j(x) = e−x=2Lj(x) (10 − 13)

is orthonormal on the interval 0 ≤ x < ∞. The Laguerre functions are not solutions to the
Laguerre equation, but are solutions to an equation which is related.

Just as the Legendre equation becomes the associated Legendre equation by adding an ap-
propriate term containing a second index, the associated Laguerre equation is

xLk′′

j (x) +
(
1 − x + k

)
Lk′

j (x) + j Lk
j (x) = 0; (10 − 14)

3 Griffiths, Introduction to Quantum Mechanics (Prentice Hall, Englewood Cliffs, New Jersey,
1995), pp. 134–141.

4 Cohen–Tannoudji, Diu, and Laloe, Quantum Mechanics (John Wiley & Sons, New York,
1977), pp. 794–797.
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which reduces to the Laguerre equation when k = 0. The first few associated Laguerre polyno-
mials are

L0
0(x) = L0(x) L2

0(x) = 2
L0

1(x) = L1(x) L0
3(x) = L3(x)

L1
1(x) = −2x + 4 L1

3(x) = −4x3 + 48x2 − 144x + 96
L1

0(x) = 1 L3
2(x) = 60x2 − 600x + 1200

L0
2(x) = L2(x) L3

3(x) = −120x3 + 2160x2 − 10800x + 14400
L1

2(x) = 3x2 − 18x + 18 L2
3(x) = −20x3 + 300x2 − 1200x + 1200

L2
2(x) = 12x2 − 96x + 144 L3

1(x) = −24x + 96
L2

1(x) = −6x + 18 L3
0(x) = 6

Table 10 − 4: Some Associated Laguerre Polynomials:

Notice L0
j = Lj. Also notice the indices are all non–negative, and either index may assume any

integral value. We will be interested only in those associated Laguerre polynomials where k < j
for hydrogen atom wave functions.

Associated Laguerre polynomials can be calculated from Laguerre polynomials using the gen-
erating function

Lk
j (x) =

(
− 1

)k dk

dxk
Lj+k(x):

Example 10–5: Calculate L1
3(x) starting with the generating function.

We first need to calculate L4(x), because

Lk
j (x) =

(
− 1

)k dk

dxk
Lj+k(x) ⇒ L1

3(x) =
(

− 1
)1 d1

dx1 L3+1(x) = −
d

dx
L4(x):

Similarly, if you want to calculate L2
3, you need to start with L5, and to calculate L3

4, you
need to start with L7. So using the generating function,

L4(x) = ex d4

dx4 e−xx4

= ex d3

dx3

(
− e−xx4 + e−x 4x3

)

= ex d2

dx2

(
e−xx4 − e−x 4x3 − e−x 4x3 + e−x 12x2

)
= ex d2

dx2

(
e−xx4 − e−x 8x3 + e−x 12x2

)

= ex d

dx

(
− e−xx4 + e−x 4x3 + e−x 8x3 − e−x 24x2 − e−x 12x2 + e−x 24x

)

= ex d

dx

(
− e−xx4 + e−x 12x3 − e−x 36x2 + e−x 24x

)

= ex
(
e−xx4 − e−x 4x3 − e−x 12x3 + e−x 36x2 + e−x 36x2 − e−x 72x − e−x 24x + e−x 24

)

= exe−x
(
x4 − 16x3 + 72x2 − 96x + 24

)

= x4 − 16x3 + 72x2 − 96x + 24;
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per table 10–4. Then to get L1
3(x),

L1
3 = −

d

dx
L4(x)

= − d

dx

(
x4 − 16x3 + 72x2 − 96x + 24

)

= −
(
4x3 − 48x2 + 144x − 96

)

= −4x3 + 48x2 − 144x + 96;

per table 10–3.

Associated Laguerre polynomials are not orthogonal but associated Laguerre functions of
the type

Φk
j (x) = e−x=2xk=2Lk

j (x)

are orthogonal on the interval 0 ≤ x < ∞, so can be made an orthonormal set. Again, the Φk
j (x)

are not solutions to the associated Laguerre equation but are solutions to a related equation.

We are specifically interested in a slightly different associated Laguerre function than the usual
first choice indicated above, i.e., we are interested in

yk
j (x) = e−x=2x(k+1)=2Lk

j (x): (10 − 15)

These are also not solutions to the associated Laguerre equation, but they are solutions to

yk′′

j (x) +
(

−1
4

+
2j + k + 1

2x
− k2 − 1

4x2

)
yk

j (x) = 0: (10 − 16)

The reason for our interest in (10–16) and its solutions (10–15), is that equation (10–16) is a form
of the radial equation, so the radial functions R(r) we seek are Rn;l(r) = A yl

n(r), where A is
simply a normalization constant.

Example 10–6: Show equation (10–15) satisfies equation (10–16).

Unlike some of the toy problems given as examples, this example is a critical connection...unless
you take our word for it, and then you should skip this. We are going to use the result of this
example as a direct link to the solution of the radial equation. We are going to simplify the notation
to minimize clutter, and will explain as we go.

To attain the second derivative, we need the first derivative, and use the notation

y = e−x=2x(k+1)=2v;

for equation (10–15) where v = Lk
j (x), because the indices do not change and only serve to add

clutter, and we can remember the independent variable is x. The first derivative is

y′ = −
1
2
e−x=2x(k+1)=2v + e−x=2

(
k + 1

2

)
x(k−1)=2v + e−x=2x(k+1)=2v′

=
[
−1

2
v +

(
k + 1
2x

)
v + v′

]
e−x=2x(k+1)=2

⇒
(
ex=2x−(k+1)=2

)
y′ = −

1
2
v +

k + 1
2x

v + v′:
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Fig. 13.14. Radial eigenfunctions Rn�(ρ) for the electron in the hydrogen atom. Their zeros
are the n − � − 1 zeros of the Laguerre polynomials L2�+1

n−�−1(2ρ/n). Here the argument of the
Laguerre polynomial is 2ρ/n with n being the principal quantum number and ρ = r/a the
distance between electron and nucleus divided by the Bohr radius a.

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 3rd ed., c© 2001 by Springer-Verlag New York.





1s, 2s, 3s, 4s, 5s



2p, 3p, 4p, 5p



3d, 4d, 5d



Fig. 13.15. Radial eigenfunc-
tions Rn�(r), their squares
R2

n�(r), and the functions
r2R2

n�(r) for the lowest eigen-
states of the electron in the
hydrogen atom and the low-
est angular-momentum quan-
tum numbers � = 0, 1, 2.
Also shown are the en-
ergy eigenvalues as horizontal
dashed lines, the form of the
Coulomb potential V (r), and,
for � �= 0, the forms of the ef-
fective potential V eff

� (r). The
eigenvalue spectra are degen-
erate for all � values, except
that the minimum value of
the principal quantum num-
ber is n = � + 1.

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 3rd ed., c© 2001 by Springer-Verlag New York.





Associated Laguerre Polynomials

Some wag once said the nice thing about standards is that there are so many to choose
from. I have been trying to come to grips with the difference between what I presented
in class and the formulae in Sakurai. It is easy to explain the differences on the basis of
different conventions about the associated Laguerre polynomials.

If you want to skip details, a main result is that Sakurai and Mathematica use different
conventions. If we call Lq

n(ρ) the convention of Sakurai and L
(q)
p (ρ) the convention of

Mathematica, we have

Lq
p+q(ρ) = (p + q)!(−1)qL(q)

p (ρ) .

Below are the details. They are presented somewhat in the order of my investigation
and not according to the shorted derivation of the above result.

Differential equation

I have consulted two well known books on mathematical functions that adhere to the
same index convention, but have different normalization conventions. The first book that
I consulted by Abramowitz & Stegun states on pg 778, Eqs. (22.5.16) and (22.5.17):

L(0)
n (x) = Ln(x)

L(m)
n (x) = (−1)m dm

dxm
[Ln+m(x)]

Also, on pg 781, in Eq. (22.6.15), the differential equation is given.

x
d2

dx2
L(α)

n (x) + (α + 1 − x)
d

dx
L(α)

n (x) + nL(α)
n (x) = 0 .

The differential equation is very valuable, but being linear, does not tell us anything
about the normalization.

Another well known book by Morse & Feshbach on pg 784, in an unnumbered equation
three lines from the bottom of the page gives their convention for the associated Laguerre
polynomials.

Lm
n (z) = (−1)m dm

dxm
[L0

n+m(z)] .

The differential equation is also given a few lines above:

z
d2

dz2
La

n(z) + (a + 1 − z)
d

dz
La

n(z) + nLa
n(z) = 0 .

Morse & Feshbach do not put the upper index in parentheses, otherwise, it looks like these
conventions might agree. We can be pretty certain that in these two books the L

(a)
n is a

polynomial of degree n. However, we will soon see that the normalizations don’t agree in
the two books.
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Sakurai convention

Now, let’s turn to Sakurai. On pg 454 in Eq. (A.6.4), we find

Lq
p(ρ) =

dq

dρq
Lp(ρ) .

This leads us to conclude that Lq
p is of degree p− q, and makes the result above plausible.

In fact, if the normalizations were the same, we would expect:

Lq
p+q(ρ) =

dq

dρq
Lp+q(ρ) = (−1)qL(q)

p (ρ) Not quite correct! .

Class Derivation

In class, I presented the differential equation for the associated Laguerre polynomials
as stated by Mathematica,

xy′′ + (a + 1 − x)y′ + ny = 0 .

This is the same convention as Abramowitz & Stegun and Morse & Feshbach.
In class, we found we needed to solve this differential equation:

ρL′′ + (2(l + 1) − ρ)L′ + (λ − l − 1)L = 0 ,

but λ = n, the total quantum number, and n− l− 1 = n′ the radial quantum number. So,
we have

ρL′′ + (2l + 1 + 1 − ρ)L′ = n′L = 0 .

In the notation of Abramowitz & Stegun, Mathematica or the Morse & Feshbach index
convention, the solution to the differential equation is

L
(2l+1)
n′ (ρ) = L

(2l+1)
n−l−1(ρ) .

In Sakurai notation, L
(2l+1)
n−l−1(ρ) = (−1)2l+1L2l+1

n+l = −L2l+1
n+l . This explains the indices

for Rnl in Sakurai in the equation above (A.6.3).

Pinning Down the Normalizations

We still need to consider normalization conventions, and that can be done from the
generating function or from what is know as Rodrigues’ formula. In fact, in retrospect, it
seems that just looking at the Rodrigues’ formulae in the three books might have been the
easiest way to proceed.

In Abramowitz & Stegun, we find on pg 785, Eq. (22.11.6)

L(α)
n (x) =

1
n!

exx−α dn

dxn
[xn+αe−x] .
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On pg 784 of Morse & Feshbach, we find

La
n(z) =

Γ(a + n + 1)
Γ(n + 1)

ez

zα

dn

dzn
[za+ne−z ] .

If we set α and a to zero, we can compare with Sakurai, which states in Eq. (A.6.5)

Lp(ρ) = eρ dp

dρp
(ρpe−ρ) .

We immediately see that Sakurai agrees in normalization with Morse & Feshbach, at least
for the Laguerre polynomials, if not for the associated Laguerre polynomials. However, the
two books on mathematical methods differ by a factor of (n + a)! in their normalizations
with Abramowitz & Stegun convention being smaller by division by that factor. Morse &
Feshbach include a small table of associated Laguerre polynomials at the bottom of page
784. They have Ln

0 = n!, whereas Abramowitz & Stegun according to Eq. (22.4.7) have
L

(α)
0 = 1. The only remaining mystery is which normalization convention Mathematica

obeys. With this command

Table[{n, LaguerreL[0, n, x]}, {n, 0, 6}]

you will easily find that all results are 1 and Mathematica follows the Abramowitz & Stegun
normalization.

Further, I coded up the Rodrigues’ formula with the Sakurai convention and compared
with (p + q)!(−1)qL

(q)
p where the I used the Mathematica function LaguerreL[p,q,x].

They were in agreement.
Mystery solved! Quantum mechanics and children can now sleep soundly at night.
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