QUALITATIVE FIRST

SOLVE TISE FOR HYDROGEN

FIND EN'S -> EIGEN ENERGIES

FIND EN'S -> ENERGY EIGENFONS

STATIONARY STATES

$$| m | m > \longrightarrow \Psi_{mem}(\vec{n})$$

$$E_{mem} \longrightarrow E_{m}$$

TWO POV:

(1)
$$\nabla^2$$
 - RADIAL ∇^2 + ANGUCAR ∇^2

SOUN'S Yem'S

SEPARATE => RADIAL EQN

(2)
$$H = \frac{\vec{p}^2}{2m} + \sqrt{(n)}$$

$$H = \frac{p_n^2}{2mn} + \frac{L^2}{2mn^2} + \sqrt{(n)}$$

$$H = \frac{\vec{\rho}^2}{2m} + V(r)$$

$$\frac{\vec{p}^2}{2m} = \frac{\rho_A^2}{2m} + \frac{L^2}{2m\Lambda^2}$$

$$\left[\frac{P_A^2}{2m} + \frac{L^2}{2mn^2} + V(n)\right] R_M R \ \forall cm = E_A R_M R \ \forall cm$$

$$\left[\frac{P_n^2}{2m} + \frac{L(L+1)h^2}{2mn^2} + V(n)\right] R_{mL} = E_m R_{mL}$$

ANGULAR

MOMENTOM

ATTRACTIVE

BALLIER

COOLOMB

REPULSIVE

POTENTIAL

SOLUTIONS TO THE MADIAL EQUATION

Hyman Ma

HY DROGEN - LIKE

exp $(-n/ma_0)$ exp $(-2n/ma_0)$

HYDROGEN

SOLVE RADIAL EQN TWO METHODS:

(1) DIFF EAN METHOD

FIND ASYMPTOTIC FORM

SEPARATE IT

DIFFERENTIAL EDN for each value of L

MAKE DIMENSION LESS

ORDER NA. HIGHEST DERIVATIVE FIRST

COEFF OF HIGHEST BERIVATIVE TERM = 1

FUTZ AROUNP

DISCOVER RADIAL EQN IS EQUIVALENT TO

THE ASSOCIATED LAGUERRE EQN

DECLARE VICTORY

NORMALIZE WAVEFONS

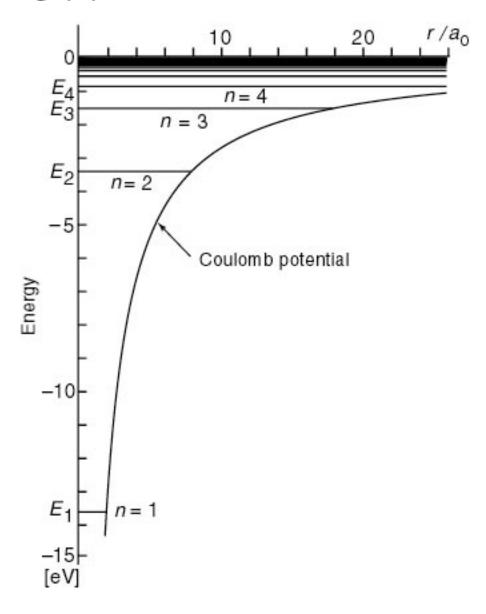
(2) USE LAPPER OPERATORS

EIGEN FONS => ENGREY RIGEN RONS

BIGEN VALUES => EIGEN ENERGIES

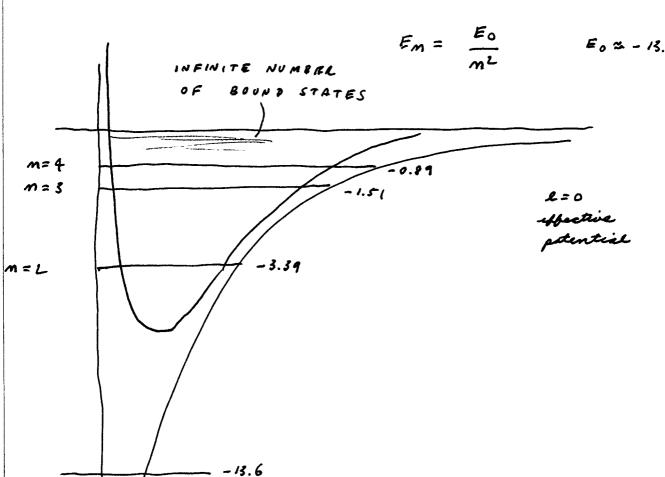
$$E_{M} = \frac{-24}{m^2} = \frac{-13.6 \text{ eV}}{m^2}$$
 INVOROGEN

Fig. (B)



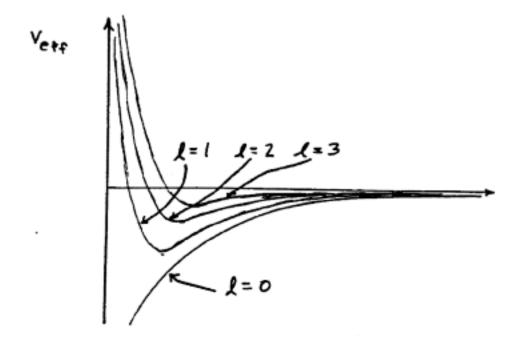
ENERGY DEGENERACY

only n

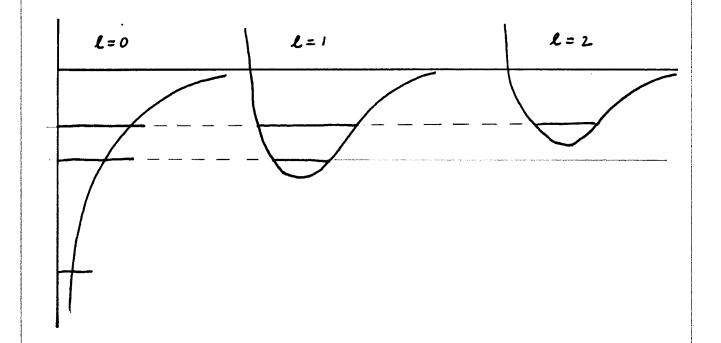


The Effective Potential Depends on the Angular Momentum

=> Series of Nested Wells



Series of States in each Well Ground, 1st, 2nd, 3rd, ... excited



for each $m: L=0,1,\ldots,m$

 $E_n = - z^2 \frac{E_0}{n^2} \qquad \text{for each } k: m = -k, \dots, +k$

E						TOTAL NUMBER OF STATES
m=5	<u>55</u> 5	5 P	5-d		5 0	ration the For MANAGER Law.
	45	40	4.1	4.f	- }	25

$$L \qquad m=1 \qquad \frac{2s}{p}$$

$$K = 1$$

$$L=0$$
 $L=1$ $L=2$ $L=3$ $L=4$
 S P A f g $hijk$
 $(2L+1)$ 1 3 5^{-} 7 g

9

FIRST FEW RADIAL WAVEFUNCTIONS 3= 3/40

$$m=1$$
 $R_{10}(12) = 23^{3/2}e^{-37}$

$$m=2$$
 $R_{20}(n) = \frac{1}{\sqrt{2}} 3^{3/2} (1 - \frac{1}{2} 3 n) e^{-3\pi/2}$

$$R_{21}(n) = \frac{1}{2\sqrt{6}} 3^{5/2}(n) e^{-3n/2}$$

$$M=3 \qquad R_{30}(2) = \frac{2}{3\sqrt{3}} \, 3^{\frac{5}{2}} \left(1 - \frac{2}{5} \, 3 \, 2 + \frac{2}{27} \, 3^{\frac{2}{2}} \, 2^{\frac{2}{2}} \right) e^{-\frac{3}{2} \frac{5}{2}}$$

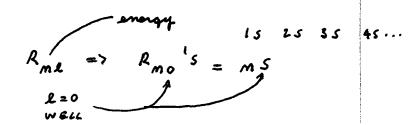
$$R_{31}(n) = \frac{9}{27\sqrt{6}} 3^{5/2} (3n - \frac{1}{6} 3^2 n^2) e^{-3n/3}$$

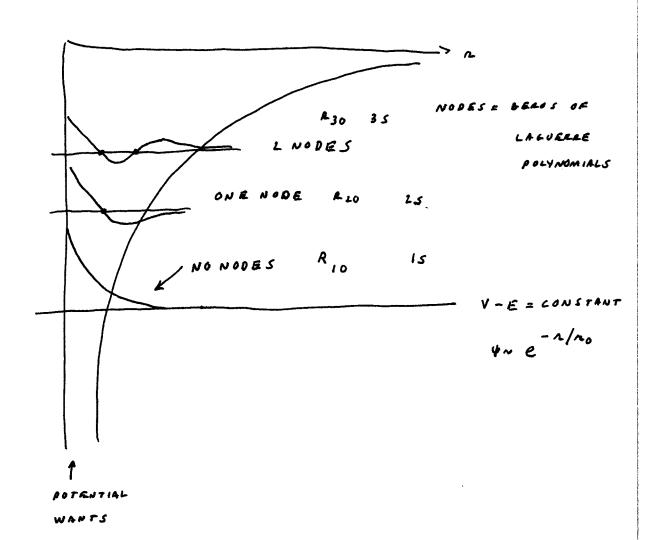
$$R_{32}(n) = \frac{4}{81\sqrt{30}} 3^{\frac{3}{2}} (n^2) e^{-\frac{3}{2}n/3}$$

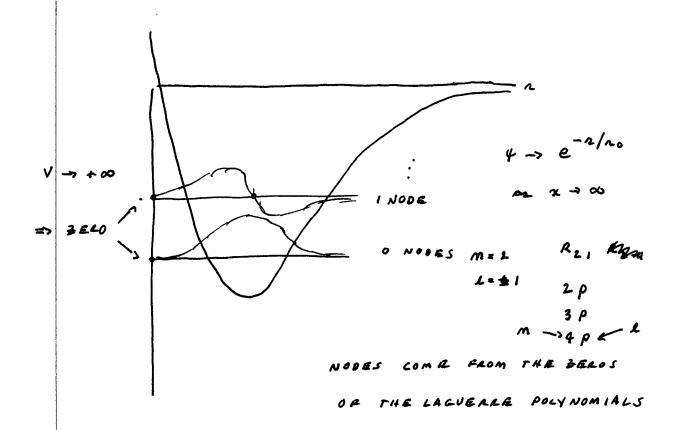
WHAT DO THE RADIAL WAVEFONS LOOK LIKE?

n n u 3d u n n u

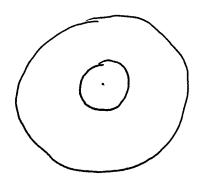
L=0 WAVE FCNS

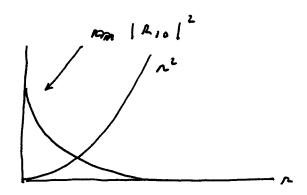


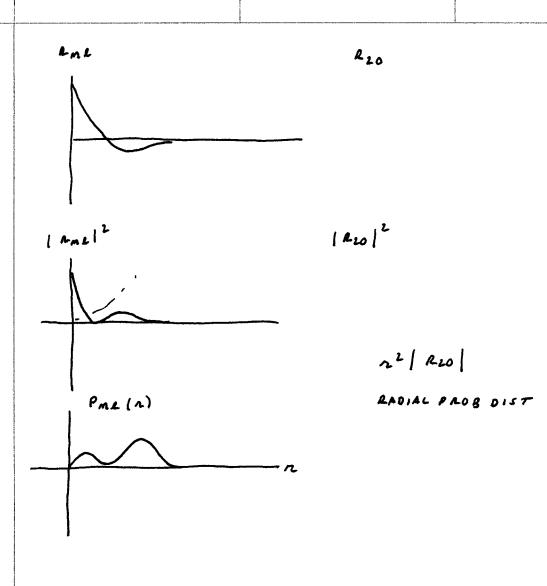




$$P_{me}(n) = \left| R_{me}(n) \right|^2 n^2 dn$$





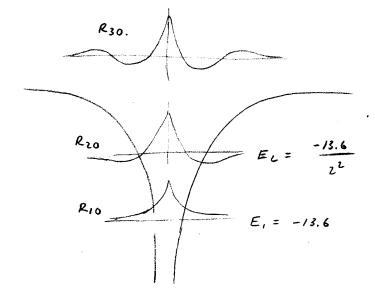


Probability distributions

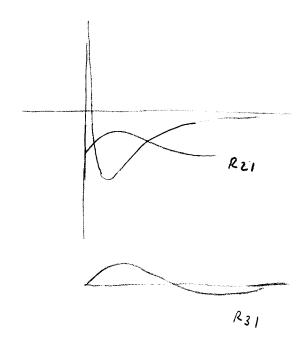
$$P(\vec{R}) = \left| 4_{\text{mem}}(\vec{R}) \right|^2 d^3 n.$$

|Rme(n)|2 n2 dr

| Yem (θ, φ) | 2 A.



1=1



p 142 pauling
p 266 Eisburg.

: Angular dependence

 $|\forall em(\theta, \varphi)|^2 = \Theta(\theta) e^{im\varphi} \Theta^*(\theta) e^{-im\varphi}$

phase changes as you go around & spis but the prob does not change

10 (0)

Polar plat

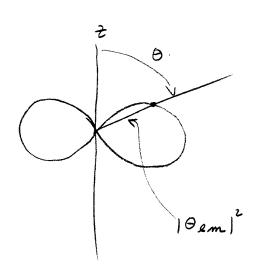
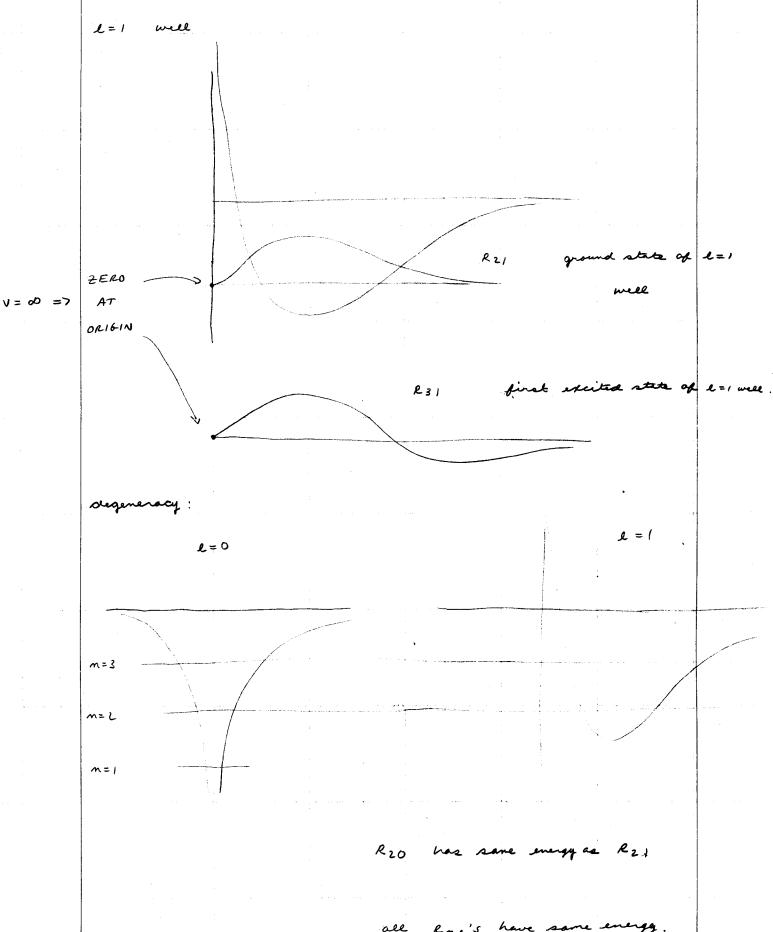


Figure of revolution around & axis

p 271 272 Eisberg



$$R_{30} = \frac{2}{3\sqrt{3}} 3^{3/2} \left(1 - \frac{2}{3} 3^{2} + \frac{2}{27} 3^{2} A^{2}\right) e^{-3\pi/3}$$

$$R_{31} = \frac{8}{27\sqrt{6'}} 3^{3/2} (3n - \frac{7}{6} 3^2n^2) e^{-3n/5}$$

$$R_{32} = \frac{4}{81\sqrt{36}} 3^{\frac{3}{2}} n^2 e^{-\frac{3}{2}n/3}$$

