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✣ Preface ✣

THIS ESSAY has a leading thread, whose origins may be retraced
to Francis Bacon’s The Great Instauration: one day, the principles
of science will be so close to the heart and the essence of things that
philosophy will be able to find in them its own foundations. Let us
temper that wish and speak only of philosophy of knowledge; let
us, on the contrary, bolster it and say that such a day has arrived,
and there you have the summary of this book.

The time has come to force our way out of a current crisis in
epistemology. There is indeed a crisis, for unlike the flourishing
situation in the history of knowledge, the philosophical reflection
about science has lost its way—or stagnates. The fashionable au-
thors see only uncertainties, paradigms without enduring princi-
ples, an absence of method, and a presence of erratic revolutions,
precisely when we should be trumpeting the success of a science
whose extent and consistency are unprecedented. To counter this
deficiency we can turn only to ancient thinkers, no doubt wiser,
but also unable to provide the required antidote, for their science
is no longer ours; it has progressed too much.

Beyond the shadow of a doubt, the origin of this crisis is to be
found in an event that no one has fully recognized in all its signifi-
cance: the irresistible irruption of the formal approach in some
fundamental sciences such as logic, mathematics, and physics. As
a consequence, these disciplines have become practically impene-
trable, which explains the capitulation or the adventurousness of
so many commentators, not to mention the disarray of the honest
man or woman who wonders what those who should understand
these subjects are talking about.

A good part of this book retraces this rise toward formalism and
shows its necessity, not only in mathematics, but also in the foun-
dations of relativity and quantum physics, and in the theories deal-
ing with all that makes up the universe, space, and particles. As a
counterbalance, another part of the book shows how to loosen
that formalism and overcome it. The path was shown by certain
advances in the interpretation of quantum mechanics, thanks to
which it was possible to resolve a good number of difficulties that
were hard to accept even in this domain where, more than in any
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other, the principles of philosophy clash with those of nature. The
key to the problem appeared only gradually, through efforts in
specialized fields and technical results. But in the end, everything
turned out to be quite simple: the principles that science has al-
ready mastered are sufficient to recover common sense, to demon-
strate its necessity in a certain sense, and at the same time to estab-
lish its limits and those of certain philosphical “principles” derived
from it. Thus, despite its formal aspects, science brings with it a
theory of knowledge, once again transparent, that can explain how
we humans understand the world.

Could all that ever lead to a philosophy of knowledge reaching
into the very nature of reality? We do not know, even if we can see
it taking form already, while we are still busy only dreaming of it.
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✣ Prelude ✣

WE WERE IN HELL, or rather in Hades. It is a pleasant place, and
I had entered it by chance. Cerberus’ question, “Who are you?,”
had first baffled me, but I was lucky to have answered, “A son of
Pan’s.” The logic was impeccable: Pan conceived the fauns, who in
turn did what it takes to conceive, not only among themselves, and
abundantly so. Then, a simple calculation of the odds would con-
firm that I was descended from them. Cerberus could see that I had
not lied, and I came in, without having to drink from the Lethe.
And so, due to such strange circumstances, I found myself there,
and was going to speak about a world that, regretfully, I had not
forgotten. It was quite a gathering. Only philosophers were pres-
ent, all of them pre-Socratic, with an eagerness to know never seen
before . . .

“What is the shape of the earth?” asked one of them. I replied
that it is a sphere, and Parmenides rejoiced, while Heraclitus
scowled. So many questions followed, in a pressing, quick succes-
sion, that I cannot recall them all. To Heraclitus, I replied that the
universe is in perpetual change but that it had a beginning; to
Anaximander, that our world is infinite, that humans were indeed
born from other creatures, and that there is only one life in perpet-
ual evolution; I described to Leucippus the atoms and their nesting
of particles; Pythagoras was pleased to hear that numbers rule the
world and that the laws of the physis are mathematical.

“Mathematician,” he asked, “are you an initiate?” “Many of us
are, presently,” I heard myself shamelessly replying.

I don’t know how long it lasted, and I felt weary. A long silence
followed, full of meditations. Democritus was the first to speak.
“Thus, with such a vast knowledge, humanity now possesses phi-
losophy. Or am I mistaken?” he quickly added, catching a glimpse
of my embarrassed look. I tried my best to appear confident and
told them about the planet being invaded by technology, the popu-
lation explosion, and the quest for values that would permit us to
cope with an unprecedented situation. I saw some smile and many
others frown. “How about the gods?” one of them asked. I did not
reply.

xv
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At that point the interrogation began, and I found the place less
welcoming. My judges made frequent pauses to consult each other
heatedly, but kept relentlessly pressing me for answers. Each
time they mentioned ethics I was at a loss, and they soon dropped
the subject. “A barbarian,” I heard, “perhaps even a slave or a
craftsman.”

I reacted. “Yes, a craftsman, as we all are now. We have been
probing nature by means of experiments for four centuries, using
the instruments of our craft as much if not more than our minds,
and it is for this reason that we know so many things. If I tell you
why we have difficulty understanding our own knowledge, per-
haps you would be willing to help us.

“The sciences began among us as they did in Metapontum,
when Pythagoras’ disciples divided the immense curiosity of the
master into so many branches of study. Some devoted themselves
to music, others to mathematics, medicine, or plants; yet others
took up the study of meteors or the substance of the world, and so
forth. We are specialists, and that is our strength as well as our
curse; even our philosophers are specialists.” The eyes staring at
me had no pity. I felt compelled to add, “But we are doing some-
thing about it.”

“Thus,” I went on, “at this very moment everything might be
changing. Our experts communicate with each other, listen to each
other; each of them is in turn master and pupil. It’s as if the mind
sought its unity. Our knowledge is so vast, and so many people are
searching, that individual sciences merge. There is a quest for un-
explored borders and so specialists come together, surprised to be
in each other’s company. Groups coming from different families
are formed and, since necessity obliges, Agamemnon works side by
side with Priam; such is the abundance of provender that they can
feast together.”

“Excellent!” someone exclaimed, and then added, “But why
only now?”

“As you know well, you wise men, humans do not control their
destiny, and if things happen, such as this coming together, it is due
to the force of circumstances. It is taking place only now because
an extraordinary event has occurred: we have just discovered that
science is a whole. Don’t laugh, perhaps you already knew it, but
only instinctively, as a wish, while we are just leaving our divisions
behind.
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“Allow me to use an image to illustrate what has happened.
Imagine reality (the universe, physis, whatever you may call it) di-
vided up into plots, each of them the property of a particular sci-
ence. Each individual science was busy digging, unearthing roots
that it called laws, its own particular laws. At first, there was only
a tangle of thin filaments. As the digging went on, the tiny roots
began to join together to form thicker roots, reaching from one end
of the field to the other. Soon they ignore cadastral lines and extend
into neighboring plots. At present they form a harmonious lattice,
no doubt incomplete, but without any gaps. No, Protagoras, this is
not the consequence of the sole human will but something else: it
is Reality, the Being, perhaps, structuring itself right in front of our
eyes.

“Since when, you ask? It has been in the making for a long time.
For more than sixty years now physics and chemistry have known
that their foundations share the same laws; and it’s not only yester-
day that biology was invaded by chemistry and even by physics.
But as for unity, which is harmony and cannot be reduced to a
juxtaposition of components, it is only a generation ago that we
have seen it dawn; on the mind’s clock, this is yesterday, barely
enough time for mentalities to change and take stock, for realizing
where we stand.”

“The One . . .” says Parmenides dreamily. “So it comes to you
without being invoked or uttered. Lucky you mortals, for sharing
this oneness and being able to seize it through the mind.”

“Lucky the cities that possess philosophers,” says someone who
had probably just awakened, “for they have good laws.”

He was made to shut up, but his remark only increased my un-
easiness.

“Actually,” I said, “that is precisely what we don’t understand.”
There was an outcry, interrupted by Democritus, who said,

“How is that possible? At present you know, and therefore you
have in your mind the clear idea, the exact image of things, as I did
of the atoms. Hence, nothing would be easier than to communicate
it with words. Isn’t that what understanding, explaining the cos-
mos, is all about? What is holding you back?”

“Let me try to explain it using a remark of a friend of mine.
‘Nothing,’ he said, ‘except laziness, prevents a physicist from un-
derstanding the leading ideas in biology; but for me, a biologist,
nothing is more abstruse and obscure than the main ideas of
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contemporary physics or mathematics.’ He was expressing what
many others feel, and foremost among these, perhaps, the philoso-
phers. If my friend is so interested in physics, it is because he be-
lieves that its laws are, in some sense, the closest to the essence of
things (and no one mentions any possible reduction to another sci-
ence). What is then his problem? It cannot be due to a different way
of thinking, even though we sometimes hear references to the ‘liter-
ary’ and the ‘scientific’ types. Could it be that certain sciences, sim-
ilar to music in that respect, can only be mastered at an early age,
or that their study requires too much time? No, it is something else;
and from listening to Democritus one may wonder whether physi-
cists really understand their own science, or if they only have a
long but superficial familiarity with it. They never have in their
minds that absolutely clear image Democritus described; they may
well have a partial one, a perception of overlapping fragments, of
intuitive connections, but not a complete view.”

I appeared to have offended Democritus. “Why, do you not see
the atoms in your mind?”

“No. I try unsuccessfully to imagine them, but only mathematics
can truly express the concepts and laws of the physis. Pythagoras
will not find that idea surprising, but I’m afraid he would have said
the same thing as you regarding mathematics and numbers: that
understanding consists in having a clear idea in the mind, a sharp
representation, and that the demonstration only serves to confirm
its exactness. I also disagree with him on this point.

“I already mentioned a significant event that occurred only re-
cently (the discovery of the unity of science) but another, less
promising one, had preceded it—and almost prevented it, we
might say. It was quite sudden, despite some foretelling signs, be-
cause it only took two quarter-centuries, one in the nineteenth and
the other in the twentieth century. Three closely related sciences,
logic, mathematics, and physics underwent a transformation al-
most at the same time. Without a common cause, all three moved
from the visual, representable approach to the imageless, abstract,
formal one. One can understand the case of logic, because it had
always been formal without admitting it. Mathematics discovered
that it does not deal with any particular objects but only with pure
relationships, independent of any specific content, and so this sci-
ence no longer has any maternal contact with reality. As for phys-
ics, it had once again to yield to the prevailing circumstances, if not
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to destiny. The more we penetrated the nature of space and time,
and that of the atom, the more we realized that the only solid con-
cepts we could use as a foundation were no longer ‘visible,’ ‘ex-
pressible in words,’ but of a purely mathematical nature.”

“Are you saying,” someone interrupted, “that for physics to
move forward, to better reach the cosmos, it had to rely primarily
on mathematics at the very moment the latter was breaking away
from reality?”

“Yes, precisely. Although to be exact we should also mention
experiments and intuition. Thus, we could say a great deal con-
cerning the method of science, but some of us are so bewildered, or
perhaps so perverse, that they do not believe there is a method any
longer. Others maintain that science is a mere reflection of some
spirit of the times, that it is completely transformed by revolutions,
or that it is no more than a consensus among experts. How could
a philosopher find his way through this conspiracy of abdications
and ineptitudes?”

“Calm down,” Parmenides the kind says to me, “these people
are only too impatient to wait for the enigmas to be resolved at the
appropriate time. Consider how long we had to wait ourselves.
Tell us rather what your mathematics and physics are becoming,
since they seem to preoccupy you particularly.”

“Very well,” I said, “it goes more or less like this. Our mathe-
matics is presently entirely devoted to formalism, to symbol ma-
nipulation, to concepts that are constructed using axioms that defy
any representation. Its structures are supported by a logic that is
itself every bit as formal. Physics has found its primitive objects:
space-time and the elementary particles of matter, but at the price
of accepting that its principles and its foundations should be ir-
representable to the eyes of the mind.”

I got carried away again and shouted, “Our sciences are
blind like Homer, and like him, because blind, open to the entire
cosmos.”

“Then they are also mad like Homer, and like you, with your
three-drachma lyricism,” interrupted Heraclitus. “After all, they
call me the Dark Philosopher, don’t they? Why should there be
only one way to understand? Have you considered that?”

“Yes, some have begun to consider it,” I replied, hesitantly.
“They wonder whether the obscurity of the founding sciences is
inevitable, and if it is possible to ‘understand’ in ways other than
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the traditional ones. Certain recent works point in that direction.
They concern quantum mechanics, a sort of science of the primal
laws of matter, and the most haughtily formal. Those works were
undertaken by their authors without any philosophical preten-
sions, only to clarify certain aspects of the theory. But they might
have produced, unexpectedly, so to speak, something no one had
searched for and that might well be a new way to understand, as
you suggested.”

“A science normally produces knowledge, but how can it also
affect the nature of that knowledge and change the way we under-
stand?” asked an impatient voice.

“That is true,” I said, “we must carefully consider what is at
stake from the point of view of a philosophy of knowledge. It is
important to know that quantum mechanics rests on certain well-
defined principles. They were discovered on the faith of certain
experimental data, but their consequences have since been im-
mense. They prompted a reformulation of the foundations of all
physical sciences, and were many times confirmed in entirely new
circumstances. These principles exhibit such a harmony that with
them we can reach some previously unconquerable pillars. They
are formal, though, as I have already told you; that is, the essential
concepts involved are closer to mathematics than to anything our
eyes can see or our imagination represent, such as wave func-
tions—and there is still worse. The laws of physics are of course
based on those concepts, and the properties of matter they express
take the form of mathematical rules. No science could be more
formal.”

“Granted, but what’s all that to do with philosophy?”
“You see, these new and well-established laws totally refute

other principles of a philosophical nature, principles that had al-
ways been considered to be universal: intelligibility (the possibility
of seeing what exists in space and time), locality (each thing is in
some place), causality (there is no effect without cause), and a few
others.”

As I said this, I could see signs of concern appear on every face.
Only Heraclitus seemed to rejoice. Democritus was stunned, and it
was in a voice charged with emotion that he asked, “And what
have you done to avoid that?”

“A great scientist, Niels Bohr, saw to it that order was restored.
But he had to pay the price, a steep price. He didn’t bring back
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common sense, or even the principles you consider as natural, but
erected safety barriers beyond which thinking was forbidden. As a
result, the philosophical aberrations we discussed earlier were pre-
vented. Thus, he said, when we talk about atoms, we must refrain
from asserting anything in regard to their position or motion; we
can speak about them only using certain prescribed mathematical
terms. Philosophers, of course, wanted to ignore those barriers, as
did physicists, but all their efforts to cross the forbidden threshold
ended up in failure. Some spoke of a veiled reality, to express this
retraction of things under the scrutiny of the mind.

“A way around Bohr’s restrictions could be found only recently.
But even their authors did not initially understand what they had
accomplished. In hindsight, they realized that the formal tools they
had employed had provoked the equivalent of an epistemological
earthquake, a true reversal in the order of knowledge.”

“And so?” said a voice filled with impatience.
“The first step consists in reconsidering the roles of the laws and

our perception of facts. We have always assumed that science pro-
ceeds from experience, from pure and visible acts easily translated
into words, and from them it reaches the principles, not always
transparent but nevertheless a synthetic summary of the facts. The
new starting point is no longer experience, reality, but those same
principles, which are considered to be more solid and certain than
anything our eyes can perceive or our words express.

“Is that logical?” someone asked.
“Precisely. The whole question hinges on logic and its relation

with physical reality; the problem of reason, if you wish. Why was
Bohr forced to forbid thinking about the atomic world if not be-
cause the natural logic of language no longer applied in that do-
main? Some even thought that only a logic deprived of its roots
could describe the external world. But one of the consequences of
the new results was to show the existence of a convenient construc-
tion (which exploits the principles of the theory), thanks to which
we can talk about the quantum world with an impeccable logic,
albeit a formal one.

“Many questions become simpler by postulating a new princi-
ple concerning the use of logic in physics. As a result, some of
Bohr’s restrictions turn out to be irrelevant: precisely those that
forbade us to understand. Basically, the idea is to understand dif-
ferently: if logic has its roots in reality rather than in our mind, it
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is then possible to explain why our mind thinks the way it does.
Today it is generally assumed that the mind is conditioned by our
sensory perceptions: the world, from which our images come, and
the components of our language. But the world we perceive is not
the atomic world; it is made up of incomparably larger objects
whose appearance, even if it originates in atoms, has completely
different characteristics. If we can recover all the features of this
macroscopic world from the most general and abstract principles
of physics, then the reversal will be completed. Our vision of the
world and the common sense that goes with it will no longer ap-
pear as a universally reliable starting point, but rather as a by-
product of the laws of nature. As for the principles that were tradi-
tionally assigned to philosophy, we can demonstrate (for there are
demonstrations) in which domains they are still valid. We shall not
miss them, because we have better ones.”

“In short,” says Democritus, “science has given itself a unity. It
had become obscure with the rise of formalism, and it becomes
clear again by reversing the path toward knowledge. I once said
that intelligence should come before knowledge, so the way things
have turned out can only please me. Everything seems clear. Or am
I wrong again?” he added, seeing that I refrained from approving.

“It is a peculiar situation. Nothing is yet certain, and we must
proceed with caution because the possible consequences are too
great.”

“We have had enough of your convolutions! What is the
problem?”

“There appears to be a gap, a chasm, between the world of
thought, the theoretical world, and physical reality. It is as though
the power of logic and mathematics, after accounting for the mi-
nutest details of this reality, were unable to penetrate its essence.”

“So?”
“The theory is based more than ever on probabilities, on

chance, because the possibility of a logical description of the world
presently rests on this concept of probability. Thus, the essence of
the theory is a description of what is possible, but the essence of
reality is to be unique, so there is a gap between the two. We have
perhaps reached the limits of what Husserl and Heidegger, an ad-
mirer of yours, called the Cartesian project: the theoretical expla-
nation of the world using logic and mathematics.”
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I was interrupted by laughter of olympic proportions—it was
Heraclitus’.

“Naive you have been,” he said, “in believing that the irrepress-
ible change could be confined within the perpetual immobility, the
cosmos in the logos. Yet we have long been opposed to each other,
he and I (pointing to Parmenides), and you thought it was purely
by chance. But perhaps you are not as foolish as the Ephesians and,
if donkeys prefer oats to gold, you have at least seen the bottom of
the manger. The god whose oracle is at Delphi does not speak or
conceal but he can make a sign and this is certainly one: to under-
stand everything and finally come up against the ultimate limits of
thought. You got there, but you complain, you lucky mortals; you
don’t realize how rich you are. Wipe your souls and give up your
vulgar habits. The goal is there, within reach.”

I heard Parmenides whisper to Zeno, “Do you think they are
going to start philosophy all over again?” and the latter reply, “It
would be a nice paradox.”

xxiii
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IF WE MUST RETHINK today the links between philosophy and sci-
ence, it is because we are in the aftermath of a fracture. The most
fundamental sciences, those dealing with space, time, and matter,
those the Greeks would have called a science of Being, have broken
out of the limits of common sense and traditional philosophy. Our
objective is to identify, and in a certain sense repair, that void, that
breach in the continuity of thought that prevents us from being
fully aware of the state, the meaning, and the implications of sci-
ence. The best way to begin is certainly by examining how such a
situation was created.

It is convenient first to go back to the legacy, that is, to science
when it was all clarity. Only then, against this background, may
we be able to appreciate the evolution of knowledge in the course
of time and see the turning of the tide. We shall then find the ori-
gins of what we might call the spontaneous epistemology of our
time, a widespread conception of science that is persistent, short-
sighted as well, at times fostered among philosophers by the
writings of outdated authors—a conception stemming from yester-
day’s, not from today’s, science. To rid ourselves of this concep-
tion we must recognize it for what it is, which means retracing the
path that led to it. This is precisely what we are going to do.

The science we are going to talk about is not twentieth-century
science, but that of the reassuring books that made everything look
clear. It began with Bacon as a dream of philosophy, and it is not
surprising if so many philosophers were inspired by it: Descartes,
Malebranche, Spinoza, Leibniz, Hume, Kant, and many others.
They fed it back to us in an elaborate form, making even more
difficult the task of freeing ourselves from it.

To appreciate this dream, it suffices to remember the pre-
Socratics, whose works, for the most part lost, all carried the same
title, On Nature. We find precisely this physis in the writings of the
Milesians, the Pythagoreans, the Eleatics, and those from Abdera,
with their profusion of questions, naive and profound at the same
time, like those of a child. How eager they were to learn why and
how the sun shines, the sky is blue, the planets move, what are the
elements, and how to pierce all the mysteries of life which they, our
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ancestors, could only marvel at! We have the answers, and we also
know that true understanding requires more than that.

We shall talk of the time when science was young and still intui-
tive, in natural agreement with our perception of the world; classi-
cal, in short, as classical as Praxiteles’ statues or Mozart’s sympho-
nies: a plain limpidity. We shall go right to the point with the help
of a few significant examples, because completeness is not neces-
sary. There are encyclopedias for that, and detailed knowledge
may well hamper understanding.

We shall first talk about logic, the misunderstood. Like dia-
mond, logic is pure, transparent, and also most impenetrable, ca-
pable of leaving its mark on everything. But we shall not discuss
logic the way too many philosophy books do today, merely as a
repetitious technique; rather, we shall explore parts of its history.
Naturally, there is a purpose to all this, because the nature of logic
ultimately raises the deepest question in science and philosophy,
and we shall later try to unveil some of its mystery.

We shall also say something of mathematics. Why? Because of
its central role in the structuring of the physical sciences. But math-
ematics will also have much to teach us by itself when, like a mod-
ern Logos, we shall see it slowly grow from a servant of science and
philosophy to a would-be queen.

As for the sciences of the physis (nature), we shall restrict our-
selves to physics, not from a mere predilection of the author but
because it is the discipline that will reveal to us, later in the book,
the major characteristics of contemporary science. Perhaps some
readers will find our emphasis on the most basic parts of physics
excessive. They might say, “No wonder one can get tangled with
enigmas by following this kind of track. However, the truth re-
mains that most of science is still clear, and becoming clearer every
day, accessible to most people; we can see its mysteries being
solved one by one.” On this transparence of the flesh of science I
agree, dear reader. Like you, I enjoy the new pictures of planets,
the motion of continental plates, DNA molecules looking like an
assemblage of balls, and all the rest. But then, behind the flesh there
is the marrow: the laws, their fleeting significance, and their tanta-
lizing unity. We are really only after that.

The first part of the book might well appear, however awk-
wardly, as a love song where the beloved is clarity. It must end in
Schubertian melancholy, however, because the bride is taken
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away. Nothing shows it better than a glance at the history of phi-
losophy, in the last chapter. At the time, philosophy too was living
a period of enlightenment. The Greek inquisitive and deep ques-
tioning on Being had apparently been forgotten and everything
was daylight and simplicity. For so short a time.

As we go along, there will be no conspicuous signs of a fracture,
only slowly developing cracks. We must recognize them when they
first appear, before they become chasms, and this is why we are
going to revisit history in broad outlines. We have no other pur-
pose in mind.
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Classical Logic

LOGIC IS the daughter of Greece, as are democracy, tragedy,
rhetoric, history, philosophy, and mathematics. It appears that in
most earlier civilizations thoughts were uttered rather than con-
structed; truth was immediately recognized, not requiring any
analysis to impose itself or be accepted. If humans have been think-
ing for a long time, it was only in a definite place and at a definite
time that they began to dissect their own thought mechanisms in
order to be able to reason. They were forced to admit that reason-
ing obeys its own laws, and that it does not give in to the will of the
reasoner or the commands of the gods.

Logic has become for us the backbone of reason, even if we
ignore what it is, as we ignore the justification for our almost blind
trust in its power. When experts define logic as consisting of “prin-
ciples for the validity of deductions,” it is clear that they are at-
tempting the impossible by using words without substance.1 These
basic questions about the nature of logic are nevertheless essential,
for they will continue to bear upon everything we shall see after-
ward. The philosopher knows it, the scientist simply ignores it and
carries on; it is the poet who says it best: “I’m but a maker of
words. The words, who cares, and myself, who cares?” It is in a
poem, rather than in one of his philosophical writings, that Nietz-
sche delivers this tragic confession.2 Thus, every learned book is
founded on ultimate ignorance. At the opening of this one, I would
like to exorcise this curse. This is not an innocuous remark, for it

1 See William and Martha Kneale, The Development of Logic (Oxford: Clar-
endon, 1978; 1st ed., 1962). This treatise has been our primary source.

2 Saint John Perse, a French poet, said it magnificently: O très grand arbre du
langage et murmurant murmure d’aveugle-né dans les quinconces du savoir (Oh
language, standing like a high tree, you are also the mumbling whisper of one,
blind from birth, wandering through the labyrinth of knowledge). It is probably
impossible to translate. Poetry can convey the anguish we may sometimes experi-
ence regarding language and sense, because a poetic sentence is the exact opposite
of a logical proposition. No word can be changed and many harmonious mean-
ings sing together.
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appears to imply that we cannot talk logically about logic in the
absence of an already established foundation for language. There
is no starting point for thought; it must begin with the imprecise,
the conventional, the value of which will depend only on the extent
of its fertility. Later on, this dark starting point will perhaps be
enlightened by the knowledge that followed from it, and become
part of a coherent circle. Such is our ultimate goal: to see the fruit
of knowledge, born of an obscure seed, bear the same seed again
with a meaning. Having said that, let us proceed without further
questioning, since there is nothing else we can say on this matter
for now.

To proceed means to accompany logic, in the present chapter,
through its classical period up to the dawn of what was later to
become formal logic.

PYTHAGORAS AND THE PARIAH

If I had to name the greatest thinker of all times, I would say with-
out hesitation the unknown Pythagorean. After all, Pythagoras
himself was perhaps only the one who came to announce the king-
dom. We know that he was born in the Island of Samos, early in
the sixth century B.C., and that he traveled to Egypt where he was
taught by the priests of Amon, the human-headed god of Thebes.
It is also said that he met the “naked philosophers” of India. He
finally settled down in Croton, a Greek city in southern Italy,
where he founded an ascetic and mystical sect.

He could have been just one of the countless gurus forgotten by
history, and we are not interested in learning that he taught the
transmigration of the soul, or that he was said to have a thigh made
of gold. If we are interested in him, it is because of his presence,
abundantly documented, at the origins of the intellectualism that
was to impregnate Greek thinking. For Pythagoras, the intellect
was the most important human faculty, one whose sole power can
lead to a form of truth stronger and deeper than any other.

His vision of nature seems to us bold in the extreme. He said
that numbers rule the world. This conviction appears to have been
based on a simple fact: he had observed (or learned) that the lyre’s
harmonies depend on the exact place where the string is plucked,
and that the musical intervals pleasant to the ear—octaves, thirds,
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or fifths, as they are now called—come from strings whose lengths
are in the same ratio as two whole numbers. However, to assert
from this fact that “everything is number”—considered by some as
the program of mathematical physics, even if it was stated well
before the birth of either physics or mathematics—is an enormous
extrapolation, almost utterly absurd, which leaves us stunned, in
admiration, but also, we must confess, doubtful.

There exist many other examples of such astonishing illumina-
tions among the pre-Socratic thinkers, often combined with ideas
that are plainly fallacious. In fact, the genius of Pythagoras, and
also of some of his disciples, was to have taken the first steps to-
ward the demonstration of their ideas, that is to say, they knew
how to show their ideas true in particular cases. To be sure, they
did not entirely succeed but, as is often the case in the history of
ideas, what they found turned out to be more important than what
they were looking for.

Their first victory was the discovery of the famous Pythagoras’
theorem for right triangles. Nobody knows how they did it, but
most historians agree that they must have based their conclusion
on some figure where the result may be immediately perceived by
an attentive eye, and which does not necessitate any elaborate ar-
guments. In other words, Pythagoras’ theorem, just like that of
Thales on parallel lines, is not enough evidence of a decisive prog-
ress in reasoning, and they only testify with certainty to a well-
developed sense of observation. That theorem was most probably
an observed truth, and not the result of unrelenting reasoning, but
it was also an invitation to ponder over the mysterious number
measuring the diagonal of a square, what we call the square root
of 2. Which fraction was it?—for it could not be anything but a
fraction made up of the only numbers worthy of ruling the world:
the integers.

It is at this point that there enters the picture a man deserving the
highest admiration and of whom we ignore almost everything,
even his name. He was going to devote himself to the problem, no
doubt after many others had done so. We may imagine him young,
chosen by the Ancients for his brilliant intelligence when he was
still an infant, a Greek child from southern Italy. I often dream of
the unknown face of this hero of the mind. What bold impulse,
caused perhaps by the failure of fruitless searches, or what compel-
ling dream drove him to dare think the unthinkable: could it be
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that the elusive number had no name, that it was irreducible to the
integers, those guardians of harmony? How to exorcise such a
doubt?

We may presume that he had to meditate for a long time, tread-
ing as he was on uncharted territory. For the first time in human
history, a man was going to establish an irrefutable truth by the
force of reason alone. We ignore the particulars of his argument,
but there are not many possibilities, and the records left by the
mathematicians who were soon to follow him are conclusive.
Proving that there is no quotient p/q of integers whose square
equals 2 requires all the power of a logical argument. One must
show that every even square is the square of an even number,
and every odd square the square of an odd number; that one can
always divide p and q repeatedly (both by the same number) until
at least one of them becomes odd. One must especially be able
to carry the argument to its successful conclusion, without leav-
ing any loopholes, and to demonstrate that assuming the square
root of 2 to be the quotient of two integers leads necessarily to a
contradiction.

We can imagine the Ancients, unable to demolish his flawless
argument, covering their faces with dust. He was cursed and de-
clared blasphemous. According to one legend, the gods saw to it
that justice was done in the form of a shipwreck. But it could have
been the Ancients themselves who threw him into the sea in a
broken-down ship, near the sharp reefs of the Calabrian coast.3

Thus perished, perhaps, so that he would forever remain un-
known, the one who brought us the light of reason, by Apollo
anointed; Pythagoras, his forerunner, had been merely an omen.

He had opened a way, a boundless path, and it was now known
that the mind, tightened by will and restrained by rigor, may have
access to truth by the sole use of skillfully controlled speech. The
mind had discovered its own strength, surprising itself. Logic was
definitely born, with its inferences, its “hence” that stands no
challenge, lest the challenger be swallowed by contradictions. At
the same moment, mathematics too was born, because it was
no longer limited to showing a property true by an example or a

3 We only know with some certainty that a tomb for Hippasos of Metapontum
was built while he was still alive (“Let him be declared dead!”, meaning “We
consider him as being already dead,” and not “We want him to die”). All he had
done was reveal the secret of the uncommensurables to the noninitiated.
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figure, being now able to prove it conclusively by reasoning. Ge-
ometry was going to seize this brand-new tool right away and use
it to create other wonders.

PLATO AND THE LOGOS

It is impossible to touch upon the theory of knowledge without
first referring to Plato. He is not usually considered a logician, even
if some of his dialogues contain several principles of logic. But his
logical expertise is not systematic, and some of the rules he pro-
poses are plainly wrong. He shows his talent elsewhere, in the The-
aetetus and The Sophist, where he establishes himself as the first
philosopher of logic by asking some fundamental questions that
still mark out certain parts of today’s science: What is truth and
how do we recognize it? What is the nature of reason, and where
does this faculty of deducing one truth from another come from?
What is the nature of a definition, and what is the thing defined by
the words? He attempts to provide answers to these questions but,
despite their significance, we shall not discuss them, since their
value is mostly historical. The context in which he places these
questions is, on the other hand, much more interesting and de-
serves to be recalled.

Plato assumes the existence of “Forms” (sometimes translated
as “Ideas,” with a capital “I”), whose theory he develops in one of
his latest dialogues, the Republic, with a strong Pythagorean fla-
vor. It is easier to grasp the notion of form by resorting to examples
and, rather than borrow Plato’s—too dependent on their time—we
shall use one from Descartes, which has the advantage of being
very clear: “When I imagine a triangle, even if perhaps such a fig-
ure is nowhere in the world to be found except in my own mind,
and it has never been, it does nevertheless exhibit a certain nature,
or form, or definite essence of this figure, which is immutable and
eternal, and which I have not created, and which does not depend
upon my mind in any way whatsoever; as appears to be the case
since one can demonstrate certain properties of this triangle.”4

An Idea, in Plato’s sense and such as described by Descartes, is
not something concrete, something we could point at. A figure

4 Descartes, Méditations métaphysiques, fifth Meditation.
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drawn on a piece of paper is merely the image of one triangle, and
not the triangle—essence of all possible figures of the same sort.
Now, Plato never doubts the existence of an Idea of the triangle,
something perfect, not of this world, and which is not simply the
mental representation of a collection of figures, each one being
nothing else than a particular idea deserving, at best, a lower case
“i.” The Idea is a “Form,” that is, a perfect mold where the lowly
ideas may dwell as so many interchangeable samples of their divine
model. We shall quote two passages from the Republic, the first
one stressing the uniqueness of the model to which its multiple
manifestations conform: “Since the beautiful is the opposite of the
ugly, they are two. And since they are two, each is one. And the
same account is true of the just and the unjust, the good and
the bad, and all the Forms. Each of them is itself one, but because
they manifest themselves everywhere in association with actions,
bodies, and one another, each of them appears to be many.”

The second quotation illustrates well the nature of the problem
that the theory of Forms intends to solve, which is to account for
both the descriptive and the demonstrative power of language:
“We customarily hypothesize a single Form in connection with
each of the many things to which we apply the same name.” We
have therefore access to truth through reason because language
refers directly to Forms, which have an independent existence and
constitute the mold of all earthly things.

Forms do not belong to this world. They reside in a world of
their own, an empyrean that Plato calls the Logos. To illustrate it,
Plato turns to the famous myth of the cave: Humans are like pris-
oners chained from birth to the walls of a cave which represents
the world down here. The real world, the true one, that of the
Logos, is the external world full of light in front of the cave’s en-
trance, where human beings move freely, there are trees, and ani-
mals passing by. The sun projects their shadows on the cave’s wall,
and the prisoners, seeing only these shadows, take them for the
only reality.

It is therefore in the existence of the Idea that we must seek the
power and the principle of the definition, which serves to liberate
the unique Form from the variety of appearances and the multi-
plicity of manifestations. The faculty of reasoning, this possibility
to demonstrate referred to by Descartes in the above quotation,
results from the existence of certain particular Forms that are in
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communication with all the others, those expressed by words such
as “being,” “same,” “other.”

The theory of Ideas will be attacked by Aristotle, but it will re-
appear many times under different disguises. We know only too
well the importance in theology of the idea of a divine kingdom,
truer than the world of creation. Plato’s conceptions will remain
almost intact in the philosophical doctrine of realism, so popular
during the Middle Ages, according to which words and ideas refer
to Forms having their own reality, of a higher order than the reality
perceived by our senses. The same Ideas can still be partially found
today in what is called “mathematical realism,” shared by the nu-
merous mathematicians who, like Descartes, believe that mathe-
matical concepts have an independent existence, of a different kind
from that of the material world.

THE LOGIC OF ARISTOTLE AND OF CHRYSIPPUS

It is preferable to set aside for the time being the difficult questions
raised by Plato, and go back to logic as a science and a method, in
those days still looking for its own rules. The goal was not to deter-
mine the source of its power of persuasion, but a somewhat more
modest and practical one: learning how to reason correctly, with
enough caution to be protected against error.

From the outset, we can see opening up two different domains of
application. One of these is mathematics, while the other, often
tinted with rhetoric, aims at the correct use of the words and con-
cepts of everyday language. Logic has always been torn between
those two poles. The first domain, by its very nature and by its
fertility, provides enough evidence of the power of logic, and it is
in its deep relationship with mathematics that logic will finally find
its purest form, albeit more than two thousand years later. On the
other hand, the second domain—that of ordinary words and
things—will not cease to remind it of the legion of traps into which
the ambiguity of words or an incomplete knowledge of things may
carry it, and it is in this realm that logic will first begin to purify
itself.

Greek civilization has bequeathed us a sound logic, built over
many centuries. Two different and often opposing schools contrib-
uted to its construction. The first in chronological order was that
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of Megaris, a city of Attica, on the Isthmus of Corinth. Its founder
was Euclid of Megaris, not to be confused with the celebrated
mathematician Euclid of Alexandria. Our Euclid was a contempo-
rary of Plato and an heir to the Eleatic tradition emanating from
Parmenides. The Megaris school would in turn give rise to the Por-
tico (stoas) school or Stoicism, remarkable for the vigor of its re-
search in logic, thanks in particular to the works of Chrysippus
(281–205 B.C.). The other major school was that of the peripa-
tetics, founded by Aristotle (384–322 B.C.).

We shall leave to the specialists the analysis of the differences
and similarities between the two schools—which were eventually
to converge, to a large extent. More important for us is to establish
their joint contribution. This we shall do by staying as close as
possible to the modern ideas whose origins we seek to determine—
an approach certainly open to criticism.

It is well known that Aristotle considered reasoning by syllo-
gism as the perfect archetype of logic. The example he used, trans-
mitted to us through the centuries, is also familiar: “All men are
mortal; Socrates is a man, hence Socrates is mortal.” As a matter of
fact, the syllogism does not really deserve all the attention it has
attracted, for it leads to an unwieldy system of logic, long ago
abandoned. A convincing example of a syllogism would be hard to
find in any good mathematics textbook, ancient or recent.

The significance of Aristotle’s analysis lies elsewhere, and fore-
most in the study of premises such as “Socrates is mortal,” “A
triangle has three sides,” and so forth. He observes that these are
not simple sentences but propositions that retain the same mean-
ing regardless of their particular formulation. For instance, the
sentence “Socrates is mortal” means the same thing as “Xan-
thippe’s husband will one day cease to exist,” not one word of
which appears in the first version. Aristotle concludes that, if logic
seems inseparable from language, it lies at a higher (or at least
different) structural level, that is, in the domain of meaning we call
semantics.

It is not always easy to tell language apart from semantics, or a
sentence from a proposition, and logic will often get entangled in
such obstacles. Indeed, words can have a thousand meanings, a
thousand connotations, and when we say, for instance, that “Soc-
rates is a rose,” it is not at all obvious that we have not uttered
a proposition, for comparing someone to a rose admits many
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symbolic interpretations. This initial difficulty was only going to
be resolved by the formal logic of our time and its notion of “uni-
verse of discourse,” which amounts to carefully restricting a priori
the propositions we are allowed to consider.

Propositions are the pawns logic moves forward, those that it
conjoins, compares, opposes, and combines to create new ones.
How does it do it? Aristotle and Euclid of Megaris note that prop-
ositions may take two forms, at the same time different and in-
separable, one of which is positive and the other—its contrary—
negative; for example, “Socrates is mortal” and “Socrates is not
mortal.” Logic does not restrict itself to finding and telling the
truth, as an oracle would, but it initially places on the same level
the eventually true and the eventually false before reaching a deci-
sion. This is based on a fundamental rule that we owe to Aristotle,
the principle (or law) of the excluded middle: a proposition must
be either true or false. Even today, this principle is the cornerstone
of logic, and anything having the appearance of a proposition but
not obeying the principle must be banned from the garden of logic.

Aristotle is also breaking new ground when he distinguishes be-
tween universal propositions (“Every living man has a head”) and
particular propositions (“Some men are red-haired”), and he
clearly indicates the difference. Modern mathematical logic has
even introduced specific symbols for each of these forms, which are
stated beginning with the standard “for all” (or “all”) in a univer-
sal proposition, and “there exist” in the particular ones. Thus, the
above examples would become “All living men have heads” and
“There exist red-haired men.”

We shall not accompany Aristotle any further, and rather follow
the works of the Stoics, in particular those of Chrysippus. It is
worth noting that it was Chrysippus who Clement of Alexandria
used to mention as the master of logic, together with others, such
as Homer in poetry, Aristotle in science, and Plato in philosophy.

Rather than using syllogisms, which soon become cumbersome
as the number of premises increases, Chrysippus calls attention to
some simple and better ways of combining propositions. It suffices
to wisely employ the short words “or,” “and.” He specifically dis-
tinguishes the exclusive “or” from the nonexclusive “or,” the first
one corresponding more closely to “either, or” (“Either you buy
the newspaper or you put it back on the shelf”), while the second
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allows for several possibilities not necessarily incompatible (“I
enjoy reading novels or funny books,” which is nonexclusive, for
some novels may be funny).

Chrysippus managed to find the proper rules to manipulate
what are now called the logical functions “and,” “or,” “not.”
They are so named because, just as mathematical functions do,
they associate a well-defined object to one or several given ob-
jects—propositions, in the present case. Given a proposition a, the
function “not” defines another proposition “not-a”; in the same
way, given two propositions (a, b), one can form a new propo-
sition, “a and b”; and similarly for “or.” Chrysippus not only
identified the connectives but gave precise rules concerning the
composite propositions, such as “a and a” = a; “a and not-a” is
impossible (this is the law of the excluded middle). There are more
than a dozen rules we probably owe to Chrysippus, although it is
hard to differentiate his contribution from that of his successors.
Let us notice, in passing, that the use of letters to represent proposi-
tions as we have just done, and Aristotle and Chrysippus also did,
was common practice among the Greek.

The important notion of deduction, also called logical inference
or implication, was recognized and clarified as well. It comes up in
sentences such as “If a, then b,” usually denoted by a ⇒ b. Deduc-
tion is without question of primary importance in logic, for it is
thanks to it that we can build arguments leading from hypoth-
eses to conclusions. Two rules of great significance also appear at
this time: transitivity, according to which a ⇒ b and b ⇒ c entail
a ⇒ c; and reciprocity, which decrees that the conditionals a ⇒ b
and not-b ⇒ not-a are equivalent. Finally, the nature of the initial
truths is elucidated. These are propositions whose truth is assumed
from the beginning, either because it is self-evident (the axioms) or
is accepted by convention (the postulates).

On the whole, the essentials of logic have already been con-
quered before the end of antiquity. If anything, logic contains too
much, too many outgrowths which do not really belong to it but
result from the fact that the development of the physical sciences is
trailing that of the science of reasoning. Also, a considerable
amount of the logical expertise of the Stoics will be ignored or
misunderstood for a long time, because imperfectly transmitted
during the Middle Ages, and systematically underestimated in
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favor of Aristotle’s (and his commentators’) works. That ancient
knowledge was again overlooked in the modern age, our civiliza-
tion having clearly fallen behind in the domain of logic until its
revival during the nineteenth century.

Let us sum up the main traits of this logic, to be used occasion-
ally later on: First, it is essential to delimit a domain of proposi-
tions*5 or a domain of thought (Denkbereich in German). These
propositions must clearly obey the law of the excluded middle.
Then come the axioms. They can be self-evident truths, principles,
or simply hypotheses. Propositions give rise to new ones through
the use of the logical functions “and,” “or,” “not”; the truth (or
falsity) of the latter depending on whether it can be established by
deduction from the (assumed) truth of the axioms.

The undisputed masterpiece of ancient logic remains Euclid’s
Elements, manifestly written with little influence from Chrysippus,
despite the fact that the mathematician and the logician were con-
temporaries (but the former lived in Alexandria and the latter in
Athens). Logic proper appears less clear than mathematics for it
repeatedly fails to deliver, employed as it was to treat foggy, in-
scrutable subjects: nature and the gods.

THE PARADOXES

For all practical purposes, the history of what we have called clas-
sical logic ends in the third century B.C. The sap has dried out. To
be sure, logic would be revived in the Middle Ages by Scholastic
philosophy, but without adding anything of substance to what was
already known—on the contrary, as we have just seen, the mean-
ing of the Stoics ideas would be partially lost. The Renaissance and
the classical period marked, surprisingly, a regression. The famous
Logique of Port-Royal, by Arnauld and Nicole, does not measure
up to the medieval works of Albertus Magnus and William of
Okham. This temporary regression may be explained by the devel-
opment of science. Instead of proceeding by pure reasoning and
from postulates that were often arbitrary, science found a new im-

5 We have tried to restrict the use of technical terms, but some of them are
nonetheless convenient, even if not always familiar to the reader. A brief glossary
appears at the end of the book. An asterisk indicates the first occurrence of a term
on that list.

16



C L A S S I C A L L OG I C

petus through observation and experimentation. Very few thinkers
are then watching over logic’s unsteady flame; only Leibniz,
among the truly great. Perhaps that was precisely what enabled
science to be born, by shedding the burden of intellectualism and
its illusory dreams. In fact, logic would only reappear in the nine-
teenth century, under the pressure of new and difficult questions
coming from mathematics.

We will steer clear of the main trends in logic, which remained
dormant for a long time, and simply glean some grains of wisdom
from antiquity. As we have already mentioned, it is important to
consider only propositions that satisfy the law of the excluded
middle. Violating this condition, which is not always easy to ver-
ify, may lead to paradoxes. Etymologically, a “paradox” is a prop-
osition that seems to say something opposite to common sense, but
the word is gradually replacing what used to be called an aporia
(the precision so dear to logicians sometimes borders on pedantry),
that is, an untenable proposition, often self-contradictory.

In the Megaris school, paradoxes were gladly exchanged, often
in a playful mood, as in the following example involving
“horned,” a word with undertones of conjugal infidelity. It began
with the premise “What you haven’t lost, you still have.” The
naive conceded that much, only to be told, “You haven’t lost your
horns, hence you still have them.” Joyous laughter followed on the
squares of Megaris. Just a joke, you may be thinking, except that
some of Plato’s own arguments, supposedly serious, were not
much better. It was the time when logic was trying to find its way,
and paradoxes taught it how to protect itself against its own traps.

The ancestor of paradoxes dates from more ancient times. It is
due to Zeno of Elea, a pupil of Parmenides and older than Euclid
of Megaris. Zeno wanted to defend Parmenides’ claim that “The
Being is immobile” against some genuine objections borrowed
from Heraclitus and other less serious criticism dictated by com-
mon sense. Indeed, they said, Parmenides’ proposition is absurd,
for everything is in motion, including the celestial spheres, and no-
where in this world is there room for the eternally immobile.
That’s a mistake and an illusion, replied Zeno; motion does not
exist, because it contradicts itself. Here is my proof: Can Achilles
with his winged feet reach the boundary stone of the stadium? He
needs a lapse of time to travel half the distance, and still another
lapse of time to travel half the remaining distance, and so on and so
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forth. Hence, he needs infinitely many time intervals to reach the
stone; but that is an infinite amount of time, as you will all agree.
And so Zeno stopped Achilles, “immobile at great strides,” by
means of words alone.

We are no longer troubled by this paradox, because we know
that the sum of an infinite number of (unequal) time intervals may
be finite. This example is nevertheless interesting, because it re-
minds us of the extent to which the logical treatment of infinity is
subtle. Thomas Aquinas himself was tricked by it into error, and it
is thanks to infinity that logic will have the opportunity to be re-
born, late in the nineteenth century.

Let us mention a last paradox from Megaris, one that is still very
popular: the paradox of the liar. We understand here by “liar” not
just someone who habitually tells lies, but a person who never tells
the truth. The most familiar version of the paradox goes like this:
“Epimenides, the Cretan, says that all Cretans are liars.” This is
clearly a paradox: if Epimenides tells the truth, he is an example of
a Cretan who has told a truth, hence, he has lied. If he lies, the
contrary of what he says—Cretans never lie—must be true, so he
must be telling the truth.

Rather than a paradox, this shows how one can play on the
meaning of the words. Indeed, the negation of “All Cretans are
liars” is “Some Cretans tell (sometimes) the truth”—and not “Cre-
tans never lie.” There is therefore a way out. But how about the
man who declares, “I am lying”; either he is telling the truth, and
then he must be lying, or else he is lying, in which case he tells the
truth. This is already more difficult to explain away, and we can
see that what is called into question here is the law of the excluded
middle.

Modern logic would split the problem in two. Propositions of
the type “X says that . . . ” were studied by the Anglo-Saxon phi-
losophers of language, logicians generally believing that they do
not belong to the field of logic. But there is another angle to Epime-
nides’ example: an element (Epimenides) of a set (all Cretans) oc-
curs in a proposition that refers to the whole set. Logicians recog-
nized the prime significance of this aspect, and that they ought to
exercise the utmost care when employing the word “all.”

The two lessons to be learned from all this are that we must be
careful not to succumb to the absurd when dealing with infinity,
and that the same applies to totality.
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TWO USEFUL NOTIONS

In what follows, we will have the occasion to put to use two no-
tions from the domain of logic. The first notion is a basic one, and
it is usually referred to by its Latin name: modus ponens. The sec-
ond notion, which belongs rather to the philosophy of logic, con-
cerns “Okham’s razor.”

Modus ponens* is a topic in pure logic. Although explicitly for-
mulated by Abélard (1079–1142), it was already known to the
ancients, since Euclid (the mathematician) systematically em-
ployed it to prove new theorems from old ones without having
to go back each time to the initial axioms and postulates. In every-
day life, all sorts of people—engineers, technicians, researchers,
teachers, and students—use modus ponens every time they use a
theorem or a formula whose proof they do not remember in detail.
We have essentially the same thing in logic: the possibility of start-
ing, in the middle of an argument, from a proposition previously
established, without having to justify how it was proved. Modern
logicians, who are careful not to sweep anything under the rug,
have demonstrated the soundness of modus ponens. We will leave
it at that for the moment.

“Okham’s razor” is more like a guiding principle for thought,
capable of shaving in many other domains besides philosophy or
logic. I mention it now but will not use it until the very end of the
book. William of Okham, of whom we know only the year of his
death, 1349 or 1350, was a Franciscan. He could have been the
model chosen by Umberto Eco for the hero of his novel The Name
of the Rose: a sensitive man, a sharp intellect, and a prolific au-
thor. He is better known in the streets of Oxford for the following
rule, Okham’s razor: Entia non sunt multiplicanda sine necessi-
tate (“Entities are not to be multiplied without need,” or why use
many if few will do? do not imagine multiple causes where only
one is enough, always try to keep the number of your hypotheses
to a minimum, define the domain of your discourse as precisely as
possible). In logic, do not multiply the number of axioms, and
eliminate redundancies, as Euclid did in his books. Do not hesi-
tate to apply the same principle in metaphysics: when you refer to
God as the Creator, it is pointless to assume other attributes of
creation because they are already present in the nature of God.
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Conversely, if grace fails you or intuition does not reveal to you
what this divine nature is, do not encumber your reflections on the
terrestrial nature with your ideas about God. Do likewise in phi-
losophy and in science, by reducing the number of principles. Clar-
ity will ensue.

THE UNIVERSALS

We shall close this chapter with an important page in the history of
logic, written in the Middle Ages. It is no doubt the only historical
example when a question concerning logic was passionately de-
bated, provoking endless public controversies and the interven-
tion of kings, popes, and saints. This is precisely what happened in
the eleventh century, when the small community of students and
clerics got all excited about a philosophical contest opposing the
great intellectuals of the time. Some of them are known outside
scholarly circles even today. Who has not heard of Abélard, great
master of seduction, who knew how to stir the enthusiasm of bois-
terous students, eager for a resurging knowledge? Who does not
know Saint Bernard, the preacher of the crusade and the rebuilder
of monastic life, whose passionate and mystic personality placed
him, with their concurrence, above popes and kings? The contro-
versy opposed these two men, as well as countless others after
them, for it would last almost two centuries.

This nominalism-realism controversy, as it is called, concerns a
question at the center of the philosophy of logic, important enough
to spill over the whole framework, and even the nature, of philoso-
phy. It is the question of the value of language as a means for at-
taining truth, or, in other words, the foundations of the theory of
knowledge. As Bertrand Russell rightly observed in his History of
Western Philosophy, this dispute raised a question that remains as
relevant as ever and at the heart of contemporary thought.

The question’s original formulation was both more precise and
narrower than Russell was later to make out. It involved philoso-
phy as it was taught at the time, under the combined influence of
Aristotle and Plato. What is the nature of the “universals”?—a
term that has practically disappeared from our language and
which used to designate the concepts associated with words. A uni-
versal is therefore a generic name such as “man,” “kindness,” “an-
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imal,” “soul,” “being”; all part of the vocabulary of philosophy in
its quest for knowledge. Knowledge progresses by an analysis in-
volving the judicious use of words; its conclusions are expressed in
words, and, in the Middle Ages, its sole mode of inquiry was
speech, the endless combination of words. It is therefore essential,
prior to any development of philosophy, to agree on the meaning
and the role of language, and in particular on the nature of the
universals. We must not forget that philosophy’s primary purpose
was to serve as the basis for theology, the latter being but a schol-
arly commentary on a divine message, at the same time revealed
and clouded by the words that carry it—but we shall not insist on
this particular aspect.

Two main theses clash from the beginning. We shall attempt to
summarize them without any claim to completeness, nor shall we
try to follow their evolution over time. The first position is that of
the supporters of realism. It is the great Platonic theory in which
the Ideas (or universals) are real. Medieval realists, however, do
not go as far as Plato in claiming that Ideas are more real than
material reality; nevertheless, they believe that they are conceived
by God for all eternity. The opposite point of view is nominalism.
This second thesis would profit the most from the dispute, and
become more elaborated as the latter develops. It originally ap-
peared in a form so transparent that it almost mocked itself: gen-
eral concepts are nothing more than the resonant utterings made
by the mouth in pronouncing the words; mere sounds that we use
to describe, in a more or less arbitrary manner, what we observe.
Or, as pointed out by Roscelinus—one of the first to enter the dis-
pute—they are only swellings of the voice.

There were no clear winners of the controversy, and interpreta-
tions vary according to the sources, the Dominicans (notably Al-
bertus Magnus and Thomas Aquinas) or the Franciscans (with
Duns Scotus and William of Okham). On the whole, a moderate
form of nominalism carried the day. The universals are modeled
on the reality accessible to humans (which includes part of the di-
vine reality). This reality exhibits a certain order, which results in
similarities within what we call, depending on its degree of gener-
ality, a genus (for instance, tree, stone, or human) or a species (oak,
ruby or lustful). However, the human mind has, to a large extent,
the privilege to choose as it pleases the criteria and the borders of
the categories that it decides to name.
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A short lapse of time separates the great masters of the end of
scholasticism from the first shudderings of science. The focus will
then be on the order present in nature, which is at the origin of the
practical and the semantic applications of the universals. During
the Renaissance, a research method was even developed consisting
in the comparison of the words used to designate natural events.
Whatever the case, it is only with Locke and Hume that this ques-
tion in the semantics of logic will be rekindled. We shall meet it
again then.
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Classical Physics

THERE WAS A TIME when things seemed to be really as we per-
ceive them, and physics was then “classical”—natural, simple, we
may also say, or even naive, had it not soon become too rich to fit
any of those descriptions. This youth of science will be our next
topic, from its origins till near the end of the nineteenth century. Of
course, we shall not retrace its entire history, only put out enough
landmarks here and there to see how the rise toward formalism
gradually imposed itself and, at the same time, consistency settled
down. Maxwell’s electrodynamics marked the end of this age of
innocence. Afterward, nothing was ever the same.

ASTRONOMY, FROM HIPPARCHUS TO KEPLER

Would science have ever been born, wondered Henri Poincaré, if
man had not been able to contemplate the stars’ peaceful and or-
dered parade through the skies? Wouldn’t eternal clouds, such as
those covering the sky of Venus, have darkened the mind as well as
the heart? As for sunshine, who knows what craving for purity and
brightness it can inspire? Babylonians, Chinese, Indians, Egyp-
tians, and Incas kept records of the heavens; and the northern peo-
ples too, from Stonehenge to the Mongolians, those worshippers
of the eternal blue, tracked the constellations and their swaying
across the sky at the beat of the seasons.

Mathematics’ first stammerings appear to have been related to
the observation of the sky. The prevailing regularity of the celestial
bodies was perhaps an invitation to confirm it, to make it explicit,
and to predict it by means of numbers. Among the western civiliza-
tions, the Babylonians did it, and the Greek intellectuals will do it
too, once equipped with real mathematics. It took a shrewd mind
to discover, early on, that the earth is round, as its shadow on the
moon indicates (Parmenides is credited with being the first), and
later measure quite accurately its circumference (Eratosthenes,
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284–192 B.C.). A few years earlier Aristarchus of Samos had al-
ready estimated the distance from the earth to the sun and the
moon.

All these discoveries were not exclusively motivated by a yearn-
ing for knowledge and understanding. They were rooted in a
preexisting representation of the world. The desire to predict the
march of the planets was intimately connected to a very ancient
belief in their influence on the life of men and empires. In Pythago-
rean intellectualism, among other schools, the celestial world was
inexorably coupled with an idea of perfection. This association
will push Aristotle to conceive principles that are purely mystic: the
paths of the celestial bodies must be perfect, hence they can only
follow the sole perfect curve, the circle (the circle’s perfection was
justified by its being the only curve equal to itself at every point).
Aristarchus provides another example of this difficulty in aban-
doning the traditional representation of the world. Hadn’t he pro-
posed that the celestial phenomena could be more easily under-
stood by assuming the earth to be simply a heavenly body moving
around the sun? But then the earth would be carrying along with
it the Olympus, the abode of the gods. What a sacrilege! This im-
piety would cost Aristarchus dearly. He was condemned and had
to renounce his idea, or at least keep it to himself.

The paradigm of the Greek astronomer was Hipparchus. He
lived in the second century B.C. but no one can tell exactly when,
a cruel irony for a man of numbers and a master of time. Like all
his predecessors, he believed that the stars are fixed to a celestial
vault, a spherical canopy of heaven revolving around the earth in
twenty-four-hour cycles. Each star thus describes a circle, the per-
fect curve. Hipparchus keeps a detailed record of his observations,
tracking the precise location of heavenly bodies in the course of
time. He also makes use of ancient data, and will eventually dis-
cover the precession of the equinoxes (the occurrence of the equi-
noxes earlier in each successive sidereal year), which he interprets
as a slow swinging of the axis of the stellar sphere.

He also notes a discrepancy between the actual planetary mo-
tions—counting the sun and the moon as planets—and the circular
paths that perfect bodies would be expected to follow. The planets
are therefore only almost perfect, as their close proximity to the
earth suggests. Hipparchus then wonders what kind of motion,
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less than perfect but still appropriate to celestial bodies, might ani-
mate them. To his astonishment, he finds two possible answers.
The first one involves the combined motions of two circles, C1 and
C2, say. The center of C2 travels along C1 with uniform circular
motion, while at the same time the planet describes the circle C2,
also with uniform motion. The resulting planetary path is a rather
complicated curve, the epicycloid (from epi, “on top,” and kuklos,
“circle”). The second solution is that of the “eccentrics.” It is con-
ceivable that the moon, for instance, should indeed describe a cir-
cle (with uniform motion), but one whose center is different from
the center of the earth. The existence of these two solutions (nei-
ther of which, by the way, is entirely correct) will play a central
role in the history of philosophy, and will provoke some of the
oldest and most profound reflections on what it means to under-
stand the world. We shall return to it.

After Hipparchus, as the observations became more accurate
and took place over longer periods of time, sky watchers realized
that neither epicycloids nor eccentrics could account for the mo-
tions of Mars and Jupiter. It then became necessary to resort to
more complex constructions, involving three or more circles roll-
ing over each other, and giving rise to even more intricate trajecto-
ries, the epicycles. The necessary calculations, extremely difficult
considering the available means, were performed principally by
Ptolemy of Alexandria (90–168); their accuracy in predicting
eclipses, conjunctions, and oppositions was truly remarkable.

Our purpose not being to relate the history of astronomy, we
shall skip the valuable Chinese observations as well as the medi-
eval works of Arabic and Persian astronomers, and move on right
away to Copernicus (1473–1543). Shortly before his death, he
published a work summarizing his calculations of the celestial mo-
tions over many years. These calculations are based on Aristar-
chus’ hypothesis, by then forgotten or simply ignored: the sun, not
the earth, is the center of the world, and the latter rotates around
the former. Planetary motions are still explained in terms of epi-
cycles, but they become considerably simplified. For instance, in
the new theory, the apparent motion of Jupiter as seen from the
earth results from the combination of two motions: those of the
earth and Jupiter each rotating around the sun. From the apparent
motion of the sun he infers the motion of the earth, and then uses
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the latter to systematically correct the apparent motion of each
planet. In so doing, Copernicus greatly simplifies the system of
epicycles.

Much has been written about this “Copernican revolution,”
which offers two very different aspects. The first one, purely em-
pirical, is a notable but rather technical progress that only the ex-
perts could appreciate: the number of epicycles was reduced, thus
simplifiying the calculations—which were in any case the business
of a small number of people. The second aspect is an unprece-
dented event in history: humankind has changed its representation
of the world in a space of one generation.

Rather than repeat things that have been said one hundred times
before, we shall refer to Giordano Bruno (1548–1600) to demon-
strate what was at stake. His case, by its extreme character, consti-
tutes the best example. He was a well-educated man, being a Do-
minican—at least until his daring views got him expelled from the
order—and driven by a strong desire to understand. Copernicus’
theory was for him like a second Revelation. From it follows that
the earth is merely a planet, and the sun just another bright celestial
body, no different from any other star. Hence, there is no particu-
lar reason for this sun to be at the center of the world; this center
is everywhere: the universe is infinite. There are also countless
stars, separated by enormous distances, as proven by the feeble
light that reaches us; and around each one of them there must be
other planets, no doubt inhabited, just like ours. Bruno is not re-
ally a physicist. His modest contribution to this science was limited
to some relevant remarks on the centrifugal force and on the earth
dragging along the atmosphere, by which he explained our being
unaware of the earth’s rotation. If he seems great to us, it is as a
theologian and philosopher: he dares turn the Thomist method
against itself, drawing the boldest conclusions from the new ideas,
and undermining the most sacred dogmas to reach a pantheistic
vision of the world, where creation and Creator become one and
the same entity. We know that his views cost him his life by fire,
victim of a vision of the world that nobody wished to see changed.

Let us close this parenthesis and move forward to Tycho Brahe
(1546–1601), the perfect model of a sky watcher. A Dane, member
of the nobility, he had a number of measuring instruments built for
his observatory in the island of Uraniborg, astrolabes and gno-
mons of the highest quality, although none of course equipped
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with optical devices. He observed the sky for more than twenty
years, recording the position of heavenly bodies and events in his
Rodolphine Tables, to be completed at Ratisbon. It was there that
he hired as his assistant a young German with a gift for calcula-
tions, Johannes Kepler (1571–1630).

After the master observer, here comes the master theoretician.
He deserves more than just a few lines. We have already exposed
the strange detours that led to the theoretical basis of Greek astron-
omy: First, there is the visual reality, the heavenly bodies, and the
dream, perfection. The ideal is to bring them together. This seems
attainable, but there are discrepancies, forcing successive modifi-
cations of the original idea until there is practically nothing left
but an empty tradition. In Kepler’s time, the initial dream has run
its course and can now be abandoned. It has nevertheless left a
concrete trace: the long and tortuous calculations that had man-
aged to chart the heavenly motions. The present situation is fluid—
which perhaps partly explains Kepler’s whimsical personality—
somewhere between yesterday’s failure and tomorrow’s hesitant
promise. Whatever the case, he will set out to impose a mathemat-
ical order on Brahe’s mass of information, using as a guide the
numbers themselves, rather than metaphysical preconceptions.

Kepler is one of those tormented men, in constant pursuit of
harmony, who made the Renaissance. He ponders over Tycho
Brahe’s accumulated data as if trying to solve a puzzle, striving to
detect a hidden order that he will slowly uncover. First comes the
law of areas, in 1604: the line segment connecting the sun and a
planet sweeps out equal areas in equal times. One year later he
formulates a new hypothesis on planetary motions, not the first
one to be put to the test: planetary orbits are ellipses, with the sun
located at one of the foci. The testing of each hypothesis then ne-
cessitated a tremendous amount of difficult calculations. It does
not take much, though—an accidental juxtaposition of numbers,
perhaps—to suggest a new, hitherto unexplored possibility, as
anyone who has had some experience with complex calculations
knows well. Thus, we should not be overly surprised, or look for
some profound reason (most likely suggested by hindsight) for the
fact that a geometrical hypothesis so unexpectedly simple came
up in Kepler’s calculations, for other calculations had preceded
it. What is truly new is his stubbornness in searching for some
kind of order at all costs. This time, the data fit the hypotheses
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marvellously well, and the epicycles are dumped forever. Finally,
in 1618, Kepler discovers a third pattern in the planetary motions
of our solar system: the cubes of the major axes of the (elliptic)
orbits are proportional to the squares of the planetary years (the
time a planet takes to complete one revolution around the sun).

A novel idea will then slowly begin to ripen: would it be possible
that lifeless nature should obey an order imposed by mathematics?
In fact, the idea goes back to Pythagoras, but its present form is a
sort of converse. For it is no longer a question of beginning with
preconceived ideas of perfection, formulated in mathematical
terms, and then forcing them on the facts. Quite the contrary. Now
one starts with the bare facts and then tries to see whether they
structure themselves according to some mathematical rules. Such
rules are in a sense empirical, for we accept them without necessar-
ily understanding their profound significance. But finding these
rules might often require a fertile imagination and considerable ef-
fort, as Kepler’s own case shows well. His three laws are the para-
digm, cited over and over again, of this notion of empirical rule.

We are by now so used to seeing material reality accommodate
itself to numerical rules that it is at times difficult to appreciate the
astonishing fact that such rules should exist at all. More astonish-
ing is the almost certain success we encounter whenever we set out
to look for one and, an even greater wonder, how harmoniously all
these rules fit together instead of contradicting one another. With
Kepler, astronomy has fulfilled its role of midwife in the birth of
science, by revealing the existence of empirical laws shaped in
mathematical form.

THE DAWN OF MECHANICS

The origins of mechanics are fascinating in their simplicity, and
they are proof that the concepts of a science can be derived from
the most routine and everyday experiences. The resulting represen-
tation of the world not only fully agrees with our intuition but
actually completes it. Just as Poincaré wondered whether human-
kind would have discovered science without the view of the noc-
turnal sky, we can ask ourselves whether that discovery would ever
have been possible without this continuity between the ordinary
and the scientific, a continuity that we have lost since. There is no
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better opening for this new chapter of history than Einstein’s fa-
mous statement: “The Lord may be subtle, but He is not wicked.”

This patent simplicity can be found with particular limpidity in
the notion of force. The concept appears already in the most an-
cient times, for everyone knows what it takes to lift a weight, to
haul a chariot, or to bend a bow. The weight provides a means to
measure a force, thanks to the balance. Archimedes (278–212 B.C.)
seems to have been the first to draw attention to the significance of
the point where a force is exerted, an essential element of his theory
of levers.

Many centuries later, Stevin, also known as Simon of Bruges
(1548–1620), would state the laws of the balancing of forces act-
ing on a body at rest—in other words, statics. With the aid of
ropes, levers, and pulleys, he demonstrated beyond doubt that a
force is completely characterized by its magnitude, its direction,
and its point of application, for only these parameters enter into
the equilibrium laws. He also showed how several combined forces
have the effect of a single one, the resultant force. He computed it
using the “method of the parallelogram,” which gave rise to the
modern notion of addition of vectors. So not only physical con-
cepts, but also occasionally mathematical ones, have an empirical
root. The above example shows that the new knowledge points
toward a much more mysterious concurrence between physics and
mathematics.

Once the principles of statics were understood, there remained
the question of dynamics, that is, the relationship between force
and motion. The ancients had of course already noticed that a
force can generate movement: a horse pulling a cart sets it in mo-
tion. They also believed, as Aristotle did, that the inverse was also
valid: motion would last only as long as there was a driving force.
What can we say about this “evidence” but that logic may be de-
ceptive? We know the sequel: there must be a continuous force
keeping the arrow in its course. Modern authors remind us of the
scholastic solution: this force is exerted by an angel. We may smile
at this “solution,” but it had better be a large smile, for the same
kind of explanation will reappear later—remember the ether—and
perhaps even today, with the somewhat mystical properties of vac-
uum in quantum field theory.

The question continues its slow progress through the Middle
Ages, until it is settled by Galileo (1564–1642), for whom it is clear
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that motion may exist in the absence of force. Not an entirely new
idea, though, since it can be found in the works of Oresme (1320–
1382), but Galileo’s crucial contribution will be his systematic ap-
plication of the experimental method. He studies the motion of a
ball on a horizontal plane. When the ball is at rest, statics tell us
that no horizontal force acts on it. Galileo assumes that the same is
true even when the ball is moving, and his observations confirm it:
the ball travels in a straight line with constant velocity, provided
friction does not slow it down. This is the origin of the principle of
inertia,* which will play a central role in the history of physics: a
body on which no forces act will travel in a straight line with con-
stant velocity. Actually, the exact formulation of the principle took
some time to crystallize, and the one we have just given is not
due to Galileo but to Descartes. Galileo believed the motion to be
circular, corresponding to the rotation of the earth, rather than
linear—but never mind.

We know that Galileo also studied falling bodies, using once
again the experimental method. He rolled balls on inclined troughs
so as to reduce the effect of weight; the resulting slower motion
was then easier to measure. His conclusions being well known, we
shall only underline their simplicity, which confirmed his famous
creed: “The Book of Nature is written in mathematical language.”

To these initial laws of dynamics, Huygens and Wallis added
(around 1670) those concerning collisions, where the concept of
mass, by then clearly distinguished from that of weight, plays an
essential role. Two new quantities enter the picture: momentum
and the vis viva, what is now kinetic energy. All these “laws” are
essentially only empirical rules, simpler than those formulated by
Kepler.

We must still mention one more tool, essential to dynamics: ana-
lytic geometry, invented by Descartes in 1637. Basically, it reduced
geometry to algebraic calculations on the coordinates of a point,
that is, on the three numbers that locate the point’s position with
respect to three axes, the reference system. Euclidean geometry was
perfectly adequate for the study of certain specific curves, conics
and some others, such as the famous cycloid, which so delighted
the mathematicians of the time. But this geometry was rather im-
practical and often useless for describing, or even imagining, more
complex trajectories. By reducing such descriptions to computa-
tions, Descartes provided a precious new tool. Now each coordi-
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nate could be considered a function of time whose exact form was
to be determined by the theory.

As a sidelight on history, let us observe that Newton hated
everything coming from Descartes. For him it was therefore a ques-
tion of honor never to use Descartes’ method. He could actually
manage without it, because the most important problems he had to
face involved only trajectories that were conic sections. And so, in
his great book, no mention of Descartes became necessary. But his
successors soon ignored this interdiction, which Newton had been
careful never to state explicitly. We may also see things from a
different angle, more anticipatory of the future: space plays in dy-
namics the role of a physical container, and so the possibility of
describing it abstractly using algebra is perhaps the first sign, still
uncertain, that formal science had arrived. But how could anyone
see it yet?

NEWTON’S DYNAMICS

The works of Newton (1642–1727) in dynamics remain unques-
tionably one of the pinnacles of science, never surpassed, even if
other achievements may pretend to match it. He published them in
1687, in his Philosophiae Naturalis Principia Mathematica [Math-
ematical Principles of Natural Philosophy], the bulk of which he
said he had worked out during his youth.

Among the multiple aspects of his genius we shall emphasize the
totally new twist he gave to the “laws” of physics. Before him,
these laws appeared merely as empirical rules, extracted after a
careful analysis from the mass of facts. But Newton introduced
“principles,” universal laws that nature obeys, and from which the
former empirical laws follow as logical, mathematical conse-
quences. This supposes in particular that we must, at least in
thought, rid ourselves of our terrestrial condition and the limits it
imposes upon us. It is hardly possible today to appreciate the cour-
age it took to rank in the same category, and to subject to the same
laws, phenomena so seemingly disparate as falling bodies, the vi-
bration of strings, planetary motions, and collisions.

We must nonetheless add that this quest for universal principles
did not begin with Newton, because Descartes had engaged in it
before him. The difference between the two is that the French
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philosopher did not have either the luck or the occasion or the
genius to find the true principles of dynamics, and those he did
propose were incomplete, when not false. He also probably over-
estimated the power of his method, based more on reason than on
experience. This priority, and the fact that Descartes must be rec-
ognized as a great philosopher (while this quality was less manifest
in Newton’s case) are the reason for the name Cartesian project,*
given by Husserl and Heidegger. Following the latter, we shall
adopt this expression, obviously without sharing his aversion for
the project itself.

This project, which has nowadays become almost a fundamen-
talist doctrine among most scientists, is based on the claim that
nature obeys some universal principles that are expressible
through logical and mathematical means. If we take a cold look at
this idea, we must admit that there is in it an element of madness:
how can one presume that the multitude of objects and phenomena
in nature, their swarming diversity, the stuff of poetry and fantasy,
that all that could be disciplined with an iron hand? It is certainly
due to the accumulated weight of so many discoveries, to the evo-
lution of minds caused by history, and to the effect of a systematic
indoctrination, that this idea gradually became sufficiently conven-
tional to be embraced by some so intensely that questioning is no
longer necessary, and to make of it an article of faith, the stronger
because not pronounced.

This ambitious perspective appears from the beginning, in New-
ton’s definition of the framework of dynamics: space and time are
absolute. For him, physical space is no longer structured along the
horizontal and the vertical, purely terrestrial features, but it is ab-
solute: “Absolute space, in its own nature, without relation to any-
thing external, remains always similar and immovable. Relative
space is some movable dimension or measure of the absolute space;
which our senses determine by its position to bodies; and which is
commonly taken for immovable space.” There is similarly an “ab-
solute, true and mathematical time, of itself and of its own nature,”
which “flows equably without relation to anything external . . . ,
relative, apparent and common time, is some sensible and external
(whether accurate or unequable) measure of duration by the means
of motion, which is commonly used instead of true time.”

Few passages in physics have been so copiously quoted and
commented on, and justifiably so. Everything is there: a claim of
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absoluteness, almost metaphysical and very close to one of Kant’s
a priori judgments of reason. But Newton is less categorical, for he
indicates an experimental procedure to identify, in principle, this
absolute space, and he also hints at the possibility of believing
otherwise. What’s more—and proof of his superb cleverness—it
turns out that reference to the absolute solves beforehand all
difficulties resulting from inertial effects (centrifugal force and
others), by allowing them to be deduced from the principles, in-
stead of having to be analyzed in themselves. And despite all that,
this fertile simplicity is not sufficient to guarantee a definite and
unshakable truth, as Einstein was later to demonstrate: “Subtle is
the Lord.”

The principles proposed by Newton are well known. There are
three in all. The first one is none other than Galileo’s principle of
inertia, in Descartes’ version and reformulated within the setting
of absolute space and time: a body not subject to any forces moves
(in absolute space) in a straight line with constant velocity. Then
comes the equality of action and reaction, a principle already
known in statics. The third one, often called the fundamental prin-
ciple of dynamics, is an old friend of college students: the product
of the mass of a body with its acceleration (in absolute space)
equals the total force acting on it. The notion of acceleration,
which plays a central role here, is based on another of Newton’s
great discoveries, differential calculus. If the force acting on a body
is known, the third principle can be translated in terms of differ-
ential equations, whose solutions then express the position co-
ordinates of the body as a function of time. Newton supplied the
meaning of these equations, as well as a solution method: integral
calculus, another of his creations.

Newton’s first task is to establish the plausibility of his theory.
He does it by a method that would show up many times in the
development of physics: recovering some results, already known
in the form of empirical rules, as logical or mathematical con-
sequences of newly stated principles. The results in question in-
volve the motion of the pendulum, falling bodies, and properties of
collisions.

But his greatest triumph is, as we already know, the theory of
gravitation—which is essentially no different, after all, than the
above results. The question was to retrieve Kepler’s empirical
laws from the general principles. The only serious difficulty is to
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determine the exact form of the gravitational force between two
bodies—the sun and a planet, for instance. But this can be achieved
by exploiting two of Kepler’s laws. The law of areas is really the
universal signature of a central force, that is, in this case, a force
directed along the line joining the planet to the sun. And from the
empirical rule relating the major axis of a planet’s orbit to its pe-
riod (or planetary year) it follows that the above force must be
inversely proportional to the square of the distance. Now we know
everything we need to solve the equations of motion resulting from
the fundamental principle of dynamics. Their solution would con-
firm that the planetary orbits are, as expected, ellipses, with the sun
at one focus.

Let us remark, in passing, that a historian of science would
surely object to the way we derived the relationship between New-
ton’s principles and Kepler’s rules. He or she would argue that the
discovery of the famous inverse squares law was much more in-
volved, filled with intuitions and hesitations, not to mention con-
troversies, and that the said law had been anticipated, if not dis-
covered, by Hooke. The historian would also point out that the
arguments we presented are in fact fairly recent. And certain phi-
losophers of science would add that we have just confirmed the
intrinsic dishonesty of scientists, who misrepresent history to make
believe there is a method where, as Feyerabend claims, there is
nothing but chance, chaos, and guessing. Such scruples are legiti-
mate, and we owe the reader an explanation. First, we remind him
or her that this book is only incidentally concerned with history,
and that its unique aspiration is to understand—out-of-timely, we
might say, if that would make sense. We thus feel justified in taking
advantage of the latest ideas when they are the clearest and the
most relevant. As for the scientific method, this question will have
to wait, for it is subtler than generally admitted, especially when
one wishes to deny its existence.

As we close this parenthesis and go back to the theory of gravi-
tation, let us examine a difficulty that was the source of much dis-
cussion. The gravitational force was supposed to act directly be-
tween the sun and the planet, in spite of the vacuum separating
them. But how is it possible that an action or, as we would say
today, information, could be carried by vacuum, by total empti-
ness? This conceptual difficulty of action “at a distance” defies
common sense, a forbidden equation between vacuum’s nothing-
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ness and a force’s being, a philosophical non-sense. Newton
knows it well, and he openly admits his embarrassment in the gen-
eral scholium of the Principia’s third edition. Einstein would bring
up yet another questionable feature of this force: the fact that it
depends only on the distance separating the sun and the planet at
the very instant the action takes place. This seems to imply that the
sun has some kind of instantaneous perception (or information) of
the planet’s position.

Instantaneous action at a distance; such is the original flaw, as it
were, of the Newtonian theory of gravitation. It was rapidly for-
gotten by most laborers of science. As a matter of fact, without yet
realizing it, they were unconsciously shifting from an intuitive sci-
ence, where everything can be visualized and is in agreement with
common sense, toward a science involving formal elements that
are essentially unintelligible.

This shift would be more intense at the turn of the eighteenth
and the nineteenth centuries, with the purely mathematical works
of Laplace, Lagrange, and, shortly afterward, Hamilton. Lagrange
and Hamilton, in particular, render Newton’s principles in a math-
ematical form quite different from their original formulation. The
notion of action is central here. Unlike the concepts employed by
Newton, this notion is purely mathematical, without any intuitive,
visual, or analogical content. The action is an integral over time
involving the difference between the kinetic and the potential ener-
gies. We can surely make sense of their sum—it is the total en-
ergy—but their difference? What’s more, action means nothing by
itself, it is only an intermediary: actual motion has a kind of magi-
cal property, which is to minimize the action (the principle of min-
imal action*). Why a minimum, or even a maximum? We can only
wonder, without expecting to understand, without “seeing” any-
thing, because we do not know what “action” is or where it comes
from.

Thanks to the methods of Lagrange and Hamilton, it was pos-
sible to go straight to the heart of the computations in dynamics,
and often perform them much more efficiently. But these purely
mathematical qualities have nothing to do with the essence of
physics. More efficient calculations do not entail higher concep-
tual content, so no one could claim that the arrival of the new
methods called into question the foundations of science. And
yet. . . .
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WAVES IN THE ETHER

It is certainly not our intention to go into the details of the history
of science; we must nevertheless say a few words concerning op-
tics. There are several reasons for this. First of all, unlike dynamics,
which deals with the motion of concrete objects, of entities having
no secrets, optics poses a big question: What is light? In this re-
spect, optics demands a level of comprehension that is deeper,
more difficult to satisfy, than that of dynamics. This branch of
physics is also one of the most outstanding examples of the coher-
ence of science—which will be one of our leading threads—as
shown by its eventual unification with electromagnetism. It is
worth examining it, even if briefly.

Antiquity had bequeathed us the appealing hypothesis, coming
from the atomist school of Leucippus and Democritus, according
to which light is made of a particular kind of atoms. These are
emitted by luminous bodies and, after bouncing off an illuminated
object, are captured by the eye. This hypothesis, put forward in
Lucretius’ De natura rerum, is also a good example of what the
ancients considered an explanation to be: a satisfactory image that
a person composes for himself or herself, and which can be com-
municated to others orally.

Scientific optics, that is, the search for empirical rules through
experimentation, really begins with Descartes’ Dioptrique, pub-
lished in 1637. Some of these rules come from the distant past. The
linear propagation of light or the laws of reflection on mirrors, for
instance, were known to Archimedes. Other laws are new, such as
those concerning refraction (discovered earlier by Snell); they gov-
ern the change of direction of a ray of light as it crosses the surface
separating two transparent media (water and air, say). Descartes
also draws a number of consequences. He impresses his contempo-
raries with his theory of rainbows, which he explains in terms of
reflections and refractions in droplets of water.

This is a remarkable explanation, being a case where science
unraveled the secret of one of nature’s most intriguing mysteries.
Rainbows are not the stuff philosophers usually ponder over; nor
are they one of those deep enigmas that strain the reflective mind.
On the other hand, they delight the poet, who finds in them a mul-
titude of interpretations. When science reveals the true nature of
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such a lyrical phenomenon, it exposes itself to be taken by some for
an enemy of poetry and dreams. Others, on the contrary, learn to
see better, to make out the faint secondary rainbows predicted by
the theory and to marvel at their existence. Poetry has not been
banished; it only assumes a new dimension, that of the order filling
the universe. Whatever the case, by the multiplication of similar
discoveries science in the end transforms our imaginary world
as well.

Those with a desire to understand are not less imaginative than
the dreamers. The birth of the wave theory of light provides a good
illustration of this fact. It is a highly revealing episode, for it ex-
poses a facet of science that is crucial if we are to grasp its real
method: when reason is most confident in its own power, it may
deceive itself and err, to arrive at the right idea only by a lucky
strike.

Method is precisely Descartes’ main concern. He advocates one
that is based primarily on reason, much more than on experience.
It consists in decomposing each problem into smaller and simpler
ones, until the solution imposes itself as evident. Its ultimate goal
remains a complete synthesis, by which the mind should be able to
apprehend everything in a clear and thorough fashion. This ap-
proach has made Descartes one of the most typical exponents of
realism*—the belief in the possibility of achieving a perfect knowl-
edge of reality. An essential component of his vision of physics is
the identification of matter with extension or, we may say, with
space. Space is also matter, and even its most intimate parts can
therefore be in motion. As for light, he rejects the corpuscular hy-
pothesis—because it is unsuitable for explaining the changes in di-
rection taking place in refraction—in favor of a waving of matter
(or of extension) similar to sound waves, whose character was by
then understood.

This wave hypothesis will gain ground during the next genera-
tion, thanks to Robert Hooke and Christian Huygens. Light is
still supposed to propagate through a transparent medium, as
sound waves do through air. Each individual point of the me-
dium vibrates, and all these vibrations together, as they propagate
from point to point, form the wave. Huygens works out the de-
tails of this theory and translates it into precise mathematical lan-
guage. From this he infers that light waves must travel in straight
lines, and he also succeeds in accounting for the laws of refraction.
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Diffraction* phenomena, observed long ago by Leonardo da Vinci
and later studied by Grimaldi, also confirm the wave idea. One of
their manifestations is the lack of sharpness of a shadow, its
slightly fuzzy edge when examined closely; or the way microscopic
particles or a spider’s web diffuse light. All this suggests that light
wavelengths are not inaccessible, even if they are very short.

The wave assumption would, however, carry with it a deficiency
from birth that would persist long after Descartes’ initial ideas had
been abandoned: If something does vibrate, what is it? When light
propagates through some material medium there is no problem,
atoms can do the trick. But what happens in vacuum? Huygens’
reply—the ether* hypothesis—will mark the history of physics
for years to come. For Huygens, the ether is an immaterial, all-
pervasive medium that penetrates matter and is everywhere pres-
ent, even where there appears to be nothing but emptiness. It is
nonetheless a mechanical medium, because it vibrates when tra-
versed by light waves.

If we agree to define classical science as a description of reality
using concepts that the mind can readily interpret, then the intro-
duction of the ether by Huygens, shortly before Newton had re-
course to action at a distance, signals a crack in this conception.
But let us not jump the gun.

The wave theory of light had to compete with the particle hy-
pothesis, the latter helped by the weight of Newton’s endorsement.
We shall not be concerned with the details of this great contro-
versy, which the discovery of interference was going to put to rest
for a long time. Thomas Young was the first to observe interfer-
ence* effects, in 1801. To perform his classical two-slit experi-
ment, he illuminated one side of a sheet containing a pair of nar-
row parallel slits and observed alternating dark and light fringes
on a screen placed on the other side. Augustin Fresnel improves the
procedure by employing two slightly slanted mirrors instead of
slits. This allows for better observations and a more systematic
experimental study. Waves on the surface of water also result in
interference effects. It is then natural to interpret the outcome of
these experiments as supporting the wave hypothesis, and this is
precisely what Young and Fresnel do. At the same time, Fresnel
further develops Huygens’ theory, which allows him to account for
the interference fringes in a quantitative way, and to apply the the-
ory to diffraction phenomena.
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At this point took place an incident already reported one thou-
sand times, but which we cannot avoid telling once again. It will
give us the occasion to show an example of what is called a crucial
experiment. In 1819, the Paris Academy of Sciences had charged a
jury with the evaluation of works on diffraction phenomena. The
members of the jury were Biot, Arago, Laplace, Gay-Lussac, and
Poisson. Fresnel submits for the occasion a detailed account of his
ideas on the question, complemented by additional calculations.
One cannot but admire the jury’s commitment to what will turn
out to be a thorough investigation of the problem. Poisson, the
fearless mathematician who used to say, tongue in cheek, that
there exist only two things making life worth living, doing mathe-
matics and teaching it, undertakes an exhaustive analysis of
Fresnel’s work. Using sophisticated mathematical tools, probably
too advanced for Fresnel, Poisson calculates the intensity of light
far inside the shadow of a circular screen. The result of his calcula-
tions defies comprehension: at the very center of the shadow there
should appear a bright area of intensity equal to that of full light.
This conclusion seems an aberration. Poisson is then on the verge
of rejecting Fresnel’s entire work when he decides to share his puz-
zlement with Arago. The latter points out that the bright area in
question, being quite small, might easily have gone unnoticed until
then. He then performs the experiment only to verify, to his great
astonishment, that the incredible bright point is actually there!

This type of incident is usually more convincing than a whole
collection of patiently gathered pieces of evidence. After the Pois-
son–Arago demonstration, the wave hypothesis seemed all but in-
evitable, and no one doubted any more that light was a vibration.
Let us conclude the story here, at this blissful moment when only
one cloud remains—that of the disturbing ether.

THE BEGINNING OF ELECTROMAGNETISM

For a long time, it was believed that science could advance by what
was called the induction method.1 The basic idea is that an atten-
tive examination of the facts should permit identification of the

1 The problem of induction, as it is normally defined in the philosophical liter-
ature, consists in correctly estimating the plausibility of a scientific rule or princi-
ple, knowing that we can have access to only a finite number of examples of its
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appropriate concepts, and even suggest the rules or laws they are
subject to. The history of the origins of electricity and magnetism
provides a good example of this conception. At the same time, if
we ignore some premature attempts to introduce a theoretical
basis, it demonstrates how a purely experimental approach can go
on for several generations.

Antiquity did not know a great deal on the subject, little beyond
the fact that rubbing an amber (elektron) stick provoked some
strange effects, and the mysterious properties of an iron oxide such
as magnetite, which the Chinese would exploit to built the com-
pass. “Subtle is the Lord,” because we now know that under those
humble appearances lurked the most important forces at the heart
of matter.

We must wait until 1729 to discover, thanks to Gray, that an
electrically charged object may electrify another, and that there
exist conductors and insulators. In 1730, du Fay observes attrac-
tions and repulsions among electrified bodies. This fact leads him
to assume the existence of two different types of electricity, one
positive and the other negative; objects with electricity of the same
type repel each other. These forces would permit quantification of
the still vague notion of electricity using the concept of electric
charge: if A, B, and C are electrified bodies, then the charge of A is
said to be equal to the charge of B (or twice as large) if, after plac-
ing A and B in turn at the same distance from C, they are subject to
a force that is identical (or twice as large).

Watson and Franklin show, in 1747, that when two initially
neutral bodies become charged by mutual interaction (by rubbing
them together, for instance), their charges are of equal magnitude
but of opposite signs. They conclude that the charges are not cre-
ated during the interaction but were already present in matter and
canceled each other out exactly: electrification separates the exist-
ing charges permanently.

Priestley, Cavendish, and, especially, Coulomb (whose main
contributions appear in 1785) translate the above properties into
quantitative terms. Coulomb designs an extremely sensitive tor-
sion balance capable of measuring very small forces. The force be-
tween two minute electrically charged bodies turns out to be very

application. The method of induction discussed here has a much more limited
scope.
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similar to Newton’s gravitatonal force (inversely proportional to
the square of the distance). This force is also proportional to the
product of the charges, while gravitational force is proportional to
the product of the masses. Such similarities will allow the theory of
electrostatics to make some quick progress, by transposing to elec-
tricity the results of Laplace, Poisson, and Gauss on gravitation.
As a consequence of this approach, the notion of electric potential
is soon introduced. The invention of electric batteries (Volta’s
dates back to around 1800) makes it possible to generate electric
currents routinely. In 1826, Ohm establishes the empirical rule re-
lating current and potential difference, leading to the notion of
resistance.

Strong analogies between electricity and magnetism had been
noticed all along, but without any concrete consequences. The
connection between the two, and their belonging to a common and
larger setting, is suggested in 1820 by a discovery due to Oersted:
a current-carrying wire exerts a force on a magnet. Soon after-
ward, Biot and Savart state the quantitative rules governing the
link between electric currents and magnets, and Ampère gives them
a simpler form, in which each element of the current acts sepa-
rately. Still in 1820, Ampère measures the force between two elec-
tric currents and discovers that a current-carrying coil of wire be-
haves like a magnet.

Thus, an electric current could create magnetic effects and also
behave like a magnet. This immediately suggested the possibility of
the inverse phenomenon: Could a magnet produce electricity? It
was only a decade later, in 1831, that this question was answered
in the affirmative by Faraday—the hitch was that it takes a moving
magnet to “induce” an electric current in a nearby wire. Faraday
also invented the condenser, and noticed that the presence of insu-
lators significantly affects the intensity of electrical forces. The
study of those so-called dielectric media would prove to be very
important.

A TURNING POINT: MAXWELL’S EQUATIONS

One might have thought, around 1840, that the totality of electric
and magnetic phenomena was essentially known, but a closer look
showed that something was still missing. The present knowledge
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includes laws expressing how charges, currents, and magnetic mo-
ments generate forces that act on other charges, currents, or mag-
netic moments. There was also an assortment of other laws, such
as Ohm’s law or the law of induction. However, a review of all
these empirical rules reveals that, unlike Newton’s principles, they
do not constitute a comprehensive dynamics. In other words, they
do not allow one to infer the future evolution of charges and cur-
rents from their values at a given instant, nor do they explain how
the electric and magnetic properties of matter are determined.

But this mathematical deficiency was not the main concern of
certain researchers. Their dissatisfaction stemmed rather from an
unfulfilled desire to understand: they lacked a satisfactory image of
the motion of the charges and magnetic particles present in matter,
and whose interactions might have produced the observed empiri-
cal phenomena. If understanding meant being able to “see” what
things are, they definitely did not understand. The great adventure
about to begin would be precisely to make sense of the wealth of
experimental knowledge that had accumulated for many genera-
tions. Its goal was an almost impossible dream: to achieve full co-
herence, though at the same time it would mean the end of many
intuitive representations.

The best mathematicians among the physicists—Gauss, Am-
père, Biot, Savart, and others—had always concentrated their
analysis on certain notions—charges, currents, magnetic dipoles—
that are relatively concrete and easy to envisage. Even if their theo-
ries occasionally referred to electric or magnetic potentials, these
were construed merely as mathematical devices that facilitated the
computation of forces, just as in the theory of gravitation.

But that was not Faraday’s point of view. When he saw iron
filings orient themselves under the influence of a magnet, he ex-
pected something real to be behind those lines of the magnetic
“field,” something more important and significant than the forces
acting at a distance postulated by the theoreticians. He rejected the
very idea of action at a distance, and wanted to understand how
the filings or the molecules of dielectrics form patterns and pro-
gressively influence one another. He then set out to build models of
the behavior of matter where two fields, an electric and a magnetic
one, played the central role. Let us recall, using the example of the
iron filings, that a field is “something” having a magnitude and a
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direction (a vector), defined for all points in space, and possibly
changing with time.

Faraday was a first-class experimenter and a physicist of genius,
but he was also self-taught, and lacked the necessary knowledge to
put his ideas in mathematical form. And so his models, even if most
ingenious, fell short in regard to their quantitative aspect. The
honor of fleshing them out would fall on his disciple James Clerk
Maxwell (1831–1879).

To better understand Maxwell’s contribution, let us recall the
principal laws of electromagnetism and the form under which they
were known at the time. There were—and still are—four of them.
The first one is Coulomb’s law, which gives the force between two
charges. Thanks to Gauss, it was also known how to express this
force using the notion of electric field. The second law gives in a
similar fashion the pair of forces between two elements of a mag-
net. Using a magnetic field, this law can be put in a form closely
resembling the first one. The third was Ampère’s law (or Biot and
Savart’s). From Faraday’s point of view, it expresses the value of
the magnetic field generated by a current. Finally, the fourth one is
the law of induction discovered by Faraday himself; it gives the
magnitude of the electric field induced in a circuit by a variation of
the magnetic flux through the circuit. One might say that, thanks
especially to Faraday, the laws of electromagnetism could be for-
mulated using either fields or the forces acting between charges and
currents.

Maxwell’s first task, in 1855, will be to straighten up all that.
He begins by examining the laws that were already known. It is an
arduous enterprise, since the mathematical tools of the time were
ill-suited for the task. The modern methods of vector calculus not
being available, Maxwell has to combine mathematical techniques
with physical intuition, and does not hesitate to use hydrodynamic
analogies. One of the most remarkable consequences of his results
will be the possibility of rewriting electrical energy as a function of
the electric field alone, without any reference to the distribution of
charges.

In 1861–1862 Maxwell goes farther: he tries to “understand,”
that is, to correctly decipher reality. He wants to “see” what goes
on inside matter under the effect of a field, and cannot help won-
dering what the ether looks like from the point of view of electro-
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magnetism. It was necessary to assume the existence of the ether,
because if an electric force can act through vacuum, this vacuum
must be “something” that transmits the effect of the force. Starting
with matter, where he “sees” the behavior of the molecules, and
then proceeding to vacuum, he is led to imagining a model of the
ether that is absolutely fantastic. The ether contains cells, animated
by microscopic currents that account for the transmission of the
magnetic field. All through the ether, there is a compact network of
elastic strings, the lines of electric field through which charges
travel. This whole dreamlike construction, which could have been
inspired by Jérôme Bosch, is progressively built, exploiting the
analogy between matter and the ether. Maxwell analyzes it in
the most serious and thorough fashion. He takes into account the
forces being exerted among the various components of the system
and their effect on motion, in an orthodox manner and according
to Newton’s principles.

Maxwell succeeds in this way in recovering the familiar laws of
electromagnetism, but with an important difference. In fact, only
the third law, going back to Laplace and Biot and Savard, needs
to be revised. In its previous form, it described how a current gen-
erates a magnetic field. Maxwell realizes that it is also necessary
to assume that a magnetic field can be created by a changing elec-
tric field. This comes very close to the induction law, where a
change in the magnetic field can generate an electric field. Max-
well calls the electric source of the magnetic field “displacement
current” (even though no motion of charge is involved). Its ef-
fect, which appeared to be very weak under the experimental
conditions of the time, has important implications from a con-
ceptual point of view, for it permits one to obtain the “electro-
magnetic” field equations—the celebrated Maxwell’s equations.*
These have two chief properties: they provide a field dynamics, in
the sense that they can be solved for any future time if the values
at some initial time are known; and they guarantee the conserva-
tion of energy, if one identifies correctly the energy due to the mag-
netic field.

As a result of all this effort, Maxwell finds himself in an unprec-
edented situation. On the one hand, he has obtained new physical
laws, consistent with the empirical rules previously discovered.
What’s more, his new laws exhibit a superior mathematical and
physical coherence. But on the other hand, the model that led
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him to these results, with its ether packed with cells and strings,
is highly improbable, even for its creator. The final product
was good, but the mold from which it emerged would have to be
destroyed.

And so, in 1864, Maxwell returns to the subject, this time using
an altogether different method. Modeling the ether is out of the
question; he starts, on the contrary, from concepts stripped of
physical meaning to the point of becoming almost purely mathe-
matical. The “things” that can be everywhere are the electric and
magnetic fields; and wherever they are, there is energy. The electri-
cal component of this energy is identified with a potential energy,
while the magnetic component is considered as kinetic energy.
From a mathematical point of view, the method is quite different.
Having identified the variables (the fields) and the two forms of
energy, it is possible to apply the abstract dynamical methods of
Lagrange and Hamilton and their minimal action principle, with-
out further knowledge of the nature of the system. This is basically
what Maxwell does, and also what Hertz will do shortly after-
ward, when he will refine the method. And so, almost in an auto-
matic fashion, Maxwell obtains the equations of dynamics for his
system of fields. These are none other than the same equations he
had derived earlier by entirely different methods.

This last accomplishment of Maxwell marks the turning point
in the transformation of physics. The curtain falls on classical
physics, if we understand by “classical” an explanatory physics,
where reality is visually represented in a way that can be fully
grasped by intuition. This classical physics has just been replaced,
for the first time in broad daylight, by a formal physics whose basic
concepts (the fields, in this case) have a strong mathematical fla-
vor and, especially, whose principles (Maxwell’s equations, or the
mathematical equivalent of Lagrange’s principle of minimal ac-
tion) have become purely formal and mathematical, a kind of ab-
stract and rather obscure essence of Newton’s first principles. By
the same token, Lagrange’s principle of minimal action took on a
new significance, and became in a certain sense the leading princi-
ple of dynamics.2

2 The principle of minimal action, in its classical form, is still surrounded by a
certain mystery. But this mystery is none other than the mystery of quantum me-
chanics. Richard Feynman derived this principle from quantum mechanics in
1946.
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When someone asked Hertz which principle lay at the basis of
Maxwell’s equations, he would reply, the equations themselves.
Richard Feynman, one of the most intuitive physicists of our time,
also used to tell his students that it is impossible to imagine the
electromagnetic field. In fact, after Maxwell, physics is really no
longer something one can visualize with the imagination and com-
municate in ordinary language. Its concepts cannot be completely
rendered without at least the help of mathematical language. The
latter has presently become an intrinsic component of physics, and
not only of the quantitative form of physical laws. If Voltaire was
able to explain Newton, no philosopher, however persuasive, will
ever explain Maxwell to a delightful marquise.

And yet, the fruit was there, since thanks to Maxwell’s equa-
tions one could verify, as Hertz would do in 1888, that the electro-
magnetic field can vibrate—a vibration that is also light.

In these final years of the nineteenth century there are other fore-
telling signs of intuition gradually going blind. And little by little,
formal concepts come to the rescue; thus, entropy replaces heat. At
the very moment some were ready to declare the edifice of physics
almost complete, the time was ripe for another physics to be born.
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Classical Mathematics

IT IS UNTHINKABLE nowadays that a philosophy of knowledge
should dispense with a serious reflection on mathematics. To stop
at a meditation on logic, as certain authors do, is unacceptable for
a modern science where mathematics, in all its profusion and so-
phistication, pervades the articulation of concepts and laws.

The real difficulty, and the reason why many avoid mathemat-
ics, consists in giving it its proper place without spending long
years of study. Its vastness is truly impressive, and, like the ocean,
it contains plenty of delicious foodstuff. Some people, the most
vulnerable to its seduction, plunge into it for the rest of their lives;
others are happy with swimming from time to time near the beach;
yet others, disdainful cats, refuse to even dip a foot in it. And so
mathematics, with its uncharted borders, may appear welcoming
or hostile. It is nevertheless unavoidable, and Plato’s adage, “No
one may enter here who is not a geometer,” has never better indi-
cated the passage to philosophy.

We shall limit ourselves to the essential, to developing enough
on which to base the theory of knowledge. We shall also show,
with the help of history, that the crude formalism, arrogant at
times, that characterizes mathematics, is the result of necessity, of
consistency, and not of a deliberate esotericism. Everything else we
shall omit. The principal drawback of this approach is to leave out
the ideas and methods that account for the richness, the fertility,
and the vision of mathematics. It will also be necessary to exclude
most of the concepts and computation methods so essential to
other sciences that this is precisely the reason we are forced to
make this incursion. Since we cannot help it, we shall leave it
at that.

CLASSICAL MATHEMATICS

Since when have humans been fascinated by numbers and figures?
From time immemorial, practically all ancient civilizations have
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believed that certain numbers have a sacred character, varying
with time and place. Is it possible to imagine eleven muses, seven-
teen gods of the Olympus, or eight days for the creation of the
world? The fact that small numbers should fascinate us more than
others is understandable, but why ought three, four, seven, and
twelve be more important than five or nine—themselves superior
to six and ten—while eight and eleven do not mean anything to
anyone? Beyond them, all are very large numbers.

The attraction of certain geometric figures, such as the circle, the
equilateral triangle, or the square, may be explained by their multi-
ple symmetries. But how could the peculiar claim that the circle is
the only perfect curve so mark the audacious minds of the Greeks,
that they rejected all the others as unworthy of celestial bodies?
There has always been a feeling of perfection, of divine, attached to
numbers and figures; a strange inclination, sometimes present in
children, which seems to suggest that its structure exists in our
brain.

It is generally believed that mathematics was born out of practi-
cal experiences: we can trace out a circle using a string; the right
angle between the vertical and the horizontal ensures stability; a
rectangular form guarantees a constant area for a field swept by the
mud of the Nile; and to form the necessary right angles one might
construct a right triangle with a rope in which knots are separated
by distances in the progression 3, 4, and 5. Thales discovered very
early that the parallel rays of the sun, visible when they pierce a
cloudy sky, could be used to measure the height of a tree by com-
paring its shadow to that of a stick. From all this follows both an
interest in fractions and the existence of a close correspondence
between figures and numbers.

Pythagoras went farther, with his famous theorem about right
triangles, where the above correspondence manifests itself clearly.
He might have guessed it from a simple drawing, but it is certain
that mathematics already possessed its basic logical tool when the
unknown Pythagorean proved that no fraction can measure the
diagonal of the square. Logic is mathematics’ twin sibling; and
only logic makes proving possible. But we have already said this.

The discovery of the irrationality of the diagonal reminds us of
Thomas Kuhn’s famous theory, according to which the progress of
science proceeds by paradigms,* that is, by examples that are so
striking and inspiring that they command an almost religious ac-

48



C L A S S I C A L M AT H E M AT I C S

ceptance. The discovery of the irrationals was a kind of paradigm
of paradigms, because it contained the seed of an infinite science.
Our remarkable Pythagorean must have lived shortly before Soc-
rates. Plato already knew some nice mathematical results, and his
contemporary Eudoxus had discovered a great number of theo-
rems in geometry and in the theory of numbers. Mathematics will
rapidly reach maturity with Euclid of Alexandria, of whom we
know only that he lived several years after some of Plato’s disciples
(the master having passed away in 347 before the Christian era)
and before Archimedes (287–212 B.C.).

Even if history has retained only a few illustrious names from
this era, Euclid’s mathematical style betrays without the slightest
doubt the long discussions—of the passionate kind Greeks could
have—that had preceded his work. In it we find a pursuit of the
simplest hypothesis, an effort to provide only irrefutable argu-
ments, and an elimination of the unnecessary that can only be the
result of endless revisions, brought about by endless objections in
a race toward perfection. Plato’s early dialogues remind us of such
animated talks and are a reflection of these controversies. Some of
these are perfectly legitimate, such as the one concerning Euclid’s
famous postulate of the parallels: there is only one line parallel to
a given line and passing through a point not in the latter (by “par-
allel,” he meant lines that never meet). Remember that Pythagoras
believed that the stars were fixed to a celestial sphere, and that
others thought that there was no space beyond it; then imagine the
kind of debate that the presumed existence of parallels might have
triggered. Euclid’s postulate assumes in effect an infinite space;
therefore, for the spirit of the time, it conceals a hidden cosmogoni-
cal hypothesis. One might be tempted to drop this postulate, but
then many precious results could no longer be demonstrated—that
the sum of the angles of a triangle equals a flat angle, for instance.

The existence of such dilemmas explains Euclid’s care in clearly
distinguishing the different kinds of assumptions: axioms, postu-
lates, definitions and hypotheses. An axiom is an immediate truth
that no Greek would have questioned during a discussion, for in-
stance, “Two distinct (straight) lines that meet have a unique point
in common.” A postulate is a statement that we assume to be true,
even if its status might have raised questions in the past. The truth
of a postulate is actually taken for granted by those playing the
mathematical game, because they know well that if they denied it,
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the game would lose part of its charm. Only later would this cau-
tious distinction between axioms and postulates be abandoned,
and the latter taken to be indubitably true, just like the former. As
for Euclid’s definitions, they are of many sorts. Some are perfectly
clear and are true definitions, in the sense that they allow us to
argue without ambiguity—the definition of a circle, for example:
all points at a fixed distance from another point called the center.
Others are more like words uttered without much conviction, ex-
pressing something like “I do not know how to put it, but you no
doubt see what I mean”—the straight line is “defined” as that
which lies evenly on all its points. Finally, hypotheses serve only to
make precise the subject under discussion, and in which context.
They usually begin with “let”: “Let a triangle have an obtuse
angle. . . .”

By the end of antiquity, the accumulated knowledge in geometry
is considerable, from properties of triangles, polygons, circles, and
conics (ellipses, hyperbolas, and parabolas) to those of other
curves generated by simple motions. In space, it concerns princi-
pally polyhedra, spheres, cones, cylinders, and ellipsoids of revolu-
tion. We must not forget trigonometry, plane and spherical, ex-
tremely relevant in organizing astronomical observations.

Regarding arithmetic, a science as useful as it is arid, we shall
say nothing besides remarking that it would give birth to algebra,
thanks to Diophantus, who lived in Alexandria in the third century
after Christ. We know little about him, except that he spent one-
sixth of his life as a child and one-twelfth of it as an adolescent;
that he lived seven more years before having a son who lived half
as long as his father, and, finally, that Diophantus outlived his son
for a period equal to one-sixth of his own life. The result of all
these calculations would put Diophantus’ age at eighty-four years.
Algebra might have been invented by a teacher. For it is easy to
imagine that the poor individual, tired of repeating arguments that
led to the same arithmetic calculations, finally realized that the par-
ticular values of the numbers are irrelevant, and that all that mat-
ters is the pattern of the operations on these numbers. Be that as it
may, no one considered it necessary to axiomatize algebra à la
Euclid, since this had already been done for the theory of numbers,
and besides, algebra—it was believed—was nothing more than
a collection of convenient “recipes” summarizing some known
arithmetical processes.
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The development of algebra was long delayed by the cumber-
some numerical notation used in the Greek and Roman world.
This obstacle was later removed by the Arabic civilization, which
employed the “arabic” numerals we still use today, as well as by
the introduction of zero, a fabulous idea imported from India. The
invention of the negative numbers followed. Algebraic notation
proper, that is, the symbolic expressions representing operations
on numbers (using signs, such as our +, −, =), was also making
progress.

The importance of notation in mathematics cannot be over-
emphasized. A well-chosen notation suggests the right operations
and liberates the mind from pointless distractions, while an ill-
chosen symbolism may be a hindrance to reasoning. From the
point of view of logic and rigor, notation is irrelevant, but it has a
bearing on the relationship between imagination and formalism.
An efficient notation should be suggestive, meaningful, suited to
our imagination as much as to the subject matter. Is this the reason
why algebra would be a product of the Arabic civilization, which
rejects any explicit images and gave algebra its name?

Antiquity knew how to solve only quadratic (or second-degree)
equations and systems of linear (first-degree) equations. When
mathematics resumes in Europe, during the Renaissance, Cardan
and Tartaglia discover a method to solve equations of the third and
fourth degrees. In so doing, they bump for the first time into the
imaginary numbers, whose prototype is the square root of −1.
There are cases where while solving a cubic (or third-degree) equa-
tion—to obtain a definite numerical value for the unknown—one
needs to introduce in the solution process imaginary numbers,
which act as a kind of intermediaries (but do not appear in the
original equation or in its final solution). This strange phenome-
non emphasized, for the first time, the singular nature of algebra as
compared to the well-codified mathematics of Euclid, thus making
it difficult to view algebra as a mere appendix of arithmetic.

In the seventeenth century, it was geometry’s turn to be refur-
bished by the invention of analytic geometry, due to Descartes and
Fermat. The basic idea is to define a geometric point by its coordi-
nates—numbers that locate the point relative to a system of axes.
A plane curve is then completely characterized by the equation sat-
isfied by the coordinates of its points. In this way, many problems
in geometry can be reduced to algebraic calculations.
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It was a considerable step forward, for geometry could now get
out of the straitjacket imposed by Euclid’s methods, where the only
curves were those that could be obtained out of planes, lines,
circles, spheres, and cones. The new techniques also permitted an
easier manipulation of certain curves introduced at the end of an-
tiquity—for example, those arising as trajectories of motions, such
as the famous cycloid traced out by a nail fixed to the edge of a
rolling wheel. These novel methods also raised some subtle
difficulties which could surreptitiously modify the nature of math-
ematics. The huge portions that had just been added to Euclid’s
geometry were based solely on algebra, and no longer on axioms of
a geometric character; but, as we have seen, algebra suffered from
some logical deficiencies. How to resolve these difficulties? The
kind of answer given in practice to these misgivings was more rem-
iniscent of Alexander cutting the Gordian knot than of Euclid’s
prudent logic; it was the answer of conquering armies: “Ignore the
obstacles and move forward.”

No time should indeed be wasted, for there is too much loot to
be taken. The seventeenth century ends with a glorious deed: the
invention of integral calculus almost simultaneously by Newton
and Leibniz. It was, in fact, the culmination of a constant pro-
gression to which all the great mathematicians of the time had
contributed to some degree. But it is also literally a torrent that
begins, a prodigal flow, carrying along as many new problems as
revealing solutions; new and fascinating results, enough to fill
Euler’s twenty-three thick volumes and still leave plenty for other
mathematical giants: the Bernoulli brothers, Lagrange, d’Alem-
bert, Laplace, and Fourier, who continue the discoveries into the
beginning of the nineteenth century.

How distant was then the Greek ideal, when Euler did not hesi-
tate to write that the sum of 1 − 1 + 1 − 1 + 1 − 1 + . . . is 1⁄2, even
if the successive partial sums are only 1 and 0. And yet, more often
than not, these unceremonious methods succeeded beyond all rea-
sonable expectations. When the thrust began to die out and it was
possible to step back and take stock, many began to wonder how
to render mathematics productive again, and also how to reconcile
it with logic’s demands for certainty. The story of the answer to the
second question will occupy the rest of the chapter. As we shall see,
this second answer contained the key to the first one as well.

52



C L A S S I C A L M AT H E M AT I C S

RIGOR AND PROFUSION IN THE NINETEENTH CENTURY

A mathematician is no more naturally inclined to rigor than a pol-
itician; both only put up with it when it becomes inevitable. Hav-
ing seen how rigor came upon the Greeks, we shall now examine
how it will impose itself again on their successors, to lead them to
a perfection of formalism. Two partly opposite movements take
place during the nineteenth century, a blessed time for mathemat-
ics. One of these favors an increase in rigor, while the other contin-
ues, after a short pause, the flow of discoveries.

The movement begins with Carl Friedrich Gauss (1777–1855).
He was called the prince of mathematics, a title that expresses, just
as that of prince of poets, his peers’ admiration for a life’s work
that is as sound as it is prolific. In any case, he deserves recognition
for having demonstrated that rigor is the mother of invention.

Before Gauss, it was generally assumed that any given algebraic
equation must have roots, which can sometimes be complex (imag-
inary) numbers. D’Alembert had tried, unsuccessfully, to prove
this fundamental fact upon which large parts of algebra and ana-
lytic geometry rest. Laplace came closer, but it was Gauss who
around 1815 finally provided a convincing proof. The use of com-
plex numbers in algebra had been definitely mastered.

Gauss possessed an acute sense of logical rigor, stronger than
that of Euclid, and anticipatory of the future evolution of mathe-
matics. His personal notes show him clearly ahead of his time, and
he did not hesitate to question, in private, the postulates of Euclid-
ean geometry. He was particularly troubled by the postulate of the
parallels. Others before him had tried to deduce it from the remain-
ing postulates, and so had obtained, unwittingly, the first frag-
ments of non-Euclidean geometry. Gauss’ approach is completely
different, because he has real doubts concerning the truth of the
fifth postulate. Besides, he is not at all convinced of the necessary
harmony that should exist, according to Kant, between the space
conceived by the mathematicians and the space perceived by our
senses. His work on geodesy offers him the occasion to verify
whether the sum of the angles of a large (physical) triangle, having
mountain summits as vertices, is really equal to two right angles.
This is precisely what he obtains, but the inevitable experimental
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errors still leave room for a reasonable doubt. However, he knows
better than to voice his scruples in public, since Kantianism had by
then become the established philosophy in Germany, and Gauss
hated above all getting involved in sterile debates. So he decides to
keep quiet.

Others, less cautious than him, are going to venture onward.
Lobatchevski and Bolyai go first. They develop, around 1830, a
geometry where the number of parallels to a given line, and passing
through the same point, is infinitely large. Riemann follows, by
showing in 1854 that there are other possibilities, such as geome-
tries without any parallels to a given line. The predictable stormy
controversies ensue in scientific circles, but eventually everyone
would come to realize that the logical consistency of the new geom-
etries cannot be denied. What’s more, it is possible to construct
models of some of these geometries inside a Euclidean space. For
example, one of these models is provided by an ordinary sphere if
by “line” we understand great circle. Such discussions would re-
sult in a better understanding of the fuzzy and conventional aspects
of the old definitions, which used to be interpreted with a strong
dose of visual intuition. As for the results obtained, they reveal a
new phenomenon, one that will recur often in the future: the quest
for greater rigor is not an idle exercise in repetition, but can serve
to expose new, hitherto ignored possibilities.

During those same years, rigor also enters the foundations of
analysis. The notion of the integral still hesitated between an intui-
tive formulation—using areas, volumes, or masses—and another
one based on the idea of the primitive (a function whose derivative
is known) which was only valid in some special cases; there were
yet others, almost metaphysical, involving the existence of “in-
divisible” quantities. This confusion was dispelled by Augustin-
Louis Cauchy (1789–1857) and Bernhard Riemann (1826–1866).
They showed how the integral of a given function could be defined
as the limit of a certain sum of elements which increase in number
and decrease in size to become “infinitesimally” small.

The idea goes back to Leibniz, the special symbol for the inte-
gral, an elongated S, suggesting a generalized sum. In any case,
after Cauchy’s preliminary results, completed by those of Riemann
in 1854, it was clear that this idea of a sum was not just an intuitive
approximation but a legitimate definition. The limit in question
exists and is unique, that is, independent of, say, the myriad of
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ways an area may be divided into small pieces. The foundations of
analysis seemed then well established, now that the notions of in-
tegral and derivative had been worked out (the derivative of a
function was also viewed as a limit).

But there was a concept, even more basic than derivative or inte-
gral, which had remained totally vague. It was the notion of func-
tion—the very objects analysis is supposed to be about. The eigh-
teenth century had been marked by the birth of analysis as a tool in
geometry and dynamics. The applications to these fields had been
so dominant that no one doubted that the functions arising in anal-
ysis could be something else than combinations of polynomials,
sines, cosines, exponentials, and other familiar functions.

Soon, new ways of generating functions became available, and
that naive assumption began to crumble. The functions of complex
variables and Fourier series (to which we shall return) revealed
that the former setting was too narrow. The need to break away
from it was accelerated by that impulse mathematicians feel to
push to the extreme the generality of their results. And so, as soon
as the question of which functions were “legitimate” was posed,
answering it was considered a priority.

To these calls for serious reflection coming from inside mathe-
matics we must add an external cause of a social character: the
level of studies had been rising in universities and other institutions
of higher learning. Teaching is a risky and challenging business,
often taking place at the frontiers of knowledge, with a potential
for error or contradiction. This is how Cauchy’s results on integra-
tion first came out in his classes at the Ecole Polytechnique. In the
meantime, an important change had taken place regarding the so-
cial status of mathematicians. Almost all of them now teach, caus-
ing the mathematical community to favor a return to the founda-
tions. It is finally the pressure of a confrontation with youth—the
history of the Greek origins all over again—that prompts a fresh
look at the basis. At the same time, the exercise should prepare
teachers to better stand up to objections, and give them an edge in
dialectical duels. But there might be another, more noble reason:
the well-known but always amazing phenomenon of the greatest
virtuosos being also the most attentive in the mastering of the sim-
plest techniques.

The master of rigor and the one who set mathematical thinking
firmly “into concrete” was Karl Weierstrass (1815–1897). He is
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the chief artisan of the clarification of some widely used notions,
such as that of a continuous function, or the various types of con-
vergence of sequences. We shall leave out the details, not wishing
our account to become too technical. Thanks to Weierstrass, and
to some others, analysis finally rests on a solid basis and it becomes
possible to verify the scope of its theorems. The more general the
theorems, the more fascinating they are; and the more satisfac-
tion they bring to that aesthetic sense characteristic of the mathe-
matical fraternity. This desire for generality constantly calls for
sounder foundations, and for greater freedom as well. In this way
continues, in a relentless and coordinated fashion, the double ex-
ploration of the foundations and of the possible additions to the
structure.

Meanwhile, there are further developments in analysis. These
result from the study of the systems of differential equations aris-
ing in mechanics, in physics, and in applications to geometry—
and, of course, from the generalization of these new results. The
small family of familiar functions must make room for an army of
newcomers: elliptic and hypergeometric functions, and the func-
tions of Bessel, Hermite, Legendre, Jacobi, and so forth—their list
is a Who’s Who of the mathematicians of the time—each of them
presenting a particular interest. The functions of one complex vari-
able, initially almost a curiosity, turn out to be essential, and sur-
prisingly useful for all kinds of calculations. Finally, the funda-
mental principles of analysis raise some important questions that
deserve to be discussed separately.

It is not easy to convey the extent of the amazing expansion of
algebra and geometry during the same period, because there is in-
novation everywhere. An old question in algebra, motivated by
simple curiosity, will open an unexpected breach: Is it possible to
solve—at least in principle—any given algebraic equation by an
explicit formula, as is the case up to the fourth degree? The answer
is in the negative, and it will be found by Abel and Galois. But the
tool employed by the latter, the theory of groups, is much more
interesting that the problem it helped to solve. This answer marks
one more step toward a formal interpretation of mathematical ob-
jects, because equations possess numerical solutions that, even if
we know they exist, cannot be exactly calculated.

Systems of linear equations are also studied. They had been
known since antiquity, and solution methods had been available
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for a long time. When the number of unknowns does not exceed
three, each linear equation represents a plane in three-dimensional
space, and large portions of geometry may thus be put in an alge-
braic setting. The desire for generality will provoke an interplay
between algebra and geometry, a kind of ballet in which each disci-
pline will lift up the other. Geometric thought need no longer be
restricted to a three-dimensional space, since algebra makes it pos-
sible to talk about spaces of any dimension with identical clarity.
Some new concepts live equally well in algebra or geometry: a ma-
trix is associated with a change of unknowns in algebra, and with
a change of coordinate axes in geometry.

In the “modern geometry” of Poncelet, Chasles, Plücker, and
Cayley, this game of amalgamation reaches new heights. The
words they employ are those of geometry—points, lines, conics,
planes, quadrics—while the underlying concepts belong to alge-
bra. The idea of a straight line corresponds to that of a first-degree
equation, and conics are viewed as equations of the second degree.
The object of the game is to take every possible geometric advan-
tage of these algebraic notions, without ever having to perform a
single calculation. This exercise of dilettantes, extremely amusing,
would greatly influence the reorganization of mathematics. For
instance, the transformations by inverse polars invented by Ger-
gonne demonstrate that the notions of point and line are inter-
changeable. It suddenly becomes clear that the nature of mathe-
matics is more formal than descriptive: in mathematics, what
matters is not the nature of things, but the relationships that exist
among them.

It is also realized that certain geometric properties form a consis-
tent whole with respect to the notions of distance, circle, or right
angle. Such properties may thus be seen as a geometry in them-
selves, given the name of metric geometry. Other properties are
invariant under a projection—of one plane onto another, for in-
stance; these are the projective properties. The existence of such
families of autonomous properties is elucidated in 1872 by Felix
Klein, in his opening lecture at the University of Erlangen. Projec-
tive geometry is reduced to expressing, in the form of theorems,
those algebraic properties that are invariant under the action of a
certain group of transformations of coordinates, the group of pro-
jective transformations; similarly for metric geometry, whose theo-
rems express the algebraic relations invariant with respect to a
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different transformation group—that of coordinate changes from
one orthogonal system of axes to another. More generally, a geom-
etry is always associated with a certain group. In such conditions,
it is not surprising to see an increasing shift in interest toward the
new “structures” that systematize mathematics, and away from
the objects themselves—the points, distances, and projections.

And so, as the nineteenth century draws to a close, there is a
multitude of new results. They are often deep, and occasionally
truly amazing. The borders between disciplines are redefined, and
distinctions among some of the most venerable of them all but dis-
appear. The very nature of mathematics changes. From a science
that possessed its own traditional objects of study, it is becoming
the universal science of relations; in a certain sense the science of
the structures that may arise in any science. Such a profusion de-
manded that mathematics put its house in order.

MATHEMATICS AND INFINITY

As the domain of mathematics kept expanding in search of new
conquests, the return to the foundations continued, each of these
two movements nourishing the other. Those who are not experts in
mathematics may not fully realize today why this double approach
was absolutely necessary. This is especially true in regard to the
insistence on the purity and universality of the foundations, which
is often mistaken for a fixation on logic turned compulsive, while,
on the contrary, each stage of the search was the response to some
precise—and often concrete—problem.

Let us return, for example, to the question of which functions
analysis can, or must, deal with. After the functions that can be
easily computed—the first, in order of importance, for eighteenth-
century analysts—came as we have seen other special functions.
Named after Bessel, Legendre, or others, they can now be found in
electricity, earth sciences, and electronics, where their practical
usefulness is indisputable. These functions are often defined as the
sum of an infinite series, a possibility that Newton had already
recognized. One of the first contributions of nineteenth-century
mathematics, due in particular to Cauchy, was to determine when
such a series can actually be used, that is, the conditions for the
series to possess a well-defined sum—or, in technical language, to
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converge. This is a natural requirement, closely related to the esti-
mation of the error arising from the computation of these func-
tions, a question that no user can afford to ignore.

A function depends on a variable that can normally assume any
numerical value, but it is of course impossible to compute the
function for the infinitely many values of its variable. Now, if the
function has been computed for a certain value of the variable,
how much can it possibly change for a new value (of the vari-
able) that is very close to the previous one? It turns out that the
functions that can be used in numerical calculations are those for
which a small change in the variable produces a small change in the
value of the function. These are the continuous functions (which
can, of course, be defined in precise mathematical terms).

That was the situation until 1807, when Fourier introduced an-
other way to define and compute useful functions. The series that
had been studied until then were so-called power series, that is,
roughly speaking, infinite polynomials whose coefficients of higher
degree become small rapidly enough for the series to converge.
Fourier (or trigonometric) series, on the other hand, are infinite
sums of sines and cosines whose oscillations become increasingly
stronger. The simplest example of such a series results from de-
composing the sound of a musical instrument into its various har-
monics—which shows that Fourier’s idea was not a worthless curi-
osity, but a tool physics cannot do without. Fourier series and their
generalizations today pervade all technical and scientific fields, and
microprocessors are routinely used to compute them at high speed
in certain robot components.

It is little known, however, that Cantor’s famous reflections on
infinity were set off by a problem in Fourier series. These would
prove difficult to tame, but they would also be found extremely
valuable. In 1830, Bolzano used a series of this kind to construct a
continuous function that had no derivative at infinitely many
points of an interval. A warning light flashed, because it had al-
ways been intuitively assumed that any function that was explicitly
defined—even if only by a series—had a derivative. But now
Bolzano’s result implied that derivatives, those most useful tools in
mathematics as well as in physics, could not be taken for granted;
that every time the derivative of a function was needed (in the
course of a calculation, for instance), one would have to prove first
that it existed.
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Physicists could afford to ignore such oddities, relying on na-
ture’s immunity to that kind of flaw (which is actually not the
case). Some mathematicians were also skeptical: “When I come
across one of those continuous functions that are not differenti-
able, I turn away in horror,” said Hermite, only half-jokingly. But
the truth was that, if physicians must take the Hippocratic oath,
mathematicians must honor an unwritten Euclidean oath that
obliges them to prove their theorems. They were then forced to
prevent that kind of accident by putting up the necessary barriers.
(How could they suspect that in so doing, they would be led one
day to develop concepts that physics itself would in the end need?
But that’s a different story.)

This was how Dedekind and Cantor came face to face with in-
finity. In fact, we find infinity practically everywhere in mathe-
matics. The moment we must take a limit, infinity is there, since the
number of terms must necessarily tend to infinity if we are to ob-
tain the sum of a series or define an integral; when dealing with
sequences, we have to consider terms of ever higher order, and to
define a derivative requires taking values of the variable closer and
closer to each other. The notion of a real number—that Eudoxas
and Euclid had defined as the result of measuring a concrete length,
or any other real quantity—brings in infinity as soon as we decide
to express it mathematically (to see this, it suffices to observe that
an infinite number of digits are generally needed after the decimal
point). Weierstrass and Dedekind preferred to view a real number
as the limit of its successive decimal approximations, but this limit
is again the culmination of an infinite process.

Geometry cannot avoid infinity either. Euclidean space is infi-
nite, and real numbers (carrying infinity with them) are needed to
express coordinates. In each line segment, however small, there are
infinitely many points.

One is well advised to keep away from the universe of the infinity-
tamers. One of the first, and certainly the greatest, of these was
Georg Cantor (1845–1918). It is a temple that should only be en-
tered treading lightly, and where sweeping assertions are banned
as meaningless. Infinity was not new: The Greeks had had Anaxi-
mander’s apeiron and the uncountable steps of Achilles in Zeno’s
paradox. The infinitude of God in all his attributes had also been
the subject of study and debate throughout medieval theology and
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philosophy. But, strange as it may seem, the topic had remained
practically virgin, since all the arguments of the past were strewn
with paralogisms that no one knew how to resolve. Everything
remained to be done, and everything was done, except establish
that the final result, “that paradise which Cantor created for us,”
as Hilbert called it, was indeed the only possible paradise. It was
necessary to recognize that the mathematics of today, as abstract,
impenetrable, and source of fascination (for some philosophers) or
of horror (for others) as it may be, was really the only possible one.
It is partly from this fact that the fracture will come.
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Classical Philosophy of Knowledge

WHAT DOES IT MEAN to understand? How is understanding
possible? These questions, which we shall now address, are among
the oldest and most important questions in philosophy. Many an-
swers have been proposed, beginning with Plato’s Theaetetus, but
they can easily be grouped into two main categories. According to
the first one, the world is faithfully represented by our mental im-
ages and by ordinary language. For the second category of an-
swers, the world is essentially different from our perception of it.
It is in fact the opposition between Aristotle and Plato, which has
existed since the origins of philosophy.

The birth of science took place in the supposed clarity of the first
kind of answer, and the purpose of this chapter is to briefly report
its relationship with philosophy during this period. Once again, we
shall restrict the discussion to certain facts that will be useful in the
sequel.

FRANCIS BACON AND EXPERIENCE

Francis Bacon (1561–1626) deserves to be mentioned first, because
he was the philosopher of the experimental method. He antici-
pated a well-organized, coherent science and, perhaps, was also
the creator of a revision of philosophy through science. All this is
more important in my opinion than his ideas on method—to which
his contribution is too often reduced—exposed in the preface to his
Instauratio Magna, where he proves an inspired visionary.

He proposes first to build science or, in his own words, to in-
staur (found anew, reestablish) science. “I entreat men to believe
that this is not an opinion to be held, but a work to be done. . . .
Now what the sciences stand in need of is a form of induction
which shall analyse experience and take it to pieces. . . . I contrive
that the office of the senses shall be only to judge of the experiment,
and that the experiment itself shall judge of the thing. . . . [I ask
you] to be of good hope and not to imagine that this Instauration
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of mine is a thing infinite and beyond the power of man, when it is
in fact the true end and termination of infinite error.” This “error”
that Bacon attributes to Greek and scholastic philosophy was “to
fly at once from the senses and particulars up to the most general
propositions. [This was] a short way, no doubt, but precipitate;
and one which will never lead to nature, though it offers an easy
and ready way to disputation.”

The instauration of science will be “by no means forgetful of the
conditions of mortality and humanity (for it does not suppose that
the work can be altogether completed within one generation, but
provides for its being taken up by another); and finally it seeks for
the sciences not arrogantly in the little cells of human wit, but with
reverence in the greater world.”

Can one imagine a better description of the future of science,
almost at the same moment Galileo was about to put into practice
those same principles? If I had to rank the two men, I would favor
in one respect the physicist over the philosopher, for Galileo saw
that “science is written in mathematical language.” Bacon’s posi-
tion is far removed from this conception and his criticism of the
possibility of attaining knowledge by logical means is extremely
negative, no doubt as a reaction against scholasticism.

The preface to Instauratio Magna contains a searing paragraph
that I cannot help quoting: “Now my plan is to proceed regularly
and gradually from one axiom to another, so that the most general
are not reached till the last; but then when you do come to them
you find them to be not empty notions, but well defined, and such
that nature itself would really recognize as her first principles, and
such as lie at the heart and marrow of things.”

I shall take the liberty to insert here a personal parenthesis. One
of my most precious dreams—partly responsible for this book—is
to see one day scientific knowledge so clearly established as to
allow a return of philosophy to its pre-Socratic sources, finding in
science its own foundations or its most fitting mold. There are
times when I believe that such a day has arrived. At any rate, due
to that strange tendency to read what we expect rather than what
the author wanted to say (and which Paul Valéry has analyzed at
length), I once thought that I had found the expression of my idea,
forcefully expressed, in Bacon’s last citation. Since I had always
wanted to know to whom to give the credit (it is so convenient to
take shelter under a big umbrella!), I attributed it to him, and so I
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said (unwisely) in some lectures. I had to change my mind after a
second reading of Instauratio, because the idea does not explicitly
reappear anywhere else. Perhaps Bacon was simply being cautious,
and took care not to contradict his own preaching by jumping to
premature conclusions. Despite the absence of confirmation, and
just in case my first intuition was correct, I like to attribute the idea
to him, for want of someone else to honor until much later Husserl
came along.

DESCARTES AND REASON

While Bacon’s empirical philosophy marked the evolution of sci-
ence in Great Britain, the rationalistic philosophy of René Des-
cartes (1596–1650) was the respected authority on the continent.

Descartes disagrees with Bacon on one essential point: without
denying the pressing need for observation, he nonetheless claims
that the prime foundation of scientific enquiry is deductive reason-
ing. He has had firsthand evidence of this as a geometer, but now
it is all of philosophy that he intends to base on human reason,
the only secure foundation for the understanding of nature and
humanity.

The great avenue of thought that begins with the famous “I
think, hence I am” obeys a perfectly clear principle: thought pre-
cedes existence, and a reflection using this thought, and on thought
itself, offers the method leading to a complete understanding. Rea-
son, more than nature itself, is the starting point.

The reason Descartes should be mentioned here is because he
flies the flag of reason higher than anyone else, so high that his
“systematic doubt” is clearly a trick. God, whom Descartes claims
to meet only later in his book, is already fully present in the cogito,
ready to occupy the throne reason has reserved for Him. Logic or
reason, whatever we call them, are always our most powerful and
mysterious servants—or masters?

We shall not embark down the Cartesian road in this book,
though, for it is fair to say that Wittgenstein (who many years later
traveled along the same path) put an end to it. In his Philosophical
Remarks, Wittgenstein examines in detail the genesis and the de-
velopment of language, instrument and precondition of reason.
We shall mention only a famous example. A bricklayer is teaching
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his assistant to speak by naming bricks and tools of the trade. Each
time, the apprentice has to point to the object named and say
“that.” Wittgenstein argues that there is no other way to assign a
meaning to the words. Thus, philosophy cannot begin with reason
alone, for the latter needs language, which in turn can only become
meaningful through direct contact with reality. If the mystery of
reason—an obvious prerequisite of science—remains intact, we
can search for its origin only in the regularities that Reality exhib-
its, and not in reason itself. Hence, the cogito path is not viable,
and, despite its influence on the history of philosophy, we can close
it off today without looking back, if not without regret.

Another well-known aspect of Cartesian thought is the proce-
dure explained in Discours de la méthode and also, even more ex-
plicitly, in Règles pour la direction de l’esprit (Rules for the Right
Direction of the Mind). It consists in decomposing a problem into
other, easier ones, until the level of difficulty has decreased so
much that the solution imposes itself as obvious. It is perhaps
a useful method to guide the mind when reflecting on ordinary,
everyday problems. But as a weapon to attack the great questions
of our existence, it is practically useless. Such questions refuse to
decompose into elementary parts, and the simplicity of their an-
swers, when simplicity there is, resembles more the beginning of a
new inquiry than a final conclusion.

We have already mentioned that Descartes viewed matter essen-
tially as extension or, in other words, that for him physics was
reduced to geometry. One might try to see in his position an antic-
ipatory vision of Einstein’s own conception of matter, but it is
rather an example of a resounding failure of the Cartesian method:
of the ten propositions concerning collisions that Descartes de-
rived (using his method) only one was correct. In Bacon’s words,
Descartes wanted to jump to ultimate conclusions in a manner that
was both excessive and premature. The question of method in sci-
ence is more subtle, and we shall come back to it later.

It is undeniable that Descartes left his mark on us all, if only by
a certain mechanistic conception of reality, where the physical
world and its phenomena are seen as a machine and its various
parts—even if the formula is, here again, excessive. We also owe to
him, as well as to Galileo, the idea that nature is governed by laws
whose form is mathematical—a tenacious, strange idea, that has so
absolutely taken possession of scientists that they never even think
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of questioning its limits. This is what Heidegger called “the Carte-
sian project”: the mathematizing of thought. We shall consider it
Descartes’ most important legacy and shall often have occasion to
return to it.

Finally, we cannot mention Descartes’ lineage without recalling
at least the great Spinoza. He is above all the philosopher of coher-
ence, and in his company a scientist of our time can be most com-
fortable. He prefigures perhaps, in more than one way, what phi-
losophy will one day become and even surpass; the day when it will
no longer be founded on reason alone—that fragile support—but
on a larger knowledge of the natura naturans and of the natura
naturata: Logos and Reality.

LOCKE AND EMPIRICISM

There is no book more pleasant to read and more readily convinc-
ing than Essay Concerning Human Understanding, published in
1690 by John Locke (1632–1704). Everything in it appears to be
obvious and to flow effortlessly, delivered in a crystal-clear lan-
guage. It could easily be mistaken for the most persuasive applica-
tion of Descartes’ method, if the aim of the book were not, in part,
to oppose it.

Locke’s thesis is simple: it is the surrounding world that pro-
vides us with the means to think and to speak. We all know, says
he, what an idea is; be it the product of the imagination or a notion
common to all human beings. None of our ideas or principles can
be innate, because otherwise small children would already possess
them. But, says Locke, small children do not know that it is impos-
sible for something to be and not to be at the same time (that is,
they ignore Aristotle’s rule of an excluded middle).

This passage, to which other thinkers have replied, is interesting
because, for the first time, a philosopher admits having learned
something from the observation of children. Genetic epistemology,
the systematic study of concept formation in young children ini-
tiated in our century by Jean Piaget, confirms Locke’s intuition in
every respect: All ideas come either from the five senses or from
reflective consciousness. It is the concrete objects perceived by our
senses that are at the origin of ideas, that is, of the presence, inside
us, of their faithful image. Other, more general ideas are the result
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of reflection, of operations of our mind on those initial ideas. “The
soul only begins to have ideas after it has begun to perceive.”

According to Locke, the hierarchy of ideas begins with simple
ideas, which are not always pure sensory data but the elements that
compose them—the idea of ice, for instance, resolves into others,
such as those of hard and cold. There is a distinction to be made
between the simple ideas that are perceived by a single sense organ,
and those combining the data coming from several senses. The lat-
ter include space, extension, figure, rest, and motion. At the next
stage, the mind extracts similarities among simple ideas through
reflection to attain abstraction. In the final stage, that of language,
the ideas so formed are described by words, which merely define
the common attributes of the things we perceive. And so, every-
thing seems perfectly clear: to understand is to open oneself to the
world, whose representation takes form in the mind and generates
language and reason. Or is it so clear?

DIGRESSION: COGNITION SCIENCES

The subtlety, or the difficulty, in Locke’s approach is apparent in
his hierarchy of ideas. The point has been much criticized but its
importance is today fully corroborated by science. The example of
the idea of ice resolving into those of hard and cold might have
been surprising, for it implied that our senses’ perception of the
external world is a subtle combination of preselected features,
rather than a global and faithful image of our surroundings. It is
worth insisting on this point, since the question of a human’s spon-
taneous representation of the world is relevant to our main argu-
ment: later on we shall oppose a formal representation to a visual
one, and so it is important to know what the latter actually is.

We shall refer for that purpose to the present knowledge in
brain science, whose progress has been astonishing. Many research
efforts converged, a decade or so ago, when several disciplines, up
to then independent, pooled their resources to form the cognition
sciences: anatomy of the brain, neurophysiology, hormonal biol-
ogy, biochemistry, experimental psychology. A great number of
studies, on both human and animal subjects, contribute to its de-
velopment, drawing from physiology, and relying on psychologi-
cal experiments or on the clinical observation of patients who had
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suffered brain injuries. The observation techniques used are pow-
erful: the positronic camera, for instance, that enables scientists to
“see” the circulation of blood through the brain; the nuclear mag-
netic resonance scanners, able to track the circulation of certain
atoms. Computing techniques are of course used for analyzing
data, but computer science also enters as a suggestive model of
mental processes in many places. An entirely new field of knowl-
edge has opened up, evolving rapidly, and already rich in amazing
results.

It had been recognized since Epicurus that perception should
play a central role in the foundations of the philosophy of knowl-
edge. Surely enough, its study reveals a strange complexity. Let us
consider vision, which is a good example. It was long believed that
the almost photographic image formed on the retina is transmitted
intact to the brain, where it is analyzed. In this way, the stages of
perception and understanding would be neatly separated, but
things do not appear to be quite so simple. The retina is a neural
tissue of great complexity, which carries out a detailed analysis of
the incoming image. Certain specialized neural areas recognize
whether the image contains vertical lines, other regions detect hor-
izontal lines; yet others discern colors, the intensity of light, or the
presence of motion. The image is thus divided almost instantane-
ously into various components, which must be recombined by the
brain to reconstruct the object seen.

The retina also has a complex network of internal connections,
thanks to which it can register and transmit more elaborate infor-
mation on certain relationships within the image: similarities, but
also differences, among the things perceived; the presence of a
moving object; and, most of all, that great mystery still unsolved:
pattern recognition.

There is continuity from the retina to the brain, since the former
is part of the latter. We also know a great deal regarding the differ-
ent areas of the brain that receive the components of the image.
There are four of them, which communicate with one another
and react to different characteristics of the image: motion, color,
and form. This last component represents information so rich and
complex that its processing requires two areas of the brain.

The synthesis of a full perception involves even larger regions of
the brain. Those that are active at a given instant can be directly
observed with the aid of the positronic camera. The camera shows
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which parts of the brain are being activated by displaying the flow
of blood through it. In the study of vision, it is possible to correlate
these data with the object seen by tracking the movements of the
eye with a video camera. Experiments of this kind have been per-
formed on animals by implanting directly in their brains electrodes
that receive the neural signals. This technique has revealed how
different areas of the brain react, depending on the characteristics
of the sight before the subject’s eyes: color, motion effects, changes
in form, the presence of recognizable shapes, and so on. The co-
ordination of the process takes place in the cortex prefrontal lobes,
where the short-term memory is located. The latter can detect, for
instance, the appearance of a new element in an otherwise un-
changed scene. It is also from this region that commands to move
various parts of the body are sent out: eye, hand, or mouth move-
ments. The prefrontal lobes are therefore able to control attention
and the ensuing reaction.

Thus, perception appears as an extremely complex process,
where the outside world is first decomposed into a multitude of
attributes, well before its meaning can be grasped. This analytic
feature of perception, which begins by breaking down the image
before proceeding to its synthesis, has gradually imposed itself dur-
ing the last few decades, and philosophy can no longer ignore it.

This long digression was at least useful for stressing a point
which, already noticed by Locke, has presently become somewhat
more cogent: Our mental representations, even if they originate
from the world around us, are reconstructions. They are far from
being simple or obvious. Their validity is most questionable when
science takes us to unfamiliar surroundings, among electrons or
the universe as a whole, for instance. One may therefore wonder
whether clarity is not, after all, merely familiarity, and, outside
these familiar surroundings, only a semblance.

HUME’S PRAGMATISM

David Hume (1711–1776) is descended, philosophically speaking,
directly from Locke. He reduces the totality of knowledge to a
product of experience, and is even more radical than his predeces-
sor in denying any significance to questions beyond the range of
experience. He particularly impressed his contemporaries and
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marked the history of philosophy by his absolute rejection of any
metaphysics, to the point of negating the existence of universal
moral principles, and even moral concepts, such as liberty. This
aspect of his philosophical writings was naturally the most con-
troversial, but we shall not be concerned with it. We shall only
discuss Hume’s views on human understanding and on the nature
of science.

His Inquiry Concerning Human Understanding appeared in
1748, a sequel to Treatise of Human Nature (1737), written dur-
ing his youth. Inquiry contains the most explicit—and practically
definitive—formulation of his pragmatic philosophy, still widely
followed today in scientific circles. Let us hear Hume himself sum
up his main thesis: “But though our thought seems to possess [an]
unbounded liberty, [one finds], upon a nearer examination, that it
is really confined within very narrow limits, and that all this crea-
tive power of the mind amounts to no more than the faculty of
compounding, transposing, augmenting or diminishing the mate-
rials afforded us by the senses and experience.” The only function
of our mind is therefore to exploit facts. Reflection does not add
anything of substance to the information provided by the facts.
Most notions of speculative philosophy thus become meaningless,
as a simple test shows. Indeed, it is enough to ask the question:
From which sensory impression is that supposed idea derived? If
we cannot answer it, we were talking of a notion devoid of any
meaning.

Next comes something more relevant to our discussion: the laws
that science discovers through experience merely reveal the exis-
tence of a customary conjunction among facts (custom being thus
the great guide of human life and understanding). Scientific laws
are simply a summary of observed facts. Hence, facts are the source
of our representation of the world, of our language, and this is
possible because facts have enough regularity to allow reason and
language to be useful. This regularity is best described by the laws
articulated by science, but these laws do not add anything to a bare
summary of facts.

At the end of this scouring exercise where mind is reduced to a
lame copy of the world, it is surprising to see Hume betray without
warning his own rules and suddenly become a radical metaphysi-
cian. This is at least my interpretation, if metaphysics consists in
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decreeing what the world must be, rather than accepting what it is.
To be sure, he admits that there are intimate connections among
facts, which the laws reveal, but he claims with absolute certainty
that it should be impossible, inconceivable, to learn anything else
in that respect. He condemns our logic as definitely helpless, its
inferences being only some habit grown of mimicking facts that
repeat themselves endlessly.

This aspect of Hume’s thought is extremely important and was
to become one of the hottest issues in the philosophy of knowl-
edge. A great number of questions are declared off-limits and for-
ever unanswerable—if not meaningless—by Hume, even in the
sole domain of science: Why are facts related by the consistent pat-
terns that experience reveals? How come that the “laws” of nature,
such as those of Newtonian mechanics, enable us to predict the
result of experiments that have never taken place, and where does
this predictive power of science come from? Hume rejects all these
questions as being beyond what we can ever hope to know. The
gradual discovery of the fact that we sometimes can go beyond this
limitation will constitute, as we shall try to show, the true domain
of today’s philosophy of knowledge.

KANT

In his Biologie des passions,1 the well-known neurobiologist Jean
Didier Vincent marveled at the exceptional quality of Spinoza’s
observations on the workings of the human mind, which are often
in close agreement with the most recent and significant results in
neuroscience. Vincent’s remark could also apply to some of the
most important philosophers of the Enlightment and earlier, who
were undoubtedly subtle and acute psychologists. These include
Descartes (in his Meditations) and Malebranche—as well as Locke
and Hume, it goes without saying. As far as Kant is concerned, it
seems that a more radical statement can be made, namely, that his
main contribution to the philosophy of knowledge should rather
be considered as pure psychology. Immanuel Kant (1724–1804)
stands among the most important philosophers who ever lived, if

1 Paris: Odile Jacob, 1986.
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only for his depth and his exacting rigor. Though strongly in-
fluenced by Locke and Hume, he could not accept the latter’s
renouncing further investigation into the origins of the laws of na-
ture. This question was for Kant a crux metaphysicorum, as he
called it. He expressed it beautifully in the famous first sentences of
the Critique of Pure Reason: “Our reason has this peculiar fate
that, with reference to one class of knowledge, it is always troubled
with questions which cannot be ignored, because they spring from
the very nature of reason, and which cannot be answered, because
they transcend the powers of human reason.”2

But what is reason? Kant’s definition—the faculty for producing
unity among the rules of understanding according to principles—is
of little help. It comes only at the end of a long construction re-
quiring for its validity the full acceptance of the Critique’s basic
assumptions. The significance of reason in modern cognition sci-
ences would rather take into account two simple but essential ideas
that were still missing in the eighteenth century: that thinking takes
place in the brain, and that reason, and logic in particular, was
acquired and developed by humankind through a long historical
process. It has a strong social component, involving communica-
tion and culture.

Kant does not refer to the brain, and he was certainly right in
doing so, given the little that was known about it in his time. An
interpretation of Kant with reference to the brain will be conve-
nient, however, even if reductive, in a necessarily short discussion.
It at least makes clear the distiction introduced by Kant between
two kinds of knowledge, a posteriori and a priori. A posteriori
knowledge is easy to understand since it means everything we draw
from empirical intuition (Anschauung, the German word, being
certainly the most accurate). Kant is essentially concerned with
something that exists before any intuition can take place. A con-
venient way of interpreting this a priori datum would be to con-
sider it simply as the framework and the functions of the brain.

A basic aspect of Kant’s approach is its emphasis on the nature
of phenomena. A phenomenon is the “undefined object of an em-
pirical intuition,” something we could rather try to define as a state
of the brain when it perceives an external thing or an internal bod-

2 The translation is by Max Müller, as quoted in Walter Kaufmann’s Philo-
sophic Classics, vol. 2 (Englewood Cliffs, N.J.: Prentice-Hall, 1968).

72



C L A S S I C A L P H I L O S O P H Y OF K N OW L E D G E

ily process. Our present understanding of perception agrees with
the need to distinguish real things from their representations
through perception, or reality from “phenomena.” We cannot,
however, overlook the fact that our brain obeys the laws of phys-
ics, chemistry, and biology. Either we accept Kant’s idea that noth-
ing can be known except phenomena and follow him (and later
Husserl) down the path of phenomenology or (except for joining
Hume in his renunciation) we recognize in the crux of metaphysics
an urge to investigate more deeply the laws of nature and their
stupendous unity.

Kant sees the organization of phenomena as dominated by two
basic “a priori synthetic judgements,” which are space and time.
They are a priori because they belong to the domain of reason and
not intrinsically to the objects we can observe (or at least this is
what Kant says). They are “synthetic” in so far as they are con-
cerned with the ordering, the synthesis, of various phenomena. For
instance, different objects are placed side by side in space by the
mind and not mixed together; different events in time are similarly
ordered in succession. Our intuition, our awareness, of the world
outside and inside us is necessarily cast into these molds of space
and time, which are supposed to have no external, genuine reality.

The status of space and time is an essential element of Kant’s
philosophy, and is also a paradigm for all modes of thought. In the
Prolegomena to any Future Metaphysics, which is a sort of “popu-
lar” version of the Critique, Kant makes this basic point very clear:
“Understanding does not derive its laws (a priori) from, but pre-
scribes them to, nature.” This radical change of reference for the
generation of knowledge is often compared by the authors of phi-
losophy textbooks to the Copernican revolution. Kant offers it as
a way of breaking through Hume’s crux of metaphysics: Reason is
enough to explain the existence of laws and the regularities of the
world!

In order to appreciate the value of Kant’s ideas in the present
day, it may be interesting to compare his approach with some of
the formal sciences that have emerged in the meantime. The no-
tions of space and time immediately suggest a comparison with the
theory of relativity. We may notice first that neither Kant nor his
followers fully exploited the possibilities of their assumptions.
They took for granted that different observers, different intui-
tions, would necessarily have to agree in their synthetic a priori
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judgements. There seems to be a slip in the reasoning here, because
such a comparison belongs to the empirical domain, whereas a
transcendental, a priori analysis should have considered the vari-
ous alternatives, that is, a possible agreement or disagreement be-
tween the representations of different observers. In that sense, Ein-
stein may be said to have carried Kant’s arguments farther and in
a more careful way than they had previously been. In other words,
relativity does not directly invalidate the principles of Kant’s ap-
proach, as Ernst Cassirer observed.

To find out where the conflict really is we must look at a later
part in the Critique, when the famous antinomies are discussed.
These are four pairs of opposite theses that Kant asserts to be for-
ever undecidable by reason. He offers proofs of this claim using
“transcendental” methods (that is, the principles of pure reason)
although most of these “proofs” are not more convincing than
many in Aristotle’s works. The fourth antinomy has to do with the
existence of God and the third one is concerned with causality and
free will; hence, neither of them is relevant to our discussion. The
second antinomy is more directly linked with science, since it
claims as undecidable whether a compound substance is made of
simple parts or not. In other words, the existence of atoms is ac-
cepted as a sensible assumption, but it is shown that it will never be
possible to prove it. At this point, Cassirer notwithstanding, one
feels that something wrong has crept into the argument, though we
shall not attempt to discuss what and where.

In the first antinomy, two theses are opposed: the first one states
that “The world has a beginning in time and is limited also with
regard to space,” while the other maintains that “The world has no
beginning and no limits in space, but is infinite in respect both to
time and space.” This may be compared with the opinion of most
modern cosmologists who claim to possess solid arguments indi-
cating that the universe had a beginning, and consider that the
finiteness (or lack of it) of the universe can in principle be decided
by accurately measuring the average density of matter in space.
One is left wondering how these scientists can maintain that they
have solved what was considered as definitely undecidable by
Kant. The essential point is that the cosmologists rely on a mathe-
matical concept, space-time—together with some physical laws it
obeys—that clearly falls outside the range of intuition. Since it does
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not belong to the system of Kant’s phenomena, it is not subject to
his judgments.3

It turns out—though of course, both Hume and Kant could not
help ignoring it—that some sciences can deal with facts that are
accessible neither to intuition (Anschauung: the vision of what is
offered immediately) nor to perception. The existence of these
“formal” sciences, which we shall consider in more detail later, is
therefore an essential question (and a valuable hint) for philoso-
phy. Kant has nothing to tell us that would help us understand
formal sciences. He is, however, extremely helpful and reliable
when we try to pinpoint exactly what makes these sciences formal,
when and where they depart from classical thinking, and how they
extend it. Kant provides us with the acme of this way of thinking,
this “pure reason,” and he is by far the deepest analyst who ever
existed regarding everything intuitive. Though we cannot accept
his statement that reason prescribes its laws to nature, we may
rely on him for perfectly delineating classical thinking: thought
proceeding uniquely through intuition, vision, and unformalized
clarity. Kant is an irreplaceable reference for the definition and
recognition of classicality, in view of his insightful psychology of
rational consciousness. This is why we proposed an unusual evalu-
ation of his work that at first might have appeared improper and
controversial, but whose legitimacy should by now be clear.

Kant’s analysis extends to other important aspects of classical
thinking. His categories of understanding, in particular, provide a
careful and systematic review of the modes of reasoning (when rea-
son intends to use intuition, and intuition only, as a source of in-
formation). Among these twelve categories, those of Reality and
Causality deserve special attention. One may skip many long dis-
cussions of these difficult categories in the modern literature and
go directly to Kant’s book to find out why reality and causality
intrinsically belong to classical thinking. This will be important
for fully appreciating the absence of these categories in quantum

3 To avoid an apparent contradiction between what is said here and what we
said before (about the absence of contradiction between relativity and Kant’s con-
siderations) it should be stressed that in the special theory of relativity the concept
of space-time is convenient but not necessary. The tentative cosmological answers
to the first antinomy rely on the relativistic theory of gravitation (general relativ-
ity), in which space-time is a fundamental concept.
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physics. We may also notice that Kant’s category of inherence (if I
understand it correctly) agrees with Leibniz’ discussion of indistin-
guishable objects: two objects (two substances) should always be
distinguishable by some feature in classical thinking. Quantum
physics gave up this notion of inherence also in one of its most
basic principles (Pauli’s principle).

Several conclusions may be drawn from this too short analysis.
The main one was already mentioned when we discussed Bacon.
Considering how far from Kant’s schemes science has brought us,
and recognizing that nothing as systematic as the Critique of Pure
Reason has been produced in the meantime, the need for a new
foundation of philosophy is clearly imperative. Husserl said it
earlier, but unfortunately he became muddled with Kant’s legacy
of phenomenology.

Understanding is a human quality—though some people may
envision other kinds of understanding for machines or aliens.
Kant’s psychological lessons on understanding should never be left
out of any search for new foundations. Since he did not take the
brain explicitly into account, he could not appreciate that there is
always an experience prior to any a priori—transcendental—act of
the mind. We know, on the contrary, that there is an ontological
construction of each human brain since infancy as well as an on-
going phylogenetic evolution of Homo sapiens. This is where
Kant’s error lies, and where his heroic attempt at solving Hume’s
crucial problem failed.

Does this mean that a true foundation of philosophy, which
should certainly be at least as ambitious as Kant’s, will have to
wait for a total understanding of the brain? Probably not, if we do
not aim at an impossible completeness and take over the task
where Kant left off. We are in a much better position, because what
we must investigate is no longer Hume’s problem, but how and
why this metaphysical crux has been overlooked by science. We
shall see that it is probably because the roots of logic, if not of
reason, are not to be sought within the structure of our mind but
outside it, in physical reality. This of course implies a complete
reversal of Kant’s approach.

Our brief review of philosophy must now come to an end.
Though outrageously sketchy, it will serve as a background for our
endeavor, if only because the ideas of the past still impregnate our
minds through culture and teaching. If we are to overcome them,
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better to make them explicit. In any case, this review has at least
shown us how urgent, but also how difficult, a constructive philos-
ophy of knowledge can be.

The story does not, of course, stop at Kant. There were other
great psychologists, such as Nietzsche and Freud, but they have
little to teach us that is relevant to our enterprise. Others have at-
tempted to construct a theory of knowledge, and we may mention
those of Bertrand Russell (1872–1970), Alfred Whitehead (1861–
1947), Ludwig Wittgenstein (1889–1951), and Edmund Husserl
(1859–1938). All of them, in some sense, were born too late and
too early: Too early to seize the full implications of recent scientific
discoveries—in particular the laws of the quantum world—and
too late to prevent the abrupt collision of their views with the new
insights. It might well be, under such constraining historical cir-
cumstances, that the greatest philosopher of our age was Niels
Bohr, but to say that in the present chapter would be anticipating
too much.
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THERE IS NO DOUBT that we are going through a period of frac-
ture, whose first perceptible manifestations are four centuries old,
dating back to the dawn of modern science. But if fracture there is,
what is it exactly?

There are at least two aspects of this fracture whose significance
is widely recognized. The first one concerns humankind’s place in
the universe and our perception of it, while the second has to do
with the pervading consequences of modern technology. The for-
mer aspect influences the mind, the latter affects life as a whole.

Who can ignore today that we are part of the evolution of all
species, of the universal flow of life; that the formation of the sun
and the earth extends our lineage even further back in time, right
down to matter, to the oxygen breathed by the first living crea-
tures, to the atoms that compose us and which once were part of
long-dead stars—that the universe had a beginning? I would as-
sume that we all know these things, and that they are the intel-
lectual background of our century. As for the proliferation of
technology, our earth being crisscrossed by airplanes, waves, and
information, the changes in our daily life, the impact of medicine,
and the cries of a world in pain and suffering, we know how im-
portant they are, but, again, these things are well known and I have
nothing to add to the books and essays that discuss them.

I would like to talk of a fracture that is more discreet and little
noticed, but also important. It concerns a profound transforma-
tion of science, one that measured on a historical scale has just
occurred, and which greatly affects the nature of thought, the act
of understanding. It takes part in an eminently positive movement,
that powerful trend toward coherence and order we mentioned in
the Preface, where the laws originating from each particular sci-
ence come together to form a seamless bundle of imposing unity.
The fracture is nevertheless there, in the fact that these laws are,
when seen through the eyes of average intelligence or classical phi-
losophy, absolutely incomprehensible. In a nutshell, the more we
know, the less we seem to understand.

We often hear the legitimate complaints of those who cannot
understand the principles of contemporary physics or mathe-
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matics, which no amount of “popularization” succeeds in commu-
nicating. There is in this situation more than meets the eye, more
than the consequence of an excessive specialization or an immod-
erate taste for abstraction: the existence of an intrinsic darkness.

It is even worse, as we shall see, and the traditional foundations
of philosophy now give up under the pressure of science. It is im-
possible to describe this breakdown in a few words, for it does not
seem to have been recognized in all its ramifications. Let us just say
that we are losing the spontaneous representation of the world that
used to be at the origin of every thought; common sense is defeated
together with the philosophical principles it generated. A strange
predominance of abstractness, of formalness, exists at the very
heart of reality. There can be only one remedy: to invent a new way
of understanding.

The cracklings announcing the fracture were clearly heard, but
their deep rumblings went unnoticed, and it is under this incom-
plete form that they already traverse philosophy. First, there was a
retraction of logic on itself, when it becomes formal and introspec-
tive. The books are full of it, from Russell to Wittgenstein and from
Carnap to Quine or Popper. Formal logic helped another, wider
renewal in mathematics, cutting the last ropes that still tied it to
reality. Mathematics became autonomous, a pure game of rela-
tions, Logos renewed, where Forms were no longer forms of some-
thing concrete but ready to accommodate anything. Many authors
discussed it, those mentioned above as well as others, such as Jean
Cavaillès and a number of our contemporaries.

The major upheavals took place in physics: First, the theory of
relativity and its questioning of the categories of understanding
theorized by Kant; then, and especially, this almost universal sci-
ence called quantum mechanics, which is in fact the general expres-
sion of the laws of nature in a world made of omnipresent and
almost imperceptible particles. It is this science that warned us of
the limits of common sense and the fallibility of some fundamental
philosophical principles: intelligibility, locality, and causality, for
instance. Words fail us; they only encompass the most deceiving
appearance of things, and bump into each other in multiple contra-
dictions. Only mathematics has the fiber to capture the concepts of
physics; not merely to render them precise, as in the science of the
old days, but to articulate them—and nothing can replace it.
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We have just outlined the essentials of this second part: a
diagnosis of cataracts, the clouded vision of science, be it in for-
mal logic (which we shall barely touch upon), contemporary math-
ematics, or quantum mechanics. We shall also recall in broad
outline the acute philosophical perplexities that arose in con-
nection with those sciences, be it in mathematics or in quantum
epistemology.

In so doing we are preparing the ground for a last stage, to be
addressed in the final part of the book but requiring this prelimi-
nary analysis. Any attempt to renew the philosophy of knowledge
at a level suitable to the complexity of the current problems cannot
be supported by a collection of disjoint reflections—a bit of logic
here, of mathematics or physical sciences there—appearing in so
many separate and specialized books, as is now the case. The key-
stone should rest on all three of these pillars at the same time, how-
ever unhappy the specialists might feel. This is the reason we build
them now.

A last remark, concerning the terminology we shall adopt to better
emphasize the philosophical characteristics common to these three
sciences, and to identify the two major stages of their evolution.
We have referred to physics before the fracture as “classical” sci-
ence, and to mathematics afterward as “formal” science. Thus,
Aristotle’s logic is classical, as is Newton and Leibniz’s differen-
tial calculus; while quantum physics, despite the number of its
very concrete applications, will be called formal. This is simply a
particularly convenient classification to render our argument more
transparent.
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Formal Mathematics

THE AGE OF FORMALISM

FROM NOW ON, we shall cease to follow the unfolding of the his-
tory of mathematics, which, by the way, is accelerating,1 and shall
rather focus on three ideas we had already come across. The first
one concerns the very nature of mathematics, whose purpose is not
specifically the study of numbers, geometric figures, or any other
particular domain. These are only applications of mathematics and
not the essence of it. This essence is the study of the relations that
exist among concepts, irrespective of their specific nature. In short,
it is the abstract study of form.

The end of the nineteenth and the beginning of the twentieth
century are characterized by a massive effort to conquer the formal
domain, to stake it out, establish its rules, and draw up its map.
Such an enterprise requires an extreme caution in order to thwart
habits or laziness of thought, beginning with a merciless hunt for
deceiving appearances. These are the reasons for the army of sym-
bols that takes over the field of thought. Any temptation to yield
to the lure of intuition is strictly banished. Hilbert went as far as
proposing, half-jokingly, that suggestive words such as “point,”
“line,” and “plane” ought to be abandoned, and replaced with
“table,” “chair,” and “glass.”

Such an intense preoccupation with formalism and this mistrust
of intuitive representations would necessarily have an impact on
logic. The latter could no longer afford to deal only with the clear
but superficial images suggested by the mind. It had to become a
logic of formalness, a formal logic.

1 This chapter is based on the collective work Abrégé d’histoire des mathé-
matiques 1700–1900, edited by Jean Dieudonné, 2 vols. (Paris: Hermann, 1978),
and on the collection of original articles edited by Jean Van Heijenoort, From
Frege to Gödel, a Source Book in Mathematical Logic, 1879–1931 (Cambridge,
Mass.: Harvard University Press, 1967).
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The second idea concerns the importance of infinity in mathe-
matics. Infinity is everywhere, except in a few precise domains. It is
also one of the most difficult concepts for logic to handle, and re-
quires a corresponding evolution of the latter.

The third important idea is the search for consistency. When
analysis was reformulated to satisfy Euclid’s logical standards,
it became necessary to reexamine first Euclid’s own axiomatic
model. The role of the hypotheses was clarified. An axiom was no
longer a self-evident truth, nor a postulate an assumed one; both
were rather viewed only as possible truths, worth exploring for the
profusion of their logical consequences.

But in cutting itself loose from physical space and other such
references to the concrete world, mathematics also lost the certi-
tude—actual or presumed—that reality guarantees. New, unex-
pected obstacles, hidden errors, and internal contradictions then
became a threatening possibility. This state of affairs prompted a
new reflection on the notion of mathematical truth, which was
now to be understood as a freedom from contradictions, a com-
plete logical consistency.

This whole evolution toward a formal approach proved amaz-
ingly prolific, and not, as one might have feared, an empty shell.
It opened countless new domains inside mathematics itself,
and, strangely as it may appear, far from consecrating a divorce
from reality it established a new reunion with it. Indeed, shortly
after the transformation of mathematics, physics would in turn
be propelled toward the new landscapes of relativity, of the rela-
tivistic theory of gravitation, and of quantum physics, and some
of the boldest constructions of formal mathematics would be
found to be indispensable in the formulation of the laws of na-
ture. Nothing seems to explain this astonishing encounter, but it
is undoubtedly a philosophical discovery our age has yet to fully
recognize.

This formal, present-day mathematics will be our next topic.
We do not wish to get lost in niceties or technicalities, nor, unfortu-
nately, give in to the temptation of some of its beautiful sights. In
a certain sense, we shall resemble Saint Bernard meditating on his
way to the Alps without even glancing at the majestic peaks, ab-
sorbed in what he considered to be essential.
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FORMAL LOGIC

The person who did the most to revive logic in our time was un-
questionably Gottlob Frege (1848–1925). The need for a revival
was felt toward the end of the nineteenth century, when infinity
had to be tackled head-on for mathematics to move forward. There
was, of course, some resistance against the necessary increase in
the level of abstraction, by the same kind of people who today
marvel at the achievements of computers, which are really ma-
chines to do formal logic.

It is difficult to do justice to either Frege’s or Cantor’s far-reach-
ing contributions in a few sentences. We must nevertheless say
something about logic, if we wish to discuss present-day mathe-
matics, and we shall encounter it again when trying to understand
quantum physics. But we need not embark on the analysis of
Frege’s difficult works, and a few words on those of his predeces-
sor George Boole (1815–1864) will suffice.

Boole’s principal achievement was to realize one of Leibniz’
dreams: to devise a practical symbolism, together with a complete
set of reliable rules, for carrying out the logical operations in a
simple and automatic fashion. One of his prime ideas was to re-
place the definition of the properties of an object by a reference to
all the objects possessing those properties. For instance, instead of
defining “red” using words which would inevitably prove inade-
quate, he supposes that one can always decide whether a given
thing is red or not; all red things then form the set of red objects.
Boole therefore favors extension, or the set approach, over com-
prehension, which requires precise definitions. Similarly, it is as-
sumed that the set H of all humans and that of all mortals (M)
exist. The statement of a simple proposition such as “All humans
are mortal” can then be expressed by saying that the set H is con-
tained in the set M.

Boole also proposes a simple and elegant symbol for the logical
conjunction “and,” which he denotes as a product. Given, for in-
stance, the set B of black-haired humans and the set F of all fe-
males, the set of black-haired women is then denoted by F � B; it is
the set of elements common to both F and B. In a similar fashion he
defines the logical alternative “or,” denoted by the addition sym-
bol. Females or black-haired humans make up a set called the

86



F OR M A L M AT H E M AT I C S

union of the two sets F and B and denoted F + B by Boole (to be
fair, this inclusive “or,” different from the exclusive “or” that cor-
responds to “this, or else that, but not both,” was not considered
by Boole himself but introduced by Jevons).

Another of Boole’s ideas was to fulfil a need that logicians
sensed but had failed to pinpoint: the need for universal sets. One
of these is the empty set (the set with no elements), which Boole
denotes by 0. The other one is the “universe” to which any given
logical argument implicitly refers—the previously mentioned uni-
verse of discourse or Denkbereich. We can illustrate this notion
with an example. Suppose that we are talking about marriage. This
necessitates the notion of married people, that is, the set of men
and women that are married. After that, we could consider the set
of married couples, but which marriages are we talking about?
Monogamous, polygamous, or polyandrous (a woman having sev-
eral husbands, as existed not so long ago in Tibet)? These are three
possible universes of discourse, and the structure and properties of
the underlying set would be very different in each case. Logic re-
quires that we specify, before everything else, the relevant universe
of discourse or universal set of reference. Boole represents this
“universe” by the symbol 1.

Negation can then be described in terms of sets as well. Boole
views a proposition as asserting that certain elements belong to
certain sets. For example, if the universal set 1 is the set of all hu-
mans, one element of this set is Socrates, and the set B of all blond
humans is contained in 1. Now, the proposition “Socrates is
blond” expresses precisely the fact that the element Socrates be-
longs to the set B. The negation of this proposition (“Socrates is
not blond”) amounts to introducing the set B′ of the elements (of
1) that do not belong to B, and it says that Socrates belongs to B′.
The set B′ is denoted 1 − B by Boole.

The above logical symbolism works well as long as it is handled
with care. In other words, the manipulation of the symbols (1, 0,
�, +, −) is governed by precise rules that resemble, but are not iden-
tical to, those of algebra. Going back to the sets B (blonds) and F
(females), we clearly have B � F = F � B (for every blond female is a
human of female sex who is blond). But we also have F � F = F
(every female woman is a female). The precise rules of this alge-
bra of logic were clearly stated by Boole and later completed by
A. De Morgan and C. S. Pierce. They can be found today in every
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textbook on logic, including those intended for future electrical
engineers and computer scientists.

Next comes logic’s master key, the one that allows a statement
of the consequences of given premises: logical implication (already
known to the Stoics). In Boole’s system, a proposition a implies
another proposition b if the set A corresponding to property a is
contained in the set B corresponding to b. This can be conveniently
written as the “equation” A � B = A.

More generally, Boole’s works have the merit of establishing the
close connection between logic and set theory. One may not totally
agree with his definition of a property in terms of a set—and soon
we shall see an alternative one, using symbols, as Frege did. But
logic nevertheless always requires some set of reference, a col-
lection of all conceivable propositions making up the universe of
discourse.

For a while, a predictable question came up: Can all of mathe-
matics be simply reduced to logic? The two thick volumes of Rus-
sell and Whitehead’s Principia Mathematica are based on a posi-
tive answer to that doctrine. A few years later, Bourbaki chose
rather to use set theory as the foundation of mathematics, and as-
sign logic a secondary role. Which one is the true beginning? A
clear answer has yet to be given—and is probably impossible to
find.

SYMBOLS AND SETS

The little we have said about logic is assuredly insufficient, but our
real objective lies elsewhere. It is to give an idea of the nature of
contemporary mathematics, with its formalism as intrinsic as it is
arrogant. In order to describe this science of symbols and relations
we shall begin with the symbols.

All is based on the principle of the excluded middle in its purest
form: in the beginning there are two distinct symbols, denoted 0
and 1. We could have employed any other symbols, a circle and a
cross, say, or—had this book been printed in color—a blue dot and
a red dot. At any rate, what is important is to realize that here 0
and 1 are not numbers but symbols. But symbols representing
what? Representing only themselves. Give me 0 and 1, a present-
day Descartes would say, and I will give you thought. Without
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going that far, let us say for the moment that we are only interested
in saying what a symbol is, and that only two of them suffice to
generate them all.

Let us assume, for convenience, that we possess a computer. In
particular, our computer has a memory in which we can store ele-
mentary symbols such as 0 and 1 (the binary digits, known famil-
iarly as “bits”) or strings of them. Each of the symbols 0 and 1 is
physically implemented in the machine by an electric potential be-
tween the terminals of a transistor, a potential that can take on two
different values. The computer’s memory is divided up into various
units, each of which will be used for a particular purpose. The
computer being a finite machine, it has a finite—if possibly very
large—memory capacity, just like our own brain.

Starting with the elementary symbols 0 and 1, other (composite)
symbols may be constructed, simply by repeatedly writing the for-
mer in sequence. The result is a string of 0s and 1s, such as 0, 1, 10,
11, 100, 101, 110, 111, 1000, and so forth. The length of each
sequence is finite, and so is the totality of them that can be stored
in our (finite) computer. With these symbols we can express a vari-
ety of ideas: write numbers, represent points, circles, logical or
arithmetical operations, and so on.

Even if the strings of 0s and 1s are sufficient for us to build from
them all of mathematics, our mind, unlike the computer, is not at
ease with their monotonous simplicity. For this reason it will be
convenient to discuss mathematics at two different levels, one de-
scribing it as it really is and the other as we humans like to hear
about it. In the first version (for the computer), everything is writ-
ten and expressed in terms of the two elementary symbols. Such a
language is well suited to a perfectly abstract thought, for its very
starkness is a safeguard against unwarranted interpretations of the
symbols by our imagination. But, on the other hand, such a puri-
fied language soon becomes incomprehensible to our mind. And so
we will occasionally talk “between ourselves,” that is, between hu-
mans, or between the author and the reader, in ordinary language.

Our first task will be to teach elementary set theory to the com-
puter. But we shall not proceed along the lines of Boole’s algebra
of logic, because despite its apparent simplicity it is beyond the
computer’s reach, or, put differently, it is still too intuitive to be
formalized. The set of dark-haired women represents something
for us—an image, an idea—but it means absolutely nothing to the
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machine, which does not understand words, in particular, the
word “set.” We must begin at a deeper level, and teach the ma-
chine the grammar, so to speak, of the theory, without any refer-
ence to meaning, to intuitive representation, to semantics; in short,
we must teach our computer the formal language* of the theory.

Each unit of memory will play a different role. There is the Ele-
ments unit, the Set Names unit, a Sets unit, and also Signs and
Propositions units. There may be other units as well, but we have
enough for our purpose, which is to illustrate the formal method.
The Elements unit contains a fixed collection of symbols—that is,
of strings of 0s and 1s. We shall designate them “between our-
selves,” by lower-case letters: a, b, c, etc. In the Set Names memory
unit we include a symbol that is supposed to name the set stored
in the Elements unit. This set, denoted by E between ourselves (as
a rule, we shall employ upper-case letters to designate sets) may
be viewed as the universal set (or, in Boole’s notation, 1). We
are going to use it to teach set theory to the computer in a practi-
cal way, that is, by telling it the rules for handling the different
symbols.

The next stage consists in constructing all the subsets of E—
quite simple, really. First, the one-element subsets; this amounts to
copying the contents of the Elements memory into the Set Names
memory. Now, since they have changed memory unit, the former
“elements” no longer represent the same concept—they have now
become what mathematicians call “singletons,” and are written,
for instance, {a}, to designate the set whose single element is a. In
a similar fashion we obtain names {a, b} for all subsets of two (dis-
tinct) elements, then the three-element subsets, and so on, until all
the subsets of E have been named, including E itself. For good
measure, we throw in another symbol among the set names: the
empty set or set with no elements, usually denoted by ∅ (0, in
Boole’s notation).

In the Signs memory unit we store only four symbols, denoted
(between ourselves) P, ∏, ⊂, ⊄. They represent certain relations
between elements or sets that we express in words by belongs to,
does not belong to, is contained in, is not contained in, respec-
tively. For example, we write a P A to indicate that the element a
belongs to the set A. The computer can “understand” the sense of
this proposition by checking whether the element a occurs among
those of the set named A. If such is the case, it will then be in-
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structed to store in the Propositions unit the sequence of symbols
a P A; otherwise, it will write a ∏ A. Similarly, we say that the set
B is contained in the set A, written B ⊂ A, if every element of B also
belongs to A. Again, the computer can verify this assertion and
store B ⊂ A or B ⊄ A (whichever is the case) in Propositions.

But, the reader may be wondering, what are the assumptions
regarding the operations that the machine can execute? The an-
swer is that the computer obeys the basic laws of formal logic es-
tablished by Frege and Peano (we shall not, however, discuss them
here, and simply acknowledge this fact). Apart from that, our com-
puter is not essential to the construction, it is just a convenient
device to emphasize the purely symbolic character of logic, and the
total absence of any visual representation.

The above preliminaries may appear slow and tedious, but we
hope that they nevertheless show how the concepts introduced so
far can be expressed by means of symbols only, without the help of
any underlying intuitive representation. We can see in this example
how a mathematical theory may be systematically built as a logical
organization of symbols, the meaning of which need not be speci-
fied in advance. The “elements” can be names of students of some
university, and a certain subset may represent the football team;
but the elements may just as easily be the fruits of an apple tree,
and the subset the contents of a basket. In the universe of symbols,
the only meaningful facts are the relations among them.

PROPOSITIONS

We shall now move on to a higher level of abstraction. An impor-
tant feature of mathematics is its ability to deal on an equal footing
with things that are real and things that are only possible. A line
segment may equally well be the one connecting the tops of two
real mountains, such as the Acropolis and Lycabeth in Athens, or
simply a possibility, as when we say, let AB be a segment. Like-
wise, when speaking of a number, it could be the number 8 or a
possible number n, of which we know nothing. It is precisely this
versatility of thought that we shall communicate to the computer,
our guinea pig in formal thinking.

Instead of speaking of some objects as being real (or explicit)
and others only possible, we shall call the former concrete and the
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latter abstract. To accommodate these two kinds of objects we
shall need some memory space. The former Elements unit will now
be divided into two sections, Concrete Elements and Abstract Ele-
ments, and similarly for Set Names.

To illustrate the idea, assume that the elements of E are the sym-
bols 0, 1, and 10 (called 0, 1, and 2, in ordinary language). These
would be stored in the Concrete Elements memory unit. In order to
be able to speak of a generic element, or “element a”—the “num-
ber x,” as one would say in algebra—we choose a symbol to repre-
sent the letter a and store it in Abstract Elements. If in the course of
a logical argument we find that a = 2 (or if a = 2 is one of our
hypotheses), it would then be easy to connect the memory cell in
Concrete Elements containing the symbol 10 (the number 2) to the
memory cell in Abstract Elements where the name a is stored.

The signs, such as P or ⊂, can also be employed to express rela-
tions between abstract elements or sets. Here’s an example: If P
denotes the set of even numbers, then the proposition 6 P P can be
readily verified by our computer (assuming it can perform ele-
mentary arithmetic), for one can instruct it to check whether 6 is
(exactly) divisible by 2. But the proposition a P P cannot be so
verified, unless we provide the machine with additional informa-
tion. We are going to introduce now two important notions: those
of an abstract proposition and of metalanguage.*

A formal proposition is actually a sequence of symbols con-
structed according to certain syntactical rules. For instance, by the
proposition a P A we understand that the element a belongs to the
set A. This entails that the first symbol (a) must belong to the list of
element names, abstract or concrete, that define A; and this symbol
A must be a (concrete or abstract) set name. As for the sign P, if the
sequence of symbols is to make sense, it can appear only between
an element name and a set name. There are many other analogous
symbols and signs in mathematics which must be combined in a
suitable manner for the resulting sequence (or formal proposition)
to have a meaning. In elementary set theory, some of these other
signs are ∩ for the intersection of two sets, and ∪ for their union
(originally denoted � and + by Boole). The rules governing the writ-
ing of “sentences” constitute a kind of grammar that our computer
must learn.

One of these grammatically correct sentences is ((a P A) � (a P
B) ⇒ (a P A ∩ B)), which means (in our language) that if an ele-
ment a belongs to a set A and also to a set B, then it belongs to the
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intersection of these two sets. We humans may have derived such
relations between sets from observation, but this fact is irrelevant
here. Many other sentences are also grammatically correct for our
computer, even if we may not see the point of writing them, for
example, ((a P A) � (a P B) ⇒ (a P A ∩ C)). Where does this set C
that has replaced B come from? We don’t know, but for some spe-
cific C the above sentence might be a true statement. By defining a
grammar we have in fact defined a language (in this case a language
to speak about sets); in it we can state propositions, many of which
are formal. From the point of view of logic, we have also defined a
new universe of discourse.

Writing abstract propositions from a set of symbols that are
combined according to a given grammar may be compared to play-
ing a game invented by the surrealists, called cadavres exquis.2

Someone writes down an article and an adjective; another person,
without having seen the previous words, adds a noun; yet a third
person, ignoring the beginning of the sentence, writes a verb, and
so on. The final result is a formal sentence, grammatically correct
but a priori devoid of sense, such as “The translucent peacocks sell
their souls in the rain of Tunisia,” and only susceptible, sometimes,
of a poetical interpretation. The probability of constructing in this
way the sentence “Two perpendicular lines always intersect” is
rather slim, even by reducing the permissible vocabulary. We have
a language, but not yet meaning, that is, a standard of truth.

In the beginning, our computer possessed the rudiments of a
language to speak about concrete elements and sets, and of some
known relations among them. But this language was insufficient to
express abstract propositions. To form these required additional
memory units and a new, larger language that extended the basic
one. This extended language, which includes everything the previ-
ous one could express and more, is called a metalanguage (with
respect to the former).

SOME REMARKS REGARDING TRUTH

The game of cadavres exquis would be boring if, from time to
time, some suggestive sentences did not happen to be formed. The

2 The expression “cadavres exquis,” meaning “exquisite (or delightful)
corpses,” occurred during one of the first games. The players found it so poetic
that they adopted it as the game’s name.
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mathematicians’ more serious game would be even more tedious if
it could never generate that precious pearl: a truth. But what is
truth, in formal mathematics?

Let us take, for instance, the proposition a P A. There are two
possible cases: either the element a and the set A are actually pres-
ent in the computer’s memory, or else one of them (or both) are still
mere names with no specific content. In the first case it is possible
for the computer to check whether a actually occurs among the
elements of A, and so decide whether the proposition is true or
false. In the second case, the truth (or falsity) of the proposition
may follow from some prior deduction, or its truth may be simply
assumed as a hypothesis. The first case is straightforward, but the
second merits further consideration.

Mathematical truth is then a consequence of the axiomatic
method, which proceeds in four steps. To begin with, there is a
universe of discourse resulting from grammatically correct propo-
sitions. These are formed, as we have already explained, from sym-
bols representing objects (elements, sets, . . . ), relations ( = , P , ⊂,
. . .) and operations (∩, ∪, . . . ). A propositional calculus* per-
mits one to combine the correct propositions according to the rules
of logic. These rules, very similar to those introduced by Boole,
can easily be taught to the computer. Basically, it is a question of
specifying how to handle the operations “and,” “or,” “not,” = ,
“if . . . , then . . . .” Actually, if we now designate the grammati-
cally correct propositions (already stored in the Propositions
memory unit) by the letters a, b, c, . . . , then a subroutine called
Logic (stored in some other memory unit) would be able to form
the new propositions “a and b,” “if a, then b,” and so on, all of
which would also be stored in the Propositions unit. This com-
pletes the second step of the method. For the benefit of the reader
who would be reluctant to leave the logic up to the computer, let
us point out that the logic itself could be formalized and axioma-
tized, thanks again to the ground-breaking work of Frege and
Peano.

The third step of the axiomatic method consists in assigning to
each proposition one of two “truth values.” These are also repre-
sented by the symbols 0 (which we now interpret as false) and
1 (true) and stored in the memory unit labeled Truth Values. All
concrete propositions directly verifiable by the computer can re-
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ceive their truth values right away (for example, “3 P {1, 2, 3}”—
which is clearly true). Other propositions retain an indeterminate
status, especially if they contain abstract concepts ( “3 P A,” for
instance), and their truth value can only be considered as an ab-
stract “truth-value name” V, a sort of unknown of the type used in
algebra, except that V can only take on one of the two values 1 or
0, true or false.

The truth value of a proposition resulting from the application
of logical operations is determined by the truth value of its compo-
nent propositions. For example, if both propositions a and b are
assumed to be true, then the composite proposition “a and b” is
true as well. This kind of rule (well known since Chryssipus) can be
incorporated into the Logic subroutine. Hence, a sort of cloud of
possible truth values hangs over all possible propositions in the
formal language.

The last step gives the axiomatic method its name. It involves
choosing a certain number of propositions and peremptorily de-
ciding that they are true. These are the axioms,* the truth of which
is decreed up front. As an example, we shall mention two of the
twenty-odd axioms of elementary set theory: “If a P A and A ⊂ B,
then a P B,” and “If A ⊂ B and B ⊂ C, then A ⊂ C.”

To help the reader grasp the general idea of the method we shall
resort to an image. Let us forget the finiteness of our computer
(which is here only a rhetorical device) and imagine the universe of
discourse of formal set theory (or of any other mathematical the-
ory) as a vast field sprinkled with countless trees representing all
the conceivable propositions. Some of these trees, the axioms, are
the source of the water of truth. The rules of logic then determine
a network of innumerable channels to carry the water from tree to
tree.

Since the propositional calculus generates a myriad of proposi-
tions, and since the truth value of new propositions can be deduced
from that of old ones, truth will flow from the source (that is, from
the axioms) to irrigate progressively the whole propositional field.
A proposition whose truth is established in this way is said to be a
theorem. Among these we find the familiar theorems deserving this
designation, but also a great many other propositions that are to-
tally irrelevant or of no interest whatsoever. All of them are never-
theless true. We can verify this by looking at the chain of logical
deductions, a channel transporting the truth from its axiomatic
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source up to the theorem. Such a path, along which truth travels,
is called a proof.

The axiomatic method is often daunting due to its extreme, al-
most disdainful, level of abstraction. Many deplore its total lack of
respect for intuition, while others believe, on the contrary, that its
purity serves as a protection against dangerous assumptions or
misleading interpretations. Besides, the experienced mathemati-
cian can always use intuition to select truly interesting axioms, and
also put his or her intelligence to work in the search for proofs. To
be sure, if the axioms were chosen at random among the forest of
propositions, the result would almost certainly lead nowhere—
perhaps to just a few, trivial theorems—or, even worse, to contra-
dictions, as when three of the axioms entail that the fourth one is
false. The eternal miracle of mathematics makes it possible for cer-
tain axioms to generate new truths endlessly, some of which are
prodigiously beautiful and subtle; the same axioms, used over and
over again, and yet always equally fruitful.

Going back to our image of truth originating at the axioms and
spreading through the field of propositions, it is conceivable that
some of these propositions could not be reached by the flow of
truth, and so are condemned to die, useless and insignificant, for
lack of nutrient. They may, however, revive, if a suitable new
axiom is added. It is also possible that some propositions should be
accessible only through an infinite network of channels that no
human can follow to its final destination, and it is at this point that
there comes in the famous Gödel’s theorem, which we shall discuss
shortly.

Notice that each proposition possesses an opposite, which ne-
gates it, the truth of one of them obviously implying the falsehood
of the other. A system of axioms is said to be contradictory if the
truth of some proposition and its negation can be deduced from it.
Behind an innocuous façade, a given system of axioms may conceal
a deeply buried contradiction. This question of the consistency of
axiom systems was a major source of preoccupation for mathema-
ticians. The consistency of certain particularly simple systems—
such as the elementary theory of finite sets or the arithmetic of
finite numbers—has been established. For the really important and
useful theories, though, the consistency question has yet to be set-
tled, making some mathematicians uneasy.
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TAMING INFINITY

Infinity pervades mathematics. In the case of a derivative or an in-
tegral, it is part of the process itself, the infinitely many steps lead-
ing closer and closer to the desired quantity; and when dealing
with a remarkable number such as p, infinity appears in the endless
sequence of digits required to write its exact decimal expression.
Infinity is here, there, and everywhere. But how to tame it?

Its favorite dwelling-place is almost in front of our eyes, when-
ever we count: one, two, three, et cetera. What do you mean, how
far is et cetera? Infinitely far. Strange notion, at the same time natu-
ral and elusive. It appears for the first time during the pre-Socratic
era in Anaximander’s apeiron, an infinite primal substance, eternal
and indestructible and from which all things came. Philosophy ap-
propriates infinity and will never cease to dream of it. Plotinus
(A.D. 204–270), the founder of Neoplatonism, covers it with a
mystic chasuble: the divinity is infinite in all respects, kindness,
wisdom, power; it is infinity itself. This idea will thrive among
most theologians, who were the first to reason about infinite quali-
ties and infinity itself. Most of the time, they would end up face to
face with a stunning paradox.

Mathematicians did not go quite as far, and, after Archimedes
showed that a greatest integer cannot exist (if it did, adding 1 to it
would produce an even greater number), they seemed content with
accepting the dictates of intuition. Infinity again became an issue
with the introduction of differential and integral calculus, in par-
ticular, the infinitesimal length of a segment that becomes arbitrar-
ily small. They did not manage to make much progress in this di-
rection, though, and it was only in the nineteenth century, when
they could no longer escape from it, that they decided to take the
bull by the horns.

There is a particular kind of infinity that seems to pave the
way for all the others: the infinity of the natural numbers. We
shall therefore discuss it first, resorting once again to our compu-
ter friend, to avoid being tricked by the confusion of our own
mind.

The computer knows how to count: one, two, three, and so
forth, up to the largest number that its memory can store in
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symbolic form. For the machine, there is no number beyond that
one; to “think farther” it will be necessary to turn to the axiomatic
method and to a more sophisticated metalanguage.

Suppose that certain memory regions are used by the computer
to handle (write, store, etc.) natural numbers. These are the num-
bers we can write explicitly with the ten digits, for instance, 0, 1,
2, 803,712, 13. . . . The computer can always add two natural
numbers, provided the size of the sum does not exceed its memory
capacity. Stored in other memory units there are the signs and op-
eration symbols of set theory, the rules of logic, instructions on
how to combine propositions and how to find their truth values,
and so forth. Speaking “between ourselves,” all this means that we
tackle the theory of natural numbers only after having developed
logic and elementary set theory, and after we know what is a math-
ematical proposition and the difference between an axiom and a
theorem.

A new memory unit will be needed to contain the (symbolic)
names of abstract numbers. We shall designate them with letters
such as n, p, q, and so on. It will always be possible to identify
an abstract number with a concrete one and say, for instance, that
n = 13. This identification may be a hypothesis (that is, decided by
us) or the final result of some argument or computation. For in-
stance, if we set n = 6 + 7, then it will follow that n = 13. With the
help of the signs “+” and “=,” the computer can write propositions
about (abstract or concrete) numbers, such as n = p + q.

This new construction is embedded into elementary set theory
by agreeing that the natural numbers are the elements of a set de-
noted by N. Despite its abstract character, this set is perfectly well
defined thanks to certain axioms formulated by Dedekind, Frege,
and Peano. Here they are:

1. 0 and 1 are natural numbers.
2. If n is any natural number, then there exists another natural

number called the successor of n , which can be written as n + 1.
3. For every natural number n, we have n + 1 ≠ 0 (that is, 0 is not

a successor).
4. If p and q are natural numbers and p + 1 = q + 1, then p = q (or

two numbers having the same successor must be equal).
5. Let S be a subset of N having the following two properties:

(i) 0 belongs to S; (ii) if a natural number p belongs to S, then p + 1
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does too. Under these conditions, S coincides with the set N of all
natural numbers.

The second axiom is named after Archimedes. It is this axiom
that generates the endless sequence of natural numbers. The last
axiom, due to Peano, is the basis of the induction principle, which
plays a fundamental role in many mathematical proofs. It would
be instructive to give a simple example of its application, even if it
entails a short digression. It is said that while Gauss was attending
elementary school, his teacher had once given to the class the fol-
lowing exercise: add 2 to 1, then add 3 to the previous sum, and
continue like this until you reach 100. The teacher expected that
while the students were busy adding all those numbers, he could
enjoy a peaceful break, long enough to digest his meal. But after
only a few minutes, he noticed that Gauss had stopped calculating.
Intrigued, he went to check the child’s copybook and found that,
after a few additions, Gauss had multiplied 100 by 101 and then
divided the product by 2, obtaining 5,050, which is the right an-
swer. If he had relied on axiom 5, Gauss might have remarked that
1 + 2 = 3, 1 + 2 + 3 = 6, 1 + 2 + 3 + 4 = 10, and that if the last
number added is n, then the sum equals n(n + 1)/2. Hence his sim-
ple calculation of the correct answer.3

There remains the question of justifying why the above formula
is valid for every natural number n. The induction principle comes
to the rescue. Call S the set of natural numbers n for which the
addition formula 1 + 2 + . . . + n = n(n + 1)/2 is true. It is easy to
check that on adding n + 1 to each side of the equation, the right-
hand side becomes (n + 1)(n + 2)/2. Hence, if n belongs to S, so does
n + 1. But the number n = 0 also belongs to S, for 0 = 0(0 + 1)/2.
Hence, according to axiom 5, S coincides with N, in other words,
the formula is universally valid.

Peano’s system completely characterizes the set of natural num-
bers with just a few, perfectly clear axioms that are easy to apply in
practice. We may wonder at its simplicity, but equally at the fact
that it took more than two thousand years to discover.

The axiomatic method permits the systematic construction of all
numbers. First the integers, or whole numbers (the non-negative

3 As a matter of fact, young Gauss added 1 to 100 and found 101, and the same
result for 2 + 99, and so on. Then he only had to multiply 101 by the number of
such partial sums, namely, 50.
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integers are precisely the natural numbers); then the fractions (also
called rational numbers, because they appear as ratios of integers),
both positive and negative; next the so-called real numbers, which
can be written in decimal form (with, perhaps, infinitely many dec-
imals), followed by the complex numbers. All these constructions
are based on a method that remains clear and rigorous at each
stage. The same axiomatic approach may be applied to other im-
portant notions, such as that of a group, to various geometries, and
to the whole arsenal of analysis. Different types of infinity, far
more fearsome than the infinity of the natural numbers, may cross
our path, but there again, the net of axioms and logic will be able
to support them without breaking. We shall not engage any further
down this road, though, for it leads to the immensity of modern
mathematics.

TODAY’S MATHEMATICS

Present-day mathematics is entirely based on the axiomatic ap-
proach, at the origin of which there is a system of symbols with no
direct connection to reality and governed by its own rules. The
principal characteristic of this mathematics is its total submission
to logic, which is also formal and symbolic. This level of abstrac-
tion does not imply that there is no more room for imagination. On
the contrary, the choice of relevant axioms, the conjecturing of
interesting or far-reaching theorems, the search for (or the refine-
ment of) proofs, and the discovery of the inspiring analogies that
pervade the vast domain of mathematics, none of all that would be
possible without the creative power of imagination.

This imagination does not spare any effort in its pursuit of nov-
elty, and, if symbols remain the foundation, no commandment en-
joins the mathematician to stay within their bounds. In fact, rather
than use symbols, mathematicians prefer by far to speak a lan-
guage as similar as possible to ordinary language. They do not
despise suggestive images either, and the words they employ are
often a far cry from the arid strings of abstruse symbols processed
by computing machines. They say “sets,” “spaces,” “numbers,”
“neighborhood,” “ideals,” “metric,” “curvature,” “filters,”
“choice,” “applications,” “groups,” “intersection,” “union,”
“distribution,” each word referring to a concept based on a strict
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axiom system, but no less evocative for that reason. Other words
may be more intimidating, “isomorphism,” “functor,” “topol-
ogy,” but a little etymology is often enough to clarify them. All in
all, the language of mathematics is less hermetic than medical ter-
minology and rather comparable to the language of botany. The
difficulty lies less in learning it than in speaking it fluently.

Contemporary mathematics is tremendously rich, and its com-
plete exploration would require a lifetime. To draw up an atlas of
it is therefore out of the question, especially since the continents
have changed places—as well as shape—since the classical period.
Words like arithmetic (or number theory), algebra, geometry, and
analysis no longer mean what they used to, due to the increase in
knowledge and in the variety of the topics covered. A number of
different “structures” stand out, as in a relief map: collective prop-
erties (sets), properties of closeness (topology), of operations
(rings, groups, . . .), of functions (a concept having multiple forms
and everywhere present), each of these structures branching out
into many other substructures. This new cartography corresponds
to particular ways of grouping the axioms, thus revealing un-
expected connections between seemingly unrelated domains of
application.

The choice of the axioms is not arbitrary. If someone wishes to
introduce a new axiom without a serious investigation, he or she
will most likely end up finding a heap of worthless stones instead
of the vein of gold hoped for. The choice of this or that axiom, to
simplify a theory or promising to blossom into a new one, can only
be the result of a study of hundreds of relevant examples, or of a
penetrating intuition, as much the fruit of effort as the product of
intelligence. Only if its consequences are rich in new results and in
solutions to open questions will a proposed new axiom or concept
be adopted.

Mathematical ideas are like living species competing with each
other: in order to survive, they must be useful, well adapted, and,
above all, fertile. This much should be obvious, for otherwise they
would go unnoticed. What is less obvious, actually extraordinary,
is the proliferation of such fertility, the vastness of the ground it
has covered. No one can explain such a phenomenon in a satisfac-
tory manner, even if it is one of the most amazing facts in the his-
tory of ideas. What’s more, there do not appear to be any limits to
the potential of mathematics.
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But we have already spoken enough about mathematics. Let us
now complete our brief outline of its history. The period of reorga-
nization through the axiomatic approach, with the inevitable false
starts that accompany any enterprise of such a magnitude, lasts
approximately one hundred years, from 1850 to 1950. Several
names stand out: Weierstrass, Dedekind, Cantor, Frege, Peano,
Hilbert, Russell, and Whitehead. Many others also took part in the
effort, but we unfortunately cannot go into the details of their indi-
vidual contributions. In a certain way, most of the program was
explicitly worked out by the multifaced Nicolas Bourbaki (a pseu-
donym adopted by a team of mathematicians whose composition
continues to change).

Since the middle of the twentieth century though, radical axio-
matics has ceased to occupy center stage. From the vantage point
of hindsight, some revisions were even made, and axiomatic
systems that were too general to be fruitful became obsolete. A
fair balance was finally struck, and today we are witnessing a
new harvest, with a preponderance of results over work on the
foundations.

THE CRISIS IN THE FOUNDATIONS OF SET THEORY

We would be presenting a distorted picture of history if we gave
the impression that a sweeping transformation such as the one just
described took place without drawbacks or opposition. Two fa-
mous episodes of this saga deserve to be mentioned, if only to size
up the significance of the changes that took place: the crisis in the
foundations of set theory, in 1902, and the discovery of Gödel’s
incompleteness theorem during the years 1930–1931.

What is known as the crisis in set theory is a striking event that
deserves to be replayed in the spirit of what it was, that is, a drama
lacking neither heartbreaking nor noble undertones. Here it is
then, more or less as it might be seen on the stage.

Two characters are present as the curtain rises, Gottlob Frege
and Bertrand Russell. The action is set in a temple, that of the
goddesses Mathematics and Logic. At the back are full-size por-
traits of the great priests of the time: David Hilbert and Henri Poin-
caré. Other pictures, in subdued tones, depict Dedekind, Peano,
and Cantor. A portrait of Frege himself appears on an easel in the

102



F OR M A L M AT H E M AT I C S

foreground; it has just been retrieved from the storage room after
a long stay there.

The actor playing Frege appears to be in his fifties. He is un-
assuming but betrays a unique passion that can only be inspired by
truth. Almost twenty-five years have elapsed since the publication
of his short book on logic which had initially gone unnoticed. Ber-
trand Russell is thirty years old. He has the unmistakably sharp
traits of an aristocrat and speaks with a slight Cambridge accent.

FREGE: Yes, my final book on the theory of sets is due to appear
soon. It took me twenty long years of hard work, but it was per-
haps worth the effort.

RUSSELL: You know very well what I think of it. Nothing as impor-
tant as your first book had been written in logic since Aristotle;
and your latest one, I believe, should definitely establish mathe-
matics on a solid base. What an achievement for the honor of the
human mind!4

FREGE: Let us not exaggerate. It is true, at any rate, that the logic is
sufficiently clear. As for the mathematics, I think one should begin
with set theory and build everything on it. In fact, there is nothing
simpler or more transparent than a set. When you speak of a col-
lection of objects, everybody knows what you are talking about.

RUSSELL: Yes, it appears to be quite obvious, and yet, I have one
nagging reservation.

FREGE: Which one?
RUSSELL: Something in your Begriffschrift that puzzles me. You say

there, essentially, that an arbitrary set, and I insist on the term
“arbitrary,” may always be taken as an element of another set.
Do you still think so?

FREGE: More than ever. A major part of my new book is based on
that fact, and the idea is repeatedly exploited. Do you have an
objection? I thought it to be obvious. What’s wrong with the idea
that any object can always be included in a set along with other
objects?

RUSSELL: That is certainly what our intuition tells us. But I wonder
if we can always trust it, and if it is not possible that intuition may
deceive us when left unchecked even for an instant.

FREGE: All right, I can see that you have found a skeleton in the
closet. Better take it out. What is it?

4 This expression is due to Hilbert.
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RUSSELL: Do you agree that, in principle, certain sets may contain
themselves as elements?

FREGE: It is at any rate a direct consequence of what we said earlier.
If you asked me for an example, I would propose the catalog of a
library, which can be one of the books placed on a shelf of the
same library; or the word “dictionary” in a dictionary; or God,
who says “I am who I am”; or the table of contents of a book,
which contains the table of contents, or even . . .

RUSSELL: I see. But let us consider all the others instead, and desig-
nate by A the set of all those sets that are not elements of them-
selves. Now let me ask you a question: Does this set A belong to
itself?

FREGE: Let’s see, this should not be difficult. Suppose it does, that is,
that A belongs to A. Now, by definition, the elements of A are
those sets that do not belong to themselves. Thus, assuming that
the answer to your question is “yes,” we have a contradiction.
Therefore, the answer must be “no.”

RUSSELL: Are you sure?
FREGE: If I answer “no,” this implies that A does not belong to A.

But then, by the very definition of A, it follows that A does belong
to A. Good Lord, you are absolutely right! No matter which path
we choose, it leads to a contradiction. This is a paradox, what am
I saying? An aporia, a catastrophe! It is the principle of the ex-
cluded middle that you have just called into question. But this is
impossible, we cannot reject this principle, for there would be no
logic left, all thought would collapse.

RUSSELL: I can see only one way out: to repeal what you have said
in the past and start all over from the beginning.

FREGE, after a moment’s reflection: There is no other solution. Natu-
rally, my great project of rebuilding mathematics is shattered to
pieces. Just when I thought I had succeeded! But, you know, what
you have found is truly amazing, extraordinary. Congratulations!
It is a while since I came across something so interesting! (He
leaves walking unsteadly, smiling and talking to himself.)

RUSSELL, watching Frege leave: What a demonstration of intellec-
tual integrity! Such grace! I have never seen anyone pursue truth
as honestly as he does. He was about to culminate at last a life-
long endeavor, he who had been so often passed over in favor of
others who did not deserve it. . . . He did not care, and when told
that one of his most fundamental hypotheses is wrong, how does
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he react? His intellectual pleasure overwhelms his personal dis-
appointment. It’s almost superhuman. What an interior strength
a man can summon if he devotes himself entirely to knowledge
and creation, rather than to a vain search for honors and celeb-
rity! What a lesson!5 (He also leaves.)

THE CHOIR: The temple has been shaken and it is cracking. Is it an
earthquake? Paradoxes are piling up. The Cretan liar has been
resuscitated. There are also Richard’s and Burali-Forti’s para-
doxes, besides Russell’s. Are we to become everybody’s laughing-
stock when it has been pointed out that an eleven-word sentence
suffices to define “the smallest number impossible to name with
less than twelve words”? Is logic only an illusion?

HILBERT, entering the room: Calm down, please, and do not panic.
Look those fearsome paradoxes straight in the eye. They are all
alike. They all carry the same sign, that of the whole considered as
a part. The library’s catalog is a list of all books. Epimenides, the
Cretan, says that all Cretans are liars. Your eleven-word sentence
refers to all possible definitions of a number. This story shows
only one thing: that Frege had not gone far enough in his efforts
to formalize mathematics. He thought he could trust his intuition,
if only a little, regarding sets, which appear to be so limpid. It was
his sole mistake, and it is our duty to correct it. From now on,
logic and mathematics will be entirely formal. (He leaves, fol-
lowed by a thoughtful Zermelo, who would take up the task pro-
claimed by Hilbert.)

GÖDEL’S INCOMPLETENESS THEOREM

It does not happen often that an event concerning mathematics
reaches (and stuns) the external world. But this is precisely what
happened in the nineteen-thirties with a certain theorem of Gödel,
considered to have dealt the human mind a humiliating blow.

What was it all about? Kurt Gödel was a disciple of David Hil-
bert, and he was working on one of the master’s great projects: to
demonstrate the consistency of the axioms of arithmetic and so
establish, once and for all, that at least this branch of mathematics

5 These are almost the exact words employed by Russell in a letter to Jean Van
Heijenoort, where he talks about Frege.
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is forever immune to internal contradictions. Paraphrasing the Ro-
mans, Hilbert wanted to be able to say, “I build here a monument
for all eternity.”

Hilbert’s axiomatic system for arithmetic was formulated in
terms of symbols and signs (as we have indicated earlier) that in-
cluded the usual operations: addition, subtraction (whenever the
result is a natural number), multiplication, division with remain-
der, and exponentiation. The necessary axioms captured the basic
properties of the natural numbers and of these operations. Hilbert
then considered the set of all propositions (about the natural num-
bers) that can be expressed in the formal language. The problem
was to demonstrate that every such proposition had, at least in
principle, a truth value resulting from a proof—that is, from a fi-
nite chain of logical implications having its source in the axioms.

Gödel showed that one can actually assign a truth value to cer-
tain propositions without going through a (formal) proof, but
only with the help of a higher-level theory equipped with a meta-
language (a concept we have discussed earlier). He did answer Hil-
bert’s question, although not in the way the latter expected.

Indeed, Gödel’s feat was to show that there exist propositions
that are true (from the point of view of the metalanguage) but
whose truth is impossible to establish by a (formal) proof of finite
length (hence, the axiomatization of arithmetic is “incomplete”).
And so, if a mathematician only accepts as true what can be logi-
cally proved from the axioms, there will be some propositions that
will remain (for him or her) forever undecidable, for they can nei-
ther be proved nor disproved.

Gödel’s result may be easily understood if we employ once again
the analogy of truth flowing from the source (the axioms) toward
the trees (the propositions). Then, Gödel tells us that the whole
forest of trees cannot be irrigated by a network of channels of finite
length, and that to reach certain propositions would require an
infinitely long path. There is nothing, after all, really surprising in
this result, much less a reason to claim that the human mind has
taken a beating. We must accept that there exist unsolvable prob-
lems, probably many. How many of these problems have actually
been found? Only very few. Why is it surprising that every proposi-
tion is certainly true or false, though the slow process of proof
cannot always decide which? Wouldn’t the contrary have seemed
unnatural? What is more serious is the uncertainty regarding the
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consistency of arithmetic. We simply do not know that no contra-
diction lurks in the shadow of the axioms. But isn’t this the price to
pay for their bountiful consequences? Once again, an almost in-
sane expectation of human ambition, the dream of building for
eternity, met its nemesis. This is as it should be.

All things considered, Gödel’s incompleteness theorem is indeed
an exploit of human intelligence. But at the same time it establishes
its limits, without, however, destroying or spoiling its achieve-
ments. It only reminds intelligence that it too is perhaps mortal.

A TENTATIVE CONCLUSION

It now appears certain that mathematics is strictly a science of rela-
tions, uncommitted as to the specific objects these relations are
about. Though mathematics is used as a tool, a language, and a
logical framework in some physical sciences and notably in phys-
ics, it does not have any meaning by itself. When seen through
mathematical goggles, every physical science provides its own
metalanguage that comes with a particular meaning. One can ex-
press the same thing more mundanely by saying that mathematics
cannot help us find the real meaning in a formal science; the mean-
ing has to be found in that science itself. This lesson will be essen-
tial when we face the cliffs of quantum mechanics.
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The Philosophy of Mathematics

WE SHALL NOW EXAMINE the question of the meaning of math-
ematics. In particular, we shall listen to what philosophers and
mathematicians inclined to philosophize think of this science.
Whether their answers should be endorsed or rejected remains to
be seen, but the present situation will prove sufficiently complex to
at least allow us to estimate the stretch of road yet to be traveled.

WHAT IS MATHEMATICS?

What is mathematics, this strange outgrowth of reason, where
does it come from, and what is its nature? This question is as old
as the subject itself, but it usually attracts only a small number of
philosophers and mathematicians. Who else would care? No one.
However, given the formal character of many explanations of na-
ture and its mysteries, we should be well advised to take a closer
look. What if mathematics should conceal one of the keys to
knowledge, if the “No one but a geometer may enter here” meant,
unexpectedly, that the royal path to philosophy begins with the
above question? Who would then be willing to ignore it?

Mathematics has often been conceived as dwelling in a divine
world, filled with a perfect light. This is Plato’s view, as well as
Nicolas de Cusa’s, among a great number of others. It was then
possible to believe that the proofs given by the mathematician,
those perfect models of truth attained through a safe and trium-
phant method, drew their strength from some divine grace; a grace
to be treated with respect and successfully applied to other do-
mains. And so, a good portion of theology at the end of antiquity
and during Scholasticism, culminating with Saint Augustine and
Thomas Aquinas, uses mathematics as a model and inspiration.
The most striking example is offered by Spinoza. The truth of the
propositions in his Ethics follows, or at least the author so pre-
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tends, by the force of arguments that proceed “in the manner of the
geometers.” A similar attitude also pervades the philosophy of
Leibniz, who was, by the way, an admirer of Spinoza.

This sort of kinship suggests that the question of the nature of
mathematics may sometimes get mixed up with others more ap-
pealing to a philosopher. In fact, it is difficult to dissociate it com-
pletely from questions regarding the character and the power of
reason, or the existence of order in nature. The least we can say is
that the question is more important than may initially appear, and
certainly more difficult.

Trying to define mathematics is hopeless, for it would be tanta-
mount to either knowing already what it is, or capturing only its
external features. Etymology is of no use either, for it simply
evokes things that are well known and well understood, or perhaps
a knowledge for initiates, when it becomes a mathesis. Therefore,
we shall start by noting some of mathematics’ most striking char-
acteristics. These will serve to evaluate the various philosophical
theories, because many of them fail to take into consideration one
or the other of these characteristics, while a satisfactory philoso-
phy of mathematics should account for all of them.

The first attribute, its beauty, has often been put forward. It is a
rather peculiar beauty, known only to those who come sufficiently
close to it (but isn’t this true of any beauty?), difficult to describe in
a language other than its own, and impervious to the language of
poetry. True, it is sometimes embodied in the harmony of propor-
tions or in the elegant forms of a work of art. According to Ber-
trand Russell, mathematics possesses not only truth but also su-
preme beauty, an austere and cold beauty comparable to that of a
sculpture. True beatitude, exaltation, and the feeling of being more
than human may be experienced in mathematics as certainly as
they may be found in poetry. Plotinus, many years earlier, had
gone further, and even turned the interpretation around. The
beauty of a statue, of Zeus, for instance, attains perfection when
the artist succeeds in translating into marble something of the es-
sence, of the Form, of the god—a present-day Neoplatonist would
perhaps say, in the same spirit, that Velasquez or Monet have each
captured something of the essence of light. For Plotinus, the beauty
of mathematics or, better still, of a coherent philosophy, offered
the best possible model for casting a piece of art.
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Another important feature of mathematics is its fertility, the
character we have tried to emphasize in the previous chapter. But
is “fertility” the appropriate term? Profusion might be a better
word to describe the overabundance of this torrent wide as a sea,
comparable to the birth of the world as related in the Mahâbhâ-
rata. I have chosen this particular analogy on purpose because
mathematics has one hundred arms and one thousand breasts, and
it is infuriating to see it reduced by the shortsighted to the size of a
poor skinny thing. This enduring fertility is clearly an essential
trait of its nature, one which should arouse a desire to find out
what makes it possible.

Three other distinctive characteristics of mathematics have been
mentioned earlier. The first one is its close relationship with logic,
so much so that it would be impossible to tell where one ends and
the other begins. Second is this possibility of reducing mathematics
to a mere manipulation of symbols, by which it detaches itself com-
pletely from any concrete reality. Actually, nothing is more re-
moved from the real world, even though it was reality that pro-
vided mathematics with its initial motivation. It is abstraction in its
most extreme form (to abstract: to pull out, to unroot) and, since
the birth of Greek geometry, this abstraction unroots mathematics
from physical reality. And yet, despite all that, the third character
of mathematics is the intimate connection that it maintains with
reality, in the sense that the physical sciences—and physics in par-
ticular—cannot do without its language or its concepts. Let us
mention one last feature, not to be forgotten even if entirely pro-
saic: mathematics is a product of the human brain, and it was cre-
ated by humans who live in a society.

If we leave out, regretfully, its beauty—which cannot be cap-
tured by words—the distinguishing characteristics of mathematics
are its fertility, the possibility of being reduced to symbols, a high
correspondence with reality, and the fact of being the result of a
human activity. Within this framework, it is convenient to classify
the philosophies of mathematics into two categories: ontologi-
cal and sociological. The first one is concerned with its intrinsic
qualities, what is mathematics considered by itself; the second cate-
gory tries to understand mathematics within a human setting, the
conditions under which humans have built the great edifice of
mathematics.
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MATHEMATICAL REALISM

The most ancient philosophical theory, still very much alive today,
maintains that there exists a world, different from concrete reality,
where mathematical truths properly belong. Plato was the first to
propose it, and in his formulation this other world is the universe
of Ideas. This point of view, whose origin goes back to Pythagoras,
is usually known as Platonism. Others prefer the name mathemati-
cal realism,* to stress the radical assumption of the existence of a
separate reality. We shall employ this second designation, which
has the advantage of avoiding all ambiguity.

Mathematical realism inspired a passage from Descartes’ Fifth
Meditation that we have already quoted but is worth repeating:
“When I imagine a triangle, even if perhaps such a figure is no-
where in the world to be found except in my own mind, and it has
never been, it does nevertheless exhibit a certain nature, or form,
or definite essence of this figure, which is immutable and eternal,
and which I have not created, and which does not depend upon my
mind in any way whatsoever; as appears to be the case since one
can demonstrate certain properties of this triangle.”

Hermite says basically the same thing in a letter to Stieljes: “I
believe that the numbers and functions of analysis are not arbitrary
creations of our mind. I think that they exist independently of us
with the same kind of necessity as the things of objective reality,
and that we find them, or discover them, in the same way physi-
cists, chemists, or zoologists do.”

Bertrand Russell, certainly not a neophyte in philosophical mat-
ters, expressed the same idea when he wrote1 that the number 2
must be an entity possessing an ontological reality even if it is not
in any mind. For him, cognition is necessarily recognition, since
otherwise it would be nothing but illusion. He believed that arith-
metic must be discovered just as Columbus discovered the West
Indies, and that we no more create the numbers than he created the
Indians. The number 2 is not merely a purely mental creation, but
an entity that can be the object of thought. According to Russell,
anything that can be thought possesses an ontological reality,

1 In The Principles of Mathematics.
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which is a precondition for that thought, and not its result. As for
the existence of the objects of thought, nothing may be concluded
from the fact that they thought, for they are certainly not in the
mind thinking them. In conclusion, Russell maintains that the ob-
jects of our representation as such do not possess any special kind
of reality.

For Jean Dieudonné,2 it is certainly “quite difficult to describe
the ideas mathematicians have, which vary from one person to an-
other.” He adds, however, “They generally acknowledge that
mathematical objects possess a ‘reality’ distinct from sensory real-
ity, perhaps similar to the reality that Plato claimed for his Ideas.”

As for Alain Connes,3 he confesses, “I think that my position is
not far from the realistic point of view. For me, the sequence of
prime numbers, for instance, has a reality that is more permanent
than the material reality surrounding us. . . . The axiomatic
method, to mention only that one, allows the mathematician to
venture beyond the familiar territories. . . . Mathematical reality
possesses a consistency truly superior to that of sensory intuition,
an unexplained coherence that is independent of our reasoning
system.”

There is plenty of evidence supporting the realists’ point of view:
nearly all of them are creative mathematicians, and they know well
the familiar feeling of discovery, constantly renewed, they are talk-
ing about. It is also what Connes calls coherence that distinguishes
the vision of the mathematician from any other art form: mathe-
matics in its entirety, from Pythagoras’ theorem to the proof of the
most recent result, possesses an almost complete unity, it is more
like a single piece of work than a myriad of parts put together. This
coherence can also take the form of a perfect harmony between the
question that one poses and the answer one expects to find; or that
of a generalization that transforms an innocuous theorem into a
powerful theory; or even the presence everywhere in the edifice of
analogies that repeat and reinforce themselves in one thousand dif-
ferent ways. Coherence also manifests itself when, from a multi-
tude of seemingly arbitrary inventions, new structures suddenly
take form, structures that prove amazingly fertile: distributions,

2 In the introduction to his Abrégé d’histoire des mathématiques (Paris: Her-
mann, 1978).

3 See Jean-Pierre Changeux and Alain Connes, Matière à pensée (Paris: Odile
Jacob, 1989).
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metric spaces, Hilbert or Banach spaces. These examples also
show, unfortunately, the difficulty for mathematicians in commu-
nicating what they see: only they can really know the wonders that
delight them so much; others, the noninitiated, must make do with
the pale and simplified image glimpsed from the mathematician’s
description.

The realists never doubt that they are advancing on solid ground
that has always existed, and which they are merely exploring.
Their approach resembles in some ways the exploration of a virgin
forest, wild and thick. Occasionally, the explorers may run into a
large clearing in this jungle, but progress is usually made only
through demonstration, in a slow, almost creeping fashion, de-
manding a safe footing for each step. The mathematician at work
advances with eyes fixed on the ground, knowing that some su-
preme truths will only be reached after a long journey, and that
from the top of these truths the view, magnificent, extends all the
way to the horizon. Spinoza so imagined a knowledge of the “third
kind,” transcending that acquired through a patient proof, which
is only of the “second kind.”

All these men and women through the ages keep reporting their
impressions and the things they have observed: the existence of a
vast continent that each of them has partially explored; the joy of
having visited some bushes of truth; the solidity of the territory and
of its interconnections—coherence. . . . Like mystics, they speak of
other horizons, where they have contemplated oceans of light.
Doubt and suspicion may then assail the listener: Have they not
merely been fooled by mirages, tricked by a brain too proud of its
own power, or possessed by a dream so strong that it appears more
real than reality? These are the reasons why mathematical realism
is so often dismissed by the skeptics as a mild form of illuminism.

Objections of this kind can only be answered with the help of
history, the only objective factor in things concerning the mind. It
is interesting to listen again to Alain Connes, when he maintains
that the coherence perceived by mathematicians is independent of
any particular reasoning mechanism. To put it more vividly, we
may say that mathematicians all agree in recognizing the same fea-
tures of the explored territory, independently of the paths they
have followed.

As an example, we shall go back to the history of analysis be-
tween the seventeenth and the ninteenth centuries. At the time, a

113



C H A P T E R V I

large number of truly amazing results was available, but the frailty
of their foundations had rendered many mathematicians uneasy. A
vast program of revision and criticism was then undertaken, un-
paralleled in the history of ideas. The violent attacks brought
against theology after the end of Scholasticism had been innocent
taps on the wrist compared to the fury that mathematicians dis-
played against their own dwelling—the whole building should
have collapsed, leaving but the desolation of scattered ruins. What
happened instead? The edifice gained in strength and majesty, ris-
ing even higher and more spacious than before, the old cracks
sealed, the weaknesses repaired. And yet, in a certain sense, every-
thing had changed, axiomatics had replaced intuition, and the
structure now reflected a novel order; the methods of reasoning
had changed, but the consistency of the results, old and new, came
out enhanced and better secured.

Mathematicians constantly run into this kind of lesson in the
course of their research work. They get the impression that what
they find is not necessarily what they expected, but rather what the
force of circumstances imposes, with all the necessity of a world
that exists on its own.

The objections against mathematical realism are primarily due
to preconceived ideas about the nature of reality. But these pre-
conceptions appear less convincing when confronted with the
image of reality conveyed by modern physics. I shall restrict my-
self to one example. The philosopher André Darbon published
a book devoted to Russell’s “logistic” theories, full of valuable
ideas and information.4 Unfortunately, in the last chapter he lashes
out against Russell’s realism, calling it “childish,” while at the
same time supporting his argument with well-thought and learned
considerations. Among these, Darbon takes for granted the im-
possibility in principle of indiscernibles—and in this he has Leib-
niz on his side—but his position had been refuted twenty years
earlier by experimental physics. This example reveals a recurrent
element in the criticism of realism: the presence of preconceived
ontologies, which are no more believable than those they seek to
reject. We shall not elaborate this topic any further.

More recent criticism of a different type deserves to be men-

4 André Darbon, La Philosophie des mathématiques (Paris: Presses universi-
taires de France, 1949).
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tioned. In his book Matière à pensée, written jointly with Alain
Connes in dialogue form, Jean-Pierre Changeux presents the point
of view of a naturalist and specialist of the brain. He notes that
brain structures for perception and for the organization of func-
tions exhibit an internal predisposition, conscious or unconscious,
to handle symbols. Our brain invents symbols because it itself op-
erates by processing concrete symbols: its own signals. When it
marvels at the discoveries it makes through the power of thought
alone, it might only be admiring itself, as the marvel of nature that
it is. The coherence we encounter in the products of our brain
could be the reflection of the amazing internal harmony of our
thinking machine.

This objection has an even greater impact because it strikes right
at the heart of what mathematicians cherish most. But it seems to
me that Changeux’ criticism has a flaw a naturalist should have
recognized: the marvel of mathematics is reduced to another mar-
vel, that of our own brain. This wonder of nature, like every-
thing alive, is the result of billions of years of evolution, which
should explain its near-perfection. But there is more. For what rea-
son has evolution endowed the brain with such properties if not
because they are useful for survival, which presupposes a corre-
sponding order proper to the external world: an order immanent
in reality? When science explores this order and ends up discover-
ing the principles of physics, it bumps into mathematics once
again, but this time as a necessity associated with reality, and no
longer as a product of the independent activity of the brain. Sum-
ming up, we have been running around in circles, and the an-
swer proposed by Changeux is not really an answer; it is, at best,
only one of the projectors that help to illuminate part of the
picture.

We shall have to come back to this question, but we can already
begin with a simple observation: no serious discussion of mathe-
matical realism can be carried out independently of an examina-
tion of the laws of the physical world, that is, the nature of mathe-
matics is inseparable from the nature of those laws. Their strange
characters are intimately interconnected, and no one can reject in
principle the existence of an intangible reality in the name of com-
mon sense when this very common sense is being attacked by phys-
ics. It would be a mistake today to build a philosophy of mathe-
matics independently of a philosophy of the physical sciences.
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Going back to the characteristics of mathematics listed at the
end of the previous section—beauty, coherence, fertility, agree-
ment with the laws of physical reality—mathematical realism ac-
commodates them all. The only problem with realism, and not a
minor one, is getting people to accept the existence of something
intangible, something one cannot point at and say, “There, it is
that”; the existence, in short, of a reality that could be neither im-
mediate nor perceptible.

NOMINALISM

Every realism is inevitably confronted with a nominalism. In the
present case, the most extreme form of nominalism consists in
claiming that mathematics is a game played according to arbitrary
rules, similar to chess, only more complicated. This position will
not be found among mathematicians but rather among philoso-
phers, such as André Darbon, whom we have quoted above.

Darbon considers mathematics to be a “hypothetico-deductive”
construction, a strictly human invention based on hypotheses that
can be freely chosen, including, if so desired, the rules of reasoning
themselves. One plays the game by drawing conclusions from the
hypotheses by means of the given rules.

Surely, the above description fits perfectly well one of the as-
pects of doing mathematics. However, the philosophical claim of
nominalism is that mathematics reduces to such a “game,” that
there is nothing else to it. Although this doctrine originated with
Leibniz, it would be unfair to condense the ideas of the philosopher
of the monads into such a simplistic form. It is better to listen to
what an expert has to say. Here is Jean Dieudonné’s learned opin-
ion on the existence and the interest of purely arbitrary construc-
tions in mathematics: “It appears that mathematical problems of
consequence are somewhat like living beings, having a ‘natural’
evolution that it is in our interest to respect. Artificial systems of
axioms, created for the sole purpose of generalizing some familiar
problems in an arbitrary way, have seldom had any remarkable
consequences.” In other words, a theory that assumes mathemati-
cal hypotheses to be gratuitous and arbitrary is immediately con-
fronted with the mystery of their fecundity and applicability.

116



T H E P H I L O S O P H Y OF M AT H E M AT I C S

Darbon may argue that the origins of geometry and arithmetic
were rooted in concrete reality. But this argument only begs the
question of why reality obeys laws that only mathematics is able to
express. In conclusion, strict nominalism fails on three major
counts: fecundity, coherence, and correspondence between mathe-
matics and reality.

Some nominalists, such as Darbon himself, tried to justifiy their
position by calling attention to the results of the so-called formalist
school, whose members are strict defenders of the axiomatic
method. Actually, the use (or the rejection) of this method has
nothing to do with the nature of mathematics, but is only a ques-
tion of which method is more appropriate. Nothing prevents a re-
alist from employing the axiomatic method, and there is no short-
age of examples of mathematicians who did so. The axiomatic
method only degenerates, so to speak, into nominalism, if one
maintains that mathematics is exclusively a matter of method and
refuses any reflection on the scope and the coherence of mathemat-
ical results. It is true that for diehard formalists mathematics is
entirely reducible to symbol manipulation and, in this sense, it
coincides with nominalism. However, few mathematicians are pre-
pared to go that far.

Since we have just discussed the formalist school, we might as
well mention a few other points of view that deserve attention,
“logicism,” for instance, which is based on the axiomatic method
but focuses on the reasoning process. What counts is to construct
“proofs,” and the axioms of logic on which these rest are supposed
to be the most fundamental. They are considered to be completely
general, free from arbitrary elements and applicable to any form of
rational thought. We know them intuitively or, as Hume would
put it, as a result of the accumulation of facts and for their role in
the structuring of language. This conception was developed mostly
by Russell and Whitehead, and it is sometimes schematically de-
scribed by saying that mathematics reduces to logic. This means
that logic possesses an ontological basis that partly determines
mathematics. Hence, mathematics is essentially realistic, but also
in part arbitrary.

The so-called intuitionistic school, whose principal architect
was Brouwer, would like to restrict the domain of mathematics to
what the imagination can envisage, and it stands against what it
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considers to be the excesses of modern formalism. This leads it in
practice to eliminate certain axioms, and to restrict the scope of
those that remain to what intuitionists deem legitimate. We shall
not insist on this controversial topic, which is rather technical.
Clearly, intuitionism must be regarded as a form of mathematical
realism, but of a very peculiar sort. One might describe it by saying
that, for the intuitionists, there exists a mathematical reality acces-
sible through intuition, but which is not immanent (that is, given
once and for all and existing by itself); on the contrary, it is a real-
ity that mathematicians progressively construct. Put another way:
the initial reality is the universe, which gives rise to human beings,
some of whom are mathematicians, and whose task is to increase
the intellectual content of the universe. . . .

MATHEMATICAL SOCIOLOGISM

There exists yet another important position, variously called the
scientific community theory or mathematical sociologism. Accord-
ing to its followers, mathematics is essentially what the community
of mathematicians decides it is. Mathematical sociologism is there-
fore a form of nominalism, whose main interest lies in the fact that
it highlights the daily activities of men and women who form a
microsociety, an international association.

As with any select club, new members of the brotherhood are
subjected to initiation rituals by means of tests and exams, which
culminate with a thesis. Teaching is intended to disseminate and to
control the doctrines that prevail at a given time. Hence, in the
middle of the twentieth century the dominant credo was axio-
matics, as formulated by Hilbert and codified by Bourbaki in his
books. Shortly afterward, it triumphantly entered school curricula
under the name modern mathematics. Since then, the development
of computers has contributed to reorientating the interests of the
mathematical community, and we are witnessing a shift toward
combinatorics and away from other domains such as analysis,
where infinity plays a central role.

Philosophers and mathematicians who have been influenced by
this school, such as Raymond Wilder and René Thom, go far be-
yond traditional nominalism by taking into account the profusion
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of mathematics in all its manifestations, particularly from the per-
spective of the creativity factor. Creativity in mathematics has been
analyzed in depth since Poincaré told how the idea of a “Fuchsian
function” occurred to him as he was about to board a bus. From
the intense investigations on the subject it appears that new ideas
emerge in a flash, provided the researcher has been constantly fo-
cusing his or her thoughts on the problem. Regarding this “private
epistemology,” the mathematical community plays the role of both
critic and amplifier, ultimately deciding on the fate of the new
ideas: whether they deserve to be reflected upon and communi-
cated, or abandoned and condemned to oblivion.

Some may fear that this reduction of mathematics to such a cor-
porate agreement may transform it into a mere game of conven-
tions and conveniences, if not of fashion, where very little would
distinguish the mathematical community from a bridge club. To
counterbalance such a tendency, it is important to stress the fact
that mathematics is also a tool for acquiring knowledge. However,
among the supporters of this position, there does not seem to exist
a common view as to the reasons why mathematics is so amazingly
efficient when used in the other sciences. This mystery is not one of
their main preoccupations, though, except insofar as utility serves
as a criterion to judge the potential interest of new research ave-
nues. They consider that the most characteristic feature of mathe-
matics is the notion of proof, the aspect that singles out their disci-
pline from all other domains of knowledge.

Imre Lakatos has carried out a detailed and far-reaching analy-
sis of the notion of proof, in both its theoretical and practical as-
pects. He has studied how a mathematical “truth” takes form in
the private epistemology of the mathematician and in the commu-
nity, and he divided this process into several stages. According to
Lakatos, everything begins with a conjecture, that is, a hypothesis
assuming that a certain theorem is probably true. This conjecture
might have been suggested by some examples, or be an idea that
has occurred to the mathematician and which, due to its beauty,
deserves further examination. The mathematical literature con-
tains a great number of conjectures, famous or otherwise, collected
through the centuries. Both the sociological school and Lakatos
are interested in how these conjectures come about, but this aspect
belongs to the reflection on creativity already mentioned.
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The proof of a given conjecture may be tackled by a single math-
ematician, by a whole team, or even by several groups working
together or competing with one another. Whatever the case, they
begin by reviewing several known methods of proof that appear
promising. This is followed by an evaluation of the likelihood of
success of each of them. What Lakatos calls a “proof scheme” is
the decomposition of the main argument into a series of lemmas, or
secondary conjectures. While some of these lemmas may be proved
without much difficulty, others may remain at the hypothesis level
until a satisfactory proof is found.

The proof scheme is then tested, by searching for counter-
examples that would refute some lemma initially believed to be
true. The discovery of a counterexample may either discredit some
lemma(s), resulting in a reconsideration of the proof scheme, or
demolish the whole conjecture by demonstrating that it is false. In
the latter case, the search for a proof was not necessarily a total
waste of time, for the intellectual effort deployed might have sug-
gested new possibilities and lead to a new round of creativity. In
some cases, the counterexamples found might appear to be so ex-
travagant that, rather than rejecting the conjecture as false, it is
preferable to restrict the hypotheses conditioning its validity
(Lakatos calls such a course of action monster-barring). The search
thus proceeds by stages, and it might eventually produce a satis-
factory proof of the original (or modified) conjecture; or else the
questioning of the hypotheses may end up, in some extreme cases,
provoking a revision of the axioms of the theory on which the
conjecture rests.

Lakatos claims that this is precisely the kind of process that
leads to results likely to be accepted by the mathematical commu-
nity. It follows that the notion of “truth” is then more a matter of
convention than the attainment of something absolute and undis-
putable. This point of view may be illustrated with the example of
analysis: between the eighteenth and the nineteenth centuries the
criteria of rigor were considerably sharpened, leading to the com-
plete revamping of the axioms we have already reported. Mathe-
matical proofs mature with age, just like mathematics itself.

The above considerations are perfectly valid, and faithfully re-
flect reality; they are based on serious investigations on the way
mathematics is done. We may, however, wonder whether we have
learned a great deal, after all, about the nature of mathematics. A
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realist may object that a similar study could be made of the evolu-
tion of maps and charts between antiquity and the Renaissance.
From the stories told by explorers and sailors, only the distances
they have traveled, by land or sea, would be relevant; all other
details would be attributed to the “creativity” of the travelers. A
sufficient agreement as to the distances traveled would indicate an
interest for the continents in question, but in no way prove their
existence. In other words, the analysis, from a nominalist point of
view, of mathematical sociologism, does not permit one to con-
clude anything concerning the eventual reality of the presumed ex-
plorations, but it does not rule out this possibility either.

This theory receives a rather average grade when judged by the
criteria listed at the outset. The aesthetic condition is satisfactorily
fulfilled, since the mathematical community is very sensitive to this
component, and the same applies to the symbolic aspect. The fe-
cundity of mathematics remains, on the contrary, a total mystery,
shrouded in the psychologism surrounding creativity. Finally, the
problem of the correspondence between mathematics and physical
reality is left unsolved.

MATHEMATICS AND PHYSICAL REALITY

Among the criteria for comparing the various philosophies of
mathematics, we have included the crucial role played by this sci-
ence in the formulation of the laws of physics. It is a rather unusual
criterion, often considered a minor one. We shall therefore take a
closer look at it, to better put it into perspective.

There exist some “ultrafinitists,” mostly physicists or computer
scientists, who refuse to see in mathematics anything but a finite
process executed on computers, or directly in nature by the objects
themselves. It is an extreme position that we shall not elaborate on.

It is certainly true that everybody appeals to physical reality
when it comes to choosing among all possible mathematical no-
tions—not always with much conviction, though. Indeed, it is in
this reality that the formalists find the source of the regularities
presumably giving rise to logic, as explained by Hume. The intui-
tionists totally agree with them. The nominalists, for their part,
tone down the excesses of their formal game by noting from time
to time the suggestive influence of external reality, if only to justify
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the origins of Greek geometry. Finally, the logicists see in the exis-
tence of physical objects that can be made into sets the inspiration
of set theory and of the natural numbers, the two pillars support-
ing logic.

And so a modern account of mathematics would tend to start off
with logic and the existence of objects, while throwing away all
other aspects of reality. Many mathematicians believe such a point
of view to be legitimate, if not unassailable, and therefore that
mathematics is rooted in reality’s simplest elements, to evolve sub-
sequently in an autonomous fashion.

Unfortunately, it appears that they are deluding themselves by
believing in such a simple world. Perhaps one century ago reality
still seemed made up of objects that one could neatly tell apart and
count, but today things are no longer so simple. We now know
that physical reality is governed by quantum laws, a fact that calls
into question the fundamental simplicity of the very notion of an
object.

One might be tempted, on the contrary, to see some very simple
objects as the building blocks of physics, that is, elementary parti-
cles such as electrons, protons, quarks, and so forth. However, by
a strange malediction, those objects lack all the characteristics
needed to build a theory of sets based on them. These particles are
absolutely indiscernible, and nothing permits us to distinguish one
electron from another, not even its position in space. It is therefore
impossible to say that one of them possesses the property defining
a certain subset but the other does not. Present-day physics is based
on objects that cannot be conceived as elements of a set from which
subsets can be formed.

So what?—one might ask. I can see that on a human scale there
are objects exempt from that kind of flaw: trees, stones, matches,
and one thousand other things I can refer to when working out the
a, b, c of mathematics. This is an old and respectable point of
view, dictated by empiricism. There is, however, a problem with it,
subtler than the previous one but no less real. If, in trying to under-
stand the nature of these objects in a world subject to the laws of
quantum physics, we attempt to provide a satisfactory descrip-
tion of them, we are confronted with an unexpected reversal in the
supposed order of mathematical complexity. The laws of physics
that translate the existence of objects can only be expressed using
the most refined methods of analysis, immeasurably removed from
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the a, b, c of set theory.5 In other words, what seemed to be a
suitable starting point for mathematics now appears, in the present
state of knowledge, as a particularly remote terminal point from
the perspective of the theory of matter. There is nowhere in physi-
cal reality an anchorage for mathematics that imposes itself as ini-
tial evidence.

Should we let pessimism overcome us, and conclude that our
persistent questioning results only in the annihilation of knowl-
edge? We do not believe so. But this is an indication that we
must be even more exacting and, above all, not consider mathe-
matics as an independent domain but as an integral part of an all-
encompassing philosophy of knowledge.

5 This observation anticipates the discussion that will take place in chapters 10
and 12, concerning the classical properties of macroscopic objects derived from
quantum laws.

123



✣ C H A P T E R V I I ✣

Formal Physics

THE CENTURY OF FORMAL PHYSICS

WITH THE WORKS of Maxwell at the end of the nineteenth cen-
tury, classical physics achieved a profound mutation of its nature.
The leading role of the old, visual concepts—position, velocity,
force—was coming to an end, mathematics having so far provided
them with added precision without altering their original intuitive
meaning. That clear vision had now been replaced in part by in-
comparably more abstract notions, that of an electric or magnetic
field, for instance, whose mathematical expression was no longer
a simple translation of intuition but the only possible form that
was truly explicit. As a consequence, the laws of this new physics
became mathematical relationships among these quantities; some
laws describing their connections and others expressing their dy-
namics, that is, the way they evolve in the course of time. If the
physicist’s mind still tried to salvage as much as possible of the
intuitive representation of concepts, a new era was dawning, one in
which the mathematical form of physical notions and laws would
take precedence over all other forms of understanding.

From now on, all of physics will rest on even more formal prin-
ciples which often preclude any intuitive interpretation, when they
do not openly defy common sense or what we believe common
sense to be. It would be a mistake, however, to see in this amazing
and in some ways frightening evolution the result of a conspiracy
led by a few abstruse minds or unbridled metaphysicians, who pre-
ferred their extravagant dreams to the natural simplicity of things.
In fact, no effort was spared to instill more flesh, blood, and life
into notions that appeared to disallow the testimony of our senses;
if they rule today, impassive, at the heart of our knowledge, it is
because no one was able to dethrone them.

It would be equally wrong to believe that physics, in its race
toward abstraction, has cut itself off from reality to don even
thicker mathematical garments. In truth, physics reaped immense
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benefits, its domain of knowledge spreading out almost limitlessly
until no mystery remained unsolved, no stone unturned, except at
the most remote confines. At the same time, the detailed under-
standing of concrete reality deepened, and the technical applica-
tions proliferated. Intuition was not evicted either and still plays an
active role in inspiring many ideas in physics. It only deserted the
foundations, but it is enough.

The major episodes of this adventure are known, and they are
few. The adventure begins bordering on the fantastic with the spe-
cial theory of relativity discovered by Einstein in 1905: space and
time lose the absolute character they had always enjoyed in every-
one’s mind, and which Newton had explicitly postulated. Distance
and the passing of time depend on the motion of the observer
measuring them. Shortly afterward came Einstein’s relativistic the-
ory of gravitation, providing an answer to the great question that
Newton had left unresolved: the force of gravity does not act in-
stantaneously at a distance but its effect propagates gradually at
the speed of light. This major triumph is also a source of immense
puzzlement: not only do space and time become intimately con-
nected as a result of motion but together they form a new entity,
space-time, totally inaccessible to intuition and, moreover, having
a curvature. Only mathematics can offer a description of this new
object. When confronted with it, common sense seems helpless, if
not rather foolish.

We could have contented ourselves with accepting the fact that,
notwithstanding the fascination they exert, space and time have
never been clearly understood, and therefore any reflection con-
cerning them is a kind of metaphysics. Also, since the new effects
of gravitation predicted by the theory are minimal, we could have
simply acknowledged the existence of a mysterious zone at the
outer limits of physics while retaining a clear vision of matter—the
matter we can still see and touch. But in so doing we would have
been closing our eyes to the fact that the worst, as well as the best,
was yet to come.

The best and the worst is the marvelous and at times diabolic
quantum physics. But better not spoil the freshness of the subject
too soon, because we shall have the opportunity to treat it at
length. We can, nevertheless, reveal right away the extent of its
domain. Here is its first claim: all types of matter and every form of
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light or radiation are composed of minute particles—electrons,
protons, neutrons, photons, and a few others. Quantum mechanics
is the expression of the laws of physics proper to those particles.

It is therefore the theory of everything, except perhaps space and
time, the quintessence of physics, a universal theory from which
the rest of physics can be derived, at least in principle. Thus, quan-
tum mechanics is practically all of physics condensed into a few
laws, and for this reason it may be said to be marvelous. We shall
soon find out that it can also be diabolic, but better not to vilify it
before having been properly introduced to it.

That being said, it will be impossible to discuss these theories in
detail, and we shall continue to stick to the essentials, to the bare
minimum for whoever wishes only to reflect about science. The
special theory of relativity and the relativistic theory of gravitation
will be touched upon only briefly. This is not to be interpreted as
an unfavorable evaluation of their merit or intrinsic interest, but
quantum physics offers enough food for thought to gratify our in-
tellectual appetite.

As we have done before, we shall continue to examine these ques-
tions by following the course of history. Unfortunately, history is
too rich and complex to be tracked in all its aspects; it is full of
adventures, enlightenments, premonitions, and reversals, of big
surprises too. For this reason we shall be constrained to simplify it.
After establishing the boundaries of these astonishing sciences, we
shall strive to extract some fundamental principles despite their
mathematical complexity, in order to better grasp all their conse-
quences. We shall then see emerge in full view some far-reaching
philosophical problems where the theory of knowledge nowadays
plants its roots.

RELATIVITY

Despite its formal aspects, the electrodynamics of the end of the
nineteenth century had retained from the past two ideas, one
strong and the other simple, which together led to an obsession.
The strong idea was the absolute character of space and time. The
simple one was that the oscillatory nature of light presupposes a
material support: something that vibrates, known as the ether. The
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obsession was to prove the existence of the ether by means of some
experiment.

The memory of the lucubrations, theories, and false starts pro-
voked by this ethereal quest is today partly lost. It is nevertheless a
considerable chapter in the history of science, well known only to
specialists in the subject. Here are the broad outlines: It was natu-
ral to assume that the ether, a sort of material medium that vibrates
at the passage of light, should be present everywhere light propa-
gates, and in particular in the interstellar vacuum through which
the light coming from the stars travels. It was therefore the materi-
alization of the absolute space postulated by Newton.

Such an idea was not mere speculation, but based on some sensi-
ble remarks that it is appropriate to recall. There was first the com-
position of velocities. The existence of an absolute space and time
entails that the velocity of an object, when the observer is also in
motion with respect to absolute space, may be calculated with a
simple rule. And so, if a light signal propagates with a certain ve-
locity in absolute space, an observer in motion should detect the
(vectorial) difference between the absolute velocity of light and his
or her own velocity. The observed velocity of light should there-
fore be affected by the motion of the laboratory where the mea-
surement takes place, since the earth is carrying the laboratory
with it in its rotation around the sun. Now, Maxwell’s equations
predict a perfectly defined speed of light, designated by c, with no
other alternative. It was then reasonable to think that Maxwell’s
equations represented the laws of physics as they hold in a very
special medium, the ether, which was supposed to be at rest with
respect to absolute space.

What we have just said regarding the composition of velocities
shows that this conjecture could be tested, in principle, by measur-
ing with sufficient accuracy the speed of light. Since the velocity of
the earth with respect to the sun has opposite directions every six
months, one ought to be able to observe a difference. It is not even
necessary to wait six months, for the velocity of the earth at any
given instant has a well-defined direction with respect to abso-
lute space, and therefore the observed value of the speed of light
should vary depending on whether light travels in this particular
direction or in some other—a direction perpendicular to it, say.
Unfortunately, there is a problem: the ratio V/c between the speed
of the earth and that of light is very small, about one to ten
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thousand, and the measuring devices then available did not afford
such precision.

Thus, other experimentally detectable effects had to be sought.
Interference was a promising candidate, for the exact position of
interference fringes offers the possibility of greatly amplifing the
supposed variations in the speed of light. To be sure, the antici-
pated effect would be of second order with respect to the very small
quantity V/c, that is to say, proportional to its square, and thus of
an order of magnitude of one one-hundredth of a million. But the
expected amplification would render the effect perceptible, pro-
vided a sufficiently large and stable interferometer was employed.
It is therefore thanks to the technical advances he had made in the
design and operation of interferometers that the American physi-
cist Albert Michelson, in collaboration with Edward Morley, can
finally measure the “ether wind” in 1887.

The outcome was completely different from what they had ex-
pected. All the evidence and verifications pointed to the same con-
clusion: the velocity of the laboratory has absolutely no effect on
the measured speed of light.

Many received ideas were invalidated by this discovery, and an
explanation was sought by all available means. In 1893, the Irish-
man George Fitzgerald came up with one that was both appealing
and intriguing: Could it be that the size of material bodies, such as,
for instance, the steel rod then used to represent the standard
meter, would change under the effect of motion with respect to the
ether? The length of a meter would then decrease when traveling in
the direction of its length and remain unchanged if the direction of
motion is perpendicular to it. Fitzgerald even proposed an explicit
expression for such modifications. Hendrick Lorentz, a Dutch
physicist and the author of a detailed theory of electrodynamics in
matter, attributed this effect to an alteration of the interatomic
forces in the material objects used as standards of length (as well
as in all other material bodies). He showed in 1903 that the said
effect should be accompanied by a change in the periodic motion
inside the atoms and, on a larger scale, in the movement of clocks.
Both these effects were combined in the famous Lorentz transfor-
mation, which gives the changes in length and time when two ob-
servers moving with respect to each other compare their respective
measurements.
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In 1905, Albert Einstein proposed a sweeping conceptual revi-
sion. Instead of assuming that motion with respect to the ether is
the cause of Fitzgerald’s contractions, he sees the origin of these
contractions in the very nature of space and time. The same stan-
dard meter has exactly the same length for the observer holding it,
and the hands of the clock he carries in his waistcoat pocket tick
away always at the same pace (in 1905, observers were supposed
to be men, dressed in three-piece suits). This observer measures
space with his meter, and time with his clock. A second observer,
traveling with respect to the first with constant speed may do like-
wise, but the measurements of one and the same event by the two
observers need not coincide. In other words, there is neither abso-
lute space nor absolute time; only measures of distance and time
depending on the motion of the observer. The way measures taken
by two different observers are related only involves the velocity of
each one with respect to the other, that is, their relative motion.

The conceptual revolution that follows can be better appreci-
ated when compared with Kant’s synthetic a priori judgments re-
garding space and time. We can continue to assume, if we so wish,
that these are innate ideas shaping our representation, our visual-
ization, of the world. But it must be conceded that such catego-
ries of thought do not agree with nature, except (and this is by far
the most frequent case) when all motions in question are slow
compared to the speed of light. Space and time are always repre-
sentable for our mental vision, but only approximately, and, ulti-
mately, the only reliable description is the mathematical formu-
lation of the correspondence between the observations. It is not
describable by any other means than those of algebra, even if we
may eventually overcome our initial puzzlement. With the advent
of relativity, the theory of knowledge has forever ceased to be cast
in an intuitive representation, to be based solely on concepts whose
only authentic formulation involves a mathematical formalism.

But were Einstein’s ideas of space and time sufficiently convinc-
ing to elicit their general acceptance? They appeared radical com-
pared to those proposed by Lorentz, which were certainly much
more classical. And so it was not from the above general consider-
ations that the confirmation would come, but from their applica-
tion to dynamics. Newton’s principles of dynamics were clearly
incompatible with the new theory. In order to reconcile them, it
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was necessary to review the way momentum and kinetic energy are
expressed as functions of the velocity of the moving bodies. Thus,
Newton’s equations had to be rewritten, and in such a way that the
new and the old formulas would significantly disagree only when
the velocities in question approached that of light. This is precisely
what Einstein did with extraordinary success, as is well known:
there is an energy due only to mass, given by the famous formula
E = mc2.

The existence of this energy due to mass would later manifest
itself in nuclear physics, where the binding energy between protons
and neutrons in the nucleus results in a perfectly measurable de-
crease of the total mass. This is, of course, not the only experimen-
tal confirmation of the theory of relativity, many more being
known. However, we shall not attempt to list them here, since they
belong in the specialized literature. Let us rather take a look at the
sequel.

THE RELATIVISTIC THEORY OF GRAVITATION

Its success notwithstanding, the theory of relativity left two signifi-
cant problems still unsolved: those of knowing how to apply it
when the motion of one of the observers is not uniform, and of
fitting Newton’s theory of gravity within the new framework.

In Einstein’s first theory, a whiff of absolute space and time still
remained. The Lorentz transformations that it employs only apply
to two observers moving with constant velocity, that is, without
relative acceleration, with respect to each other. Now, it turns out
that Newton’s principles of dynamics, in their simplest form, are
not necessarily restricted to space and time. In fact, they keep the
same form in any reference system (or laboratory within which the
measurements take place) moving with constant velocity with re-
spect to absolute space. These particular reference systems are
called Galilean because they are the ones in which Galileo’s princi-
ple of inertia applies, that is to say, a body not subject to any force
will move in a straight line with constant velocity.

The special theory of relativity still retained the notion of a Gal-
ilean reference system. It is only in such systems that the new for-
mulation of dynamics had the simple form assumed by Einstein.
And so, even if there was neither absolute space nor absolute time
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any more, a certain category of reference systems was singled out
as having a distinct property. Paraphrasing George Orwell, one
might say that, among all possible reference systems or ways of
describing space and time, some were more equal than others. This
was a matter calling for further reflection.

The other problem concerned gravity. Newton himself had been
bewildered by the existence of gravitational forces acting at a dis-
tance.1 The difficulty became even more serious in the new relativ-
istic theory, which did not allow for any physical effect to propa-
gate faster than the velocity of light. Here is why: Suppose that
there is a cause A to some gravitational effect—the ejection of a
certain mass of matter by the sun, say—that is detected by an ob-
server. The cause A produces an effect B at some distance, a tidal
wave on earth, say. Can the observer affirm that the effect takes
place at the same time as the cause? Certainly not, for one can
show that, as a consequence of the Lorentz transformations, other
observers in motion with respect to the first would see the effect
precede the cause. The difficulties of interaction at a distance are
no longer a mere metaphysical irritant, as was the case in Newton’s
time, but a source of internal contradictions. For this very reason,
the problem they create becomes open to analysis, and this is pre-
cisely what Einstein will set out to do between 1911 and 1916.

He must face two seemingly very different questions: to refor-
mulate the laws of dynamics in an arbitrary system of reference
and, in particular, in one with nonzero acceleration, and to find a
theory of gravitation where forces cannot act instantaneously at a
distance.

These two problems are related, as he very soon realizes. We
know that acceleration manifests itself through inertial forces: it is
the force without any apparent agent but very real that we expe-
rience in our stomach while riding a roller coaster, or the one a
pilot feels during a strong acceleration. We can also perceive its
effect in a fast elevator. Now, while I am inside an elevator, Ein-
stein observes, it is absolutely impossible for me to tell whether the
feeling of weightiness that I experience is due to the acceleration of
the elevator, to a true gravitational force, or to a combination of
both. No measurement performed inside the vehicle, and without

1 Actually, Newton and his contemporaries were puzzled above all by the fact
that gravity could propagate in vacuum, the question of its instantaneous trasmis-
sion being raised only later.
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looking outside, can settle the question. The reason can be found
in a strange agreement already remarked by Newton: the equality
of inertial mass (which determines the reaction to acceleration) and
gravitational mass (which determines the force of attraction cre-
ated by other masses).

Hence, by reformulating the laws of dynamics in an arbitrary
reference system we can expect to understand what form the laws
of gravity should take in a relativistic setting. Einstein will now
make a crucial observation, by following in the opposite direction
the path leading from the relativistic properties of space and time
to dynamics. This time, he will clarify the laws of dynamics in an
accelerating reference system by studying the geometry of space as
seen in such a system.

The example he gives is sufficiently simple to be presented here.
Suppose we are riding a merry-go-round that is rotating fast
enough for the effects of relativity to be felt. We then experience an
acceleration (except if we are placed right at the axis of rotation)
whose inertial force is simply the centrifugal force. But is this all
that is going on? With the help of a ruler, let us measure the radius
of the circular platform of the merry-go-round. Since the velocity
is everywhere perpendicular to the radius, our ruler is not sub-
jected to the Fitzgerald contraction, and we thus find a certain
value for the radius. Let us now measure the circumference of the
platform by placing many identical (small) rulers end to end along
the circumference. This time the velocity is everywhere parallel to
the rulers, which will therefore experience a relativistic contrac-
tion. In comparing the length of the circumference with that of the
radius we shall not find 2p, as would be expected, but a number
that will depend on the radius of the platform and on the rotational
speed of points on the circumference. There is ample reason for
astonishment: our space is no longer Euclidean!

Thus, the geometry of space in an accelerating system of refer-
ence no longer appears to be Euclidean. Similar considerations
demonstrate that the passing of time as measured by clocks is also
affected by acceleration, and it is not the same for two identical
clocks placed one at the center and the other at the periphery of the
rotating platform.

But what does a non-Euclidean space look like? The answer is
easy when dealing with a two-dimensional space. Compare, for
instance, a plane with a sphere, or with the surface of a potato. The
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plane is Euclidean: the shortest path between two points is a
straight line and the sum of the angles of a triangle is p (when
measured in radians). Two-dimensional creatures living on the po-
tato’s surface might agree to call “straight line” the shortest path
from one point to another, what mathematicians call a geodesic
(the name reminding us of the shortest path between two points on
the earth’s surface). Our hypothetical creatures would soon realize
that they do not live in a Euclidean space, for the sum of the angles
of a triangle on the surface of a sphere or a potato is not equal to
p. The space has curvature, as is clear in the case of the sphere.

Granted, you might say, but the potato is situated in ordinary
three-dimensional space, which is Euclidean. Indeed it is, but what
if we discover, as in the case of the relativistic merry-go-round, that
our three-dimensional space is not Euclidean? Are we going to as-
sume that it is embedded in an imaginary space having four, five,
or more dimensions? Must our respect and admiration for Euclid
stretch that far?

It is much simpler to follow Einstein and stop at the space that
an observer can perceive and measure: three-dimensional, to be
sure, but non-Euclidean. Beginning with Gauss, mathematicians
have taught us how to describe it without having to suppose it em-
bedded in a higher-dimensional Euclidean space, and it suffices to
apply their techniques. Thus, once again, concepts that only math-
ematics can express, and which defy intuition, must be brought in.

One can already see the route to follow: First, the considerations
concerning space and those regarding time must be combined in a
single formal object having four dimensions: space-time.* This ob-
ject will be considered as an abstract geometric space showing cur-
vature. As a result, it is no longer necessary to resort to Galilean
reference systems in order to state the laws of physics. They can
now be written in an arbitrary reference system, thus breaking free
from the last fragments of the Newtonian shell. The principle of
inertia no longer favors Galilean reference systems, and it now en-
compasses the effect of gravity: a body subject to the gravitational
force only describes a geodesic in space-time.

It remains to find a substitute for Newton’s force of gravity.
Since the new principle of inertia includes the effect of gravity, we
no longer need to speak of force, for it is enough to be able to
locate the geodesics of space-time. This can be achieved if we know
its geometry, which in turn amounts to determining its curvature.
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The entire relativistic theory of gravitation is therefore reduced to
finding out how the curvature of space-time is determined by the
mass (or rather, the energy) it contains. But according to which
equations?

This final obstacle would occupy Einstein’s efforts for quite
some time, for the necessary mathematical methods were still un-
known to the physicists. He succeeds in the end, at the same time
as Hilbert, whom he had persuaded to take an interest in his re-
search. Thus saw the light the famous Einstein’s equations, which
it would not be appropriate to describe here. In this respect, there
is an anecdote regarding Einstein’s image. For the general public,
he was the mathematician, whereas he was above all a physicist
respectful of principles and not inclined to complex calculations,
which he knew well how to avoid. Didn’t Hilbert say that “Herr
Einstein wants to replace physics with geometry, but everybody in
the streets of Göttingen knows more geometry than him”? Obvi-
ously, “everybody” referred to Hilbert’s students, who were actu-
ally quite numerous. This rather acrid little story will be our excuse
for not developing the formalism of the relativistic theory of gravi-
tation, for who could pretend to put into words what proved to be
a painful experience for Einstein himself? We shall also refrain
from mentioning the fascinating applications of this theory to
black holes or to a science finally recognized as such: cosmology,
that is, the theory of space-time in its entirety or, if one prefers, the
history of the universe. We had better save our energy for the last
formal theory of physics, quantum mechanics, whose domain is
even more extensive and its consequences more important for the
theory of knowledge.

THE PREHISTORY OF THE ATOM

We now turn our attention to the microscopic components of mat-
ter and radiation, and first of all to the atoms. Atoms are present in
nature from the very beginning, or at least since one million years
after the birth of the universe. Let us skip those billions of years
during which they were getting ready to become our flesh and
bones and begin right away, and once again, with the Greek en-
lightenment. Leucippus, who lived a generation earlier than Soc-
rates and of whom we know next to nothing, conceived the strange
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idea of the atoms—by what stunning flight of the mind we could
not say. First Democritus, his disciple, later Epicurus, and finally
Lucretius (a brilliant popularizer in hexameter verses) draw conse-
quences that posterity would never forget. But let us cut this short
and take a quick glance at Descartes’ atoms: they are clawlike, to
enable them to hook onto one another. Nothing really new so far,
but here is something more interesting: in the eighteenth century,
Daniel Bernoulli shows that if gases are composed of atoms, then
pressure is due to their collisions against the walls of the container,
which would explain why pressure depends on temperature. For
this to happen, atoms must be animated by some sort of perpetual
motion, similar to the one observed by the botanist Robert Brown
in a drop of water seen through the microscope, where pollen
grains are in constant agitation. But let us carry on.

During the nineteenth century the idea of the atom will slowly
take form, thanks chiefly to the work of the chemists. In the
preceding century, the distinction between simple and composite
bodies had already been established. Then, Dalton and Gay-
Lussac discover that chemical reactions always involve masses of
simple bodies (or volumes of gas) that are in a fixed ratio of natural
numbers. This could be explained by assuming simple bodies to be
composed of a single type of atom, and composite ones to be made
up of molecules formed of several atoms. And so, slowly but
surely, the idea would gain ground, occasionally helped by a sud-
den breakthrough or held back by tenacious resistance. The sup-
porters of the atomic theory were reassured by the discovery of the
laws of electrolysis and, later, by the explanation of numerous phe-
nomena in organic chemistry. The spatial configuration of mole-
cules was beginning to be understood, but some difficult problems
remained. How to explain the fact that atoms could repel each
other, as happens when trying to compress matter, and at the same
time bind together to form molecules? Other strange properties,
known as resonance, served to fuel the criticism of the skeptics.

Toward the end of the century, new complications appeared
with the discovery that atoms are not matter’s extreme limit of
smallness. In 1897, J. J. Thomson discovered some very light and
negatively charged particles that he named “electrons.” They are
emitted by the cathode of an X-ray tube, and other, much heavier
particles called ions come out at the other end, the anode. Could
it be that atoms (whose name, let us recall, means “that which
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cannot be divided”) were in fact composed of smaller particles,
and in particular of electrons? It was an appealing idea, for Lorentz
showed that it provided a clear explanation of many electrical and
magnetic properties of matter. Unfortunately, once again, a major
obstacle stoodout, because nothing seemed to distinguish a con-
ductor from an insulator.

Let us mention in passing, and for the sake of the beauty of it,
that in 1899 Rayleigh explained the blue of the sky as the diffusion
of solar light by the molecules in the atmosphere. The rest is also
worth telling: Due to this diffusion, the light from the sun loses
part of its energy, particularly in the blue zone of the spectrum, and
it is scattered in every direction. As the sun’s rays penetrate deeper
into the atmosphere, the green and then the yellow also disappear.
And when the thickness of the atmospheric shield is the greatest,
as is the case at dawn and at sunset, there is only a blazing of red
and orange left. But the story does not end there. One day, while he
was at Darjeeling, a village in the Himalayan foothills where the
English sahibs liked to take refuge from the rigors of summer, Lord
Rayleigh noticed that the frozen slopes of Everest, a few hundred
kilometers away, appeared in a greenish hue. From the thickness
of the atmospheric layer the light should have penetrated to reach
the mountain, he deduced Avogadro’s number, that is, the number
of atoms in a given mass—for instance, the number of hydrogen
atoms in 1 gram of hydrogen, or of oxygen atoms in 8 grams of
this gas. This number is twenty-four digits long, which shows how
small atoms are. In order to measure their size a special unit of
length is used, the angström, equivalent to a ten-billionth of a
meter.

In 1905, Einstein—still he—took up the question of Brownian
motion, the erratic movements of pollen grains in a drop of water
that we mentioned earlier. This motion, he says, arises from the
multiple collisions of water molecules against the grains or any
other tiny particle. Pursuing his idea up to its quantitative conse-
quences, he was able to predict the average distance traveled by a
particle in a given interval of time. His prediction was soon to be
experimentally confirmed by Jean Perrin, and it is customary to
consider this event as marking the general recognition of the exis-
tence of the atom.

Much more would be learned on the nature of atoms in 1911,
thanks to Ernest Rutherford. He was working on experiments
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where alpha particles produced by the disintegration of radium
passed through a thin metal sheet. The particles were observed to
depart slightly from their initial path. Since alpha particles are
charged, the effect might have been due to electric forces, but the
electrons in the atoms were too light to account for the deviations.
Rutherford then analyzed the data and showed that the only expla-
nation was the presence, at the center of each atom, of a positively
charged “nucleus” where almost all of the atom’s mass was con-
centrated. This was the first satisfactory model of the atom: a nu-
cleus surrounded by electrons. Now, the nucleus exerts an electri-
cal force of attraction on the electrons, similar in form if not in
magnitude to gravitation. In the resulting portrait of the atom, vac-
uum taking up by far the largest part, with electrons revolving
around the nucleus, lies the perfect setup to apply the well-known
methods of mechanics.

How beautiful and how simple! one might have exclaimed. But
hard reality would soon catch up. The history of the atom was long
marked by the intrusion of new problems each time progress ap-
peared in sight. Rutherford’s model did not provide any explana-
tion for the chemical properties of molecules, but the worst prob-
lem was elsewhere. An electron gravitating around a nucleus must
accelerate, and it had been known since Hertz’ time that an acceler-
ating charged particle emits electromagnetic waves. Such should
therefore be the case for the atomic electron, and with a particu-
larly strong effect, for the electron is subjected to a tremendous
acceleration inside the atom, its mass being very small and the elec-
tric forces involved considerable. A simple calculation led straight
to disaster: in a fraction of a second the electron should radiate
desperately fast, and at the same time travel at full speed toward
the nucleus to compensate for its loss of energy. Thus, the atom
ought to collapse almost instantaneously. There was obviously an
error somewhere, but no one could find it. Unless . . . unless the
usual laws of physics themselves collapse and are no longer valid
on the atomic scale.

It was not an entirely implausible hypothesis, for something
similar had happened a decade earlier regarding a completely dif-
ferent problem: the radiation spectrum of a black body. What
physicists call a black body is simply any black object, with no
proper optical emission. It can be observed that such an object
emits a radiation whose color, that is to say, its spectrum, depends
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only on the temperature of the object. This effect manifests itself
when a metal or a piece of coal becomes red at temperatures in the
hundreds of degrees, and then appears brilliantly white when the
temperature reaches several thousand degrees. What is called
the spectrum of radiation is the distribution of luminous energy
emitted as a function of the frequency (or the wavelength). In this
case, too, physicists had believed they could solve the problem the-
oretically and compute the spectrum using the laws of thermody-
namics. But such a line of reasoning led to an absurdity: a chunk of
coal should emit light of infinite intensity!

In 1900, Max Planck had found what we may irreverently call
a “trick” or a “ruse” to circumvent the difficulty. He had assumed
that coal atoms do not radiate continuously, as would be expected
according to electrodynamics, but that they emit “puffs” or
quanta2 of radiation, the energy emitted in each puff being propor-
tional to the frequency. More precisely, he had supposed that the
energy so emitted was equal to the product of the frequency with
a number now called Planck’s constant, a very small number on a
human scale. It is a remarkable fact that so simple a hypothesis,
even if incomprehensible at first sight, leads to a perfect agreement
with everything we can observe and measure.

Since Plank’s hypothesis had resolved a difficulty concerning ra-
diation, it was not unrealistic to expect that a similar idea might
explain the absence of uncontrollable radiation in Rutherford’s
atom. It remained to find a way to bring Plank’s constant into the
picture.

CLASSICAL PHYSICS IN A STRAITJACKET

The honor of finding the solution fell on Niels Bohr, a young Dane
then working under Rutherford. By bringing together Plank’s and
Rutherford’s results, Bohr proposed in 1913 a new dynamics of
the atom destined to fame and glory. It was a conservative model,
in the sense that it modified classical physics as little as possible—
in fact, the model preserves all classical laws, imposing only one
additional condition. Bohr studied in particular the hydrogen

2 The word “quantum,” of Latin origin, means simply “a certain quantity mea-
sured by a whole number.”
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atom on account of its simplicity. This atom possesses a single elec-
tron, which, according to Kepler’s laws, must “gravitate” around
the nucleus on an elliptical orbit. To prevent the collapse of the
electron, Bohr assumed that only certain orbits can actually be de-
scribed, and that the electron cannot radiate while traveling along
the smallest of these ellipses. When the electron does radiate, it
emits a puff, a quantum of luminous energy.

How are the permissible ellipses to be selected? The answer is in
fact quite simple, because it only requires introducing a condition
without new data except Planck’s constant. Let us say, without
writing any formulas, that there is essentially only one possible
rule and it is the one postulated by Bohr. In short, he adds one
more law to the purely classical theory of the atom, a law in which
Planck’s constant occurs. Bohr’s solution turns out to have spec-
tacular, far-reaching consequences: each permissible elliptical tra-
jectory must correspond to a well-defined energy, whose expres-
sion involves the electron’s mass, its charge, and Planck’s constant,
together with an integer, called the quantum number, that labels
the successive ellipses beginning with the smallest one. Bohr also
postulates that in order to radiate, the electron must suddenly
move from one ellipse to another of lower energy level (these are
the famous quantum jumps) and that the energy liberated in this
way is related to the frequency of the emitted light by Plank’s rela-
tion. Using his theory, Bohr then predicts the radiation frequencies
that the hydrogen atom can spontaneously emit. These frequencies
make up what is known as the spectrum of atomic radiation, al-
ready observed and measured long before Bohr’s time. The agree-
ment between model and measurements is very good.

Many were enchanted by this beautiful result, and foremost Ein-
stein. The general direction it pointed at could only please him: it
retained the advantages of known physics enriched by a new acqui-
sition, a condition capable of selecting the possible states of the
atom that preserved the essential features of the old model. In
short, physicists increased the list of known laws, but without re-
ally modifying their way of looking at things. It is this idea of a
familiar physics subjected to new constraints that we may call,
somewhat cavalierly, classical physics in a straitjacket.

A period of intense research followed, dominated by the contri-
butions of Bohr and Arnold Sommerfeld. Efforts were directed
at extending hydrogen’s success story to more complex atoms.
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Unfortunately, the results were disappointing, and, as the theory
continued to be refined and the experiments multiplied, there were
plainly more defeats than victories. For example, the effect of a
magnetic field on the frequencies of an atomic spectrum (Zeeman
effect) or that of an electric field (Stark effect) led to the worst pos-
sible situations. The results were satisfactory for certain spectral
lines of some atoms and totally false for others, for reasons no one
could explain. As for the links with chemistry everyone had been
waiting for, they remained as elusive as ever. If the classification of
atoms in Mendeleyev’s table was partially understood, there was
still no sign of how chemical properties were determined. In a nut-
shell, physicists stalled.

THE ASSASSINATION OF CLASSICAL PHYSICS

Shortly before these events took place, the French poet Arthur
Rimbaud had seen “the time of the assassins” coming. Here they
are now closing in, those youths, some of them very young, who
will not hesitate to trample down their ancestors’ legacy. Too bad
for Newton and Maxwell, too bad, if need be, for the common
sense gathered through the centuries by the entire human race. The
time had come for physics to rise to the occasion, to come up with
a theory, whether clear or not, simple or otherwise, it does not
matter; but one that should account for the facts, all of them.

Those well-mannered young people certainly did not have the
anarchic intentions we seem to lend them. They were searching for
an honest solution in all sincerity, and it is certainly not their fault
if this solution would turn out to be such a revolutionary one, as
the future would prove.3 But let us begin with the introductions:
This is Louis de Broglie, member of an ancient family, trained in
history, ill prepared for the role he was to play, and who con-
tracted a passion for physics through his brother Maurice, an X-
ray specialist. He is thirty-one when he begins working in physics.
Over here, Werner Heisenberg, with a passion for physics, trained
in German schools and particularly fond of classical Greek. At the

3 It has been pointed out that this period following the First World War also
witnessed other calls into question, such as the one brought about by surrealism.
But this fact does not affect our main argument.
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time of his first major contributions he is only twenty-two. Next to
him his Austrian friend Wolfgang Pauli, a precocious genius who
has written a remarkable survey article on the theory of relativity
before the age of twenty. Here is also Paul Dirac, an Englishman as
young as the others and coming from the prestigious Cambridge
University. And over here the senior ones, some ten years older
than the young generation: Max Born, a German universal physi-
cist, formerly one of Hilbert’s assistants at Göttingen at the time
the master was interested in physics; Erwin Schrödinger, another
Austrian, a student of Sommerfeld who is still uncertain of his true
calling, but whose sound mathematical training will come in
handy. Watch them as they enter the arena under Einstein’s and
Bohr’s attentive look, ready to encourage or correct them, as the
case might be.

Heisenberg opens the discussion, and we shall listen to him for
a moment. He does not hesitate to call into question the founda-
tions of classical physics, challenging most of its concepts. Are we
certain, he wonders, that the notions of position and velocity also
apply to objects such as the electron? It is impossible to know ex-
actly where the electron is inside the atom, for we would have to
use some kind of device that could only result in the destruction of
the object of our observation. Could it be that, besides this prac-
tical impossibility of determining position, the laws of physics
would rule out its very idea, and that we would be allowed to
employ only concepts that can be experimentally verified? In ask-
ing this last question, he believes he has been inspired by Einstein,
who, in his questioning of the traditional conceptions of space and
time, accepted as valid notions only those that can be measured in
the laboratory with rulers and clocks.

But if we must do without the classical ideas of position and
velocity, what shall we replace them with? asks Heisenberg. Since
the support of visual intuition must be given up, he will resort to
formal concepts. But first, he has to find the mathematical objects
that will replace the familiar notions. Heisenberg then undertakes
a reflection that would be impossible to follow without a consider-
able technical background. Here is a broad outline: The accelera-
tion of an electron at the origin of radiation only manifests itself at
the time of a quantum jump between two (quantum) states of the
atom. Thus, the object “acceleration” is certainly not a number, as
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we usually envisage it, but depends on the initial and final states of
the atom at the very instant the jump takes place, and it has a
meaning only at that time. Therefore, if we enumerate the atom’s
possible states as Bohr did with his “quantum numbers” that label
the energy levels, acceleration then becomes a quantity that de-
pends on the quantum numbers of the initial and final states. Thus,
acceleration may be replaced by a double-entry table of numbers,
labeled by integers indicating the initial and the final states. Hei-
senberg is led to analogous considerations for position and veloc-
ity, which he replaces in a similar way by tables of numbers. He
then succeeds in reformulating the essentials of the laws of me-
chanics using such tables. In 1924, Max Born, to whom Heisen-
berg has confided his discoveries as well as his bafflement, encour-
ages him to publish his results, after informing him that his tables
are called matrices by the mathematicians. With the help of Pas-
cual Jordan, an invaluable recruit given his knowledge of these
yet-little-used mathematical entities, he soon creates an almost
complete version of a new mechanics, accompanied by a great
number of predictions and results, all of them as valuable as they
are convincing. This new theory is then refered to as matrix
mechanics.

Not long before, in 1923, Louis de Broglie had published an
altogether different idea, but which would bear its first fruits only
after the publication of Heisenberg’s results. This is why, at the
time, the two contributions were discussed in reversed chronologi-
cal order. De Broglie’s idea was based on earlier work by Einstein,
who had interpreted Planck’s quanta of luminous energy as well as
the characteristics of the photoelectric effect (where electrons are
emitted by a metal under the action of light) as being due to the
existence of grains of light: the photons. And so Einstein reacti-
vated the old idea of the corpuscular nature of light, and managed
to demonstrate, however incompletely, that the existence of pho-
tons did not contradict interference phenomena. Light, which ordi-
narily manifests itself as a wave, is made up of particles. Why,
asked de Broglie, couldn’t this idea be turned upside down and
generalized by assuming that every elementary object, an electron,
for instance, which normally appears to be a particle, is associated
with a wave that we have not yet perceived, with a wave function*
that we do not imagine?
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Several years would have to elapse for this idea to be experimen-
tally confirmed by diffraction effects, that is, by purely undulatory
effects, analogous to interference, produced by electrons traversing
a crystal. De Broglie’s idea had previously been communicated to
Einstein, who discussed it with Sommerfeld. The latter then posed
his disciple Schrödinger the following problem: how to compute
Louis de Broglie’s wave for an electron inside an atom, and how to
formulate this wave’s dynamics, that is to say, the way it evolves as
a function of time?

Almost immediately, in that same year 1926, Schrödinger finds
a solution to the problem and proposes an equation for the wave’s
dynamics that will be named after him. He puts it to the test by
computing the hydrogen atom spectrum and the results coincide
with those of Bohr. He also accounts for a number of subtler phe-
nomena that could not be explained by either Bohr’s or Sommer-
feld’s methods, and in particular he manages to reproduce Heisen-
berg’s results.

Can the meaning of this magic Schrödinger’s equation* be put
into words? It does not seem so, and we are once again immersed
in a formal physics. It is impossible to say, as Voltaire used to do
about Newton’s mechanics: “You see, acceleration is the relation
between force and mass, and the rest is only a matter of calcula-
tion.” We can only say that Schrödinger’s equation involves the
electrical energy of the interaction between the nucleus and the
electrons, as well as among the electrons themselves. The masses of
the electron and the nucleus also occur in it, the latter playing a
lesser role. It is not a very appealing equation at first sight, al-
though it is rich in subtle properties; a partial differential equation,
that is, one involving partial derivatives, vaguely resembling
Maxwell’s equations. What can we add? Nothing, really, except to
write it down, but it is of course out of the question to do it here.

The new mechanics would immediately prove fertile in results,
which were almost invariably fully consistent with experience, and
never at variance with it for too long. The curse that had long
afflicted the infancy of the new physics was finally exorcised, and
the time when each step forward generated new difficulties seemed
forgotten like a bad dream. This time, every obstacle would soon
be a source of progress, carrying with it the explanation of
many other phenomena. Everywhere, in concert, Schrödinger and
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de Broglie’s wave mechanics and Heisenberg’s matrix mechanics
made a hit, with identical results, despite the fact that they ap-
peared to be so different.

Indeed, Schrödinger did not use any matrices, and waves had no
place in Heisenberg’s system. Which of the two theories would
have the last word? Strangely enough, neither of them, for still in
1926, Dirac and Schrödinger both showed that the two seemingly
different mechanics are in fact one and the same theory, and that it
is possible to transform one into the other by purely mathematical
manipulations. It was then decided not to favor either of them over
the other, and to call the synthetic theory so obtained quantum
mechanics. Nowadays, the choice generally falls on a more ab-
stract version of the theory principally due to Dirac and von Neu-
mann. But it will not be necessary for our purposes to consider it,
since its interest is mainly technical and it does not involve any
essentially different principles. Yet another version, also equiva-
lent to the others and shedding a new light on some aspects of the
theory, would be proposed at the beginning of the 1950s by the
American physicist Richard Feynman. But the nuances and subtle-
ties of the various translations of the Bible of Nature are of interest
only to the theologians of physics.

THE HARVEST OF RESULTS

Before presenting the principles of quantum theory and their im-
pact on the philosophy of knowledge, it is perhaps appropriate to
give some idea of the extent and fecundity of the theory, if only to
justify the importance attached to it. We shall therefore very briefly
and incompletely review its impressive harvest of results without
paying much attention to dates or chronological order, for applica-
tions began to develop on several fronts at once beginning in 1927.
That year the theory reached its maturity, and was to remain prac-
tically unchanged up to this day.

Let us begin with chemistry, which was after all at the origin of
the whole story. Schrödinger’s equation enables us to compute the
wave function of the electrons in any atom or molecule (actually,
the necessary calculations are extremely difficult, and only feasible
after the advent of computers). The possible energy states of a
molecule can therefore be calculated to determine which ones may
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exist when two or more atoms are bound together. The position of
those atoms inside the molecule can be known too, and in many
cases even the nature, the efficiency, and the speed of the chemical
reactions may be computed. The whole of chemistry became thus
accessible: first, of course, by the perfect understanding of Mende-
leyev’s table, but also by the full comprehension of the structure
and the chemical properties of molecules (the helicoidal shape of
the DNA molecule, for instance). The formerly puzzling phenom-
ena of resonance and the changes in form that certain molecules
underwent became clear, even though the reason for them re-
mained buried in the formalism and not expressible by simple im-
ages. At present we can determine the expected properties of a
new molecule before actually constructing it, and only verify these
properties experimentally afterward. If chemistry thus experienced
a new boom without losing its original character or its own specific
techniques, it is also true that its foundations are now indistin-
guishable from those of physics.

The physics of ordinary matter, and in particular solid state
physics, has also been profoundly transformed. Quantum mechan-
ics finally provided an explanation of the difference between con-
ductors and insulators. The same applies to the properties related
to heat (heating capacity, phase transitions, heat conductivity), op-
tical properties (transparency, color, refractive index), magnetic
properties (those of the iron in an electromagnet, for instance), and
mechanical properties (hardness, plasticity). The explanation of
superconductivity phenomena obtained in 1958 marks the end of
the heroic era. But this did not mean the end of the harvest. Every
year we witness some remarkable developments, although these
are mostly geared toward the systematic application and refine-
ment of known results, to which should be added the study of more
complex phenomena (liquid crystals, surface phenomena). Among
the most outstanding practical achievements we find the invention
of the transistor, thanks to which the computer boom became pos-
sible, and the recent discovery of superconductors at relatively
high temperatures.

Optics greatly benefited from the invention of the laser, which is
based on a purely quantum phenomenon: the fact that the presence
of photons near an atom may stimulate the emission by the latter
of new photons. From a more fundamental point of view, optics
succeeded early on in reconciling the undulatory character of light
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with the existence of photons, even if, again, those results cannot
be put into words.

The fallout from quantum mechanics would also have an im-
pact on two totally new branches of physics that study, respec-
tively, the atomic nuclei (nuclear physics) and elementary particles.
Both have experienced a stunning development, beginning in the
thirties in the first case, and from the 1950s on in the second. We
shall not say any more, though, for it is not our intention to give a
full report. Let us only add that, despite the many efforts to dis-
credit it, quantum mechanics has always come out on top, and
that today it may be considered as a completely accurate theory,
even when experiments involve distances between particles of one-
billionth of an angström, or energies thousands of times that of the
proton’s mass energy. The agreement between theory and experi-
ence has in certain cases reached over ten significant digits, a preci-
sion unequaled in any other scientific domain.

In fact, the above-mentioned results can give only a pale idea of
the abundance of the contributions this prodigious theory has
borne. Directly or indirectly, all of physics and chemistry depend
on it, and, as a consequence, all that nature has to offer. It is a true
Aladdin’s treasure, and we shall later see what kind of genie he can
conjure up with his oil lamp. One thing is certain, though: the lan-
guage he speaks is a formal one, and it is not our language.
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The Epistemology of Physics

AS WE HAVE DONE for mathematics, we must examine the state
of the philosophy of physics after this science turned formal. While
a philosopher can cope with the technical difficulties of the theory
of relativity, the obstacles presented by quantum physics are con-
siderable, which may explain a certain convergence of the views
held by physicists and philosophers on its epistemology. In the
thirties, the greatest names in physics participated in the debate,
and until recently the interested philosopher was reduced to dis-
cussing the opinions of Bohr, Einstein, Schrödinger, Heisenberg,
Pauli, de Broglie, and a few others.

I have not tried to cover the whole field but rather focus on its
most significant examples. Therefore, we shall stay away from
everything concerning space and time—actually, many authors de-
vote the bulk of their texts to a discussion of Einstein’s views on the
subject.

To be fair, some recent works deal with the latest results, which
would be excellent news were it not for the fact that the authors
often embark on wild speculations. This is a dangerous trend, as
much for the public at large as for philosophers, who may have
difficulty finding their way, especially since some reputable physi-
cists are among the writers. They certainly deserve praise for re-
porting on the current avenues of research, but they mislead the
reader by not sufficiently warning him or her that these avenues
may well lead nowhere. It is so easy to dream with the help of some
mathematics in the wonderland of general relativity.

I shall therefore restrict myself to quantum physics and be brief,
for we shall see in part three how some recent progress of the the-
ory shed a new light on its epistemological consequences. For the
time being we shall limit ourselves to what is generally admitted,
by highlighting the outstanding features of Niels Bohr’s masterly
theory. I would like to demonstrate that Bohr had no choice but to
establish this framework at the outset of the theory, and that he
was obliged to impose strict and very restrictive rules of thought.
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The formidable interdictions he promulgated were beneficial to
physicists, by preventing them from raising questions that might
perhaps have stopped them (strict rules make the work easier, as
any author of sonnets would confirm). Unfortunately, such rules
also resulted in a great philosophical confusion.

We are today in a better position to decide what to retain and
what to reject from Bohr’s masterpiece. Not much needs to be al-
tered from the point of view of the working physicist, but regarded
from a philosopher’s perspective the theory requires considerable
modifications. Bohr’s work remains nevertheless too familiar a ref-
erence to deserve anything less than a whole chapter, if only in
order to understand why it had to be built the way it was.

WHY DO WE NEED INTERPRETATION?

Let us look at an object, any object, even the most ordinary one, a
billiard ball, for instance, and let us compare the way we think of
it with how contemporary physics describes it. Nothing could be
simpler for us: everybody has seen such an object, and, as you were
reading the first sentence of this paragraph, an image of the ball
formed in your imaginaton. Less than a century ago, a physicist
would not have thought otherwise, except for some additional pre-
cision—by associating the coordinates of the ball’s center with
numbers, perhaps. To an atomist, the ball would have appeared as
a dense pack of atoms, with each atom being imagined as another,
very small kind of ball.

There is nothing resembling all that in quantum physics. The
physicist does start from the idea of the ball as an assemblage of a
colossal number of atoms, but this idea is immediately replaced by
a wave function which depends on as many variables as there are
electrons and atomic nuclei in the ball. His or her notion of the
center of the ball’s position is not very different from that of the
classical physicist. But to talk about velocity he or she first needs to
differentiate the wave function with respect to certain variables,
then divide it by the complex number i (the square root of −1), and
perform many other complicated calculations before finally declar-
ing, “I cannot tell what is the exact velocity of the ball (no more
than the exact position of its center), but here is a probability dis-
tribution of the velocity having such and such a value.” The con-
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temporary physicist has no longer any precise image of the ball left,
at best only the blurry impression of a cloud of probabilities.

And yet the ball appears to be there; it rolls. Everything seems
indisputable: the atomic nature of matter and the quantum laws
governing the particles, which have been confirmed by every ex-
periment, the impossibility of reaching or conceiving by means of
the theory anything but probabilities. But equally indisputable is
another fact: the ball is there. Had it been capable of laughing, the
ball would certainly have a good laugh at our expense. We do not
understand, we no longer understand, the alpha of fact seems to
contradict the omega of theory.

The purpose of interpretation* is to reconcile these extremes; to
show, if possible, that they are coherent; to establish modes of
thought capable of bringing them together without deforming
them. It is hard to imagine a more philosophical enterprise, for it
boils down to knowing how to think about the world.

There are at least two ways to envisage interpretation. One is
based on humanity’s shared experience, its representation of a
world filled with facts, its ancestral common sense. This approach
selects those things that are compatible with the discoveries of
physics, purifies the concepts, limits their scope, and finally talks
about the world with the caution of a cat. This is the path followed
by Bohr. Another conception would consist in viewing interpreta-
tion as a particular branch of theoretical physics. Beginning with
certain given principles (the existence of particles, wave functions,
etc.) one would deduce, through mathematical demonstrations,
the features of the classical, common sense representation of the
relatively large objects we perceive on our human scale. This is the
more recent approach, which we shall discuss shortly.

It is clear that the wrong (if we may call it so) that the interpre-
tation seeks to right stems from the formal character of science,
from the fact that its initial concepts are not accessible to the imag-
ination. Given that all of physics is more or less formal, including
what we call classical physics, there is everywhere a need for inter-
pretation. This is hardly noticeable in Newton’s physics, it be-
comes already a slight embarrassment for some (the shrewdest)
with Maxwell’s electrodynamics, and it is definitely manifest in
the theory of relativity. In the last domain there is, however, a
simple method to obtain an interpretation: to imagine here and
there, wherever necessary, observers in motion. The device is so
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convenient that many people do not realize that the goal of those
imaginary observers is to provide an interpretation.

In quantum mechanics, interpretation is essential for at least
three reasons: First of all, because the formalism of the theory
could not be more obscure; secondly, because the very notion of an
observer is no longer clear, and those who have employed it ended
up by implicating the observer’s conscience, in contradiction with
the objective character of science;1 finally, because the probabilis-
tic aspects of the theory must eventually be reconciled with the
undeniable existence of facts, and so the interpretation ceases to be
a mere translation and becomes a theory in its own right.

UNCERTAINTIES

One of the most striking features of quantum mechanics is its prob-
abilistic character. Everything in the quantum world occurs at ran-
dom and there is no direct cause for quantum events. Moreover,
the probabilities of such events strongly differ from the probabili-
ties used in classical physics since Laplace’s time. These can be
explained roughly as follows. Everything obeys the laws of classi-
cal physics and every event has a cause, some mechanism acting
somewhere. An apple falls from a tree because its stem weakens,
the wind blows, or a bird hits it. We cannot tell exactly when the
fall will occur, but some direct mechanical cause is in action. If we
knew the state of the fibers in the stem and its exact evolution in
time, we would be able to tell when and why the apple will fall. But
we do not know, or do not care to know, which is why we resort
to probabilities: They express a reasonable expectation despite our
ignorance of hidden details. In a nutshell: Everything in classical
physics is determined, and the use of probabilities is only a substi-
tute for the exact knowledge of the acting causes.

Things are very different in quantum mechanics, for in it events
really occur at random. No cause is at work to make an excited
atom decay at some specific moment. There are, of course, laws
governing the whole process, but they only express the probability
of the event taking place at one time rather than another. Quantum

1 An objective science, according to Kant, only refers to objects independent of
the mind.
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probabilities are not a substitute for a detailed knowledge of hid-
den, relevant details; there are no relevant details, just pure chance.

This idea was introduced by Max Born and has been fully con-
firmed by innumerable experiments (notably recent ones, where a
single atom caught in a trap and subject to a laser beam is seen to
continuously produce a fluorescent radiation, except when un-
mistakable “quantum jumps” occur). Born gave explicit rules for
computing quantum probabilities in terms of the wave function,
and these have always shown an excellent agreement with experi-
mental data. Einstein was nevertheless horrified by the idea: “God
does not play dice.”

A conceptual abyss seemed then to separate classical from quan-
tum physics, determinism from pure probabilism. The most puz-
zling feature of this apparently irreconcilable opposition is that
both opposites are necessary for physics. Probabilism is an essen-
tial trait of quantum physics, and is fully confirmed by experi-
ments. But how are experiments carried out? They involve some
laboratory equipment, measuring instruments, and so forth. But
regarding any of this apparatus we may ask: Why do we trust it,
why is it called a laboratory instrument? The answer is that it
works as expected and predicted, provided the right buttons are
pushed; in one word: because it is deterministic.

One may go so far as to recognize determinism as a necessary
condition for any experimental verification of quantum probabil-
ism. As a matter of fact, probabilities predicted by quantum me-
chanics are checked experimentally by comparing them with rela-
tive frequencies in a large collection of data. This comparison can
only be made by gathering enough data, and for this we must rely
on records of all the data that are contained on some support—
yesterday a notebook, today a computer memory. It should be ob-
vious that we consider these records as reliable witnesses of past
facts that occurred when each individual datum was recorded. But
if these records are trustworthy it is because each entry made at
that time completely determined the state of the present record.

Physics stands on two legs: theory and experimentation. Theory
requires pure probabilism and experiments can only make sense if
something essential in their workings is deterministic. The untying
of these seemingly contradictory demands has been one of the
greatest achievements of recent theories, and it will be discussed in
a coming chapter.
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Probabilism has yet another consequence, which underscores
some of the most formal aspects of quantum theory: Heisenberg’s
famous uncertainty relations. When applied to a particle, these re-
lations say roughly that the price for more precision in the parti-
cle’s position is less precision in its momentum, and vice versa.
They are a direct, indisputable consequence of the basic principles
of the theory.

Any Greek philosopher or part of our mind with a remnant of
Greek thought would repudiate such a statement. Why? Because
momentum is proportional to velocity. Suppose I try to “see” a
particle in my mind. It has a position, which moves with some
velocity along a trajectory. But if a sharp position makes the veloc-
ity fuzzy, there is no trajectory. I can no longer see. If Aristotle was
right in saying that understanding something begins with having a
clear picture of it in the mind, one may well wonder what is going
on. The apparent irrationality of atoms may be told with some
clumsy couplet, such as: Formal sciences make blind, unreal with
a fool’s mind.

THE PRINCIPLE OF COMPLEMENTARITY

The principles of the theory associate physical magnitudes with
certain mathematical objects, the operators,* one of whose main
properties is not to commute with one another. Without going into
the details, let us say that this fact is the formal origin of Heisen-
berg’s uncertainty relations,* which prevent us from simultane-
ously attributing to a particle a well-defined position and a well-
defined velocity. In a similar fashion, we cannot describe light as
being at the same time both an electromagnetic wave and com-
posed of photons.

Bohr’s first major contribution to the interpretation originates
in the above impossibilities. I can speak of an atom’s position or of
its velocity at a given instant, he says basically, but I must make a
choice. These manners of speech, these descriptions, are comple-
mentary. By this I mean that each one of them is in itself correct,
with no internal contradictions, but that it is impossible to com-
bine them. From the standpoint of common sense, this is certainly
very strange, as if it could be said about someone we shall call “it”:
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“When I talk to ‘it’ on the telephone, it speaks like a man, but when
I see ‘it,’ it does not speak at all and looks exactly like a cat.” “It”
could be any atom, any electron, or light itself. Rather than hearing
or seeing them, particles or waves are detected (through interfer-
ences). Is “it” a wave or a particle? How can it exist in each of these
forms but never in both at the same time? The impossibility of
combining such exclusive features was put forward as the first
principle of interpretation, the principle of complementarity.*
Bohr was so convinced of the significance of this principle that he
later searched for other examples of it, in philosophy as well as in
biology and psychology. Surprisingly, he does not seem to have
been aware of the notion of universe of discourse, which logic had
elucidated long before.

The principle of complementarity carries with it two immediate
risks. The first one is the threat of paralogisms: how is it possible
to remain logical and coherent when the same object may be en-
visioned in two, or even one hundred, different ways? The second
danger lies in the arbitrariness of choice: according to which crite-
ria should I favor one description over another if not by my free
will, I who think and speak, and so risk betraying objectivity?
Bohr’s reply is unequivocal: we must not even mention atomic ob-
jects, he says, and only use the formalism for what it offers us—
numbers, probabilities. Let us not talk about those atomic objects
and give this interdiction the status of an imperative rule.

Let us consider for a moment this injunction, this command-
ment: “Thou shalt not talk about the atomic world in itself.” There
would be others, but this one is typical of the direction in which
Bohr was taking the interpretation. We can still keep the ordinary
representation of the world, but its scope should be considerably
restricted.2 There exist forbidden things. We cannot avoid thinking
of Kant and of the peculiar fate of reason, always troubled with
questions which cannot be ignored, because they spring from the
very nature of reason, and which cannot be answered, because they
transcend its powers. Bohr, like Hume before him, and for reasons
that are not unconnected, pronounces an interdiction and imposes
the existence of the inaccessible, of the unthinkable. We may then
consider Hume, who renounced knowledge of the origin of the

2 This is exactly the same approach Bohr followed when he formulated his
famous 1913 model.
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world’s order, Kant and his unsolvable antinomies, and finally
Bohr, as the great princes of the forbidden.

What are we then allowed to think, positively, according to
Bohr? He says it clearly: We shall talk only about the things we can
see and touch, that is to say, in the circumstances, the instruments
we use in physics. We shall disregard the atomic nature of the mat-
ter those instruments are made of, together with the corresponding
quantum laws. We shall take into consideration only the facts,
without any mental reservations. Yes, the things I see are such as I
see them: they are classical, and I forbid talking about them in any
other way. Those who dare challenge this proscription be warned:
they risk the worst disappointments and the disintegration of
thought.

Bohr also explains the reasons that led him to adopt such a posi-
tion. When talking about classical physics, he does not really mean
Newton’s mechanics or any other scholarly product of the intel-
lect. His roots go deeper, down to what is clearly and perfectly
representable, to the only ground where he believes it possible to
state a truth, to remember the past and record facts, to reason and
think with certainty. His reasons belong to the domain of classical
logic, the most reliable one by human standards. The classical path
is chosen because it is the only one, or so it seems, to permit a
logical apprehension of the world.

As an immediate benefit, Bohr can easily remove the arbitrary
component implicit in the principle of complementarity: we shall
only talk about the atomic quantities that are directly revealed by
some measuring device. How am I going to talk of a weak electro-
magnetic radiation, for instance? I simply won’t, unless it has been
detected—recall the interdiction on talking about the quantum
world in itself. If it so happens that the radiation has been detected
by an antenna, then, no problem, we can then speak of a wave or,
if desired, of an electric field, because this is what an antenna mea-
sures. If the radiation is detected by a photomultiplier, a photon
counter, we may then speak of photons.

Bohr’s solution had the merit of being expedient, since it al-
lowed physics to pursue its path toward new discoveries. But on
the other hand, it raised a formidable difficulty. For physics now
appeared to be split between two opposing systems of laws: the
classical one, deterministic and a haven of certainty, and the purely
probabilistic quantum system, with its complementary possibili-
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ties, at the mercy of chance and uncertainty. How can one and the
same man serve two masters, one and the same science obey two
categories of laws? By clinging to facts and proclaiming them to be
the only truth Bohr had opened a logical breach, and a particularly
dangerous one, for it threatened the very coherence and unity of
science.

Many refused to close their eyes to the fundamentally quantum
nature of matter to retain only its classical appearance. Schrö-
dinger’s cat, which we shall meet later, is an illustration of such a
position, and von Neumann’s attempts to build a quantum theory
of measuring devices sounded a warning to physicists, just as the
famous cat alerted the nonspecialists. Einstein never could bring
himself to follow Bohr, and his mistrust even led him to question
the intrinsic random character of quantum phenomena. Louis de
Broglie and Bohm tried to come up with other theories to modify
or complement quantum mechanics. Einstein, Podolsky, and
Rosen, Bohm again, and later Bell sought different ways to put the
principle of complementarity to the test in particularly subtle situa-
tions. To the very end, Bohr remained impassive in the face of all
those attempts.

THE REDUCTION OF THE WAVE FUNCTION

One may wonder whether there is still a need for wave functions,
given that we cannot refer to them when talking about experi-
ments. To be sure, Bohr does not disallow the quantum formalism,
but he restricts it to its role of computing device, of foreteller of
probabilities. That’s what a wave function is: the fuel of a machine
that manufactures probabilities. Quantum theory is true, not as a
fact but as a set of rules that interrelate facts, rules that have been
corroborated by experience in terms of relative frequencies of the
quantities that are measured. The notion of relative frequency is
that of ordinary probability theory, for example, the proportion of
the occurrences of the number 12 in a large number of spinnings of
a roulette wheel. Instead of a roulette, we have atoms; instead of
the combinatorial calculations of the kind Pascal used to carry out
we have others, involving the wave function.

All right, but isn’t there a snag here? How can we know
the wave function of an atom when we are not supposed to talk
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about the quantum world in itself and pretend to know only classi-
cal data?

Bohr clears this hurdle by introducing a new rule. We must con-
sider, says he, not only the measuring instrument but also the gen-
erating device, the particle accelerator as well as the particle
counter. Often, the mechanism that creates is practically indistin-
guishable from a measuring instrument, and this is the case that
interests Bohr the most, almost to the point of making it the gen-
eral rule. He considers as particularly important the situation
where there are two consecutive measuring devices. If we know the
wave function of the atom coming out of the first instrument, we
will then be able to predict the probabilities of the possible results
of the second measurement, thus allowing an experimental verifi-
cation of the theory.

Bohr defines this wave function by means of a special rule, the
“reduction” of the wave function. It is a technical rule that we shall
not specify, but which boils down approximately to this: tell me
the result of the first measurement and I shall give you the wave
function with which to compute the probabilities of the outcomes
of the second.

This raises a semantic question. What does this prescription
mean? It might only be a kind of rule of thumb or empirical rule,
giving the so-called conditional probabilities, that is, the probabili-
ties of the various results of the second measurement under the
assumption of given outcomes of the first. This information could
then be presented as a double-entry table, or matrix, with as many
rows as there are results for the first measurement, and as many
columns as the possible results for the second. Each entry would
then indicate the relative frequency of the occurrence of the two
results in succession, and Bohr’s rule would merely specify how to
calculate these numbers. If the reduction rule is simply such a pre-
scription, it might be deducible from the fundamental principles of
the theory, and this is precisely what has recently been done. But
Bohr did not think such a deduction possible, and he took a com-
pletely different approach. After the first measurement has taken
place, he assumes that the atom’s wave function suddenly loses all
memory of what it might have been in the past, to actually become,
instantly, what the rule prescribes. The rule is then a law of physics
unlike any other. Without the rule, we could not know the wave
function or compute the probabilities, and the comparison of the-
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ory and experience would become impossible. The reduction of the
wave function is then a sine qua non for experimental semantics.

The deep cleavage that Bohr had already dug into the heart of
physics with his two categories of laws, the classical and the quan-
tum ones, has now become even wider. If we try to imagine the
measuring instrument as composed of quantum atoms and admit
that the same Schrödinger’s equation describes both the atom and
the device that measures it, we find that the reduction proposed by
Bohr is mathematically incompatible with the famous equation.
Thus, the reduction forces us to do more than simply close our eyes
to the atomic nature of the instruments: we must reject it. Strange
situation, especially since countless experiments, some extremely
precise and others very subtle, all agree on one point: the wave
function reduction rule, at least as represented by a double-entry
table, is thoroughly verified.

The dilemma is therefore this: Are there in effect two categories
of physical laws together with a very strange reduction phenome-
non not belonging to either of the two categories? Or is there only
one category of laws, by necessity the most general ones (that is,
the quantum laws), and the reduction rule is simply a direct conse-
quence of the other principles? Most philosophical reviews of
quantum physics have favored the first alternative, the one chosen
by Bohr and long considered to be the only possible one. It is clear
that the philosophical consequences would be radically different if
the second possibility turned out to be the correct one. However,
the dilemma is not one for philosophy but for physics to solve,
since the second alternative is really a problem in theoretical phys-
ics having either a positive or a negative answer.

Science demands time, and philosophy calls for even more time,
despite the impatience and the eagerness of the mind. Bohr’s stipu-
lations would have been a perfect example of wisdom had they
been presented for what they are: practical rules for the physicist
and necessary rules of caution to guide thought, even if they were
to be only temporary. It is a pity that he went beyond this, for
otherwise he would have gone down in history as the paradigm of
a wise man, and not only—by no means a small achievement—as
a truly great physicist.

157



This page intentionally left blank 



PA R T T H R E E

FROM FORMAL BACK TO VISUAL:

THE QUANTUM CASE

✣



This page intentionally left blank 



WE HAVE just appraised the extent of the invasion of science by
formalism. It is a disappointing realization, at least at first sight,
and it may appear to bode us ill if our aspirations are of a philo-
sophical nature—in other words, if we expect to understand. Who
would pretend that his or her understanding is enhanced by sur-
rendering to the language of signs, to a ghastly logic, offering noth-
ing we can see, no source of light? One might be inclined to declare
that we have touched the bottom, the incomprehensible, the cold
foundations of the world. How could we be surprised, then, if so
many curious minds, overcome with discouragement, turn away
from the obscurity of science?

Where are we, anyway? We have been forced to give up a good
deal of our intuition and our familiar language, which could no
longer be trusted. Part of our representation of the world has been
banned, and whatever remains is a world of atoms governed by
signs, just as mathematics is, that collection of signs with multiple
interpretations. We have suffered a very heavy loss but the gain is
no less substantial. Thanks to science we have had access to laws,
to a framework of the universe that is here to stay, and whose pure
forms, repulsive as they may seem, are strong enough to inspire a
new hope.

The laws, their consistency. And if we had lost nothing but
gained everything? Imagine we could rebuild it all, recover our ini-
tial vision and our contented intuition of a world in which nothing
was foreign. For this to be possible it would be enough to move a
little closer to consistency, in order to realize that the visible world
is in no way the Maya of Hindu philosophy, the universal illusion.
It would suffice to show that our simplest vision and our humble,
very ordinary language are the natural products of the laws, and
that we therefore have the right to trust them.

It is to such a reconstruction that I now invite you. The task is an
ambitious one, because it leads to nothing less than a reversal of
philosophy’s traditional approach. Instead of beginning with the
reality of the world, jumping to conclusions about its principles on
the basis of hasty remarks and frail generalizations, we must travel
in the opposite direction, from the top down, as it were. Starting
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with the laws so painfully conquered, we must descend back to the
initial evidence, reconstructing it and justifying it along the way. If
such a coherent vision is possible, if the intuitive and the formal
aspects can really coexist, then it is irrelevant which one we take as
our starting point, for coherence is a circle without a prescribed
beginning or end. I, human, can enter the world through either
sight or signs, it makes no difference.

Still recently, physicists have been engaged in such a task regard-
ing the aspects that concern them. They have attacked that formi-
dable fortress of formalism, quantum physics, whose principles,
forged in the utmost abstraction, are the farthest removed from
the transparence of reality as we perceive it. They have shown that
it is nevertheless from those principles that such a transparence
comes.1 We shall now follow their trail. The path is hardly an easy
one, for it goes through an area of science filled with snares, a true
minefield. I hope, however, that it has been sufficiently cleared.

Some readers may wonder why, again, quantum mechanics. I
would ask them to see, in what follows, only one example of a
novel approach, which appears to open possibilities so far unex-
plored. These same ideas used elsewhere, enriched by having been
successfully applied, might become still more effective, more con-
vincing. That is a task that remains to be done.

I am well aware that the results that support my arguments are
vulnerable, as all human enterprises are, and that they remain ex-
posed to an eventual refutation in the light of new discoveries.
However, whatever the future may bring, the path I have traced
out could be rebuilt, and the method applied again. Ultimately, it
is this method, this new philosophical tool, that matters the most.

1 These works, due in particular to the physicists Murray Gell-Mann, Robert
Griffiths, James Hartle, and the author, are presented in detail in the book The
Interpretation of Quantum Mechanics by R. Omnès (Princeton, N.J.: Princeton
University Press, 1994). They are also presented, together with recent results and
improvements, in another, less technical book for physicists by the author: Un-
derstanding Quantum Mechanics (Princeton, N.J.: Princeton University Press,
1999).
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Between Logic and Physics

THE OUTLINE OF A PROGRAM

NOTHING COULD BE more arid than the principles of quantum
mechanics. Its concepts and laws are cast in a blunt, inescapable
mathematical form, without a trace of anything intuitive, a total
absence of the obviousness we see in the things around us. And yet,
this theory penetrates reality to a depth our senses cannot take us.
Its laws are universal, and they rule over the world of objects so
familiar to us. We, who inhabit this world, cannot make our own
vision prevail over those arrogant laws, whose concepts seem to
flow from an order higher than the one inspired by the things we
can touch, see, and say with ordinary words.

It is inevitable that such a vast theory should overturn the phi-
losophy of knowledge’s traditional assumptions. Surely, we can
always assume, as Hume did, that our intuitive representation of
the world is the direct consequence of our perception of reality. On
the other hand, the wall that prevented us from understanding, and
which Hume thought to be indestructible, is now almost in ruins.
Hume did not believe that humans could ever know why there is so
much order in the world, an order that we can see and speak about.
Today we are faced with the opposite problem. We finally have
access to the hidden order that governs the things we see and gives
language its meaning. The experimental path advocated by Bacon
has taken us much closer to the heart and the essence of things. We
need not shut ourselves with Kant in the prison of innate ideas
either; they can only restrict thought, while the arrival of formal-
ism propels thought toward a future of unlimited possibilities.

That being said, we must admit that our inner self is torn apart
by the opposition between formalism in our mind and concrete-
ness before our eyes. If we really wish to understand, our first task
must be to come to terms with this opposition. We need to conquer
formal science, lift the new interdictions imposed by Bohr, the case
of quantum mechanics being a good example.
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There can be no doubt that the principles of quantum mechanics
clash with common sense. We had better accept it up front rather
than seek at all costs some artificial compromise. But such a recog-
nition should not be a pretext for ruling out common sense as
worthless, if only because we cannot do without it. Science is
above all a product of experimenting, and an experiment is an ac-
tion, even if it is guided by thought. Setting up a voltmeter is an
action, as are installing a radioactive source and a Geiger counter,
and moving the counter from one place to another. How could I
describe all these actions other than by using ordinary language?
Certainly not by talking about the voltmeter wave function. No
one would contemplate saying, “Set up the voltmeter so as to give
it such and such a wave function.” It would be as inconceivable as
imagining a driving instructor telling the student what must be
done to the wave function of the brakes when the wave function of
the photons from a traffic light has a certain form. Nobody would
be safe in the streets any more. Giving instructions or directions,
thinking about one’s actions, communicating what we have seen,
. . ., in short, everything pertaining to practice also belongs to com-
mon sense. And we have only considered science, while, more gen-
erally, the countless actions that are part of everyday life can only
be represented in the familiar, ordinary way.

But the logic of common sense cannot handle events taking
place on the atomic scale. Those events are governed by an al-
together different physics, a universal physics, more general and
extensive than the one ruling the world we can “see.” Classical
physics, the one familiar to our intuition, is only an extreme form
that quantum physics adopts when it is applied on our scale.

Hence, if we really wish to understand, we must rely on what is
known to be universal and founded on facts, rather than on what
has already proved fallible. In physical terms, this means that we
must not begin with the classical but with the quantum world, and
deduce the former together with all its appearances. This deduc-
tion cannot simply result in the recovery of some fragment of clas-
sical dynamics; it must also be able to establish how and why com-
mon sense (that is, ordinary logic) can explain it. There lies the
originality of our approach: to deduce common sense from the
quantum premises, including its limits—that is, to demonstrate
also under which conditions common sense is valid and what is its
margin of error. We are well aware that our approach turns up-
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side down the traditional explanation process dating back to the
Greeks: we no longer explain reality from our mental representa-
tion of it, taken for granted without question; but it is this repre-
sentation, with the intuition and the common sense that go with it,
that we want to explain, beginning with our knowledge of the laws
of the universe that science has revealed to us.

THE LOGIC OF COMMON SENSE

Amid the strangeness of the quantum world we may feel as lost as
Alice in Wonderland, pondering which path to follow and which
magic to trust. But Alice’s father, Lewis Carroll, was a shrewd logi-
cian who secretly guided her. After all, isn’t logic the best beam for
those who have lost their way? So why not turn to it for help in
trying to make some sense of this confusion? As we have seen, logic
can be applied to any subject, provided we can clearly define three
essential elements. First, we need to specify what we are talking
about, a field of propositions, a universe of discourse, or, in other
words, a domain of thought (Denkbereich). The second element
provides the reasoning tools: the operations on propositions (not,
and, or) and the relations of logical equivalence and implication (if
. . . then). The third component of logic is a criterion permitting us
to decide whether a given proposition is true.

Before applying these universal tools to the elucidation of the
quantum world, we are going to attenuate their abstract character
by fleshing them out a little. We shall begin by using them to dis-
cuss Newton’s mechanics, a domain not too far removed from
common sense, and therefore capable of shedding some light on its
nature. Actually, we shall travel halfway through the distance sep-
arating the formal quantum world from common sense by giving
the latter a touch of formalism.

For the time being, we shall consider only those propositions
concerning the position and velocity of a physical object at some
instant of time. They form the domain of kinematics, that branch
of classical mechanics that precedes dynamics (in the natural
order), the study of motion independently of its cause.

Our example will be a pendulum that oscillates in a vertical plane.
We need one number to determine its position, the angle x formed
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by the string with the vertical, and another number v to denote its
velocity. In this situation, the simplest proposition merely states
the values (x, v) of the two quantities: “The position coordinate is
the number x and the velocity is the number v.” Notice that this
presupposes that both numbers x and v can be exactly known,
with infinitely many decimal places, if necessary. Now, such a
proposition cannot describe an empirical fact, if only because it is
impossible in practice to achieve infinite precision due to the limi-
tations of measuring instruments. What’s more, the above proposi-
tion is a priori incompatible with quantum mechanics in view of
Heisenberg’s uncertainty relations. And so, by whatever angle we
attack the question, we have to resort to other propositions that
better reflect experimental reality and are compatible with the
quantum laws, known to be the most fundamental.

Suppose we measure the pendulum’s initial position using an
instrument with an accuracy of one second of arc and find that x is,
say, 1,123 seconds. Given the instrument’s precision capability, we
can only be sure that x is greater than 1,122 and smaller than
1,124 seconds, and say that x equals 1,123 with an error Dx not
exceeding 1. Similarly, given the possible vibrations, the effect of
air currents, the shaking of our hand when we release the pendu-
lum, or what have you, we will say that the initial velocity v is 0,
with an error Dv not exceeding 0.01 mm/sec. The corresponding
empirical proposition then is “The pendulum’s position is between
1,122 and 1,124, and its velocity is between −0.01 and +0.01.”

If we represent the situation graphically in a Cartesian coordinate
system, the points (x, v) for which the above proposition is true are
all inside a rectangle (the intersection of two strips parallel to the
axes, such that the x-coordinate falls between 1,122 and 1,124 and
the v-coordinate between −0.01 and +0.01). In this way, each ele-
mentary proposition in kinematics is unambiguously associated
with a certain rectangle in the plane. The advantage of using a
graphical representation is the ease with which the logical opera-
tions can be described when applied to regions of the plane or the
space. We begin by considering more general propositions, refer-
ring to arbitrary regions of the plane instead of simple rectangles
(fig. 1). To a given region D of the plane we associate the proposi-
tion: “The numbers (x, v) are the coordinates of a point in the
region D.” This proposition is denoted by D. Then, the proposi-
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Figure 1. The configuration of an object (here, a pendulum)
is defined in classical physics by a position coordinate x and a
velocity coordinate v. When these quantities are given within

some specified error interval, the corresponding point lies
inside a rectangle. More generally, the point may lie inside a

region D such as the one illustrated here.

tion not-D corresponds to the region outside D (the complement D
–

of the set D); the proposition “D and D′” corresponds to the inter-
section of the regions D and D′, and the proposition “D or D′” to
their union.

It is also very easy to translate graphically the logical relations of
equivalence and implication. D and D′ are equivalent if the corre-
sponding regions D and D′ coincide, and the implication D ⇒ D′
corresponds to the case where the region D is included in the re-
gion D′. The significance of the above conventions lies in the fact
that they satisfy the fundamental axioms of logic, as we know
thanks to Boole. And so the logical operations become geometrical
manipulations of sets, and the whole of kinematics, including the
way we speak about it (that is, its logic), is reduced to a simple
mathematical form.

To complete the application of logic to this particular branch of
science we must specify the criterion by which the truth of a propo-
sition is established. A proposition about reality is true precisely
when it is in agreement with what actually is. Or, to employ
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Tarski’s elegant formula, “The rose is red” is true when the rose is
red, in other words, when we can verify that the color of the rose
in question is indeed red. In the case of kinematics, it is by actually
measuring the pendulum’s position and velocity that we can con-
firm the truth of a proposition of the kind we have introduced.

CLASSICAL DYNAMICS AND DETERMINISM

We can deepen our understanding of the logic of common sense by
going from kinematics to classical dynamics. This new phase is not
a mere repetition of the previous one, for it will shed some light on
the nature of determinism and on the notion of truth as we usually
understand it.

Formally, an elementary proposition in dynamics is simply a
proposition in kinematics in which time is explicitly mentioned,
for instance, “The position and velocity coordinates are in a cer-
tain region D at time t.” To translate it into geometrical terms we
now need a three-dimensional coordinate system in which to rep-
resent the points (x, v, t), but we shall not elaborate on the details.

The introduction of time brings in more than just another di-
mension, for the classical equations of motion make it possible to
relate situations taking place at different times. If the kinematic
coordinates x, v of the pendulum are assumed known at time t,
classical dynamics allows us to deduce the new coordinates x′, v′ at
some other instant (t′) by solving Newton’s equations. This rela-
tionship works in both directions of time, forward and backward
(if we ignore the effect of friction), the instant t′ coming after or
before t.

In any realistic situation, when infinitely precise coordinates are
not envisioned, we may consider the proposition a according to
which the coordinates x, v are in a certain region D at time t. Each
point x, v is transformed by the motion into another point x′, v′ at
time t′. We shall denote by D′ the region generated by the points x′,
v′ as the point x, v describes D, and by b the proposition stating
that the kinematic coordinates are in the region D′ at time t′. It
should then be obvious that the two propositions a and b are logi-
cally equivalent (fig. 2).

This reveals a purely logical facet of determinism: Classical de-
terminism is a logical equivalence between two propositions of

168



B E T W E E N L OG I C A N D P H Y S I C S

Figure 2. The logical nature of determinism. It is logically
equivalent to say that the position and velocity coordinates

are in a certain region D at a given time, and to say that they
are in another region D′ at some other instant of time,
where D has been transformed into D′ by the classical

(that is, Newtonian) laws of motion.

Newtonian dynamics with respect to two different instants of time.
Even if this remark may appear trivial, it nonetheless adequately
expresses determinism’s main idea, according to which the past
completely determines the present; conversely, the present deter-
mines the past (in the absence of friction). Such was Laplace’s con-
ception of determinism.

The notion of truth also finds itself enhanced when time is taken
into consideration. We may witness an event taking place at time
t, and as such, it is indubitable. For example, I can see that the rose
is red at noon today, September 7th. Can I affirm that the deter-
ministic consequence of this true proposition is equally true, as a
logical consequence, and that the proposition—which can only be
verified at a later time— that “The rose is wilted on October 15th
at noon” is also true? Two conditions must be met first. The most
important of the two by far is the existence of a universal law of
nature, be it theoretical or empirical, according to which all roses
wilt within one month. It is the type of law embodied in Newton’s
principles in the case of dynamics, but it is clear that common sense
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presupposes a great number of other, implicit rules. It is not scien-
tific wisdom but plain common sense that prevents a man in love
from cutting flowers one month ahead of Saint Valentine’s day.
The second condition for the inferred proposition to be true is
merely a logical one: The above universal law should actually
imply the truth of the proposition “The rose is wilted on October
15th at noon” from the truth of the initial proposition “The rose
is red at noon on September 7th.”

The above discussion may have appeared too simplistic, but it
was only intended to bring us closer to a vision of the world where
formalism and the reality of things are intimately connected.

WITH THE HELP OF AN ANGEL

The real difficulties begin when we enter the quantum world. If we
wish to carry out to its conclusion the program outlined at the
beginning of part three, we must be willing to give up almost all
our old habits of thought, despite the fact that common sense is so
well entrenched in our mind that it is practically impossible to ig-
nore it, even for a moment. Nonetheless, it is imperative to assume
at the outset only the formal principles of the physics we consider
the most certain and the deepest, if common sense is to reappear in
the end. It is the exercise to which we must surrender if we wish to
be convinced of this wonder: the complete agreement between
thought and reality.

If such is our human nature that it prevents us from overcoming
our thought schemes, we can always imagine a new being ex-
empted from our terrestrial limitations, a being capable of breath-
ing the ether of pure theory, from which she would draw her sole
inspiration, making her a kind of angel. Indeed, why not call upon
an angel to help us out? This would be only a rhetorical device,
similar to Voltaire’s naive Huron, who represented simpleminded-
ness in its purest form. Likewise, we shall find it useful to summon
from time to time such a character, who would play the part of an
expert in the formal approach, and be particularly suspicious of
arguments based on all-too-familiar, but misleading, appearances.

Let us then imagine a newborn angel living outside the material
world, in the realm of pure thought, where all her training will take
place. Since her final destination is the earth, we must teach her all
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about the terrestrial world, but without yet showing it to her, in
order to spare her too big a shock. Step by step, she must learn how
we humans conceive this world. Our angel has a solid knowledge
of logic and mathematics, for these disciplines are easy to master in
her paradise. We must first explain to her, gently and clearly, what
matter is.

She begins then by learning the fundamental laws of nature, in
particular those of quantum physics: the world is made up of parti-
cles described by wave functions that evolve according to Schrö-
dinger’s equation. Since the angel must also learn the necessary
theoretical background, we must take her down the path that led
humans from common sense to the logical formalism of classical
physics, but in the opposite direction, that is, going from the com-
plete mathematical formalism to propositions that humans can un-
derstand but that are also perfectly valid and clear for the angel,
who is a pure theoretician.

There is no simpler proposition in physics than one that states
the value of some physical quantity at a given instant of time.
However, such a proposition is not as elementary as it might ap-
pear, for the notion of physical quantity (a position or a velocity
coordinate, or energy, for instance) is surprisingly abstract in
quantum mechanics. Without going into the details, let us just say
that a physical quantity (also called an observable*) is mathemati-
cally expressed by an operator, that is, by a kind of device that
manufactures functions: given a function as input, it produces as
output another function. The formal character of such a concept is
particularly manifest when the physical quantity is a velocity com-
ponent, for in this case the corresponding operator calculates the
derivative of the wave function and divides it by the pure imagi-
nary number i. It is then better to leave it at that, and to notice that
the angel sees no problem here, for she has no idea of what it means
to have a measuring instrument that would give a concrete inter-
pretation of such a quantity. For her, everything is perfectly clear,
for everything is purely abstract, purely mathematical.

What is important for her is that the proposition “The value of
the physical quantity A is in the interval D at time t” is absolutely
clear. This is what we shall call a property,* expressing, for exam-
ple, the fact that the angle x formed by our pendulum with the
vertical is between 1,123 and 1,124 seconds at some particular
time. But what is the angel to make of such a property? She does
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not have the slightest idea of what a “pendulum” might be (other
than a collection of atoms) or of the intuitive meaning of “posi-
tion” (which is for her merely a certain operator). Since she does
not know anything about reality yet, we cannot speak of measure-
ments obtained by using an instrument which, for us, would give
some concrete meaning to the above property. The notion of “con-
crete” does not belong to pure theory, and a measuring instrument
would only be for the angel a large quantum system of no particu-
lar interest. For her, nothing of all that is relevant, only this, which
is cast in formal terms, the only language she understands: The
statement of the property uniquely determines a certain mathemat-
ical object that completely characterizes it.

In short, we are still in the formal domain, and what is for us a
property that we can understand has a meaning for the angel only
because the mathematical dictionary of the theory offers her a per-
fect translation. Such a mathematical translation of a property is
called a projector* (or projection operator). Let us just say that it
is also an operator, whose only possible values are exactly 0 or
exactly 1.

We shall give only one example, in the simple case of a property
stating that the position coordinate x of a particle is between 2
and 3 (with respect to a certain unit of length that it is not neces-
sary to specify). The corresponding projection operator, which is
only meaningful when applied to a wave function C(x), may be
seen as an operation whose effect is, so to speak, to clip the wings
of C(x): the function remains unchanged for values of x greater
than 2 and smaller than 3, while under the action of the operator
all values of C(x) become 0 outside this interval.

We can also see in this example in what sense the projection
operator can take on the values 0 or 1. If the input function is
different from 0 only inside the interval from 2 to 3, then the
“wing-clipping” operation will leave it unchanged—it is multi-
plied by 1; if the input function is already 0 inside this interval, it
will be 0 everywhere after the operator is applied—it is multiplied
by 0. To try an explanation beyond this particularly simple case
would take us too far. The essential thing to remember is that each
property has a corresponding operator whose only possible values
are 0 or 1.

Zero or one only! Remember our journey through formal math-
ematics, where the symbols 0 and 1 were used to denote false and
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true. We have just met some mathematical objects, the projectors,
which represent properties and cannot take on values other than 0
and 1. Could this mean that a property can only be true or false, as
we all naively believe, the same way we believe in the principle of
the excluded middle? Let us promptly add that all this is merely a
rough indication, a quick glance through a sudden clearing in the
fog, and that we still have a long way to go before we can be out of
the wood. We are at least heading in the right direction, and the
angel is beginning to speak in a tongue that resembles our own
language.

OBSERVABLES

I do not know whether you, dear reader, feel like being an angel.
Maybe sometimes you do but, alas, not me. However, we both
know that looking at the same question from different angles may
help to understand it. Let us therefore take a look at the tricky
notion of an observable from a more human point of view.

You may be familiar with the notion of a random variable in
classical probability theory. If you are not, here is essentially what
it means: There is an object, a die, say. It has six faces which we
label from a to f. When the die lies on a table showing the upper
face a, we say that this is an event, which can also be denoted by a.
A number is associated with each event. For instance, face c is
painted with three dots, and the corresponding number is 3. Fi-
nally, each possible event is assigned a probability, which depends
on physical conditions (whether the die is loaded or not or how it
is thrown). A collection of the three notions, “events, numbers,
probabilities,” is called a random variable. It is simple and useful,
and you may rely on it to compute how much you can expect to
lose in your next visit to Las Vegas.

Suppose now that your die is a quantum die. There might still be
six different events and the same numbers as before associated
with them. Let us leave the probabilities aside—they depend on
how the die is thrown, its state or initial wave function, if you
prefer—and rather introduce a new notion that did not occur in
the case of the classical random variable: Each event is expressed
by a statement, for instance, “face a is uppermost” or “event a
occurs.” This is a sort of an intrusion of logic into the game, each
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statement receiving one of the two truth values, 1 or 0, according
to whether it is true or false. We must explicitly require that when
statement a is true, all others should be false.

A simple mathematical way of realizing these properties of truth
values is to represent every statement essentially as the angel did,
that is, by a projector. The logical content of a statement is much
better expressed in that way than in plain words. When consider-
ing, for instance, the value x of a particle’s position coordinate, the
two statements “x is between −1 and +1” and “x2 is between 0 and
1” have different wordings though the same meaning. Identical
projectors are associated with them, but we have already men-
tioned this.

An observable, a quantum physical quantity, thus appears as
having both a logical content and a quantitative aspect. It is a col-
lection “numbers, statements” or, in mathematical terms, “num-
bers, projectors.” After all, one should not be surprised that some
statements, the statements of some occurrence, should be an intrin-
sic part of a physical quantity in a purely probabilistic theory.
Once we realize this, quantum observables lose much of their mys-
tery. An observable, as usually meant, is obtained by multiplying
each number (each possible value of the observable quantity) by
the corresponding projector, and then adding the results. There-
fore, the observable contains the information on the possible
values of the quantity and the corresponding statements, as ex-
pressed by the projectors.

Mathematicians call the numbers “eigenvalues,” the projectors
are said to project on “eigenvectors,” and the sum we have just
mentioned is called von Neumann’s spectral theorem. Frankly, not
a very transparent language. But after all, mathematics never pro-
vides a meaning. It rather conceals it, and we have just seen that
meaning must come from inside physics itself, from a specific way
of describing nature.

RUDIMENTS OF A QUANTUM DIALECT

At present, our angel is not very loquacious. She knows only how
to repeat sentences such as: “The value of the physical quantity A
is in the region D at time t,” for various A, D, and t. She does not
even seem capable of the most elementary logic, to say, for in-
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stance, “The value of the physical quantity A is in the region D at
time t and the value of the physical quantity B is in the region D at
time t.” She is not yet what one might call a brilliant talker.

There is an essential difference between her language and ours,
concerning the notion of commutativity. The noncommutativity of
operators plays a crucial role in quantum mechanics. It consists in
the fact that the product of two quantum physical quantities A and
B is not in general commutative, that is, the product AB is not
equal to the product BA. Remember that a physical quantity A is
an operator, roughly equivalent to a computer program, which
transforms any given wave function C into another function AC.
The physical quantity B is associated with another program which,
applied to the function AC produces the new function BAC. If we
had applied program B first, followed by program A, we would
have obtained a function ABC which need not be equal to BAC.

We can put the above explanation in more concrete terms. Since
a wave function is associated with the state of a physical system,
let us take as our system a potato and some water. Instead of oper-
ators associated with physical quantities A and B, we shall con-
sider so-called dynamic evolution operators, which exhibit the
same lack of commutativity as the previous ones. Let A be the evo-
lution operator that transforms the wave function F of a raw po-
tato into that of a boiled potato, and let B represent the evolution
operator transforming a whole potato into a crushed one. If we
perform the operations A and then B, in that order, we obtain
BAC, the wave function of a delicious mashed potato, and we can
throw away the boiled water. On the other hand, if we follow the
reverse order AB, that is, we crush the potato before boiling it, we
end up with an unsavory liquified potato. Cooks unanimously
agree, as do angels and mathematicians, that operations do not
necessarily commute.

However, some physical quantities do commute. This is the case
of the X and Y position coordinates of a particle, that is, its coordi-
nates along the first and second axes, respectively. In this case it is
possible to combine the corresponding properties using “not,”
“and,” “or” in a perfectly consistent fashion and to say, regarding
for example a hydrogen atom, that “the value of the X coordinate
of the electron’s position lies between 0.7 and 0.8 Å and that of its
Y coordinate lies between −1.1 and −1.2,” for there is a projector
for which this property is meaningful. Using such sentences as
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elements and combining them by means of “and,” “or,” “not,” we
can describe positions having an arbitrary geometry. The ele-
mentary properties X and Y describe all rectangles in the plane
and, as every printer knows, any plane figure may be drawn using
rectangles of sufficiently small size.

Things are completely different if we try to combine a position
coordinate, X, say, and the component U of the velocity in the
same direction, because the corresponding projectors do not com-
mute. Hence, a proposition stating that “the value of X lies in the
interval D and that of U in the interval D” is meaningless for the
angel, for it is impossible to associate a projector with it. There-
fore, in quantum mechanics there are propositions that can be ex-
pressed in ordinary language but which have no meaning due to
the underlying formalism.

John von Neumann, who established the basis of quantum
logic, was particularly struck by this interdiction, and sought, to-
gether with George David Birkhoff (1884–1944), a way to de-
scribe propositions involving quantities that do not commute.
They partially succeeded, by creating a projector with a vague con-
nection to the contested propositon: “The value of X is in D and
that of U is in D.” Unfortunately, the connection between the usual
meaning of the sentence and the projector became extremely weak,
for while the proposition determined the projector, the latter no
longer allowed one to recover the proposition. There was no cor-
rect dictionary any more, no longer a language but only a babble,
and a nonsensical one at that, because it did not obey all the rules
of logic. Birkhoff and von Neumann then wondered whether the
logic of the quantum world did not after all obey laws that were
different from—and less restrictive than—the sacred ones of Aris-
totelian logic.

It does not seem possible to adopt such an intrepid idea, first of
all, because, as we have just seen, the mathematical translation of
ordinary language is no longer faithful. The second reason is a
matter of coherence: the theory’s underlying formalism is mathe-
matical, hence Aristotelian; on top of it we would now need a non-
Aristotelian construction to interpret the theory, in other words, to
reconcile empirical physics with common sense, the latter being as
Aristotelian as it gets. The quantum non-Aristotelian component
would then be flanked by the mathematical (Aristotelian) and the
empirical (also Aristotelian) ones. A rather indigestible “sand-
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wich” to swallow, leading us to the third and last reason for reject-
ing the above approach: more than fifty years later, it is hardly
more developed than it was on the first day. We shall therefore
abandon it, to insist on the advantages of sticking to more conven-
tional—more rational, in fact—logical forms.

HISTORIES

A novel idea, simple and fruitful, was introduced in 1984 by the
American physicist Robert Griffiths, from Carnegie Mellon Uni-
versity. Instead of looking only at isolated properties taking place
at a single instant, Griffiths proposed considering what amounts to
the history of a physical system, that is, a sequence of properties
occurring at successive instants. Despite its simplicity, the idea had
not been explored before because it appeared to be incompatible
with the noncommutativity of operators, the same difficulty von
Neumann had encountered. It was thought to be impossible to be
able to say of an electron visiting the Louvre Museum: “At 9:12, it
is in the Antiques Room; at 11:30, its velocity is between 2.3 and
4.5 km/h; and at 12:47 it is in the Corot Room.”

A history is simply that: a sequence of various properties taking
place at different times. Each property expresses the fact that the
value of some physical quantity is in some region (of values) at
some instant of time, and the history merely lists them, the choice
of the physical quantities, the regions of values, and the instants of
time being more or less arbitrary.

Compared to a single property, a history has a much greater
potential to describe what goes on. We may say that a history is to
an isolated property what a film is to a snapshot. It turns out that
Griffiths’ histories may serve as a language to describe all of phys-
ics, a kind of universal language that allows us to speak of all
physical events without exception.

Histories should not appear all that mysterious, because we
have always used them to describe experiments and other situa-
tions in physics. Here’s an example of this important point, and it
would be easy to find many others. A physicist tells another about
one of his experiments: “A neutron comes out of a nuclear reactor
through an opening in the armored wall. It then traverses a silicon
crystal; it comes out (after diffraction) with a velocity that depends
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on its direction; the velocity is then selected by forcing the neutron
to pass through a narrow window; next, it hits a nucleus as it trav-
els through a uranium block; the collision results in the fission of
the nucleus, which breaks up into several pieces; one of these is a
xenon nucleus which, finally, enters a counter’s detection zone.”

That is a history, which a theoretician could rewrite using pro-
jectors to put it in Griffiths’ standard form, after having specified
the time of each event. In this form the angel understands it as
clearly as we do.

THE ROLE OF PROBABILITIES

The reader must have noticed that quantum probabilities have not
yet been introduced in the initiation to the world our angel is going
through. This may seem surprising, given their predominant role.
We shall now see them enter the picture in a most unexpected way,
not as a measure of chance but as a tool to complete the logic and
give it a consistent meaning. It is in fact thanks to probabilities that
we can convince ourselves that some histories are meaningful and
others do not make sense, and, among those that do, define logical
equivalence and implication in the quantum world. Probabilities
thus lie at the very heart of the theory, and their role goes far be-
yond the mere description of chance.

This is a consequence of their formal mathematical structure,
known and accepted by the angel, and which we should take as a
mathematician would, without the slightest regard for practical
applications. For the mathematician, probabilities are simply num-
bers assigned to events (which are properties or histories, in our
case). Those events form a complete family (they are mutually ex-
clusive and cover all possibilities). Probabilities are subjected to
only three conditions: they are positive numbers, they can be
added if two events are mutually exclusive (this is called the addi-
tivity condition), and their overall sum is equal to 1.

To add some substance to his histories, Griffiths assumed that
each of them had a certain probability. Such an assumption ap-
pears quite reasonable in the case of the nuclear experiment de-
scribed above. Indeed, the neutron might not have come out of the
reactor, or might have missed the window or failed to traverse the
uranium block, or, even if it did, no reaction might have taken
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place. Griffiths proposed an explicit mathematical formula to cal-
culate the probability of a given history, a formula that was later
seen to follow from some simple logical considerations.

He then observed that the additivity condition for probabilities
significantly restricted the class of all conceivable histories. This
condition is expressed by a mathematical equation involving the
projectors of the various properties occurring in the history, an
explicit equation that can be checked by computation. Griffiths
then called consistent those histories that satisfy the additivity con-
dition. For example, the history associated with our nuclear exper-
iment belongs to a consistent family and has a well-defined proba-
bility, perfectly satisfactory from a mathematical point of view.

To help the reader understand the notion of a consistent history
we shall present a most astonishing counterexample, arising from
interference phenomena, in which probabilities are not additive. It
goes like this: A photon comes out of an interferometer and hits a
screen. We can describe the hit by imagining the screen subdivided
into small regions (for example, each region may consist of a single
grain of photographic emulsion). In this way we have as many dif-
ferent histories as there are screen regions. Nothing prevents us
from assigning a probability to each of these histories. These prob-
abilities turn out to be additive and perfectly acceptable. Their val-
ues, computed according to the theory, clearly reveal the presence
of interference fringes.

Things become both more subtle and more interesting if we try
to determine the photon’s path before it hits the screen. We may
choose an instant when the wave function derived from Schrö-
dinger’s equation is made up of two parts, each one localized in a
different arm of the interferometer. We now enrich the previous
histories by specifing that the photon is in one or the other arm at
this particular time. At this point, the truly dramatic interest of
Griffiths’ additivity conditions reveals itself, because it is impossi-
ble to satisfy them. No additivity, no probabilities, no meaning.
Hence, the statement that the photon followed one path rather
than the other is meaningless, despite our habits of thought, which
cry out that something is amiss here.

This is a remarkable result, because it suggests that certain histo-
ries are meaningful but not others, at least if we agree that only
histories to which we can assign a probability have meaning. But
what meaning? This is what we are going to see next.
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THE LOGIC OF THE QUANTUM WORLD

The most important quality of Griffiths’ construction is to endow
quantum physics with a logical structure of its own, as I have tried
to demonstrate. It is precisely this feature that allows us to go
from a purely formal theory to something we can talk about using
ordinary words and, above all, something we can reason about
rigorously and naturally. As we already know, rigorous reasoning
requires a logic that is complete and sound, starting with a domain
of propositions where we can say “not,” “and,” “or,” “if . . . ,
then.”

A domain of propositions suitable for describing a quantum sys-
tem involves a family of histories verifying Griffiths’ additivity
conditions (a consistent family), so that probabilities may be as-
signed to histories. The logical operations “not,” “and,” “or” are
then quite obvious, as when we say, “The neutron was not there at
that instant,” “It could have traveled this way or that way,” “It
went through a channel in the reactor’s wall and then through
the window.” The last condition for a sound logic will be fulfilled
if we can find a satisfactory definiton of logical implication, that
fateful “if . . . , then,” logic’s keystone, without which reasoning is
impossible.

Here’s how we may introduce it: In our consistent family of his-
tories, probabilities are irreproachable from a mathematical point
of view and, in particular, they are additive. We can then borrow
from classical probability theory the notion of conditional proba-
bility. This is, by definition, the probability of an event b occurring
assuming that another event a has already occurred. This was what
Don Juan had in mind when he wondered, what is the probability
that the next girl I meet be blond, assuming, of course, that she is
pretty? Such a conditional probability, denoted p(ba), is defined
mathematically as the quotient of two probabilities: that of a and
b occurring together (the next girl is both blond and pretty) divided
by the probability of a (the next girl is pretty, regardless of the
color of her hair). We shall say in quantum logic that a implies b if
the conditional probability p(ba) is equal to 1. At the risk of re-
peating myself, let me insist: the introduction of probabilities
makes inference, hence reasoning, possible.
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The logical equivalence of two propositions a and b is now an
immediate corollary, for it amounts to having both a implies b and
also b implies a. Here is a nontrivial example of a logical equiva-
lence, even if we are jumping the gun here by referring to measure-
ment theory, to be introduced later. If a photon detector is placed
behind a circular light polarizer, we shall show that the proposi-
tion expressing that the detector has recorded (an empirical propo-
sition involving only the detector) is logically equivalent to another
proposition expressing the value of a component of the photon’s
spin* (that is, indicating how the photon spins), which is a propo-
sition referring only to the microscopic world of photons.

These logical conventions are not arbitrary, provided they are
applied only to consistent histories (those having “good” probabil-
ities, that is, satisfying Griffiths’ conditions). The axioms of logic,
those of Aristotle and Chrysippus, and such as they were later for-
malized by Boole and Frege, are then completely satisfied. And so
the major obstacle encountered by Birkhoff and von Neumann in
dealing with logical issues has now been removed, and Aristotle is
back. Common sense should follow shortly.

COMPLEMENTARITY

Unfortunately, the return of a sensible logic does not entail that
common sense is back too, for the quantum world is still full of
subtleties. As a matter of fact, a given quantum system may be
described by many different families of histories. In the nuclear
experiment presented above, for example, we could specify at a
given instant the velocity of the neutron instead of its position.
Depending on our choice, we would have two different domains of
propositions (or of histories), two different logics that cannot be
embedded into some other larger and consistent logic.

Bohr was already aware of this peculiar fact, and he had even
raised it to the level of a principle: complementarity, one of the
pillars of quantum mechanics. In reality, he was referring to the
knowledge acquired by using two different experimental devices.
For instance, if a silicon crystal diffracts a neutron we should, ac-
cording to Bohr, speak of the neutron as a wave, while its detection
by a counter would force us to construe it as a particle. Quantum
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logic shows that such a multiplicity of representations is not just
imposed by external instruments but truly intrinsic to the quantum
realm, even when it remains unobserved. Besides, it is certainly not
a new principle but a direct consequence of the logic, which is itself
determined by the other laws.

The existence of different logical frameworks in which to speak
of the same object is nothing new, and we have already seen exam-
ples of this in connection with monogamous and polygamous mar-
riages. It was precisely such a multiplicity of universes of discourse
that prompted logicians to introduce the notion of a domain of
propositions. What is new here is the fact that this sort of subtlety,
usually of minor significance, now becomes essential for speaking
of the material world, due to the quantum character of the laws.

The existence of thousands of possible ways of speaking of the
same object, all mutually exclusive, might conceivably lead to in-
ternal contradictions or paradoxes. For example, what to do if,
within a certain logic, hypothesis a implies conclusion b, while in
another logic a implies not-b? We would then have no choice but
to give up logic altogether—and curse it. Fortunately, it can be
shown that in quantum physics such a tragic mishap can never
happen, and that a implies b in every logic in which both proposi-
tions have a meaning: there cannot be any paradox or internal
contradiction in quantum mechanics. This is an amazing result for
a domain where it was long believed that paradoxes lurked at
every corner. “The Lord may be subtle, but He is not wicked.”

A LOGICAL LAW OF PHYSICS

Even if we are still in the abstract realm, certain signs are already
pointing to a closer relationship with reality. The language of his-
tories allows us to describe the quantum world and to reason
about it, in terms that are as clear for us as they are for our angel.
This language closely resembles the one a physicist employs when
arguing about an experiment, with terms that are inspired by the
most naive empiricism and based on visual representations. Thus,
the physicist may say, “A xenon nucleus has reached the detector,
hence there has been fission, hence the neutron has hit the uranium
block, hence it went through the second window, hence I can deter-
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mine its velocity, and so recover all the relevant data for a detailed
study of the experiment.”

This argument, despite its elementary character, is based on a
logical implication that can now be completely justified every time
the word “hence” is pronounced, and it reveals what is necessary
for understanding physics. From our point of view the argument is
intuitive, while it is absolutely rigorous for the angel or the mathe-
matician. Each one of the statements following the unique hypoth-
esis (“A xenon nucleus reached the detector”) is supported by a
calculus rooted on the fundamental principles: it would be enough
to check Griffiths’ conditions and compute the conditional proba-
bilities that validate the logical implications. Thus, perhaps in an
unexpected way, the drastic abstraction we had to accept in order
to ensure complete logical consistency has led to a vision of the
quantum world that is extremely close to the physicist’s intuition.
Let us add in passing that such was not the case with Bohr’s tradi-
tional interpretation, which was incomparably more remote from
intuition.

We shall now complete the list of fundamental principles of the
theory by adding a new one, of a logical nature, that makes it pos-
sible to think the world, and not just compute it: Every description
of a physical system must consist in propositions belonging to a
unique and consistent quantum logic. Every argument regarding
the system must be supported by logical implications that can be
demonstrated. It should be clear that such a principle is rooted in
the depths of physics and does not rely on the presence of any
observer, which is totally fortuitous, if not irrelevant, contrary to
what had long been believed.

Thanks to this new principle the angel can think like us, or
rather better than us, because she knows perfectly well what it is
permissible to think. As for us, this rule allows us to think in objec-
tive terms, without dreaming that logic is only a figment of our
imagination. The two most important ideas to remember are first,
that logic has its source in the laws of nature; secondly, that this
logic of things cannot be dissociated from the existence of proba-
bilities and, ultimately, from the necessary presence of chance. On
this new foundation, built entirely from first principles, we shall
now construct anew both common sense and the intuitive repre-
sentation of the world.
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Rediscovering Common Sense

OUR NEXT TASK will consist in nothing less than recovering the
everyday vision of the world, as it is revealed to us by common
sense and visual intuition. We shall start this time from the funda-
mental laws of nature, which are ultimately of a quantum, and
hence formal, character. Since we accept being guided only by log-
ical consistency, our approach will be entirely deductive. It will be
based exclusively on the principles of quantum mechanics and, in
particular, the logical principle stated at the end of the previous
chapter will play a crucial role. What we shall accomplish will not
be the mere recovery of common sense, but of something more
refined and enlightening that will tell us precisely when common
sense can be trusted and when we might be misguided by it, be it
ever so slightly.

THE WORLD ON A LARGE SCALE

As long as we have decided to rely only on the principles of quan-
tum theory, it will be convenient to seek once again the help of our
familiar angel, who is still trying to figure out how we humans
view the world.

The scale of this human world is very large when compared to
the world of particles, and atoms appear to us extremely small, so
small, in fact, that we cannot see them. We must therefore con-
sider visible objects, accessible to our senses, macroscopic, that
is, physical systems made up of large numbers of particles. Every-
thing a human being can see or touch to forge his or her intuition
belongs to this category: dust, trees, stones, and machines, all the
way to the sun and beyond; in a word, the entire domain of classi-
cal physics.

Let us first remark that the notion of an object, so plain and
primitive for common sense, is not at all obvious from the stand-
point of quantum physics, and it is therefore puzzling for our
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angel. For her, a physical system is an assemblage of particles
whose mutual interactions are known, usually a set of nuclei and
electrons. If we consider from this perspective an ordinary object,
an empty bottle, say, the quantum principles will only take into
account the particles forming the bottle, and will therefore treat on
an equal footing a multitude of different objects. This is due to the
fact that the atoms that make up the bottle could, without chang-
ing their interactions, adopt thousands of shapes to form a thou-
sand different objects: two smaller bottles, six wine glasses, or a
chunk of melted glass. One could also separate the atoms accord-
ing to their kind and end up with a pile of sand and another pile of
salt. A rearrangement of the protons and electrons to transmute the
atomic nuclei without modifying the nature of their interactions
could also produce a rose in a gold cup. All these variants belong
to the realm of the possible, of the multitude of forms that the wave
functions of a given system of particles may take.

To be sure, objects can also be defined in quantum mechanics,
and in fact each object corresponds to a certain class of wave func-
tions that an indefatigable human computer could completely
specify. Our angel can therefore learn this notion of an object, and
she might even appreciate better than we do its fuzzy character (is
a bottle containing two atoms still an empty bottle?). She is never-
theless still far from understanding the classical description of an
object. For her, the positon of a pendulum or that of the hands of
a clock is still at this stage a mathematical operator. The quantum
nature of physical quantities has changed nothing, except that
some of them, which we may call classical, have been singled out
among the myriad of quantities describing the atoms, the ultimate
components of matter and objects. In the physicist’s jargon, the
first observables that could become classical after analysis are
called collective physical quantities, and the others are said to be
microscopic. Thus, the positions of the pendulum or the clock
hands are collective variables, as are all those occurring in classical
physics. In like fashion, collective observables of velocity may be
defined, but they do not commute with position coordinates. We
have still a long way to go before rejoining Newton’s or the engi-
neer’s concrete representation of things. But in order to do that and
share their “candid” vision of the world, the angel must learn
something else.
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THE LOGIC OF COMMON SENSE

The archangel who initiates the young angel into the secrets of the
terrestrial world, our novice’s final destination, begins by defining
an object as a collection of wave functions. He then shows her how
to obtain, from the first principles of the theory, the collective ob-
servables that describe the object (this is more than we humans can
do at the present time, but research in this field is progressing
rapidly). Thus, a pendulum becomes for the angel a metal ball (she
is familiar with the quantum theory of metals) attached to a metal
wire. The wave function indicates that the atoms form a ball of a
certain radius, and something analogous specifies the shape of
the wire.

The archangel then explains that humans prefer to focus on the
coarsest features of objects, rather than take into account their rich
internal structure. This is due to the imperfection of their senses.
“They are wise to do so,” replies the angel, “and I am willing to
do likewise and only retain, of the pendulum’s wave function, its
dependence on the coordinates of the ball’s center, and neglect all
the rest.”

At this point the archangel helps the angel through the decisive
transition from the quantum to the classical world. Everything
seems to separate these two visions of reality: on the one hand we
have wave functions, physical quantities that are operators, a dy-
namics governed by Schrödinger’s equation; on the other we have
position and velocity variables that are ordinary numbers, and the
dynamics is Newtonian. How to go from one to the other? It can
be done but, we must admit, not without some powerful mathe-
matical means. This is why mathematicians have developed, since
the end of the 1960s, a whole new branch of analysis (known as
microlocal analysis or pseudodifferential calculus) thanks to which
an operator acting on the pendulum’s wave functions can be asso-
ciated with a function of the classical variables of position and
velocity. Such a function is called the symbol of the operator. In
this way a dictionary can be created, giving the translation of a
great many quantum words into classical terms. With a bit of prac-
tice, the angel soon becomes familiar with this classical language.

The archangel may now explain to the angel what is a proposi-
tion of classical kinematics, as we have done in the previous chap-
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ter (basically, it amounts to considering a cell in the space of the
classical position and velocity coordinates). “I have no objection to
talking about these things for fun,” observes the angel, “but all
that really means nothing. For you have told me that the properties
permitted by the first principles are those that can be associated
with a quantum projector, and what you are now telling me is
quite different.” The archangel then discloses to her a theorem
showing how to associate a quantum projector with a classical
region like the one indicated above, provided that the region is suf-
ficiently large (compared to Planck’s constant) and its border suffi-
ciently regular.

“This is extraordinary,” exclaims our angel, after having famil-
iarized herself with the theorem and its consequences. “This result
clearly shows that what you told me regarding classical proposi-
tions amounts to a quantum proposition. One must only be careful
not to make statements too subtle to be expressible in classical
terms, then one can speak both the quantum and the classical lan-
guages by translating the latter into the former. Is this the way
humans think?”

“To tell the truth,” replies the archangel, “their language is or-
dinarily less elaborated, but on the whole, yes, that’s essentially
how they perceive the world and talk about it.”

The angel has yet to understand how to reconcile Schrödinger’s
quantum dynamics with Newton’s classical mechanics. Here
again, she must resort to mathematics in order to effect the neces-
sary translations. In particular, she realizes that this relationship is
only approximate, due to the fact that we are interested only in big
objects, and without examining them too closely. Roughly speak-
ing, the regions of the space of position and velocity coordinates
get distorted during classical Newtonian motion. At the same time,
the quantum projectors that express the corresponding properties
evolve in a parallel fashion according to Schrödinger’s equation.
The correspondence between the region and the quantum property
is nevertheless approximately preserved (the errors involved are
well known). “But then,” realizes the angel, “we can tell the his-
tory of a macroscopic object in the classical language without vio-
lating the fundamental quantum principles! I must practice this if
I want to be fluent when I talk to humans.”

The angel is now persuaded that a “correspondence” exists be-
tween classical and quantum properties. This correspondence is
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preserved by the passage of time, at least in most interesting cases
arising in practice, due to the harmonious agreement in the re-
spective evolutions of classical and quantum dynamics. However,
the correspondence is not an identity, and it is subject to certain
conditions and prone to errors. The first result in this direction was
obtained by the Dutch physicist Paul Ehrenfest in 1927. Bohr had
previously introduced what he called the “correspondence princi-
ple,” which expressed in terms still vague the expected agreement
between the two dynamics. As is often the case in the history of
quantum mechanics, the principle had preceded a theorem, and
Bohr’s correspondence principle has now been incorporated into
the logical framework we have adopted thanks to more advanced
mathematical methods.

In order to understand that we are in the presence of a corre-
spondence and not of a perfect agreement, let us examine some of
its limits. For example, it is not enough for an object to be large in
order to exhibit a classical behavior. In particular, there exist ob-
jects whose motion is chaotic (atmospheric turbulence, for in-
stance), and for which the correspondence is severely hampered.
The motion of such systems results in a strong distortion of the
classical cells, and consequently the correspondence between clas-
sical and quantum physics lasts only for a limited period of time.
Nonetheless, the vast majority of objects either on earth or in the
skies present a good correspondence between the fundamental
laws of the quantum domain and the classical laws of the large-
scale world in which we live.

Let us listen to the angel one last time: “I am elated,” she says,
“because I now understand how humans describe the world and
also how they see it evolve. What a pleasure they would experience
if, besides seeing, they also understood what they see.”

“But they do understand!”
“What do you mean? You had assured me that the only sensible

way to describe the world was in terms of the histories of a con-
sistent quantum logic. You made that into a principle and con-
vinced me that one can only reason by using logical implica-
tions which can be demonstrated. So far, you have only showed
me how humans describe the world, but I don’t see the connec-
tion with a quantum logic of consistent histories, nor how hu-
mans can reason in a sensible way, compatible with the first
principles.”
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“Humans do that by using what they call common sense. It is a
kind of logic well suited to the world they live in. The way they talk
about their world and their mental representations of it are not
completely rigorous, but it is nevertheless the same representa-
tion offered by the theory or, rather, it is a direct, demonstrable
consequence of the theory, perfectly valid within its domain of ap-
plication. The theory offers a purely formal representation, while
humans use an empirical representation stemming directly from
practice and experience.

“When humans see the objects around them, they estimate their
position and velocity through the use of their senses. But these are
not fine enough to appreciate the manifestation of quantum effects,
so what humans perceive is perfectly expressible by classical prop-
ositions. To sum up, we may say that the mathematical inference of
propositions in classical physics from quantum principles provides
a faithful image of the way humans perceive the ordinary world
and of their mental representation of it.”

And the archangel goes on: “When human common sense rea-
sons by saying ‘if . . . , then,’ what happens is this: humans men-
tally consider a cell in the space of position and velocity coordi-
nates. This cell is estimated, however imperfectly, by their brain.
They also instinctively (that is, out of habit) create a mental image
of another cell that can be deduced from the first one by a Newto-
nian motion. They now say that, if the initial situation that corre-
sponds to the first cell happens, then the situation corresponding to
the second cell will take place after a certain time: they say that if
an apple falls from a tree, it will hit the ground directly below. Of
course, they reason likewise in many other situations as well, but
the ones we consider here are at the origin of their vision of the
physical world.”

“I can see from what you say,” observes the angel, “how hu-
mans reason using their common sense, and how they render it
precise with the help of Newtonian physics. But I am not convinced
that their reasoning is correct. The real laws of the world are quan-
tum, and you have told me that only a consistent quantum logic
permits us to describe the world and correctly argue about it. Now,
common sense human logic is not at all of that kind; hence humans
are only capable of faulty reasoning.”

“Absolutely not! Their reasoning is sound. I have already told
you how their evaluation of a given situation may be translated in
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terms of quantum projectors, and how the change in time of those
projectors closely parallels the classical evolution of the situation.
Using this correspondence it could be shown that common sense
logic is actually also a logic of consistent quantum histories, and
that common sense arguments are ultimately the verbalization of
implications that can be demonstrated in quantum logic. This
identification of common sense logic with a particular quantum
logic is, of course, not perfect; there are exceptions, and its implica-
tions are only approximate. But the approximation is excellent in
most cases. In other words, the probability for common sense to be
wrong is practically always negligible, as long as it deals with
macroscopic objects and does not approach too closely the world
of the infinitely small.”

“Thank you, master. Thanks to you I have understood how hu-
mans see their world and think about it in their own peculiar way,
which is quite appropriate for the things they can immediately per-
ceive. You have convinced me that their representation of that
world and their common sense are perfectly legitimate—at least
practically all the time and on a sufficiently large scale—even if the
laws of reality are ultimately quantum and formal. I am now ready
to go down to earth and meet those men and women you have
taught me to respect. Haven’t you told me that they have discov-
ered the principles I have learned from you? Humans too are there-
fore aware that their ancestral modes of reasoning are the fruit of
those laws.”

DETERMINISM

A good example of the approach we have just presented is the way
it clarifies the relationship between classical determinism and
quantum probabilism. As we have already pointed out, determin-
ism consists in a logical equivalence between classical propositions
referring to two different instants of time. In the absence of fric-
tion, this equivalence holds in both directions: from the present to
the future (the ordinary meaning of determinism), and also from
the present to the past, which entails the possibility of recreating
the past and is ultimately the basis for the existence of memory.
Things are not so simple in the presence of friction, but we shall
leave out this case.
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The essential point, which has been understood only lately, is
that classical determinism is a direct consequence of the quantum
laws, despite the probabilistic nature of the latter. Reconciling
these two seemingly incompatible points of view was only possible
after classical determinism lost its absolute character and also
ceased to be universal. Each of these two aspects is important, so it
will be worth explaining them further.

Classical determinism is only approximate, as it is easy to see by
some examples. Let us first consider an extreme case involving the
earth’s motion. What can be more deterministic than the fact that
the sun rises every day? We know that the earth rotates around the
sun according to Kepler’s laws. This is a consequence of the princi-
ples of Newtonian dynamics and also, with a good approximation,
of the principles of quantum mechanics. It is this notion of good
approximation that we wish to make precise.

It is known that quantum mechanics allows for the existence of
“tunnel effects” by which an object suddenly changes its state due
to a quantum jump, something that would not be possible through
a continuous classical transition. Many examples of such an effect
are known in atomic and nuclear physics: it is precisely by a tunnel
effect that uranium nuclei spontaneously decay, and two protons
at the center of the sun may come close enough to start a nuclear
reaction.

Even an object as large as the earth may be subject to a tunnel
effect, at least in principle. While the sun’s gravitational pull pre-
vents the earth from moving away through a continuous motion,
our planet could suddenly find itself rotating around Sirus through
a tunnel effect. It would be a terrible blow for determinism. We
went to bed the previous night expecting the sun to rise the next
morning, only to wake up with a view of an even brighter star,
which during the night gives way to unknown constellations.

A theory that permits such events to happen may well make us
feel uncomfortable. Fortunately, even if determinism is not abso-
lute, the probability of its violation is extremely small. In the pres-
ent case, the probability for the earth to move away from the sun
is so small that to write it down would require 10 to the power
10200 zeros to the right of the decimal point. The smallness of such
a number staggers the imagination, and no computer could store it
in decimal form. For all practical purposes, it is an event that will
never take place.
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As we move toward smaller objects, the probability of a tunnel
effect increases. The probability for a car in a parking lot to move
from one parking spot to another by a tunnel effect is as ridicu-
lously small as that of the earth escaping from the sun’s pull, but it
has fewer zeros already. When my car breaks down, I know better
than to blame it on quantum mechanics, the probability is still
much too small. I rather look for a deterministic cause that a good
mechanic will soon identify. However, as we approach the atomic
scale the odds increase and quantum nondeterminism eventually
overtakes classical determinism. In short, it is all a matter of scale.
There is a continuous and quantitative transition of probabili-
ties, from extremely small ones to others that first become non-
negligible and later prevail.

Another feature of these theoretically possible but highly
unlikely effects, of these “quantum fluctuations” that violate deter-
minism, is that they cannot be reproduced. No quantum fluctua-
tion observable on a human scale has probably occurred since the
creation of the earth, but let us imagine one of them taking place
and being witnessed by several people: they see a rock suddenly
appear in a different place. They have actually seen it, but they
would never be able to convince anyone else; never irrefutably
show that the phenomenon may repeat itself. All they could say
is “I swear it, the rock was over there, on my left, and all of a sud-
den it appeared on my right.” Too much gin or whisky, some will
say, a mild bout of madness, will think others, and the witnesses
themselves will end up believing that they have been subject to a
hallucination.

Thus, determinism is not absolute. We have also said that it
ceases to be universal, in a sense that we shall now make precise.
We have already seen that not all large physical systems are neces-
sarily deterministic—take chaotic systems, for instance. The con-
nections between determinism and chance in the case of chaotic
systems are presently well known, and they form a vast domain of
study that is beyond the scope of this book. We shall simply men-
tion that quantum and classical mechanics both recognize the im-
portance of classic chaotic phenomena, which mark the limits of
an accurate correspondence between the classical and the quantum
description of the world.

There is yet another condition to be met before we can trust
determinism and common sense. It regards a system’s initial state.
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It is important to be able to specify this state as a purely classical
property on which classical dynamics can be based. Now, there are
cases, not so infrequent by the way, where this condition is not
fulfilled. Here is an example. Imagine a Geiger counter isolated in
a vacuum. This is a large-scale system that can be exactly described
by classical physics. Determinism is particularly simple in this
case, because it predicts that nothing happens. If we now imagine
a radioactive nucleus inside the counter, the classical description of
the counter no longer wholly captures the system’s initial state
(where system = counter + nucleus) and we must explicitly take
into consideration the nucleus wave function. Since the fundamen-
tal laws of physics are quantum, the deterministic nature of the
new system no longer follows. The entire wave function of the
counter + nucleus system evolves according to Schrödinger’s equa-
tion, and the fact that the counter is itself a metastable object, sen-
sitive to small electrical effects, makes it impossible to establish in
this case that the behavior will be deterministic.

In other words, the methods used to demonstrate determinism
equally show that some exceptional cases exist in which determin-
ism does not apply. The most frequent ones arise when measure-
ments are taken on a microscopic object, as in the above example.
This case is central to the interpretation of quantum mechanics,
and for this reason we shall discuss it in the next chapter.

Hence, classical physics and common sense allow us to properly
understand the large-scale world on one condition: we must not
consider systems containing an instrument in the process of mea-
suring some quantum object, or other even subtler devices. Put
another way, we must restrict ourselves only to the situations
known to human beings before the discovery of radioactivity, at
the end of the nineteenth century.

A FIRST PHILOSOPHICAL SURVEY

There is an essential result that we have repeatedly stressed: com-
mon sense conforms to the quantum nature of the laws governing
the material world, at least in normal conditions and for objects on
our human scale (and often even well below it), except in some
extremely rare circumstances. Naturally, common sense cannot by
itself determine its own limits of applicability, and for this reason

193



C H A P T E R X

the discovery of quantum mechanics was profoundly disturbing.
We can only hope that this is only a temporary situation.

It is difficult, however, to fully appreciate all the philosophical
consequences of such a result. Indeed, to imagine that common
sense is merely the result of the laws of nature, and that these have
their own logical structure, is a complete reversal of our usual pat-
terns of thought. It is also difficult to get used to such a change in
perspective, and its consequences are not always easy to appre-
hend. We can nevertheless draw a few simple lessons that have a
direct bearing on the theory of knowledge.

To approach the knowledge of reality beginning with the laws
discovered by science goes against traditional epistemology (it is,
in fact, the exact opposite). We no longer try, as Bohr did, to use
classical physics as our unique reference, as the only domain where
logic can be applied and of which we can legimately speak. On
the contrary, it is the quantum world that has its own rules of
description and reasoning from which those of the classical world
emanate.

We call into question the method followed by many people and
preeminently John Bell, who sought to understand quantum phys-
ics through common sense, even if that required promoting certain
of its aspects to the rank of philosophical principles (variously
called “locality,” “separability,” “causality,” and so forth). It is a
completely opposite approach that turns out to be fruitful, one that
has its foundations on the rock-solid principles of physics, pain-
fully conquered by generations of researchers. From those princi-
ples we deduce the right form, the proper degree of approximation,
and the domain of application of common sense. The latter then
reappears purified and strengthened, no longer taken for granted
without questioning and for this reason always mysterious. Re-
stricted to its own sphere of application, common sense becomes a
valid form of the laws of reality.

The above result also challenges the rules of philosophical in-
quiry. For it suggests that we no longer need to base it on the un-
bridled generalizations of our immediate experience denounced by
Bacon, now that the patient efforts of research have paid off in the
form of deeper principles, recognized by nature as its own, and
close to the heart and the essence of things. Common sense, thus
reappraised and with its scope circumscribed, no longer applies to

194



R E D I S C OV E R I N G C OM MON S E N S E

the universe at large, and in particular ceases to be valid for the
infinitely small. It would be vain for it to pretend to impose on the
atomic scale philosophical “principles” that are simply the inordi-
nate worship and the unjustified hypostatizing of our thought hab-
its and language tics.
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From the Measurable to the

Unmeasurable

THE RECONCILIATION between common sense and quantum me-
chanics does not exhaust the lessons we may draw from the latter
regarding the theory of knowledge. We have seen how quantum
mechanics shut out common sense from the phenomena of the
atomic world and this will lead to other revelations. Another
major problem looms in the background: the relation between for-
malism and reality, between theory and nature, which will appear
distinctly in the end.

To deal with the above questions we propose a method that
rests solely on the principles of quantum physics, in particular on
the logical ones. We shall proceed in a purely deductive fashion to
guarantee the consistency of the enterprise, but that will not pre-
vent us from discovering certain points of view that physicists and
philosophers have missed until now.

THE POIGNANT PROBLEM OF INTERFERENCES

We have already come across an example of a quantum measure-
ment in the previous chapter. It involved the Geiger counter that
detected whether a radioactive nucleus had emitted an electron or
not. By solving the Schrödinger’s equation of the complex physical
system formed by the counter and the radioactive nucleus, and as-
suming an intact nucleus at the start, we can establish the form of
the wave function after, say, ten minutes. This function appears as
the sum of two terms. The first one represents a nucleus still intact,
with the counter still reading 0, while the second term represents a
decayed nucleus and a counter displaying the digit 1 to indicate
that radioactive decay has been detected.

We know that a wave function that is the sum of two terms
allows, in principle, quantum interferences to take place between
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the two states these terms represent. What happens in the present
case? It is very difficult to imagine interferences between two dif-
ferent states of the same counter whose screen would display two
different digits. Our imagination refuses to function, because real-
ity never confronted us with such a situation. What’s more, that
kind of disagreement between theory and experience suggests that
either the problem is not what it appears to be or the theory itself
is unreliable. The second alternative takes us even farther: if inter-
ferences did exist, what would they look like? Two superposed
photographs? Or perhaps two contradictory and overlapping vi-
sions like those provoked by a high fever? Since no such flickering
of Reality exists, it is imperative that we should get to the bottom
of it.

A lot has been written about this problem, which is often pre-
sented in a particularly striking form introduced by Schrödinger
himself. It is worth repeating, even if it is well known and we have
already mentioned it. A cat is trapped inside a box containing a
diabolical device: a radioactive source whose decay will release a
powerful poison. In its most straightforward form, the theory pre-
dicts that after some interval of time the cat’s wave function will be
the superposition of two others, one representing the possibility of
an inactive source and a living cat, and the other representing the
cat killed following the radioactive decay of the source. Many
questions then spring up: Can we say that “the cat is dead” and
“the cat is alive” are two separate events without interferences,
without “flickering”? Can we be sure, without the shadow of a
doubt, that only one of the two events has actually taken place,
even if we cannot know which one without opening the box?

We can give another example, perhaps more explicit still, to il-
lustrate the nature of the underlying difficulties. Imagine that a
man called Pepin lived in Charlemagne’s time. In one of the walls
of his house there was a terrible radioactive nucleus. To keep the
example simple, assume that only two events could have taken
place. In the first case, the nucleus decayed when Pepin was three
years old, causing his death; in the second, the nucleus was still
intact when Pepin died, advanced in years, after having had chil-
dren. Among the descendants of Pepin there were Napoleon Bona-
parte and Professor Babillard, nowadays a specialist in quantum
mechanics. The scientist studies the traces of the famous nucleus
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and discovers interferences. What should he conclude? The inter-
ferences reveal the survival of the component of the wave function
corresponding to the situation where Pepin died when he was
three. Thus, still today there is a nonzero probability for Pepin to
have died while he was a child. The professor then begins his next
lecture as follows: “I have established that, in the present state of
the world, there is a nonzero probability for Pepin’s death to have
occurred when he was a toddler. We must therefore reluctantly
recognize that Napoleon might never have existed and that I myself
do not exist either, for both events have a nonzero probability.”

We can see where the difficulty is, if Babillard is right: no fact
could ever be conclusively confirmed. The very notion of fact, the
basis of every science, would be incompatible with the theory. Ba-
billard’s absurd statement is only slightly more exaggerated than
the assertions of those who would like to see in quantum physics
the grounds for a universal skepticism or for the wildest dreams.
Some talk of parallel universes, and consider the world in which
Julius Caesar is the father of Cleopatra to be as true as our own.
Others assume that only through human consciousness can the
sum of wave functions be broken apart. Still others go even further
and reverse the process: if our consciousness separates the possible
realities, then mind can act upon matter, and so parapsychology is
theoretically demonstrated. There are also those for whom science
is an imprecise, vague corpus where everything is possible, where
water has a memory that only wine can wipe out. Others, more
cautious, barricade themselves behind positions that they deem
more sensible: physics is only a convention among humans that
does not get through to reality; the wave function is nothing but
the expression of what I happen to know. Is it necessary to go on
and mention those who have founded on such gibberish not just
philosophies, but a psychology, and even theologies where God
contemplates all those multiple universes of his irresolute creation?

Bohr always attempted to preserve at all costs the objective
character of the science he had helped to found, and we shall see
that he was right in doing so. As for the rest, it is nonsense, twad-
dle, balderdash, and idle fancies (I also have some stronger words
in store). Wisdom would have consisted in saying, as an honest
Feynman or a doubtful Einstein did, “There is something we do
not understand.” But then, you might wonder, how are we to
understand?
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THE DECOHERENCE EFFECT

Much time was needed before an answer to the problem of macro-
scopic interferences could be found. There had been some hunches
in early considerations by Heisenberg, but it was not until the
1970s that the correct answer was conjectured by Hans Dieter
Zeh. His conjecture was tested on simple models, and orders of
magnitude were obtained in the 1970s and 1980s by K. Hepp and
E. H. Lieb, W. Zurek, A. O. Caldeira and A. J. Leggett, E. Joos,
and H. D. Zeh. There could be no doubt: One of the quickest and
most efficient effects in physics was at work in the vanishing of
macroscopic interferences. More recently, a general theory with no
reliance on special models was found by the present author. Still
more convincing has been the experimental observation of the ef-
fects in 1996, in Paris, by a group headed by J. M. Raimond and
S. Haroche.

The effect cannot be explained in simple words or by means of
suggestive analogies. Otherwise, not so much time would have
been needed for guessing the correct answer. The topic is, however,
so important that we shall on this occasion overcome our reluc-
tance to employ mathematical arguments in this book.

The story goes back to von Neumann, who noticed in the early
thirties that the state of a measuring device appears very puzzling
after a measurement has taken place, a remark that was later made
popular with the famous example of Schrödinger’s cat. Its basic
assumption is that the measuring device and the measured system
(an atom, for instance) both obey the laws of quantum mechanics.

Consider a device measuring a spin component of an atom. If
the spin is 1/2, there can only be two possible values for the observ-
able representing the spin component along some definite direction
in space, the z-direction, say. This is the measured observable, and
its two possible values are +1/2 and −1/2. Notice that both state-
ments “the value of the z-component of spin is +1/2 (or −1/2)” are
perfectly well defined by projectors in the framework of histories.

Von Neumann proposed a model for the measurement in which
the measuring device is simply a needle pointing to a ruler. This
pointer marks the position 0 before the measurement; more pre-
cisely, its wave function C0(x) is very narrow and peaked for
values of x very close to 0. When an atom enters the instrument
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with a z-component of spin equal to +1/2 (or −1/2), the pointer
moves and its new position indicates the result of the measurement
by pointing to +1 (−1) for a spin component of +1/2 (−1/2). More
precisely, the wave function C+(x) (or C−(x)) describing the
pointer’s position is very narrow and peaked for values of x very
close to +1 (−1).

So far so good, and we might say that von Neumann’s model
gives a satisfactory description of a real measurement. But we are
in serious trouble if the atom arrives with a definite component of
spin of +1/2 in the x-direction, with the apparatus still ready to
measure spin components in the z-direction. We find that the
pointer’s wave function at the end of the measurement is C(x) =
(1/√2)(C+(x) + C−(x)). It contains a term C+(x) indicating a pointer
in position +1 and another, C−(x), indicating −1.1 Both properties
are simultaneously present in the total wave function, expressing
two different things, +1 and −1—a live cat and a dead cat. This
simple formula holds the most difficult puzzle, the best hidden se-
cret of quantum mechanics, and there can be no doubt that it is
absolutely true. Many experiments, with an atom or particle in
place of a pointer, confirm this conclusion: The superposition of
wave functions is not a disease but it can easily be caught during an
interaction.

Heisenberg and Zeh pointed out an oversight in von Neumann’s
model: A real measuring device is not a concept that can be fully
described by one variable x. There are typically a few BBB particles
in a piece of laboratory equipment (a BBB being defined for our
purpose as equal to 1027, or one billion times one billion times one
billion). Therefore, the correct wave function should not be writ-
ten C(x) but rather C(x, y), where y stands for some BBB variables
or so. This wave function is the sum of two other functions C+(x,
y) and C−(x, y), the analogues of C+(x) and C−(x), respectively.

The y variables stand for the microscopic features of the mea-
suring device, including all the nuclei and electrons in it, and also
often outside it: for instance, air molucules in the surrounding
atmosphere as well as photons if, as usual, there is some light in
the laboratory. By convention, the name “environment” has
been given to the formal system described by the myriad of vari-
ables in y.

1 For simplicity, we assume that after the measurement has taken place the
atom has become lost among all those of the measuring device.
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The intuitive idea behind the “decoherence effect” suppressing
macroscopic interferences is as follows: A wave function such as
C+(x,y) is in factaverycomplicated functionofyand,moreover, very
sensitive to the position of the pointer, that is, to the value of x. If
the needle turns on an axis at the center of a circular dial, for in-
stance, there is inevitably some friction, which can produce
changes in the small world of atoms comparable to an earthquake
on our scale. The two wave functions C+(x, y) and C−(x, y) are
accordingly very different.

We may try to imagine one such function. Its sign changes in
many places when only one among the BBB variables changes
slightly, and in many more places when several variables change;
the phase is practically random under the full impact of all BBB
variables. Now think of two such functions that have suffered dif-
ferent fates. There is absolutely no chance that their signs, their
phases, have anything in common for the same value of y, whence
the name “decoherence,” meaning that any phase coherence they
might previously have had has been lost.

For macroscopic interferences to be seen for x, the observable
parameter, it would be necessary that the dependence of the two
wave functions on y be coherent. This is a technical point that can
easily be proven but will be taken for granted.2 The result at least
is clear and simple: the erratic behavior of the wave functions in
their description of the environment suppresses any possible mani-
festations of quantum interferences at a macroscopic, observable,
level. If a cat is dead, its internal wave function will never regain
the fine phase tuning of a living-cat wave function. Adding a dead-
cat wave function and a live-cat one in a sum C+(x, y) + C−(x, y) is
like adding sea waves and the bubbling of a whale: they do not
interfere, they ignore each other, they stay apart.

We cannot cast the theory of decoherence in this intuitive pic-
ture because we lack good theoretical tools for investigating the
phase of a wave function with BBB variables, except in very sim-
ple models. Other techniques, inspired by the theory of irrever-
sible processes and information theory, must be used. The main
consequence of the decoherence effect is in any case most simply
expressed in the language of logic: At any given time, Schrö-
dinger’s cat is either dead or alive, which is the most a basically

2 Mathematically, C+(x, y) is “orthogonal” to C− (x′, y), whatever the values of
x and x′.
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probabilistic theory can say. This is, however, in perfect agreement
with common sense; there is no mystery here. We might add that
this clear logical splitting may not hold during a short interval of
time when the cat is dying (or when the pointer begins to move
away from its initial position toward the still uncertain directions
leading to +1 or −1; soon it will be going toward one or the other).
One cannot say that the cat is both dead and alive, as was apparent
in von Neumann’s and Schrödinger’s simplified versions. Decoher-
ence has put an end to the old legend of Schrödinger’s mythical cat.

THE WONDERS OF DECOHERENCE: PHYSICAL

The decoherence effect has many far-reaching consequences. Let us
first look at it through a physicist’s eyes. We have seen that it is
strongly linked with friction or, more generally, dissipation effects
through which energy is exchanged between the overall motion of
a pointer, say, and the invisible thermal motion of its atoms. It
should come as no surprise therefore if the general theory of de-
coherence provides also a theory of dissipation.

Accordingly, to the question, “What happens when there is no
dissipation?,” the answer is “No decoherence.” Superconducting
devices have been constructed showing an absence of decoherence
in a remarkable way. Even if these SQUIDs (superconducting
quantum interference devices) are macroscopic (they have the
shape and the size of an old-fashioned hairpin), they exhibit a
typically quantum behavior: tunnel effects. However, this kind
of device is a laboratory curiosity, and there is little chance of find-
ing one of them in nature. Much more common is a well-known
macroscopic physical system impervious to decoherence: ordinary
light. Radiation, when it involves many photons, is a macroscopic
system in its own right. Photons interact in an extremely weak
fashion, practically as if they did not interact at all, and there is
accordingly no dissipation among them and no decoherence. We
can thus expect to observe quantum interferences at a macroscopic
level with their help. Do they actually occur? We know the an-
swer, since these interferences were observed for the first time by
Thomas Young.

Leaving aside exceptional cases, let us now consider the almost
universal conditions under which dissipation can take place. Dissi-
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pation (or, equivalently, friction) tends to slow down, or damp, a
motion. A pendulum, for instance, will not swing forever: it slows
down. This effect is described quantitatively by a damping time,
which is the time it takes for the pendulum’s amplitude to be re-
duced by some arbitrary factor. The damping time is easily observ-
able and the so-called damping coefficients are generally known.

Decoherence also has its own coefficient, its own decoherence
time which is directly related to the damping coefficient according
to the theory. This relation is such that the damping time is larger
than the decoherence time by a factor involving the inverse square
of Planck’s constant. This is a tremendous ratio, which of course
depends on other physical quantities such as the mass of the pen-
dulum and the temperature. At any rate, Planck’s constant is, in
ordinary units fitting our own size, of the order of a BBB. Its square
is thus a BBBBBB, or 1054. Since the damping time is generally
sizable, the decoherence time is correspondingly extremely small,
so that decoherence turns out to be a tremendously efficient and
rapid effect.

As an illustration, let us look at an extreme case where decoher-
ence is particularly slow. This can happen at zero temperature in
vacuum. Consider then the case of a pendulum that starts as the
superpositon of two states, like the pointer we discussed earlier.
The two positons are separated by a distance of one micron. We
assume for definiteness that the pendulum’s mass is 1 gram, its
period is 1 second, and the damping time 1 minute. The efficiency
of decoherence can be expressed by the time it takes for macro-
scopic quantum interferences to be reduced by a factor of 2. The
answer is 10−16 second: the effect is undoubtedly very efficient!
This conclusion is further confirmed by realizing that in this case
the effect is particularly slow (if the word is appropriate). At
nonzero temperatures in an external environment macroscopic in-
terferences disappear much more rapidly. For instance, it is enough
to have a few air molecules collide with the pendulum for interfer-
ences to begin vanishing. Decoherence is, moreover, very active: it
begins gnawing at quantum interferences right away, without giv-
ing them enough time to develop.

For a long time one was left with the perplexing impression, on
the evidence of explicit models, that decoherence is so expeditious
that it would be impossible to see it. Or, more precisely, that our
experimental tools could never catch the effect in action; they are

203



C H A P T E R X I

too slow, they arrive too late, after interference has taken place and
no trace of it is left. Physicists do not like an effect to be so elusive.
They want to actually observe it before being completely con-
vinced. How can this be done? Obviously by using an object that
is on the verge of being macroscopic but is nevertheless still micro-
scopic—known as a mesoscopic object.

Such a system, a very clean one, was used by Raimond, Haro-
che, and their team. They brought a rubidium atom into a state
with very high quantum numbers, where the electron is very far
from the nucleus. After traversing a suitable device, the atom
comes out in a superposition of two states, ready to show interfer-
ences. The measuring apparatus may be roughly described as a
“radiation pointer.” The pointer consists of a few photons (from 1
to 10) in a cavity, whose walls form the pointer’s environment. To
make a long story short, let us just say that quantum interferences
can be observed, and one can see them decrease with time accord-
ing to the theory. The duration of the decoherence varies with the
number of photons in the cavity and with the value of some other
parameters that can be adjusted. In conclusion, there is no doubt
that decoherence is a real physical effect that destroys quantum
interferences at the macroscopic level. Moreover, we can under-
stand it as a direct consequence of the basic principles.

THE WONDERS OF DECOHERENCE: LOGICAL

Decoherence also has some basic consequences for epistemology,
and even for the philosophy of knowledge. This aspect of the story
began with a question due to Wojciech Zurek, one of the most
active investigators in the theory of decoherence. The very sketchy
mathematical description of decoherence we presented earlier can
be repeated for any wave function C(x, y), without splitting it into
two preferred states C+ and C− (representing a live cat and a dead
cat, or the states of the needle pointing toward −1 or +1 on a dial).
Why not look directly at the full wave function C(x, y)? Decoher-
ence would then predict that two functions of the unknown BBB
environment coordinates y such as C(x, y) and C(x′, y), for fixed
values of the macroscopic coordinates x and x′, will lose phase
coherence sooner or later. This tendency cannot go as far as letting
x be equal to x′, since C(x, y) has obviously a full phase coherence
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with itself. Wojciech’s point was that this kind of “diagonaliza-
tion” (that is, the loss of coherence except for x almost equal to x′)
breaks a rule of invariance that was most emphasized by Dirac in
the late twenties.

The Lagrange–Hamilton version of classical dynamics is invari-
ant under a large group of canonical transformations involving
both position and momentum variables. Similarly—and this was
Dirac’s point—quantum mechanics is invariant under its own
large group of canonical transformations, which is very useful in
many theoretical investigations. The kind of decoherent diagon-
alization we were discussing cannot, however, be invariant under
the full group of canonical transformations (in the x variables and
the corresponding momenta). It must select some special variables
(a specific “basis” in a more technical language), x being, for in-
stance, a position coordinate and not a momentum, or anything
else.

We cannot go into the mathematical details needed to explain
why our old friend, the principle of inertia, is ultimately responsi-
ble for a particular choice of variables in decoherence. We shall
only state the result: Decoherence leads directly to Newton’s con-
ception of classical mechanics. Who cares? you may be thinking,
Newton or Hamilton are the same to me. Please bear with me, for
it is really wonderful.

It should first be said that there was something amiss with the
recovery of common sense and classical physics we presented ear-
lier. We had been able to recapture classical mechanics, but in a
rather abstract form, along the lines of Lagrange and Hamilton’s
mathematical formalism. True enough, we had recovered common
sense and determinism, but I did not tell you, dear reader, how
abstract this view of our world remained. I simply said, mischie-
vously, that the angel was satisfied with it. An angel, perhaps, but
what about you and me? Are we used to walking in a so-called
symplectic phase space or merely in the street?

The results on decoherence cover the remaining stretch of the
road leading from the abstractness of quantum principles to the
cosy comfort of common sense. One can include, for instance,
the dissipation effects in a classical description of dynamics. The
last step back to the sources of physics, from Lagrange to Newton,
is, however, much more significant. Newton thought of a macro-
scopic mechanical object, either solid or fluid, as made of small
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parts located in ordinary space, not of course in a mathematical
space with as many coordinates as there are degrees of freedom.
These small pieces of matter are out there, though containing many
atoms. I can put my finger on them and tell you, “Look at this.”
Decoherence, when the principle of inertia is taken into account,
tells us that this vision of the world in ordinary three-dimensional
space, or rather the validity of this vision, is truly a consequence of
quantum mechanics. In our own world we can be simple again,
Greek again, with a clear mind. We can see. The visual representa-
tion of our macroscopic world is in perfect agreement with the
basic laws of physics that seemed to negate it for so long, and har-
mony is restored. I guess this calls for a celebration and might well
be worth a glass of champagne.

When the angel was told of this result, which has been known in
Heaven since BBB millenia or so, she was exhilarated. She could at
last open her eye, which knew only the photonless light of that
higher place, and see our world far below. “How beautiful is
earth,” she said, “when seen as human creatures can see it. How
pale a wave function is when compared with the rose hidden in it.
This way of looking at the world is the only real one. It is the way
of love.”

When there is a sudden moment of silence during a conversation
among several people, the French say that an angel has gone by.
We may perhaps have a short moment of silence to let our angel
go. And now that we are among human beings, is that everything
decoherence can tell us? Not at all. You may remember the crazy
story of Professor Babillard, who discovered that he might not
exist because of quantum mechanics. The story appeared crazy to
anyone with common sense, but it turns out now that it is hope-
lessly crazy, against logic, if you prefer, because it can be expressed
in terms of some Griffiths’ histories that can be shown to be in-
consistent. This inconsistency, namely, a failure to satisfy Griffiths’
consistency conditions, can be proved from decoherence. But who
cares about Babillard? The result is much more significant: any
property that can be asserted as a consequence of decoherence will
afterward remain valid forever; it cannot be invalidated by later
events. This means that the concept of fact is perfectly valid in
quantum mechanics. If one adopts Bohr’s definition of a phenome-
non as a conceivable fact, then all phenomena can be considered as
classical properties resulting from decoherence.

206



F ROM M E A S U R A B L E T O U N M E A S U R A B L E

When we remember that common sense directs not only most of
our thinking but also our actions, this possibility of relying on facts
is of course essential. Decoherence fully saves the appearances of
ordinary reality.

LAST WONDERS: THE DIRECTION OF TIME

The last wonder offered by decoherence has to do with the direc-
tion of time. An old question in physics concerned the preferred
direction of time in the world we see around us: A pendulum slows
down and its oscillations do not increase spontaneously; divers fall
down and do not fly out of the water; we realize immediately that
a film is being run backward. Time has a direction in a macro-
scopic world, but there is no such privileged direction among parti-
cles. The basic laws of physics, including quantum mechanics, are
the same when the direction of time is reversed. How can these two
conflicting facts be reconciled?

We have already stressed the relation between decoherence and
dissipation. Decoherence operates in a specific direction of time,
which is linked with the events it relates. It is impossible to go, for
instance, from the state of a dead and live cat, as found formally in
Schrödinger’s experiment, back to the live cat we had at the begin-
ning. Decoherence is logically inconsistent with such a reversal of
events. Why? Because we would not only have to simply prepare a
cat that is dead and another that is alive, which is easy, but we
would also have to prepare exactly their internal wave functions,
down to each of their BBB variables, for their state to go back to
the one Schrödinger assumed in his box. This is impossible.

Is it absolutely impossible? Not quite. If the “cat” is made up of
two or three atoms, the reversal can be performed in some cases,
and the direction of time does not matter. But with BBB atoms, it
cannot be done. Or, more precisely, the necessary experimental
device to perform the task of preparation would be bigger than the
whole universe. So big that it would not work, due to special rela-
tivity: actions in the apparatus would take a practically infinite
time. However, some say that this is a question of principle. Why
not consider a device composed of an imaginary sort of matter so
as to be small enough, though still with the necessary number of
“degrees of freedom”? It would be small indeed, but so heavy as to

207



C H A P T E R X I

collapse immediately into a black hole. In a nutshell: the laws of
physics we know forbid a change in the direction of time for a
sufficiently big cat.

Decoherence selects a specific direction of time for the events it
can link in a consistent way. Because of the close relationship be-
tween decoherence and dissipation, this direction of time is the
same as in thermodynamics. And finally, because decoherence is by
far the most efficient mechanism for ensuring the validity of quan-
tum logic (Griffiths’ consistency conditions), there is also a specific
direction of time in our logical account of the world, in the com-
mon sense following from it, and this direction is also the same as
in thermodynamics.

The word “wonder” is certainly appropriate when we realize
the way in which quantum mechanics deciphers secrets that went
almost unnoticed: that of the validity of classical physics and the
value of common sense. How far we are from Hume’s surrender
and Kant’s restrictions, and how clearly this should point the way
toward new vistas in philosophy. A world of the intellect where
humankind fully appreciates the consequences of the most efficient
effect in physics can never be the same as the old one.

MEASUREMENT THEORY

We have said that measurement theory proceeds in a deductive
fashion from first principles. Some of the results we have already
mentioned play an essential role in this deduction. Thus, the exper-
imental data displayed by a measuring device may be described in
a purely classical manner—we saw why this is possible when we
discussed the retrieval of common sense. It is also necessary that
the data be free from interferences, this being a consequence of
decoherence. The latter also plays a major part in the fact that the
data belong to consistent histories (in Griffiths’ sense).

In order to properly understand what a measurement is, it
would be helpful first to make a distinction between two notions
that are frequently confused: an experiment’s (concrete) data and
its (meaningful) result. The data are for us a macroscopic, classical
fact: thus, when we see the numeral 1 on the Geiger counter’s
screen, this is the datum. The result is something different, for it is
a strictly quantum property, almost invariably pertaining only to
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the microscopic world, meaning that a radioactive nucleus disinte-
grated, for example, or providing a component of a particle’s spin.
The datum is a classical property concerning only the instrument;
it is the expression of a fact. The result concerns a property of the
quantum world. The datum is an essential intermediary for reach-
ing a result.

A rigorous theory must begin by specifying the attributes that
make a given experimental device into a measuring instrument. We
shall omit them, though, and stay away from technical details.
What matters is that from those criteria we can establish the key to
our conclusion: the datum and the result are logically equivalent.
This equivalence may excuse those who had never made any dis-
tinction between the two, even if this theorem takes advantage of
the full force of the theory’s logical and dynamical formalisms. It is
also an example of quantum logic’s amazing power and of its po-
tential for clarity. Let me emphasize that this theorem rests only on
the following hypotheses: we are dealing with a measuring instru-
ment that we assume to be perfect (imperfections may be ac-
counted for later); the instrument is subject to the decoherence ef-
fect; the rest of the hypotheses are the principles of the theory.

Another important result regards probabilities. We may put it
roughly as follows: by repeating the same measurement a large
number of times we obtain data amenable to statistical compila-
tion, the result of which is necessarily in agreement with the the-
ory’s elementary probabilities as they were postulated from the
start. Recall that in our theoretical construction those probabilities
appeared simply as a logical, or linguistic, tool. It is only at this
stage that they finally acquire the empirical significance they were
lacking, and that chance enters the theoretical framework. We
have thus achieved the point where the theory may finally be com-
pared with experience, and the road leading from formalism to
concrete reality is at last complete.

WAVE FUNCTION REDUCTION REVISITED

One of the most important rules promulgated by Bohr concerns
two successive measurements. In its weakest form, this rule states
that the probabilities of the results of the second measurement may
be computed “as if” the result of the first one determined the wave
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function at the exit from the measuring instrument. The exact form
of this wave function is irrelevant for us (for the theoretician, it is
an “eigenfunction” of the first measured observable). The question
is to find out whether the above “as if” conceals a practical recipe
or a physical reality. The rule itself has at any rate been widely
confirmed through numerous experiments, so that its validity can-
not be questioned.

We have seen that Bohr did not consider the reduction rule to be
a mere empirical prescription, but as one of the most fundamental
laws of quantum mechanics—an authentic law of nature. He even
considered it to be unlike the other laws, for it alone allows the
theory to be applied, and hence to be verified. He also thought that
it was impossible to subject it to empirical verification, for the rule
was a prerequisite for any prediction. He even placed it on a more
fundamental level than Schrödinger’s dynamics, given the fact that
the latter ceased to apply when a measurement took place.

The answer provided by the new approach is much more pro-
saic. In it, wave function reduction does not appear as a truly
physical effect, and it is not necessary to even mention it in order
to develop a complete measurement theory. Indeed, within the
framework of Griffiths’ histories, and taking into account the com-
plete histories of the measuring devices as well as those of the mea-
sured objects, nowhere do we find something resembling a wave
function reduction, and everything remains in perfect agreement
with Schrödinger’s equation. We observe only a purely mathemati-
cal result: the probability of a history involving two successive
measures may be written in a form similar to the reduction rule,
and which, moreover, generalizes the latter when it is not well
defined.

Thus, wave function reduction would be no more than a con-
venient but nonessential recipe, a circumventing formula that al-
lows us to bypass a logical calculation. The rule appears when we
disregard the detailed history of the first measuring device to con-
sider only the datum that it has produced; we then follow the his-
tory of the measured atom as it enters the second instrument and
obtain in this way the result predicted by the rule.

There is a striking similarity between this result and other more
familiar forms of logical simplification. In our discussion of logic
and mathematics, we have seen that it is permissible to forget the
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steps in the proof of a theorem and recall only its conclusion,
which we may then use as the starting point for new proofs (this is
what we called modus ponens). Wave function reduction is in a
sense a kind of modus ponens, another logical shortcut where en-
tire portions of the measuring instruments’ histories are deleted.
The only true physical effect that conditions the result is the de-
coherence that actually takes place in the measuring device—and
not in the object being measured, as was long believed to be the
case.

THE CHASM

From what we have just said it might appear that quantum physics’
first principles generate their own interpretation, and that they
lead naturally, without any additions, to an image of the ordinary
world that is in perfect agreement with its most familiar features.
May we finally relax and say that everything is simple? Unfortu-
nately (or fortunately?), no. For we have to deal with a monumen-
tal question, that of a reality seemingly wishing to tear off the
wrapper of thought with which we have covered it. I call this im-
moderation the chasm, for it is the wide-open mouth of the Abyss;
not the mouth that speaks to Hugo, but the one that growls.

Chasm, where do you come from? Einstein shivered at your
sight and rejected you: No, “God doesn’t play dice!” We shall ap-
proach you, the formidable one, but cautiously.

Let us speak as physicists and return to the wave function reduc-
tion. When we said that the reduction rule could be deleted from
the list of principles of the theory we ignored the fact that the rule
hid a difficulty that is always present: every measuring experiment
results in a single datum, in a tangible, unquestionable fact. Now,
against that, what do we have to propose? A theory woven from
probabilities, a game of possibilities. Nothing in our theory offers
a mechanism, a cause, from which the virgin present, the immuta-
ble and pure uniqueness of Reality would result.

The greatest questions dazzle, and numbers of physicists prefer
here to cover their eyes. They hide away in the reassuring den of
the theory, from which they refuse to come out. The theory, some
of them argue, contains all possible worlds; we shall therefore
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conceive an immense wave function, born with the universe and
evolving ever since in conformity with the quantum laws. Each
time an alternative opens up, the universe’s wave function
branches out to conform to all possible outcomes. It takes a trifle,
almost nothing; a nucleus, in some obscure planet, disintegrates
(or not) and leaves a trace (or not) on some inaccessible rock and
the majestic wave function of the entire universe bifurcates. Same
result if a physicist measures a quantum effect in the laboratory. A
pebble is pushed right instead of left by the thrust of a mountain
torrent and the function forks again. Some of these events may be
grandiose; perhaps a little more matter or radiation here instead of
there when the universe was very young might result, in the remote
future, in two galaxies of different shapes; thousands of stars
would be affected. But most events are insignificant, of minimal
consequences.

Sure, but that is to be expected in a world where chance plays a
part. The theory is perfect because it incorporates chance; it con-
ceives only the possible. We shall mention, without endorsing it, a
strange idea proposed by Everett in 1956. Everything the uni-
verse’s wave function contains since the beginning of time is not,
according to Everett, a cemetery of ancient possibilities, never real-
ized, of which the unique survivor is the world we see today. The
wave function conforms to as many parallel realities as there are
possibilities, each following its own separate course. Reality is not
unique.

Insane idea, you might think, and I would agree. Everett’s con-
jecture appears to be the wild dream of a mind intoxicated by the-
ory rather than the product of a sensible reflection. And yet, can I
completely refute it? Certainly not! From what we know about
decoherence, an entity or being in one branch of this multiple real-
ity may never reach another branch; no experiment can establish
that other branches exist as well, or that its branch is the only one.
The parallel universes, in their uncountable multiplicity, com-
pletely ignore each other.

That settles it, an empiricist would say; it is therefore pointless
to discuss the topic any further. Science only studies verifiable
facts, and those theories cannot be verified. Hence, they have noth-
ing to do with science. Let philosophy deal with them, if it so
pleases.
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It is precisely the point I wanted to make. Since Everett’s theory
exists and cannot be refuted, even in principle, the question of the
uniqueness of Reality does not belong to the domain of science, of
what can be verified, but to that of philosophy or metaphysics.

That being said, why not philosophize a little? Let us examine
the position opposite to Everett’s, which must be called metaphysi-
cal despite all its appeal: Reality is unique. “Things are what they
are; profound, profound is that. Before he who prostrates himself,
we shall prostrate ourselves” (Lubicz-Milosz).

Profound indeed is that, but let us put it in milder terms, in the
form of a law of physics such as “Reality is unique. It evolves in the
course of time in such a way that different events that occur in
identical circumstances have frequencies of occurrence in agree-
ment with their theoretical probabilities.”

Formulated in those terms, the idea is not entirely new, Niels
Bohr having anticipated it under a similar form. Remember the
special role he attributed to the wave function reduction rule. He
distinguished it from the other laws of physics; it was for him the
foundation of the very possibility of comparing theory with experi-
ence, and so it eluded any experimental verification. Surely, we
have later seen that the practical wave reduction rule is not the
expression of a physical effect but a simple logical convenience.
However, the rule had for Bohr two quite different meanings: first
as a practical rule, to compute the probabilities of the outcomes of
two successive quantum measurements—which later became a
simple theorem. But the rule also accounted for the occurrence of
a unique event among all possible outcomes of a measurement, and
it is precisely for this reason that it was different from the other
rules. Interpretation has much progressed since Bohr’s time, and it
is now clear that the rule we have stated above captures the essence
of his ideas, even if its form is very different.

And now, here we are facing the chasm. What does this very
special, metaphysical rule say if not that theory misses what is
perhaps the essence of reality? Every characteristic of reality has
reappeared in its reconstruction by our theoretical model; every
feature except one: the uniqueness of facts. Theory and reality
agree on every aspect but for that single hiatus. Their disagree-
ment is, however, absolute (and I do not employ this word lightly),
for this conflict occurs at the most intimate level and each opposes
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the very essence of the other. Theory, being purely mathematical,
can embrace only the possible, and its probabilistic character is
inescapable. Reality, on the other hand, is above all unique, for it
is what is completely defined when we point our finger and say,
“That.”

We seem to have reached a limit, some fundamental barrier that
cannot be crossed; a warning, gravely telling us that the forms that
mathematics and its Logos can express do not fully fit reality.
What can we say other than that we have attained the bounds of
the “Cartesian program,” denounced only by Heidegger and until
now a complete success?

During more than half a century, countless philosophers and
physicists have reproached quantum physics for not explaining the
existence of a unique state of events. It is true that quantum theory
does not offer any mechanism or suggestion in that respect. This is,
they say, the indelible sign of a flaw in the theory, implying that a
better theory should replace it in the future. In my opinion, this
attitude originates in an idolatry of theoretical explanations.
Those critics wish at all costs to see the universe conform to a
mathematical law, down to the minutest details, and they certainly
have reason to be frustrated. For a long time everything seemed to
be going their way, but listen to the chasm growl. Come, you mor-
tals, and look at Reality, at what is, at what is flowing in a river
where nothing is ever in the same place twice, at what is endlessly
creating and changing; look at all that and now dare reduce it to a
mere appendix in the Logos of your mathematics, from which time
is barred and where stillness dwells forever!

I embrace, almost with prostration, the opposite thesis, the one
proclaiming how marvelous, how wonderful it is to see the efforts
of human beings to understand reality produce a theory fitting it so
closely that they only disagree at the extreme confines. They must
eventually diverge, though; otherwise Reality would lose its nature
proper and identify itself with the timeless forms of the kingdom of
signs, frozen in its own interpretation. No, science’s inability to
account for the uniqueness of facts is not a flaw of some provi-
sional theory; it is, on the contrary, the glaring mark of an unprec-
edented triumph. Never before has humanity gone so far in the
conquest of principles reaching into the heart and the essence of
things, but that are not the things themselves.
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ADDENDUM

Some progress has been made on the problem of uniqueness since
the publication of the French edition of this book.3 It is mainly a
matter of logic: it was shown that the present interpretation of
quantum mechanics is perfectly compatible with the uniqueness of
Reality; that is, this uniqueness is not predicted by first principles
but it does not contradict them either. There is therefore no prob-
lem per se, nothing to be solved by a new theory, but only the
wonder of theory and Reality fully agreeing even if their essence is
ultimately different.

Another remark may be added. Some physicists persist in seeing
as a significant problem what they call “objectification” (a rather
ugly name, by the way). It may be stated as a question: How is a
unique datum produced when an atom or a particle interacts with
some measuring device? As a matter of fact, there is no language
endowed with logic in which this question makes sense. Just like
the famous question, “Through which hole did the particle go?”,
this illusory problem is only a treachery of our classical mind: the
mirage of common sense creating visions where there is really
nothing sensible.

3 See the author’s Understanding Quantum Mechanics (Princeton, N.J.:
Princeton University Press, 1999).
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On Realism

THE RELATION between quantum mechanics and realism has al-
ways been a matter of controversy. Much has been written about
it by great thinkers. Their shadows over our head should invite us
to be cautious, but the topic cannot be ignored in any philosophi-
cal analysis.

A BRIEF HISTORY OF REALISM

The basic question is simple: Is scientific knowledge a knowledge
of reality? Realism stands for an affirmative answer. When science
explains that a table is made of atoms, how sap ascends in a tree,
or the workings of our heart, it is saying, or appears to be saying,
what these objects really are. Bernard d’Espagnat carefully ana-
lyzed the doctrine of realism, which he defined in more general
terms as a belief: to consider as obvious that “something” exists, a
reality whose nature does not depend upon our cognition faculties
or our actions when we are observing or measuring. The doctrine
of physical realism, which is the one giving rise to controversy,
adds a stronger assumption: through scientific investigation we
can have access to a proper knowledge of this reality, at least in
principle.

Many people believe that physical realism was typical of classi-
cal thought, before new questions were raised in the twentieth cen-
tury. However, the history of science does not support this sweep-
ing view but tells something rather different.

Science was still very young when some scientists began to call
its meaning into question. Another doctrine was proposed that re-
jected realism, either partially, and just as an afterthought, or even
completely. It adopted many different shades in the course of time
but basically it states that science provides a description of reality
in which the appearances of phenomena are preserved. Phenomena
are understood as something we can see or touch and, more gener-
ally, reach through perception or experiments. The word “appear-
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ances” also refers to our perceptions, which are taken for granted
(scientists rarely consider spells of illusion worth discussing). Ac-
cording to this wide-ranging doctrine, science provides a represen-
tation of phenomena but does not attain a knowledge of reality
itself. An extreme position considers that science produces “only a
representation,” while more moderate ones express in various
ways the shades between exact knowledge and efficient representa-
tions, depending on the circumstances.

The conflict between realism and the doctrine of representation
was analyzed by Pierre Duhem (1861–1916), a great historian of
science who also made significant contributions to thermodynam-
ics and physical chemistry. His works are particularly interesting
because written during the period when physics was just turning
away from classicism. He knew Planck’s and Einstein’s works but
was not much influenced by them. He was, however, well aware of
a change in the spirit of physics as a result of Maxwell’s contribu-
tions, and he could foresee the dominance of formalism. Since the
main developments in quantum mechanics occurred only after his
death, Duhem is an excellent witness of classical physics meditat-
ing on its own nature.

According to Duhem, there is a close relationship between real-
ism and explanation, already found in Aristotle. In the ancient
world, “physicists” were defined as those trying to explain things
as they are, as our eyes see them. A good example is provided by
the atomists, who explained optical phenomena by means of atoms
of light flowing from the sun, bouncing off illuminated bodies and
entering our eyes. An explanation of these phenomena by the
“physicists” then consists in forming in the mind a clear image of
the things as they are, atoms being, for instance, very small bodies
similar to grains of sand or specks of dust. The same image can
then be recreated in another human mind using words.

Classical realism is more or less that: it assumes that everything
real can be understood, seen by the eyes of our mind, and accessi-
ble to the power of reason. When Boscovitch (1711–1787) revived
atomic theory, he offered an explanation of new phenomena, such
as the effect of pressure and some chemical properties. He had no
doubt that atoms are really as our imagination sees them. He is a
true realist. When Descartes asserts that matter coincides with
space, he “sees” it, and is sure that his imagination agrees with
reality. As for Galileo, we must consider him a less extreme and
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rather cautious realist. Descartes, Galileo, Boscovitch, anyone
else? Duhem made a list of the scientists who were clearly realists
and it practically stops there. In the view of all other authors, real-
ism is mixed in various amounts with a belief in the features and
existence of a representation.

The initial signs of this cautious position appeared very early,
with the first theories in astronomy. Hipparchus made a remark we
have already mentioned, namely, that two different theories may
account for the planetary motions, using either epicycles or eccen-
trics. How can we choose one over the other? Perhaps both should
be suspected.

This doubt persisted, from Posidonius (around 131–51 B.C.) to
Saint Augustine and Simplicius in the first half of the sixth century.
Saint Augustine expressed it very clearly. Speaking of the motion
of Venus, he said, “Astronomers have tried to express this motion
in various ways. But their assumptions are not necessarily true
since the appearance one sees in heavenly bodies might perhaps be
saved by some other form of motion yet unknown to man.” The
famous motto according to which science “saves appearances” oc-
curs many times in the history of ideas and it was used by Duhem
as a title for one of his books.

When Copernicus’ theory was published, the same question was
asked: Does the earth really revolve around the sun, or is this only
another way of saving appearances? If so, it would be simpler than
the previous ones, since it needs a smaller number of epicycles,
each one of them of smaller size. When the Catholic Church real-
ized what was at stake in Galileo’s time, it advocated a purely rep-
resentative conception of science over complete realism, according
to Thomas of Aquinas’ philosophical views. Galileo was con-
demned for refusing this concession: he was, after all, a realist.

Our present views on this matter are closer to Thomas of Aqui-
nas’ than to Galileo’s famous “But it does turn.” One of the basic
tenets of our present theory of gravitation is that the laws of nature
are the same irrespective of the reference system used, from which
it turns out that the explicit equations for the laws are rather sim-
ple. However, such a simplicity criterion has no decisive objective
meaning, since only the mathematical form of the law has a univer-
sal value, and this form embodies all the special representations
one may wish to use to describe the phenomena. Realism will never
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be as simple as it used to be, and its “explanation” of the world
must be in any case much less conventional.

Leaving aside these modern considerations, let us go back to
classical physics and listen to what Newton had to say on this
topic. In his Principia, he said that with the help of his force of
gravity he could explain phenomena in the sky and the seas, but
could not assign any cause to gravity. Though convinced that such
a cause exists, he did not feign a hypothesis for it, since anything
that cannot be drawn directly from the phenomena must be recog-
nized as a hypothesis. By his abstention, Newton moves away from
realism, leaving us with a representation of reality by principles
with no further foundation. In the second version of his Optics, he
says that principles are only a condensed summary of observed
phenomena.

Newton does not exclude subsequent access to some realism,
though; he only refrains from saying more, in the belief that a di-
rect knowledge of the created world is reserved to the creator.

He is most careful not to follow Descartes, whom he thinks pre-
sumptuous for having said, “As for physics, I would consider
knowing nothing of it if I only knew how things can be without a
proof that they cannot be otherwise.” To which Pascal had angrily
answered, “One must say roughly: this is made by shape (figure)
and motion, because it is true. But to say which and build up the
machine is ridiculous; it is useless, never ascertained and labori-
ous.” This peremptory judgment was to remain a threat for all
later attempts at realism.

Everything had therefore already been said in the seventeenth
century. A reasonably complete discussion of classical realism
would have to include more, but we shall be extremely sketchy and
only mention Kant’s cogent objection: all knowledge must go
through the mold of our a priori synthetic judgements, the con-
straints of our mind, so to speak. Noumena, the things themselves,
are inaccessible. This is not very different from Bohr’s point of
view, formulated much later.

Much could be said on the representative value of models in
nineteenth-century physics. Take, for instance, Maxwell’s ex-
tremely fruitful mechanical model for ether—even if a model of
something that does not exist. It was to be replaced by principles
whose summaries are only equations. We should not forget this
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remarkable episode, which shows that realism can sometimes serve
as a guide in science, but that strict rationality and logical consis-
tency may well have the last word.

We should also remember thermodynamics, the science that
tells us what can be said when we know practically nothing about
a system. Our present statistical mechanics is much more realistic,
although one should not forget that it has its roots in quantum
mechanics. Mach’s and Avenarius’ speculations on the correspon-
dence between our mental processes and physical phenomena also
indicate the difficulties of realism. Modern cognition sciences have
shown how nontrivial and subtle our perceptions are when decom-
posed in our sensory organs before their recomposition in our
brain. Yesterday’s explanatory “images” have now lost much of
the obviousness they had.

Modern science has considerably increased the scope of realism.
We know the structure of a crystal and of DNA molecules, and we
think we know the internal structure of the sun. We have made
many direct observations and have clear mental pictures, except
for foundations that are only formal, as is the case in quantum
mechanics. This leads to a distinction between two notions of real-
ity: There is ordinary reality, things we can touch or see, often with
the help of our instruments. There are also things we consider as
real though we cannot have a picture of them: atoms, particles,
quantized fields. We know only their laws, which are still in a sense
a summary of experimental facts.

Bernard d’Espagnat took the bold step of considering that in
such cases the concept of reality may apply directly to the laws of
nature themselves. There is a “realism of accidents,” for events
occurring more or less by chance or fortuitous circumstances, valid
for ordinary reality. However, its range does not extend to the
quantum world, where the laws stand as exhaustive. Renouncing
the knowledge of microscopic accidents casts a veil on their reality,
of which no corner can be lifted.

Finally, we should not forget that in the history of ideas, real-
ism was an important topic among philosophizing theologians.
Saint Agustine was interested in that question only as a preliminary
for theology, while some of our modern questions may remind us
of other theologians such as Denys the Aeropagytus, Master Eck-
hart, Saint Bonaventure, and Nicola da Cusa. They all took for
granted that God exists, but were so exacting and had such awe
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and respect that they thought him far beyond what words can
reach. Inexpressible, unutterable, the Greek word for it is “apo-
phatic,” and this tradition is called apophatic theology. Perhaps
realism is ultimately an apophatic epistemology. Is this a joke?
Maybe.

QUANTUM PHYSICS AND REALISM

Einstein was particularly worried by the lack of realism in quan-
tum mechanics. Why this absence of realism? A mathematical ar-
gument, which we cannot develop in detail, would go essentially
like this. Suppose we are interested in the position of a particle at
various times. According to quantum mechanics, there is a wave
function expressing the probability of finding the particle in a
given place. The evolution of wave functions in time is described
by Schrödinger’s equation, and the wave function at time 1 de-
pends linearly on the wave function at time 0. Suppose now that
the particle is really in a specific place at time 0, although we do not
know exactly where. We do not know the particle’s velocity either
but, if the particle is in some place at time 0, it will be (really) in
some other place at time 1. According to Laplacian theory, a basic
rule of probability is the theorem of composite probabilities which,
in the present case, says that the probability for the particle to be
somewhere at time 1 is a linear combination of the probabilities of
its possible locations at time 0. The coefficients in this relation are
the probabilities for the particle to go from one place to another
between times 0 and 1.

Now comes the contradiction: the probability is given by the
square of the wave function. It is then impossible, except in very
special cases, to have simultaneous linear relations between both
wave functions and probabilities. Therefore, it seems that the basic
assumption, namely, that the particle is really in some place,
should be wrong.

This negative result is of course intimately linked with the im-
possibility of assigning a trajectory to the particle, which is the
main consequence of Heisenberg’s uncertainty relations. We might
add that Griffiths’ consistency conditions for histories often select
precisely the “special cases” mentioned above. We shall have more
to say on this later.
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Some physicists who were strongly motivated by realism tried to
find a way out. David Bohm, for instance, said that every particle
has a definite position and momentum but that its motion depends
on a wave function. The previous argument then comes apart, be-
cause it would have to take care not only of the “real” events at
times 0 and 1 but also of a “realistic” wave function. This direction
of research is still active, although it has not yet answered ques-
tions such as these: Are photons real? Is the electromagnetic field
real? Quantum mechanics needed only one year to go from quan-
tum electrons to quantized radiation, but this nagging problem still
remains unsolved more than thirty years after Bohm’s initial at-
tempts. And Nelson’s stochastic quantum mechanics approach,
where the relation between probabilities is changed, has not been
any more successful.

Complementarity was at the basis of Bohr’s argument against
naive versions of realism. As we indicated within the framework of
histories, complementarity shows that one may consider some
properties of a logical system and deal with them in a logically
consistent way, but that often there are completely different consis-
tent histories incompatible with the first ones, introducing, for in-
stance, a property of momentum rather than a property of posi-
tion. Both are logically legitimate descriptions, but they exclude
each other. Thus, one cannot speak of a real property.

Bohr swept aside most questions on reality, although he insisted
on the objective character of quantum mechanics. “[Quantum me-
chanics],” he said once, “requires a final renunciation of the classi-
cal ideal of causality and a radical revision of our attitude toward
the problem of physical reality.” Elsewhere he said, “In our de-
scription of nature, the purpose is not to disclose the real essence of
the phenomena but only to track down, so far as it is possible,
relations between the manifold aspects of our experience.” And as
a final blow: “We must never forget that ‘reality’ is a human word
just like ‘wave’ and ‘consciousness.’ Our task is to learn to use
these words correctly—that is, unambiguously and consistently.”

Up until now, the relations between the manifold aspects of our
experience have all been found contained in the principles of quan-
tum mechanics. We have also seen that the formal character of
the laws brings out another facet of physical realism: its relation
with the nature of mathematics. This aspect might open the way to
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some sort of grand realism where the whole field of science is con-
cerned, and some of d’Espagnat’s considerations go in that direc-
tion. Bohm’s and Nelson’s approaches, which search for an onto-
logical status for accidents, may be called petty realism (no slight
intended). The inclusion of mathematics within reality would be
a much wider kind of realism, and one which we later intend to
uphold.

ORDINARY REALITY

We have already defined ordinary reality as everything we can see
or touch. It consists of the obvious things Wittgenstein’s brick-
layer can point to while saying “that” to his assistant, without any
ambiguity.

Has ordinary reality a place in a world governed by quantum
laws? The answer is definitely yes. The things we can touch or see,
even with the most powerful microscopes, are macroscopic. We
have already seen how common sense can deal with them when
considered from the standpoint of quantum mechanics. Moreover,
the properties of these things that we perceive are immune from the
ambiguities associated with complementarity.

Expressed in more technical terms: although the basic laws are
quantum mechanical, the properties and phenomena occurring in
the macroscopic world can be stated classically, and it is legitimate
to do so (this result has by now been completely established).
When a phenomenon is observed, we call it a fact. Since we are not
solipsists, we also admit that many facts exist everywhere though
no observer can see them. Facts are said to be true.

An essential feature of our language is its capacity to deal with
possibilities as well as with facts. Facts are actual and phenomena
are possible, and statements about them entering in verbal propo-
sitions are either true or false. This notion of truth or falsehood is
legitimate from a logical point of view because, in spite of comple-
mentarity, classical statements that are meaningful are unambig-
uous. Some of them can be proved to be true from the mere obser-
vation of a fact. For instance, I leave a book on a shelf, close the
door, and make sure nobody enters the room, no hurricane blows
through a window, and a few similar conditons are satisfied. I can
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then assert as true that the book is still on the shelf although no one
can see it—this could even be proved as a consequence of the quan-
tum laws. Thus, there is no problem with ordinary reality.

The realm of ordinary realism is considerable. Except for parti-
cle and atomic physics, including some fragments of chemistry,
most of science deals with macroscopic objects and macroscopic
parts of those objects. The same is true of biology, DNA and pro-
teins being practically macroscopic. Some people have envisioned
a possible role of quantum events in the mechanisms of life, per-
haps in our brains, but although one may have strong suspicions
against such speculations, this is not the place for discussing them.
In any case, there are no cogent arguments for not granting that all
of science, except the parts we mentioned, is perfectly classical and
belongs to ordinary reality. It need not raise any philosophical
qualms.

RATIONALITY VERSUS REALISM

When we deal with microscopic objects, complementarity forbids
us a realistic approach. This renunciation is somewhat similar to
Kant’s rejection of realism when he declared the thing in itself, the
noumenon, inaccessible to pure reason. Instead of the limits im-
posed on reason by categorical judgements, the constraints we can-
not escape are now those of logic. Something real is necessarily
something true.

However, a significant difference between reality and truth is
that the former is existential and wordless, whereas the concept of
truth is perfectly controlled by logic. This gives us a handle on the
problem of realism. According to logic, true statements should
obey some general conditions or axioms. The most interesting of
these asserts that if a proposition a is true and another b is also
true, then the proposition “a and b” should be true.

Most statements in quantum logic cannot be said to be true be-
cause of complementarity, even when they belong to a consistent
family of histories and follow logically from a true fact. There
exist, however, many statements that may be said to be reliable (or
trustworthy, in d’Espagnat’s terminology): they can be relied upon
without fear of running into a logical contradiction. In a nutshell,
the range of rationality is wider than that of realism.
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Consider, for instance, a proposition a regarding a quantum
particle at a given time. It belongs, together with its negation, to a
consistent family of histories including all relevant phenomena (or,
more plainly put, all the experimental data one could observe).
Each experimental datum, a fact, is also stated as a property, and
it turns out that one or several such data imply proposition a ac-
cording to the laws of logic.

In ordinary reality, when a fact implies a statement, the state-
ment is necessarily true. This is not so in the quantum world. It
often happens that there exist several consistent families of histo-
ries with the same data, and in some of them another proposition
b also follows logically from the data. If there is no consistent fam-
ily including both propositions a and b, complementarity forbids
us to consider a as true. Thus, the proposition “a and b” cannot
even be stated, and of course it cannot be true. By sticking to a
given consistent set of histories, there will never be any contradic-
tion if one relies on proposition a “as if it were” true. This is what
is meant by a being reliable or trustworthy.

THE “EPR” EXPERIMENT

No wonder such a tricky situation has given rise to innumerable
discussions. The framework of consistent histories and their logi-
cal apparatus has contributed to its clarification, but in some sense
it also made the situation worse with regard to realism, because
everything is so neatly specified that there is no possible way out.
In 1935, Einstein, Podolsky, and Rosen (abbreviated as EPR) pro-
posed a way to introduce an element of realism in quantum me-
chanics. Their famous experiment is worth discussing. (We shall
assume a certain familiarity with the notions involved on the part
of the reader, since a complete explanation would be too lengthy.)

In a form given by David Bohm, the EPR experiment is the fol-
lowing: A particle Q decays into two spin-1/2 paricles P and P′ in
a state of total spin 0. The spin component of P along a direction
n is measured at time t. Similarly, the spin component of P′ along
a direction n′ is measured at a later time t′. The results of the mea-
surements or, more properly, the corresponding data, are plain
facts, and the questions we ask concern the spin of P′ at a time
immediately following t, when the spin of the other particle P has
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already been measured and P′ itself has not yet entered the measur-
ing device. What can be said?

According to EPR, the spin component of P′ along the direction
n, between times t and t′, must be opposite to that measured for P.
This is propositon a in our previous discussion. It belongs to a
consistent logical framework in which it is implied by the measure-
ment of P. In our terminology, proposition a is at least reliable.
EPR considered it to be true, arguing that this property of P′ is
known without perturbing P′ in any way. They called it “an ele-
ment of reality,” a glimpse of something real in the midst of
quanta.

But such an element of reality cannot be true for the following
reason: Consider another proposition b stating that the spin com-
ponent of P′ along the direction n′ between times t and t′ is already
equal to the value that will later be measured at time t′. Whatever
we had in favor of the truth of a still holds for b. It enters in a
consistent logical framework in which it follows logically from the
datum at time t′. Propositon b is just as reliable as a, and there is no
logical framework, no consistent family of histories including both
of them, so that proposition “a and b” is meaningless. None of
them can be true, since they are on the same footing. EPR’s element
of reality has therefore no more reality than any other quantum
proposition.

The above situation can be concretely illustrated as an argument
between two persons. Consider then two physicists, the unavoid-
able pair Alice and Bob, each of them having made one of the two
measurements. Then each of them can assert that she/he knows
something about the spin of particle P′ between times t and t′. “I
know its component x”; “Myself, I know its component z.” Since,
according to quantum mechanics, these two statements are incom-
patible, they go on arguing. Each of them can argue that there is no
possible logical flaw in his/her reasoning, and that logic is on his/
her side. “I know how to think, my dear, and everybody in my lab
can vouch for me.” Neither of them can accept the other’s point of
view, since it is incompatible with hers/his. “Look, since it is per-
fectly clear that I’m right, you can’t be.” Frege, who knew the sig-
nificance of a universe of discourse in logic, would have con-
demned them both for their ignorance, had he been the fourth
judge in Hades.
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The case when both directions n and n′ are the same has been
described in a humorous way by O. Steinmann. An interplanetary
lottery is to be held on planet earth in a quantum fashion. An EPR
pair of particles is produced on earth at time 0, particle P′ being
kept in a trap for the purpose of measuring its spin component
along n at time t′. People play by betting on the result of this mea-
surement. A cunning inhabitant of Saturn decides to cheat: parti-
cle P passing nearby, he measures surreptitiously its spin compo-
nent along direction n at a time t before t′. He then knows with
certainty what the result on earth will be, makes a bet, and, of
course, he wins. This is real, Steinmann says, since what could be
more real than getting the money? The lottery organizers suspect a
swindling, but there is nothing they can do, because particle P
grazed Saturn too late for a light signal sent from Saturn to reach
earth (or the other way around) before the draw. The organizers,
admirers of Einstein’s, cannot claim that inside information was
used and must pay up.

Is there a violation of relativistic constraints in this case? The
answer is no, because the Saturnian had prior information,
namely, how the pair of particles was produced at time 0, as well
as information about a future event, namely, the direction n along
which the measurement on earth would be made. This is essential,
and the trick is that, although the result of each measurement is
random, the two of them are strongly correlated. Some people find
it hard to swallow that two particles separated by such an enor-
mous distance could be so strongly correlated, but this is a fact
of life. It has been experimentally confirmed and we shall now
see how.

BELL AND ASPECT

Some readers may be wondering why nothing was said about the
work of John Bell. It is now time to make up for this oversight,
though once again we shall assume the reader to possess the neces-
sary background for the sake of brevity.

John Bell was unhappy with the status of reality in quantum
mechanics. Is there something real hidden behind quantum me-
chanics? If so, Bell made some very reasonable assumptions about
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those hidden features. Like everything else in ordinary physics,
they should be describable by numbers, namely, by some hidden
parameters. Since quantum measurements show random results,
the hidden parameters associated with measured particles must be
random but, being real, they must obey classical probability calcu-
lus, as does anything real that is not exactly known.

Bell considered the EPR experiment as we described it, with two
directions n and n′ as before. Time is not relevant in the present
case, and we may take t = t′ (the two measurements being made
on the two particles when they are far apart from each other and
essentially at the same time). Let A (B) be the device measuring
the spin component of particle P (P′) along the direction n (n′). Bell
made an assumption of separability between the two devices. He
assumed that the result of the measurement of P by A depends
deterministically upon the direction n and the hidden parameters
for P as well as P′, but nothing else. He made a similar assump-
tion regarding the result of the measurement of P′ by means of the
device B. It should be emphasized that one explicitly assumes that
the result coming from A does not depend on n′, that is, that the
two apparatus can ignore each other even if the two particles are
classically correlated. As an example of correlation between real
objects, think of two parts of a stable rocket after having been
separated: if one of them spins in one direction, the other spins in
the opposite direction. This is the kind of correlation that can be
assumed.

From these assumptions, and using classical probability theory,
Bell obtained in 1964 some inequalities for the combination of the
results of both measurements, involving a few well-chosen direc-
tions n and n′. The beauty of his result is that these inequalities are
not always satisfied by the predictions of quantum mechanics. The
reason for the discrepancy is due to the quantum description of the
two-particle state. This is a so-called entangled or nonseparable
state, whose correlations cannot be properly represented by classi-
cal probability calculus. Bell’s result thus opened the possibility of
an experimental test for the existence of a specific, common sense
kind of reality.

The experiment was carried out by several groups of research-
ers, the most precise results being obtained in 1982 by Alain As-
pect and his team. The two particles were photons emitted by the
same atom, and the spin measurements amounted to polarization
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measurements for the photons. The result was clear-cut on the side
of pure, hard quantum mechanics against hidden separable reality.

We must say a few words about nonseparability. It means that
the properties of a quantum system may happen to be correlated
with some properties of another, faraway system. In the consistent
histories approach, this means that, when the two systems are con-
sidered together with the measuring devices, consistency requires
the right correlation between data. What is stated about the mea-
surement of particle P is not arbitrary if a statement about the
measurement of particle P′ has already been chosen, at least when
the two directions n and n′ are parallel. This is a requirement of
quantum logic. It goes against Bell’s assumption, since the choice
of the two directions, for well-separated devices, must be taken
into account.

Much fuss has been made about nonseparability. For some peo-
ple, it implies that quantum mechanics is holistic: it can speak only
of the whole universe and not of its separate parts, even when one
of them has no interaction with the rest of the world. It is as if a
basic tenet of science, namely, the possibility of investigating an
isolated part of the world by itself, were denied. Had these people
been right, this would of course have been a severe criticism, since
science is based on the study of limited objects, which is the mildest
form of reductionism.

Such extreme conclusions are fortunately incorrect. One can
perfectly well describe and use a system that is sufficiently isolated
from the rest of the world. This system may involve as many exper-
imental devices as necessary. Nonseparability only implies that
two such systems, with no direct mutual interaction, can show cor-
relations in the results of their respective measurements in some
special cases. These cases can always be determined by a careful
consideration of the preparation device and, at any rate, any fact
observed in one system is not changed because of the existence of
the other system. Measurements are correlated, but who cares?
This is not a direct influence.

Mathematically, nonseparability amounts to the fact that a
wave function for several particles is not generally a product of
individual wave functions for each particle. This is particularly the
case for identical particles, electrons or photons, for instance, for
which the global wave function must be antisymmetric or sym-
metric according to Pauli’s principle. Nonseparability thus ranks

229



C H A P T E R X I I

among the deepest principles of quantum theory, and its bene-
fits far outweigh the slight philosophical qualms it may have
provoked.

Nonseparability, or Pauli’s principle for electrons, explains why
a table made of wood or steel is hard, why atoms can bind in a
molecule, why matter is stable and does not collapse into nothing-
ness, as well as many other effects, too numerous to be listed. Non-
separability of photons is, on the other hand, necessary for a laser
to work. Those who prefer nature to be separable should therefore
stay away from nightclubs. Pity on them; were they to have their
way, it would be a proof of their own nonexistence.

As a final comment, Bell’s assumptions seem so reasonable at
first sight because they are correct for the description of random
classical events. Their classical validity may be proved by the same
techniques used to recover common sense from quantum physics,
and they appear reasonable because they belong to common sense.
If they failed under an experimental test it is simply because com-
mon sense cannot be extended to a genuine quantum system.
That’s all.

CONTROVERSIES ABOUT HISTORIES

Some readers may have heard that consistent histories have been
criticized in the physics literature and, since a large part of this
book makes use of this approach, the question should be clearly
restated.

Maybe a brief history of the main events might help to bring
them into focus. Consistent histories were first proposed by Robert
Griffiths in 1984 and their logical background was noticed by the
author in 1988. Two years later, Murray Gell-Mann and James
Hartle reformulated them in accordance with the notion of de-
coherence. Criticism came first from Bernard d’Espagnat in a
somewhat roundabout way. He argued that readers of these papers
might get the impression that consistent histories restored naive
realism in the quantum world—without asserting that the authors
had claimed such a thing, because they had not. As a matter of fact,
we were at the time too busy exploring the consequences of the
new theory to worry about philosophical issues.
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D’Espagnat was nevertheless right in reminding us that such is-
sues are important. For reasons that should be obvious from our
earlier discussion, he raised the question of truth. “What should be
said to be true within the history framework?” he asked. And he
carried on his attack by pointing to a weak link: he noticed that
Griffiths had perhaps a bit hastily used the word “true” in some
places, while Omnès had been mischieviously cautious in never
employing it.

In trying to solve the problem, I was led to formulate the notion
of logically reliable though not true propositions, a notion en-
dorsed by d’Espagnat himself, who called these propositions trust-
worthy (and of course not entirely true). Unfortunately, having too
hastily worked out the solution of a problem that had been forced
on me, I proposed a criterion for defining true properties in quan-
tum mechanics. It appeared to be a mild one, since the true state-
ments it allowed, besides facts, were only the results of quantum
measurements and the classical properties of macroscopic objects
when these are not under observation.

The criterion I had proposed was wrong, as Fay Dowker and
Adrian Kent have shown. Their conclusions somewhat exceeded
their results because they worked only with algebraic techniques,
which did not allow them to take a full account of the decoherence
effect and the peculiarities of classical statements. They had never-
theless a good point and I willingly retract the said criterion.

What can be said to be true? Facts, of course, are true, but what
else? The essential obstacle is complementarity, or the multiplicity
of consistent logical frameworks describing a microscopic system.
Truth must be immune against the ambiguities of complementar-
ity. Moreover, when a true proposition is added to the facts and
logically follows from them, no other proposition incompatible
with it should be possible. The conclusions concerning reliable
“non-true though not untrue” propositions then remain correct,
but everybody already agreed on that point.

The classical properties of a macroscopic object that is not
under observation are still true within the framework of classical
propositions (derived from quantum theory). We should add that
no quantum measurement or anything like it must be taking place,
but this can be expressed as a condition on the preparing process
in terms of histories.
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What about genuine quantum propositions? Only very few of
them can be said to be true. They do not even include the result of
a measurement as a real property of the measured system at the
time it was measured, except in a few cases. Truth is mostly re-
duced to a definite property of the measured system resulting from
the measuring process immediately after complete decoherence in
the measuring device. Even that must be qualified: the measure-
ment must be an “ideal” one, which does not spoil a so-called
eigenstate of the measured observable. To put it another way, an
ideal measurement gives the same result twice if performed in im-
mediate succession. It might appear as a meager conclusion, were
it not for the fact that it covers the cases where the rule of wave
function reduction has been used for so many years in the practice
of physics or, in other words, the essentials of the Copenhagen
interpretation of measurements.

The conclusion is therefore that not much can be said to be true
in the quantum world of individual events. Reality remains veiled,
in d’Espagnat’s words. The little that is true, or real, is, however,
sufficient for doing physics, if one insists on introducing the word
“true.” In fact, the word need not belong to the vocabulary of
physics, except for facts.

Does this mean that histories have suffered a severe blow for not
succeeding in reaching realism? Not at all: realism was not their
goal, and they have no claim on a restoration of some naive real-
ism. What are they, then? The answer is simple: a method.1 His-
tories were used as a pedagogical method when the archangel
taught the young angel physics. As for human physics, histories
provide a method for putting order in a subject—interpretation—
that would otherwise easily turn into a labyrinth, as it often did
in the past. This method introduces logic in a subject much in need
of it. It is a method for proving: it adds nothing to the basic prin-
ciples of the theory, each of them separately confirmed by experi-
ments, and only makes use of these principles, just as every method
is supposed to do.

No method can claim a monopoly on correctness, for the same

1 I am here expressing a rather reductive view of the power of histories, which
has the merit of avoiding controversy. Perhaps histories have more power in store,
which could be used in quantum cosmology, for instance. Only time will tell. It
should be clear that the restricted value I place here on histories does not bind
others working in the field who may expect more from them.
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results may be obtained with other methods. Only the principles
on which it stands and the conclusions it reaches are important.
Does it matter if a theorem is proved by an algebraic or an analyti-
cal method as long as it is proved? Till now, no method has had the
scope or obtained some of the basic proofs that were achieved with
the method of consistent theories. Other methods may very well
do, only to reach (necessarily) the same conclusions.

Many of these conclusions, by the way, had already been
guessed by Bohr thanks to a stroke of genius, unaided by the
powerful mathematical techniques and the guide of a discursive
construction available to latecomers. Or perhaps he found them
through a lifelong meditation worth of our admiration. The
method of histories allows one to prove rather than guess or gloss
endlessly over Bohr’s writings. It turned interpretation into an or-
dinary discursive theory anyone can check. It also showed that the
questionable railings against tomfoolery Bohr had to erect, such as
his drastic separation between quantum and classical physics, are
not necessary, and their removal greatly opens up our vistas.

The only comment we wish to add concerns the choice of the
properties entering into the practical use of histories. This choice
was criticized because of its arbitrariness, but it can be very easily
justified: a physicist needs to describe what he is doing in simple
words. She needs to draw conclusions from observations with the
help of logic. She wishes to put some of the steps in a form that can
be directly investigated using the theory’s mathematical tech-
niques. Which properties to choose? Only those most convenient
for the purpose at hand. Many other descriptions may do as well,
all different because of complementarity. Some of them will lead to
the same conclusions and they are just as good. Others will be
useless, not necessarily wrong but only idle talk of no consequence.
Why bother? Asking questions about the existence of useless histo-
ries amounts to performing calculations that are of no help in solv-
ing a problem. They belong in the waste-paper basket.

TOWARD A WIDER REALISM

What are we to conclude? Realism, in so far as it recognizes that
the world does not depend on us for its existence, is unassailable.
When it says that the ever-changing world our senses perceive is
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real, this is just a definition, the definition of the recognition of
“that.” In saying that ordinary reality agrees with common sense,
one is simply stating an immemorial observation. Quantum me-
chanics adds only that its laws have no objection against such an
observation and, in some sense, make it deeper, in harmony with
universal laws. What a wonder this was for the pre-Socratic philos-
ophers we met in Hades.

However, our words, our vision, and many familiar philosophi-
cal principles humans drew too hastily from common sense, break
down when confronted with the atomic world. The laws of this
world are in a sense real, since their consequences have always
been found to be right. Have we reached their ultimate form? or do
they have other facets, new extensions we have not yet found?
Whatever the case, there is no reason to expect wider laws to be
less formal than the present ones. We are in any case left with the
cogent philosophical task of coming to terms with formal science
and mastering its meaning.

Our next task will be to attempt an approach toward a wider
realism, fearlessly confronting formal science and mathematics to-
gether. This is the birealism we shall propose in the last chapter of
this book, maybe too bold a step for a physicist. Bertrand Russell
once said that there are no worse philosophical books that those
written by scientists seized by the middle-aged love of philosophy.
It is also often said that science by itself cannot produce any new
results in philosophy, only decide whether certain philosophical
statements are valid or not, and this is certainly true for a definite
branch of science. The very existence of science, however, its de-
gree of universality, and some of its characteristics, raise obvious
questions of a philosophical nature, for which science, as a total
object of reflection, can suggest tentative answers.

We shall not go very far toward the wide or grand realism offer-
ing its vision now in a remote perspective. Only some possible
trails, maybe, will be sketched. They would be much better fol-
lowed by true philosophers, and my only aim will be to offer them
a few hints for a long and fascinating journey, and to invite you,
the reader, to the joy of contemplation.
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A New Beginning

A PRELIMINARY REPORT

IT HAS BEEN a long journey, even if we have taken some shortcuts;
but it is not over yet, and we have every reason to go still farther.
We cannot ignore the signs along the way pointing to the almost
immediate presence of a new philosophy of knowledge.

Let us begin by reviewing the situation. We have started from a
state of knowledge familiar to everyone and whose broad lines can
be retraced. It is first of all an existential situation where human-
kind penetrates time and space, and matter too. Humanity is aware
of the extent of the universe, it probes its birth and reconstructs its
history; it knows the unity that transcends life’s diversity and also
knows its place in it. It is an intellectual situation as well, where we
possess a science that is incomplete, to be sure, but how revealing!
A science that has shown us the existence of very profound laws at
the heart of things, laws that are not discordant but harmoniously
meshed into a tight bundle. A science that has also revealed a co-
herence between the products of our intellect and the outside
world, between Logos and Reality, in other words, between the
major terms in yesterday’s and in today’s philosophy.

And yet, this science appeared obscure and inscrutable, with its
heart caught in the thick thorns of its formalism. It was by plough-
ing through that thorny tangle that we could see the view change.
A peculiar science, quantum mechanics, came to the rescue, no
doubt because it is the one that can most deeply penetrate the bun-
dle of laws, perhaps down to its very origin.

We have learned some extraordinary things, even if not all of
them are equally convincing. For the philosopher, the most im-
portant consequence is the reversal of an intellectual approach sev-
eral times millenary, which we presently follow in the opposite
direction. Surely, we agree with Hume that it is the world around
us which, through our senses, forges our thought structures; first
on an individual basis, and later spreading to the community of
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humans by means of language. The evolution of our species and of
those that preceded it took place in this world, by yielding to its
secret order, concealed but persistent, and gradually refining our
perception. But we reject Hume when he declares that the source of
the world’s order is inaccessible, and we also reject Kant, for he
sees that source only inside ourselves. The source is out there, in
the laws we now know well, or at least sufficiently well. We know
enough of the world’s order to rely on it.

Thus, to start from common sense alone is out of the question.
It is by reflecting on the nature of this common sense that in the
past philosophy chose its principles, declared them unassailable,
and drew up their list. Then, based on them, it believed that it
could pierce through everything the mind could think. But those
principles collapsed one after the other when they were confronted
with the world of the “infinitely small”: intelligibility (or the possi-
bility of representing reality in our minds), locality (each thing has
a place of its own), causality (every effect has a cause), discernabil-
ity (two things that are not the same can be distinguished by the
mind), cognizability (if an idea concerning the world can be
thought, it can in principle be decided whether it is true or false).
Philosophy’s dream of explaining the world was vain, at least in
the sense of its own idea of an explanation: to have a clear picture
in the mind of the thing being explained, an image that could be
put into words and communicated to others through those words.
It is to symbols that we must now resort.

But those symbols contain the concepts and express the laws like
principles of another kind, and we have seen how the reversal takes
place. Once these new principles have been conquered, through
painful efforts and lengthy reflections, they can restore the world.
It is in them, impregnated with matter, and not in our mind that the
source of logic, and hence of reason, lies. Our vision of the world
with all its appearances takes roots on these principles and emerges
again as one of their manifestations. We no longer attain the prin-
ciples of the world through the ordinary language of reason, but
instead obtain an incomparably stronger consistency by deducing
reason from those principles.

One more revelation must be borne in mind, or at least exam-
ined closely if one still has doubts about it: the chasm, as we have
called it, the unbridgeable gap between theory and the real world,
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between thought and existence, or, to use our previous terms, be-
tween Logos and Reality.

Such is the new state of affairs that we must now face.

THE BEGINNINGS OF A PHILOSOPHY

Recall Bacon’s words, which we have perhaps stretched beyond
their author’s intentions to make them sound like a prophesy:
the most general axioms of science will be reached only at the end,
and it will then be seen that these are not deceptive notions but
well-defined concepts that Nature will recognize as its first prin-
ciples, present in the heart and the essence of things. Would it
be possible that today those words could be spoken in the pres-
ent tense, and that science could be ready to give birth to a new
philosophy?

This question is more than a simple suggestion, and what we
have just said regarding quantum physics almost compels us to go
ahead. This science, so singular and revealing, contained in its
principles the instruments of its own interpretation. Likewise,
could it be that all of science should lie so close to the heart and the
essence of things as to give rise to its own philosophy? A philoso-
phy of knowledge, to be sure, but isn’t it a prerequisite for any
philosophical enterprise—other than doubt, of course?

Science has come a long way. It has traveled from reason to the
absolute symbols of mathematics, and from ordinary objects to
their universal laws. In the beginning, ignorance and darkness per-
meated everything; from language itself, the instrument of reason,
to the objects surrounding us. True, the latter concealed their mys-
tery and appeared at first as obvious, as irreducible. We now see
them differently, better in fact, and the sources of reason also begin
to show up: in a world where order is pervasive, a life born out of
a chemical process that evolves, with increasing complexity and
strength, right to the human brain, the organ that perceives the
order. Many links are still missing, and the culmination of the
whole process, our brain, is only beginning to reveal itself, but a
few broad outlines may be perceived already.

Thus we see science start from the unknown, and from this
darkness attain the point where the beginning, previously accepted
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without questioning, is all light. Science reverts to its own origin,
like a circle destined perhaps to be perfect. But such a circle, even
if complete, will still be a circle, without beginning or end, that is,
without its own guiding principle, in other words, without philos-
ophy. This is why we must break it, so it can bear fruit.

To break the circle means finding that which it cannot learn
about itself by itself. It is finding a founding principle for science
that science itself cannot provide. Only then, perhaps, may meta-
physics begin.

Science developed in opposition to metaphysics, and it had to.
There was even a time (which many believe includes the present)
when metaphysics was thought to be dead, wiped out forever.
Hume ridiculed it, trampled it, but had to impose a proscription
that was itself metaphysical: the absolute impossibility of reaching
the source of the intrinsic order of things. We now know that, in
that respect, he was totally wrong.

What do we mean here by metaphysics? We know its etymol-
ogy: “that which comes after physics.” According to the scholars,
the name might not have the deep meaning we would expect, but
originated in connection with a catalog. Aristotle’s books did not
have titles (not all of them did, at any rate). One of them was called
Physics, the same name (“On Nature”) given by so many earlier
authors. The book next to it on the shelf would have been given as
title Metaphysics, “coming after physics,” the next one. I would
rather adopt the sense this word appears to have: the result of re-
flections provoked by a certain knowledge of physis, of nature. I
would also add the sense of the prefix meta, the same one “meta-
language” has in logic: a way to penetrate that which cannot be
sufficiently exploited in its own language. To sum up, it is all about
trying to learn, trying to reach the things science carries within it
but cannot itself tell.

Thus, I claim that science is presently mature enough to permit
the revival of metaphysics. Obviously, such a claim cannot be the
consequence of a proof but, at best, of a conviction. It is also an
expression of hope, of encouragement, addressed to the philoso-
phers of the future, who will contemplate with indulgence the dere-
liction of those of the present. To talk about this new enterprise I
will gladly borrow Bacon’s words about science: This instauration
will be by no means forgetful of the conditions of mortality and
humanity, for it does not suppose that the work can be altogether
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completed within one generation, but provides for its being taken
up by another.

This was perhaps the most I could say, because from this point
on the journey is so full of surprises and possibilities that it would
be impossible to anticipate them. I will nevertheless carry on,
warning the reader not to see in what follows anything more than
an outline, the uncertain contours of incipient ideas.

It would be advisable to stop here as well our discussion of the
state of the question, because I find more confusing than enlighten-
ing the contributions of certain authors of contemporary episte-
mology, some of them among the most popular. This remark does
not of course apply to the rich and necessary works of historians,
nor to some older books worthy of serious consideration, even if
the state of science at the time they were written renders them par-
tially or totally obsolete. Notable among these are the books by
Bachelard in which he provides a touch one would like so much to
find elsewhere, and which I have tried without success to introduce
here: the touch of the poet, the only one that remains, together
with that of the visionary, in a passing knowledge.

THE RELIGIOUS TEMPTATION AND THE SACRED

I would like to close this chapter on a question that many readers
might probably have raised themselves: the connection between
the above enterprise and religion. There are many books these days
whose authors believe they have found in science the signs of the
existence of God. Christians (and no doubt Jews as well) see in the
theory of the Big Bang the confirmation of the story told in Gene-
sis. Others, or the same ones, assimilate the Law of the Old Testa-
ment, or Torah, to the laws of nature. Yet others cite some oriental
religion, such as Tao-tö-king, as evidence. It is true, as the last
example shows well, that those texts are highly poetic and there-
fore allow for a rather fuzzy interpretation. Besides, our modern
authors’ reading of them is entirely based on analogies. We must
however ask ourselves whether there is here something other than
a mere play on the ambiguity of words, even if our authors take
themselves very seriously. But are they really?

On tackling this kind of subject, even briefly, one must clearly
show his true colors. Thus, I, the author, call myself a Christian,
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though my preferences in matters of belief are closer to Nicholas de
Cues’ Docta Ignorantia than to Thomas Aquinas’ Summa Theo-
logica or Karl Barth’s Dogmatik. By this personal note I wished to
assure my Christian friends that the targets of my criticism are only
certain thoughtless proselytes.

I shall bring up only one argument, too often repeated: the inter-
pretation of an astonishing scientific discovery—the probable, if
not certain, existence of a beginning of the universe—as a proof of
the creation of the world and, as a consequence, of the existence of
a Creator. This is a flagrant lack of logic. Let us take a closer look.
Within the framework of general relativity, stretched to its limits,
there is one particular solution to Einstein’s equations that appears
to be by far the most plausible. It implies a so-called homogeneous
and isotropic universe (that is, having the same properties in like
degree in all directions), in agreement with the observed distribu-
tion of the galaxies and, especially, with the thermal radiation that
currently fills the universe. The special solution so obtained pro-
vides a mathematical model of the universe and its history pre-
senting what is known as a singularity, a barrier that the laws of
physics forbid crossing, located in the past and beyond which time
cannot be extended. Delving into the model thanks to our knowl-
edge of the laws of physics, we can derive various consequences:
the present amount of helium and of other light nuclei, all the char-
acteristics of the thermal radiation mentioned above, and Hubble’s
law on the recession of galaxies. All these consequences are reason-
ably well confirmed by experience and they therefore lend a high
degree of plausibility to the model. One can then logically believe
in this model, and much of it is likely to be true. Let us assume so.

What have we proved? Something extremely important for the
physicist: the fact that the laws we discovered here now apply to
the whole universe. But then, what has God to do with all this? Do
we need him as the Creator? This would amount to imagining a
limitless time containing at some point the instant of creation. We
can conceive some Jewish author writing such a story at around
Ezra’s time, but today? The science on which the argument is
based, general relativity, is unequivocal on this point: no physicist
can give any meaning to the notion of time beyond the singularity,
beyond the “beginning.” Moreover, Saint Augustine came to the
same conclusion in his Confessions. To those who wondered,
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“What was God doing before he created the world?” he replied
that “before the world existed, time did not exist.”

We all have mental pictures, Kant’s famous forms of sensible
intuition. We cannot “imagine” a reality that is not a content in a
container, or does not extend to infinity; this is as true of time as of
everything else. In our imagination, a barrier or boundary comes
with the other side of the boundary, with an exterior, and the exte-
rior of a universe with a bounded past comes with the most impre-
cise image of all: that of a God the Creator. Those who see it in this
way must eventually identify it with their most inner feelings, and
we then speak of a mystery. Indeed, the identification of the perfect
exterior with the perfect interior is a mystery, but it is also called a
paralogism (i.e., faulty reasoning).

The logical inconsistency goes even further. By assuming the ex-
istence of a Creator, one is really looking for a cause; supposing
that this Creator existed before the universe did amounts to seeing
in the beginning of time only a particular stage of a larger story.
One must not forget, however, that the laws of physics within
whose framework these facts take place have taught us something
else. The notion of cause is not absolute. Space and time must be
conceived in themselves, without any external container: it is one
of the starting points of the theory from which the model was con-
structed. Thus, it is all too easy to stick onto what we know con-
cepts that contradict the assumptions on which they are based.
This is another paralogism.

Finally, the idea of a God the Creator resuscitates an ancestral
image but sidesteps the true mystery: that of the immanence of
laws. It is they that create this universe, or at least structure it
through its extension in time. Does this mean that all God has to
do is create laws? But then, what does the concept of God add to
the concept of law? A cause? Come on, this would be giving in to
mental tics! The laws, by their very universality, are completely
impervious to what is external to them. They should be our first
object of meditation, for we can construe them in direct connection
with everything to which we have access. The domain of religion is
elsewhere than in the creation of the world.

And yet, some might reply, didn’t Einstein say, “The conviction
that the world is governed by rational rules and can be appre-
hended by reason belongs to the domain of religion. I cannot
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conceive a true scientist lacking this profound belief. The situation
may be expressed through an image: science without religion is
lame, religion without science is blind”?

It seems to me that we must distinguish here between two
words. Einstein’s reflection acquires its full significance if “reli-
gion” is understood in the sense of “sacred.” The latter captures
a concept that Mircea Eliade introduces in the foreword of his
Histoire des croyances et des ideés religieuses (A History of Reli-
gious Beliefs and Ideas) as follows: “It is difficult to imagine how
the human mind could operate without the conviction that there is
something irreducibly real1 in the world; and it is impossible to
imagine how consciousness could appear without conferring a
meaning on human impulsions and experiences. Consciousness of
a real and meaningful world is intimately connected with the dis-
covery of the sacred. By experiencing the sacred, the human mind
has grasped the difference between real, powerful, rich and mean-
ingful things and others not possessing those attributes, that is, the
chaotic and dangerous flow of events, their haphazard and mean-
ingless occurrence and disappearance. . . . In short, the ‘sacred’ is
an element in the structure of consciousness, and not a mere stage
in the development of that consciousness.”

If we compare this conception of the sacred to the definition
given in a dictionary (the French dictionary Robert, in this case) we
notice a similarity: something is sacred that “merits an absolute
respect, which may be considered as an absolute value.” This is
quite different from another common denotation: that which is
sacred “belongs to a separate domain, forbidden and inviolable (as
opposed to what is profane), and inspires a sentiment of religious
reverence.” This second meaning is accompanied by references to
words such as “saint” and “taboo.” It is preferable to exclude this
latter sense opposing sacred to profane, since it establishes a dual-
ity clearly absent from Einstein’s idea.

Mircea Eliade actually defines sacred twice in the text cited
above, and his two definitions are different: he considers it first as
something powerful and significant in itself, and later as a way to
experience this power by a particular disposition of consciousness
that he regards as a structure of the latter. We are not in a position
to decide whether the sacred is a structure of consciousness or a

1 The author’s italics.

244



A N E W B E G I N N I N G

cultural inclination; it would be enough to admit that it is a state of
consciousness that many, if not all, of us know under some form or
another. The important point is to grant that the sacred is a dispo-
sition experienced by the individual, and that it therefore estab-
lishes a relationship between the world and human behavior or—
why not?—between a philosophy of knowledge and humanity.

Hence, it is the first quality that Eliade attributes to the sacred
that is for us the most important: the quality of being powerful,
rich, and meaningful. We may also observe that some of Eliade’s
reservations are unnecessary. When he talks about “the chaotic
and dangerous flow of events, their haphazard and meaningless
occurrence and disappearance,” he seems to assume that this do-
main, repelling to the sacred, may belong to some primal reality
independent of any form of order. Now, we know that such a dis-
order is only apparent: ill-fated circumstances or a tragic accident
may appear fearsome or fatal, but they are nevertheless governed
by a higher order, one closer to the laws. The flow of things may be
dangerous and loaded with risks for the individual, the group, or
even the species, but there is nothing chaotic in its mechanism,
even though it remains complex and unpredictable. The appear-
ance and disappearance of things may seem to occur at random,
but they are never senseless. To sum up: the way we see it, the
sacred is everywhere in the universe and nothing is completely pro-
fane. Profanity is but an illusion of our own ignorance, the slumber
of the mind or the madness of our false ideas.
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What Is Science?

IN THE PRESENT CHAPTER we proceed with our review of the state
of the question by inquiring into the nature of science.1

SCIENCE AS REPRESENTATION

Every thought rests on some representation. This is how the mind
translates our perception of the world. Our memories of it are
probably located in the circuits of neural signals that develop
under the effect of repeated or violent perceptions, and later be-
come fixed. We perceive a landscape as a whole, vast and still, but
at each instant our eye catches only a minute part of it; it is in our
memory that we contemplate the picture that emerges out of thou-
sands of those fleeting impressions: representation. Even our
words serve to represent.

Thus, to the question “What is science?” we shall answer that it
too is a representation of reality. Not the primary representation
imagined by Locke and Hume, constructed from pieces coming
directly from reality, but rather an abstract and coded picture, al-
beit a faithful one.

Humans possess a variety of representations of reality: magical,
poetic, ideological, and others still. These live in a philosophical
system, a religion or a culture, sometimes simply in a state of mind.
Each of them has its own language and, conversely, our language
is made up of bits of shattered representations, ready to be com-
bined to produce yet other shifting representations. What then
makes science distinct from all that? Is it because it employs its
own concepts, inspired by experience, or because science is unique

1 We shall employ the term “science” to designate what are usually called the
physical sciences: the study of matter, the celestial bodies (including the earth),
and living organisms. Logic and mathematics will retain their respective names,
thus marking their unbridgeable distance from concrete reality. We are aware that
the place of the social sciences then remains ambiguous, but we do not need to
discuss them here anyway.
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by the rigor of its arguments and its logic? Not quite. The first trait
applies just as well to Pico de la Mirandola’s hermetics and the
second to scholastic theology. Might the answer lie in the presence
of the laws? This is unlikely, laws being part of every vision of the
world.

How about logical consistency? Theology too strives for consis-
tency, and it was the source of it, in connection with questions on
the nature of the gods posed by the ancient philosophies. Science
did not possess it in those early times when it was only empirical
and busy gathering facts. It came to it later, with maturity, as its
different parts moved closer together and merged. We may never-
theless say without exaggeration that complete logical consistency
has become a major attribute of science, always ready to be put to
the test even at the risk of losing it all—something no theology
would consent to do.

Indeed, this consistency is perpetually under scrutiny and ques-
tioning. Scientists spare no effort to track down eventual contra-
dictions, and they constantly test the limits of their knowledge.
Contrary to what some believe when they speak of “official” sci-
ence’s self-importance, the scientific community highly values the
uncovering of an inconsistency, sometimes even more than a new
discovery. I would not like to paint the situation in idyllic colors
either. There are too many examples where the obstinacy of scien-
tists rivaled that of ordinary mortals—it suffices to recall the fierce
denial of Wegener’s continental drift. What I have just said is
therefore valid in the long run and not always in the immediate
present.

Unlike other alternative or competing representations, science
demands absolute consistency. A single clear inconsistency renders
any scientific branch suspect and untrustworthy. Should it persist
for too long gangrene may set in and spread to the entire body of
science. The expectations for consistency are now so high and un-
compromising that to live up to them science must be ready to
make atonement by offering itself as a sacrifice.

There were many examples of this in the course of history, as
when a contradiction appeared between instantaneous gravita-
tional force and the impossibility of actions faster than the speed of
light. Another time it was the collapse of Rutherford’s classical
atomic model that claimed an exemplary sacrifice on the altar of
logical consistency: that of intuition and common sense.
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To be sure, these sacrifices were not in vain, and after each alarm
science recovered its beautiful consistency, more confident than
ever. Such catastrophes invariably followed by a spectacular res-
cue end up by dissipating any fear, and physicists now prize the
discovery of the slightest inconsistency. They search for it and
track it down, for they anticipate a major breakthrough more
than they fear a real danger. And yet, despite this almost absolute
confidence, faith in science stems above all from a greatness com-
parable to that of a naked warrior: to prevail by accepting its own
vulnerability.

ON CERTAIN TYPES OF LAWS

Science represents the world as bundled up inside a tight network
of laws. These rules or laws have a tremendous significance, but it
is difficult to crack their essential nature; we can only acknowledge
them and recognize their enduring, pervasive action.

There are in fact different categories of laws, and even if there is
no widespread agreement on their names it is convenient to distin-
guish three types: empirical rules, principles, and laws. Among the
numberless empirical rules, there are first those we might call pri-
mary. They come from events that repeat themselves endlessly.
Leaves turn yellow in the fall, the sun appears red at sunset, cats
have whiskers, orange skin is of a certain color; all those things
form a loose collection of primary rules, resulting from the repeti-
tion of things that weave our visual representation and language.

Science often starts from an attentive analysis of such rules. It is
in some sense what Linné does when he specifies the multiple simi-
larities and differences that exist in the vegetable kingdom. In so
doing he obtains more elaborate, secondary empirical rules, the
only ones we shall consider from now on. These often take a quan-
titative form: Ptolemy’s rule of epicycles for the planetary motions,
Kepler’s rules for the same phenomenon, Ohm’s “law” in electric-
ity, and many others. Each of them remains nevertheless more an
observation than an explanation, a summary of observed facts that
accounts for their appearance but cannot pretend to go beyond
that.

Principles are altogether different, and their ambition stands no
comparison with the modesty of empirical rules. A principle must
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be universal. The idea came from Greek philosophy and through
medieval theology, but it is in physics that it found its precise and
exclusive meaning. Although biology also has its principles, they
contain a larger degree of vagueness. Thus, evolution is a great
principle, but its statement leaves ample room for interpretation.
We have seen that the first science claiming to have principles was
Newton’s mechanics, and have already mentioned how he in-
tended in this way to free us of our terrestrial condition. But he
nonetheless refused to see in his principles anything besides a
summary of facts and experiences, an empirical rule of a higher,
more economical order. We must, however, single them out, pre-
cisely because they are universal and may therefore be used to
make predictions.

To pretend that a principle applies universally may appear to be
a hopeless enterprise, like betting against an infinitely rich bank
whose subtleties are unpredictable: the bank of Reality. Indeed, if
principles are universal, they must account for every phenomenon
falling within their jurisdiction with no exception (and subject to
stringent quantitative constraints). This also holds for experiments
that have never been performed or even imagined. It was far from
obvious that Newton’s laws together with the earth’s rotation en-
tail the rotation of the plane of a pendulum, and Foucault’s fol-
lowed by more than a century the principle that predicted the na-
ture of its motion. A principle’s universality thus applies to the
unknown as well as to what already exists; this is both its strength
and its vulnerability.

The above requirement is extremely severe, because a single dis-
crepancy between reality and the expected consequences of a prin-
ciple would signify the latter’s demise. But at the same time, what
a victory when the principle frustrates reality’s blind attacks one
after the other. Olé! In the cosmic arena, the principle is the bull-
fighter and matter is the charging bull!

Finally, after the principles come the laws. We understand by
laws those particular consequences that can be deduced from the
principles and which apply to some specified category of phenom-
ena. For example, Kepler’s rules have long ceased to be merely em-
pirical to become a direct consequence of Newton’s principles;
thus, they are no longer empirical rules but have reached law
status. Laws may therefore be seen as the principles’ children, their
offspring, as well as the means by which principles can be tested.
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How do we know that a principle has prevailed and can be trusted?
Only by having verified all its conceivable consequences through
experiments, as far as this was possible. In the case of classical
mechanics, such a verification period lasted almost two centuries
and is still going on, albeit at a slower pace. We may almost say
that certain laws are checked twice: first as theoretical conse-
quences of the principles and later through experimental testing,
which transforms the laws also into empirical rules. When the
principles of a science are discovered, many empirical rules may
change status and become laws if it is possible to derive them
(theoretically) from the principles, as was the case with Kepler’s
rules/laws.

The consistency of contemporary science, in particular the phys-
ical sciences, may be measured by the fact that the number of laws
greatly exceeds that of purely empirical rules. The existence of em-
pirical rules that cannot be connected to the principles may indi-
cate that the latter are still incomplete. Take, for instance, the em-
pirical rule of springs that relates the elongation to the force of
traction. Newton’s mechanics could not make it a law for lack
of a satisfactory explanation. In hindsight, it was a feeble signal
pointing to the atomic structure of metals and the underlying exis-
tence of quantum principles.

THE TRANSFORMATIONS OF SCIENCE

As is the case with any other type of representation, science pro-
gresses. This is a consequence of its human component, which is
at the mercy of history, but it poses a serious problem, for the
principles too might by called into question despite their claim to
universality.

Let us consider genetics, for example. Mendel postulated the
existence of genes as a principle that transcended the empirical
rules of heredity. These genes, carried by the parents, were trans-
mitted to their offspring according to the laws of probability. The
discovery of chromosomes supplied genes with a concrete support,
and showed that chance enters the picture when meiosis occurs,
that is, at the time the first cell of the offspring is formed out of
those of the parents. Mendel’s “principle” was thus reduced to an
empirical rule: that of the observed behavior of cells and their
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modes of transformation. New principles would later appear with
the discovery of DNA and its replication rules. But are these true
principles or simply rules? It is hard to say, since genetics, like all
other life sciences for that matter, is in an intermediate state, not
yet resting solely on universal principles. Besides, it is possible that
these sciences only need principles that are highly plausible—that
is, rules that are frequently verified—but not absolutely certain.

Physics is a different story, if only because of its ambitious claim
to universal principles. We know that such an attitude almost re-
sulted in its collapse at least three times in the past, and we have
already related those episodes that marked the emergence of a new
science: special relativity, followed by the relativistic theory of
gravitation, and finally quantum mechanics. Each time, the new
science swallowed the old one, it fed on its substance and restored
it under a form only barely different. For instance, the principles of
Newton’s mechanics became particular laws of relativistic quan-
tum mechanics, that is, consequences of more general principles.
Unlike principles, whose universality is by definition absolute,
most laws have a precise domain of application, determined by the
hypotheses used to deduce them from the principles. Thus, when
the demoted principles of classical mechanics became simple laws,
they also saw their domain of application restricted to certain phe-
nomena: those whose velocity is small compared to the velocity of
light, and where Planck’s constant is too small to play a significant
role.

And so, strangely, the historical evolution of science seems to
confirm the existence of universal principles, or at least strengthen
our confidence in their existence. It is also a call for caution, for it
suggests that today’s principles are perhaps merely the reflection of
others still unknown. At any rate, it would be a mistake to adopt
a simplistic view that would reduce science to the temporary scale
of our human values, something whose nature changes with time,
where yesterday’s certainties are simply the outdated beliefs of a
bygone era. The revision of principles we have just mentioned has
led some philosophers to say that the laws of science are vulner-
able, changing with each new discovery and even with the spirit of
the time, perpetually trying to keep up. This is to ignore the con-
stant and watchful presence of Reality.

The above remark is worth elaborating on, because too often
misunderstood. Some critics focus more on the words employed at
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a given time to state the principles than on their formal, mathemat-
ical structure. Once again, the slight attention paid to formal struc-
ture is a source of serious misunderstandings. If certain principles
have disappeared as such, one cannot overemphasize the fact that
they have become laws, and that this change in status resulted from
the discovery of other principles, more general than the previous
ones. We should not be impressed by this mutation, but rather
reflect on the following wonder: every time science has offered it-
self as a sacrifice, it has risen to new heights instead of perishing,
and has attained a higher degree of universality. Such episodes do
not resemble the erratic course of human history but carry the un-
mistakable sign of the ringmaster: Reality and its supreme order, of
which science is merely the servant and the scribe.

THOMAS KUHN

It is impossible to discuss the evolution of science without citing
Thomas Kuhn and his most famous book, The Structure of Scien-
tific Revolutions (1962). In it he proposes two main theses, one of
which is precisely the existence of certain transformations in sci-
ence that he calls “revolutions.” The term is certainly excessive, as
he later recognized, but it properly conveys the magnitude of the
tremors that occasionally affect the scientific representation of
the world.

His other major idea is his preference for paradigms over prin-
ciples. In his opinion, a momentous discovery has a greater im-
pact on the course of science due to the example it offers than by
the principles into which it can be condensed. The breakthrough
then constitutes a model to be imitated, a reference to be used as
the basis for new research, that is, a paradigm (a word that was
hitherto employed principally in grammatical analysis to indicate
an example or pattern that serves as a model for many others).
Thus, when Euler applies Newton’s method to fluid mechanics he
is attaching more significance to the success of Newton’s mechan-
ics than to the strict application to fluid masses of the principles
stated by the latter.

The comparison between paradigms and principles is not, how-
ever, very relevant to our main argument. Indeed, the difference
between imitating a paradigm and applying a principle seems to be
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a question in the psychology of researchers, a domain which I do
not intend to study here. What counts for our purposes is the judg-
ment passed on a new discovery: Does it confirm or contradict the
principles we already know? In fact, Kuhn’s thesis, whose interest
for the study of history is undeniable, deserves to be put into per-
spective in order to better take into account two major transforma-
tions of science that he failed to consider: the arrival of formalism
and the rise of consistency. It appears to me that both these events,
which are not revolutionary because they evolve in time rather
than occuring suddenly, are better understood within the frame-
work of principles than by the dialectic of paradigms.

It was from that angle that we highlighted earlier the historical
importance of the formal approach and its manifestations through
Maxwell’s equations. Now, if those equations have often inspired
new research, they did not appear to have served as a paradigm
because of their formal character but for some other feature. The
rise of formalism, first in relativity and later in quantum physics,
does not seem to have been inspired by a paradigm either, but
rather dictated by necessity. Hence, the emergence of one of the
most important characteristics of science occurred too gradually
to be called a revolution and was not the result of imitating any
paradigm.

Kuhn tends to link his two theses a bit too much, as if every
“revolution” should necessarily be accompanied by a new para-
digm. The continuity of scientific evolution then appears divided
up into neat episodes, like a television series. Mendel’s genes and
the double helix structure of DNA discovered by Crick and Wat-
son are two paradigms and the starting points of two revolutions.
But their continuity is certainly much more important than their
disparity.

Nonetheless, the term “revolution” perfectly describes certain
specific events, such as the three transformations mentioned above
that resulted in the birth of relativity, the relativistic theory of grav-
itation, and quantum physics. Each one of them was a true crisis,
which science might not have survived. However, the important
thing is not the crisis but its outcome: new, highly formal princi-
ples. This is something that Kuhn could not see through the prism
of his paradigms, for there was no shortage of paradigms at the
time, several every year; fireworks, fleeting, changing reflections
that dazzle the eye. Can someone watching them really see?
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If we focus not just on paradigm shifts but on the truly essential
transformations, those concerning the principles, we realize that
there was a long evolution accompanied by a total of three revolu-
tions, at least in physics. To extrapolate from those episodes and
formulate a rule predicting a future avalanche of revolutions, as
some do, appears to be unwarranted. How many revolutions did
we have? Three in all. It would be a rash conclusion to deduce,
from that, “One, two, three, always.” I would be careful not to
predict the end of scientific revolutions, but I have the right to con-
sider it as likely an option as its opposite.

For that, I will no doubt be labeled a conservative, and I can
already hear the old line: physicists believed that science had come
to an end in the late nineteenth century, precisely when its most
radical transformations were in the making. Beware of ever repeat-
ing such a blunder! But who decided that next time it will also be
a blunder? Would it not be wiser to avoid categorical statements
and simply ask the question: Since we were wrong once, does it
follow that we shall be wrong every time?

Let us remark in closing on the similarities between Thomas
Kuhn’s reflection and that of Michel Foucault in Les mots et les
choses. The former considers science at a given time as an assort-
ment of paradigms and imitations, all sharing a common source.
For Foucault, it is the entire collection of intelectual achievements
that is so related—what he calls the century’s épistémé. In both
cases, the rallying concepts, épistémé or paradigm, may be conve-
nient indicators for a history of mentalities, but they have nothing
in common with reality, the only object relevant to science.
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Method

WE ARE GOING to pursue our examination of the state of the
question, this time focusing on the method of science. The topic is
unavoidable, especially since it is often denied that such a method
even exists. I am thinking of course of Feyerabend and his fol-
lowers. Let us take a look.

A METHOD FOR JUDGING, NOT FOR BUILDING

Given the vastness and consistency of today’s science, one cannot
help wondering what is the source of those attributes, and even
how science itself exists at all. Reality is certainly the cause, but by
which powerful method do we question it and obtain such gener-
ous and, at times, such strange answers?

Bacon or Descartes used the word “method” in its ordinary
sense, a rule of behavior inexorably leading to more knowledge: a
method to build science. In this sense, there is a certain contradic-
tion between Bacon’s criticism of philosophy and his belief in the
power of method.

In fact, to assume that such a method exists is a philosophical
postulate. A method to generate science with enough certainty pre-
supposes the possession of a principle of a higher order than those
one might eventually discover through its use. Descartes does pos-
sess such a principle: the preeminence of reason, before which ev-
erything becomes immediately clear. Bacon assumes that reality
“speaks” by itself, and that it is enough to question it. This
amounts to putting an almost blind trust in induction. I prefer the
other alternative suggested by Bacon when he speaks of “proceed-
ing regularly and gradually from one axiom to another, so that the
most general ones are not reached till the last.” This approach pro-
poses to pluck the philosophical principles right out of the tree of
experience, including the guiding principles of science.

It is not a method to build science that we shall seek, but one
that can be used to judge it after it has been built, without imposing
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up front the form it is supposed to have. Basically, it consists in a
collection of practical rules to estimate the quality of the corre-
spondence between the scientific representation and reality; a set of
criteria for testing truth, or, rather, agreement with Reality. When
“method” is understood in this sense, it does not include the par-
ticular paths researchers may follow in order to gather information
or make discoveries. This notion of method concerns humankind
as it reflects on the accumulated knowledge more than it concerns
those who seek to increase that knowledge. It is a method exclusive
to science, which sets it completely apart from all other representa-
tions of reality.

WHICH METHOD?

The question of method is a highly controversial one among spe-
cialists in epistemology. The difficulty partly stems from a confu-
sion between two related but entirely different questions: How is
discovery possible? How does humankind establish the agreement
between knowledge and Reality? It is the first one that leads to
contention, while we are interested primarily in the second.

It is easier to begin by saying what method is not. It is not a
research project, or the compilation of a database, nor a set of rules
of conduct to “guide the mind” in solving problems by reducing
them to a simple, even trivial, form, as Descartes believed could be
done. I do not wish to give the impression that I consider such
enterprises or behavior futile, either. But they result from an effort
to be organized and efficient that is not particularly scientific.

What is then the scientific method, if such a thing exists? If
Thomas Kuhn was right, and the advancement of science is only a
succession of breakthroughs that are offered as paradigms to be
imitated, I would be tempted to answer in the negative. We would
then have as many methods as there are paradigms, changing with
the spirit of the time and resembling inspiration more than precept.
Feyerabend went even farther, and he explicitly denied the exis-
tence of method in the construction of science.

It is important that we specify what science we are talking about
and what is the purpose of the method. An incipient and still in-
articulate science, or an empirical one at best, cannot rule out the
existence of a miraculous method that would guarantee its cer-
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tainties and validate its shaky concepts. We shall therefore limit
ourselves to those sciences having attained a high level of consis-
tency, those monuments of knowledge that Roger Penrose calls
“superb.” They are the ones provoking amazement and inducing
reflection.

As for the purpose of method, it cannot be, once again, a code of
behavior accompanied by the promise to produce results: satisfac-
tion guaranteed or money back. It is clear that having a method
that would reveal the intimate nature of Reality presupposes an
almost perfect knowledge of that Reality. There is no method to
map out a route in unknown territory. This simple argument con-
vinced me that Feyerabend’s criticism was partly valid, if obvious.
His examples confirm this impression, and so we shall abandon
this once appealing but now obsolete idea.

The method we shall discuss is the one that allows us to recog-
nize in hindsight whether a science is soundly established and has
achieved a consistent body of knowledge.

By defining method in this way we are implicitly assuming that
Reality can be known (at least in part) using criteria of universality
and logical consistency. This is a very strong hypothesis, to be sure,
but it nonetheless corresponds to the evidence, surprising perhaps,
but irresistibly imposed by the facts and confirmed by the passing
of time.

Finally, it is impossible to talk about method without mention-
ing Karl Popper and his principal criterion, which restricts sci-
ence to the formulation of propositions that can be experimentally
refuted. Popper’s condition has by now become classical and may
be taken for granted. The method we shall discuss fully incorpo-
rates it.

A FOUR-STAGE METHOD

There exists a well-defined method that highlights science’s speci-
ficity. We shall call it the four-stage method, for it involves four
different activities of experience and thought, corresponding at
times, but not always, to the four stages of the history of a science.
They are rather four structures of knowledge that complement
each other. We shall call them empiricism, concept formation, de-
velopment and verification.
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This method pervades contemporary physics and is part of its
“folklore,” the things everyone knows but does not know where to
find. Its origins may be traced back to Pierre Duhem’s La Théorie
physique, where the method is clearly presented, except for some
minor details due to today’s more conspicuous presence of the for-
mal character of science. It is not very likely, though, that this book
has had much influence, for it was not widely known in scientific
circles; more reliable sources might be Einstein’s correspondence,
Heisenberg’s treaties, or Richard Feynman’s book The Nature of
Physical Laws.

It turns out that the four stages in question correspond quite
closely to the different periods in the history of classical mechanics
that we have already discussed, making this science a convenient
example. The empirical, or exploratory, stage consists in the obser-
vation of facts, the performing of experiments “to see what hap-
pens,” the compiling of a catalog of data, and, eventually, the dis-
covery of empirical rules. We recognize here the observations and
measurements of Tycho Brahe and Galileo, as well as Kepler’s em-
pirical rules on planetary motions and Galileo’s rules on falling
bodies. It is obvious that a field of knowledge at this stage of devel-
opment is not yet a mature, consistent science.

The second stage is that of concept formation or, more precisely,
of conception. It consists in the development and the selection of
appropriate concepts permitting a representation of Reality, the
invention of the principle, or principles, that might govern this rep-
resentation. We use the term “invention,” and not “discovery,” on
purpose. Indeed, there can only be discovery after verification. As
it is impossible to prescribe how to invent, this aspect of concep-
tion has never revealed its genesis. Different scientists might ex-
plain it in different ways. Some will try to justify it by a logical
chain: “This example suggested that such or such concept should
be a central one, and the phenomenon it represents should act in a
certain way; this other example narrowed the domain of possibili-
ties; yet another one forced me to search further. I then asked my-
self whether this particular hypothesis was the simplest one. . . .
I’ve tried it and eureka!”

To this kind of logical explanation some completely irrational
examples are often opposed, such as the invention by Kekulé of the
cyclic structure of benzene: he saw in his dream a snake biting its
tail. “But of course, the benzene molecule is a ring!” We may also
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say that, regardless of the particular circumstances, this is the stage
of genius, in the etymological sense of the word.

We may try to imagine how Newton went through this concep-
tion phase as he formulated dynamics. First, he had to clarify the
concepts of mass, force, position, and speed, and also invent that
of acceleration. The latter, and not speed, was eventually to occur
in a principle, but this was not at all obvious. Did he invent the law
named after him after considering several possibilities, or did this
law impose itself upon his mind? He said that it was the second
alternative, an illumination accompanied by a sense of certainty
often found in other discoverers. This kind of sudden knowledge,
which we may call of the third type, as Spinoza did, is fascinating,
but it may also be misleading. We shall then class it, regretfully,
among the human aspects of science, a topic beyond the scope of
our discussion.

The third stage, development, is on the contrary rather well
guided by logic, even if occasionally the ride may be bumpy. It
consists in examining all possible consequences of the principles,
perhaps at the cost of a lot of effort and imagination. In most cases,
only certain consequences are considered, primarily those concern-
ing known facts. Thus, Newton begins by testing his principles on
planetary motions and falling bodies. Only later, with the passing
of time and the work of many people, comes the more ambitious
endeavor aimed at the totality of the consequences.

In the case of physics, this development often takes the form of
calculations, since the new representation to be tested is formu-
lated in mathematical terms. This is practically never the case in
biology, where common sense logic, enlightened by an extensive
knowledge base, plays a role only during the reasoning process.
Charles Darwin’s On the Origin of Species is very revealing in this
respect.

The fourth stage is verification. This is the stage Popper refers to
when he says that a theory must be open to “falsification,” that is,
it must be possible to refute it. It is the phase when the theory, the
idea, or the principle, until then only hypotheses armed with their
predictions, are going to offer themselves to refutation. Each pre-
diction is systematically subjected to the test of experience. What
does the latter say about the prediction, is it true or false? What do
the myriads (not an exaggeration in the case of quantum mechan-
ics) of predictions and experiments say? If the answer is always yes,
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then the idea is certainly true, and nature considers it worthy of
belonging to the heart and the marrow of things. The answer is no,
even a single time? It is because the theory is false, or at least in-
complete. It must be rejected; at best, it cannot be trusted until new
clarifications are obtained. A true verification of a “superb” theory
that unifies vast domains of knowledge would be achieved only if
never, strictly never, did the experiment answer in the negative
within the scope of the theory. Otherwise, the edifice would waver,
and could only be saved by a profound transformation that would
bring about a higher level of consistency.

THE NATURE OF THE FOUR STAGES

It would be naive to expect this method to manifest itself every time
a science is born or undergoes a transformation. Indeed, the
method merely provides science with a frame and is not a law of
history. At times, certain stages may appear to be absent, often
because they are too easily completed and go unnoticed. The initial
observations may be so explicit that the second stage need not re-
quire any genial insight; or the development stage may simply
amount to an elementary argument. History may also render diffi-
cult the recognition of the various stages, as is often the case. Let us
add that the method we have described here does not apply to
mathematics; it only concerns the physical sciences, whose subject
is the study of Reality under any of its forms.

Having analyzed the method, it is now easier to understand how
the scientific representation is constructed and its relation to real-
ity. Reality is summoned twice, at the beginning and at the end of
the process, of which it becomes the ringleader without whose ap-
proval nothing is valid. During the exploratory phase, it provides
the necessary information for the thought process to begin. Real-
ity takes part in the verification stage, which may last several cen-
turies, by not giving any negative answer to the succession of pre-
dictions that scientists strive to render complete. Only then can we
consider our knowledge as certain, in so far as this term has any
meaning.

The third stage, development, is a vast logical exercise and the
one aspect that the teaching of science emphasizes the most, to the
point that it might appear to the untrained eye as the archetype of
the scientific method. It is partly to counterbalance that pernicious
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tendency that Popper insisted so strongly on verification, at the
risk of destabilizing the entire building. In the construction of a
representation, the main role of development is to prepare the
ground for the fourth stage: verification.

The second stage, conception, is fascinating, and it enthralls all
those who are more interested in humans than in the world sur-
rounding them. Romanticism may get into the picture, marveling
at the work of a genius who achieves supreme clarity as a reward
for a relentless search. It is Balzac’s Balthazar Claës meeting “abso-
luteness.” This often surprising stage is also puzzling due to the
occasional irruption of some illogical or irrational element (Ke-
kulé’s dream), and for the hints, the associations, and the analogies
that assail the creative mind. A rationalist spectator conditioned by
traditional teaching to equate science with a purely logical behav-
ior on the part of the researcher would be stunned at the discovery
of an excited mind’s unpredictable course, so well portrayed by
Arthur Koestler in The Sleepwalkers. It is highly likely, though,
that these irrational aspects are the consequence of an intense intel-
lectual activity controlling every component of the personality. Ul-
timately, that feverish buzzing of the mind will be swept over by
silence, once the goal has been achieved. The author will then care-
fully tidy everything up and the result will adopt the conventional
and convenient form of a scientific publication, where only the key
idea remains, like Venus coming out of the sea, her feet now clean
of foam.

If one has chosen to give precedence to Reality, the amazement
is elsewhere. It is in the ballet of Reality with itself when the human
brain, a product of Reality, generates an image of that Reality as
perfect as it is unexpected.

THE LESSON OF THE FAILED ATTEMPTS

In scientific matters, history and teaching curricula usually only
retain the successful attempts, thus projecting a flawed image of
the discovery process. It may also appear that only exceptional
individuals can “generate” science. But the most serious conse-
quence of ignoring the unsuccessful attempts would be to give the
impression that verification is a mere formality. When a human
mind finds a complete explanation for some natural phenome-
non or uncovers a universal principle, our sense of wonder is so
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absolute that we cannot conceive nature refusing to endorse such
a miracle. This is far from being the case, and aborted attempts are,
on the contrary, very instructive.

Particle physics is a science still in its youth, most of whose spe-
cialists are alive today. They remember the numerous theories that
have been proposed in the past forty years, such or such principle
whose consequences happened to be quantitatively verified by a
multitude of data. Many researchers would then set out searching
for new predictions that would confirm the previous findings. Ex-
periments involving big accelerators would be set up, and often,
alas, one or more of these would contradict the expected result, or
produce a value of some parameter different from the predicted
one. Sometimes, the effort would not be completely wasted, and
the experimental results would suggest new and, eventually, suc-
cessful possibilities. At worst, the regularities that the aborted the-
ory had revealed would join the ranks of empirical rules.

It is interesting to retrace the long path that led to two major
discoveries in particle physics—the unification of weak and elec-
tromagnetic interactions and the discovery of quarks—without
omitting the rejected trails, appropriately described in Rilke’s
verses:

Paths going nowhere
As if diverted by chance,
Paths that have lost their way.

The cemetery of good ideas that did not survive is immense, and
not only in particle physics. I remember, not without a disdainful
smile, an ironical proverb that served as an epigram to the demise
of an idea that had not resisted the test of observation, an idea
in cosmology I once cherished: “Nothing is more dreadful than
the despicable murder of a beautiful theory by abominable facts.”
Let us underscore here scientists’ imagination and fecundity in
generating hypotheses as so many arrows shot in the direction of
Reality.

METHOD AND THE SOCIAL SCIENCES

The preceding remark takes us into the domain of the social sci-
ences. It is not our purpose to criticize them, but only to examine
their methods. A great number of studies, and even entire sciences
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such as demography and economics, make an extensive use of
mathematics, particularly of statistical methods.

It has often been said that the sciences that resort to such meth-
ods are closer to the physical sciences than those which do not. To
be sure, statistics provides tools for establishing correlations, that
is, the total or partial joint manifestation of two or more features.
In epidemiology, to use a well-known example, a correlation has
been observed between populations with a diet rich in fat and
those with a high frequency of heart attacks. Correlation is often a
sign of a causal relationship, but it does not explain either the
cause or its action, or even if there really is a cause. In this particu-
lar example, thanks to clinical studies, to a detailed examination of
the facts, and to the progress made by physiology regarding the
metabolism of fats, the mere existence of a correlation can be re-
placed by the knowledge of the mechanisms in action, at least in
part. Unlike the crude correlation, this knowledge may be sub-
jected to the scientific method.

Basically, statistical methods are a valuable tool to accelerate
the discovery of empirical rules, but it would be a mistake to as-
sume that they are sufficient to attain the consistency afforded by
the full scientific method.

The question of method has long preoccupied the specialists in
social sciences, and it is particularly within this context, more than
in that of the physical sciences, that Popper’s analysis was devel-
oped. It is a delicate question, to which I would like to propose my
modest contribution by discussing Claude Lévi-Strauss’ remark-
able structuralist method in anthropology. If, once again, we are
led to conclude that an insurmountable hiatus exists when we com-
pare it with the method of the physical sciences, Lévi-Strauss had
already recognized it himself.

Here is a rough summary of the structuralist method, hoping I
have not misrepresented it too much: one studies a certain category
of facts, such as family relationships or table manners. First, in the
preliminary stage, all known facts on the subject are gathered to
form a so-called corpus. It is a substantial task, akin to the empiri-
cal stage of the four-stage method. The second stage, conception,
is also present, for the scientist imagines, invents, or merely ac-
knowledges (the exact word is irrelevant) a principle that organizes
the facts and which is called stucture. The third stage, that of devel-
opment, then consists in systematically detecting within the corpus
the universal presence of the structure.
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But the fourth stage, allowing the possibility for the theory to be
refuted, is unfortunately missing. The reason for this absence
should be clear: if the corpus is complete, no prediction can be
made regarding future observations of facts, because there is noth-
ing outside the corpus. On the other hand, it would be unreason-
able to expect the researcher to totally ignore a considerable por-
tion of the corpus that could eventually be used for verification. At
best, the researcher can only hope that newly discovered facts will
confirm whatever predictions were actually made. But a well-
known difficulty remains: ultimately, the predictive power of so-
cial sciences is too limited.

There is another, less known difficulty: the authors’ creativity
may backfire and raise more doubts regarding the real existence of
the structures they claim to have discovered. Anthropologists are
certainly not less imaginative than the physicists who, in the
1960s, managed to find many structures in the mass of data con-
cerning elementary particles. Yet some of these structures turned
out to be illusory. What is more, the structures proposed by the
physicists required quantitative verifications much more demand-
ing than the qualitative relationships found in anthropological
structures, the latter allowing more room for interpretation. Now,
very little is known regarding the limits of intelligence and imagi-
nation. Isn’t it possible that a sufficiently imaginative person could
impose plausible structures on any given corpus? How not to be
skeptical, then, when we know that the same method used else-
where in more stringent circumstances led to illusions? The struc-
turalist method may justify an intimate conviction, but it does not
appear to allow for the irrefutable proof that only verification can
provide.

CONSISTENCY AND BEAUTY

We have already said that each experiment designed to test a uni-
versal science is a throw of the dice, where the fate of a principle is
at stake. This is how, almost daily, science is confronted with Real-
ity in laboratories throughout the world. To truly appreciate this
relationship between researchers and Reality, made up of admira-
tion and provocation, it is necessary to know the joyful Machiavel-
lianism of those who take several years to prepare a crucial experi-
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ment, aided by all the technical means they can muster or create.
They belong to the “Inverse Millionaires” club of specialists who
measure physical quantities to six or more significant digits, avow-
edly hoping to verify with even more precision the consequences of
some known principle; but also, primarily, in the half-admitted
hope of detecting a discrepancy that would prompt a new hunt for
principles. This is how science is being built, by offering it to de-
struction. Its survival is the proof, repeated every day as surely as
the sun rises, of the persistence of Reality and the existence of its
laws.

Anything that is both profound and consistent will most cer-
tainly provoke in us a sense of beauty. This aspect of the scientific
enterprise integrates one of the richest attributes of our human-
ity: the aesthetic one. The connection is not accidental, for we first
developed our sense of beauty in the contemplation of Reality,
in the enjoyment derived from the harmony of a landscape or a
human face, transformed perhaps by a flute into the beauty of
music, formal and tender at the same time. Beauty, when it reveals
itself in a perfect balance and a supreme economy of means, is
present everywhere in the great picture of science.

Even if the conceptualization of science does not obey any rules,
it often becomes a quest for harmony. Dirac went as far as saying
that one can first recognize a valid theory by its beauty. He was
certainly referring to a form of beauty particularly valued by math-
ematicians, one that is hard to distinguish from consistency: “In
there, all is order and beauty. . . .” Why is it that logical con-
sistency, when it applies to so vast a domain as to produce our
astonishment, creates in us the same emotion, the same kind of joy
provoked by the beauty of things? I would not know, and must
therefore remain silent on this mystery. It is, nevertheless, an im-
portant aspect of science, and if we try to understand the link be-
tween philosophy and aesthetics we must at least illustrate it by an
example.

It concerns a principle we have mentioned several times already:
the principle of inertia. How beautiful it is! At first, it appears as a
modest principle regarding horizontal motion on earth. It becomes
universal thanks first to Descartes and later to Newton, who ties it
to absolute time and space. It frees itself from this matrix to re-
appear, intact, in the theory of relativity. Our craving for beauty
finds its restriction to some privileged systems of reference to be an
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unbearable imperfection. The principle then cleanses itself by en-
compassing the effects of gravitation, gaining once again in gen-
erality. Like a firework display that dies out in a bouquet, the
principle is today simply a law, a secondary consequence of the
principles ruling the curvature of space-time: Einstein’s equations
of the relativistic theory of gravitation.

As Arthur Rimbaud put it: “Now that it is over I can hail
beauty.” These are a poet’s words, expressing better than anything
else the scientist’s feelings.

THE FLEXIBILITY OF PRINCIPLES

Our last observation on relativity suggests another remark con-
cerning principles. We have already mentioned that special relativ-
ity can be formulated in terms of space-time, as well as in a lan-
guage that keeps time and space in separate reference frames. The
first description is geometric and the second is algebraic, expressed
in terms of space dilation and time contraction when going from
one reference system to another. This shows that the coding of the
laws of nature is not as rigid as that of the laws voted in parlia-
ment, with their definitive titles and articles. The laws of nature
can be translated into other logical forms that may appear remote
but are nevertheless perfectly equivalent. Quantum mechanics pro-
vides another remakable example, with its multiple versions, all
equivalent, such as Heisenberg’s matrices and Louis de Broglie’s
wave functions.

And so the form of a theory, or even its central concepts, are
hardly unique; nor is there just one good question at the origin of
the theory. Principles and laws, fundamental and derived concepts
may be interchanged and indifferently cast for the role of a god or
that of an avatar. The theory itself remains unique, for its different
forms are all equivalent: they lead to the same consequences and
can often be derived from each other.

It is as if the form of the principles, the path to be followed, is
not imposed. There is no single trail leading to the top of the moun-
tain. Each summit of knowledge appears as a “reality within Real-
ity,” existing by itself and accessible through each one of the faces
explored by science.
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THE THING IN THE WORLD MOST

EVENLY DISTRIBUTED

In closing, we shall emphasize a strong connection between the
four-stage method and both the development of the formal sci-
ences and its recent corollary, the change in status of common
sense.

The contemporary scientific method would be a source of
amazement for our predecessors. There is nothing like it among the
methods discussed by Bacon, for whom that of induction occupies
center stage. According to this ancient method, an attentive study
of the facts leads almost directly to the laws they obey, thus permit-
ting us to “induce” the laws from the facts. This is a far cry from
the modern idea of a conception stage, and nothing is farther re-
moved from Cartesian common sense than the free flight of the
imagination characteristic of this stage.

We shall not insist on the relationship between formal science
and common sense, already analyzed at length. Let us only note
that, after Hume, contemporary psychology would recognize, as
Piaget did, the origin of concepts and common sense in children
(his genetic epistemology) in the observation of the world sur-
rounding them; except that in our early years we have not watched
trains traveling close to the speed of light, and our cribs were not
placed near black holes where the naked eye could see space curve.
We have never seen electrons diffract, either; only, at best, light
moiré a spider web. No wonder then that, in the circumstances, we
cannot imagine or “picture” them. Those images are missing from
our repertoire, and our brain is unable to create them.

The world could have been simple and everywhere identical to
what it appears to be at first sight. This is what ancient philoso-
phers thought, and they built sweeping principles based on this
belief. Science would then have remained classical, a reasonable
science, and formalism would have been only a facing designed to
give it more precision. Things could have been like that, but they
aren’t. This is a fact, and who are we to dictate to the world what
it ought to be?

The wonder is elsewhere. in the power of science to tear down
the walls that seemed to hold us in their grip forever. Hume was
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wrong in believing the human mind incapable of reaching the
source of the order of things, the order that allows us to name
them. Kant too was wrong in hindering our desire to understand
by imposing a priori ideas and confining it to what imagination
can represent with images and words. We had access by other
means to that which ordinary language cannot attain or represent,
that which is outside the interminably flat space, and we even had
access to objects that occupy more than one place. The wonder is
there. And the question then facing philosophers should be the ori-
gin of this deliverance of the mind.

The answer is clearly in the scientific method that we have just
described. While the classical vision of the world is intrinsically
limited, nothing restricts the scientific representation. During the
conception stage, the method is free to consider all hypotheses,
even the most far-fetched, in order to mimic Reality. Everything
can be tried, a bold abstraction of something that has succeeded
elsewhere, the exploration of the faintest clue, or a leap through
empty spaces. The mountain peak where it lands has experience as
its only sanction and consistency as its only ethic. This conception
phase does not obey any precondition: how can we, once again,
expect the world to follow our own rules? We can only set out in
quest of its rules, and they are admirable. The fact that we can
attain those laws through mathematics must be interpreted as a
major philosophical revelation.

Thus, the method exists, boundless, its ultimate foundation
being the freedom of the mind.

268



✣ C H A P T E R X V I ✣

Vanishing Perspectives

WITH RESPECT TO what was formerly known, the new elements
in the current state of the question may be summarized in three
points: logic penetrates the world at the level of matter, and not at
the level of our consciousness; our knowledge of the laws of reality
is now sufficiently ripe for this consciousness, its intuitive and vi-
sual representation, and the common sense it harbors to appear
with near-certainty as the consequence of much more general prin-
ciples; finally, we are ready to accept, pending a complete inven-
tory, that there exists an irreducible disjuncture, a chasm, between
theory and reality.

That is the least a new philosophy of knowledge should take
into account, together with everything else science might still sup-
ply. I believe that all is ready for the construction of such a philos-
ophy to begin: the building blocks and other materials are there,
and the plans are taking shape. We cannot afford to botch an en-
terprise that will undoubtedly require time and the reflections of
many people. This is why at present we can only state a few hy-
potheses, hoping that others will soon follow, and that in challeng-
ing them, in analyzing them, and in refining them progress will
ensue. I shall take the liberty of proposing some tentative direc-
tions, whose speculative character I would readily concede.

THE THEORY OF KNOWLEDGE

It is convenient to begin with the theory of knowledge, for we have
already seen its broad outlines, and little needs to be added. By
“theory of knowledge” I understand a scheme seeking to explain
how human consciousness may know the world, a world that
obeys its own laws. It is therefore a game of correlations between
the world and consciousness. More precisely, the theory proposed
here considers that the origin of consciousness, and of the connec-
tions it establishes with the world, lies in the laws obeyed by the
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latter. As for the philosophy of knowledge, it lies beyond that; it
ponders the world and our awareness of it, assumed to be already
understood, in order to penetrate the nature of that world. Ulti-
mately, it could even ignore the existence of humans, who appear
only as containers of thought, the flame-bearers, precious but tem-
porary and accidental, of the universe contemplating itself.

The theory of knowledge we are led to is almost obvious. We
cannot do otherwise but adopt the point of view of Hume and of
contemporary cognition science, and admit that the perception of
the world around us generates in our brain, in our mind, a repre-
sentation sufficiently common to all of us for language to be able to
communicate it, and sufficiently organized for common sense to
exist. These are the fruits of an apprenticeship by each individual
(by the species as a whole, too) and, even earlier, of a long evolu-
tionary chain of other species in their adaptation to the world.

The world we apprehend is not the more fundamental one of
atoms, and all the objects we perceive in it are incomparably
larger. It is from this larger scale that those objects inherit the par-
ticular features whose source can be found in the universal laws
that are valid on every scale—although at the atomic level these
laws possess other characteristics. Thus, the world within our
reach reveals itself in the form of objects that can be perceived by
sight, by touch, and by hearing. We know already that the “con-
spicuous” world is but the subtle manifestation of the quantum
laws, their metamorphosis on a larger scale. It is perhaps amusing
to observe that, among our senses, smell and, to a lesser degree,
taste, are detectors of molecules working on a medium scale (this
is also true of sight, which may detect a very small number of pho-
tons, but only in circumstances that are too exceptional to be rele-
vant). Be that as it may, our world also exhibits some persistent
features: events can leave long-lasting traces. This is, from the
point of view of physics, a form of determinism, but it is above all
the possibility for memory to exist, that is, memory as traces of the
past, in ourselves, as the perception of that past, and, thanks again
to determinism, as the anticipation of the future. Indeed, our world
often behaves in a predictable, repetitive manner, in which the laws
of physics do not play a greater role than do the regularities of the
living world encoded by common genetic rules. Thanks to this
providential monotony, this pervasive order, we can form an inte-
rior “image” of the world and we can describe it using language.
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All the features by which the world records itself on us may
therefore be derived from the fundamental principles that rule the
essence of reality. Such is the well-defined framework of a theory of
knowledge in which those principles come first and the various
forms of consciousness after. This deduction has now been essen-
tially completed, and the theory of knowledge so obtained pos-
sesses a foundation sufficiently sound to allow the construction to
proceed safely.

We can then recognize how some ancient “philosophical princi-
ples” reappear, keeping in mind that they apply only at the large-
scale level. This is how intelligibility and locality, as well as dis-
cernibleness, become properties valid at that level. As for causality,
it is closely related to our daily experience with determinism,
whose limits are well known.

And so, the “philosophical problems” that the quantum laws
seemed to create disappear by themselves. The domain of applica-
tion of the admissible “principles” is in effect quite limited. The
statement that a given principle is in action in a particular instance
must always be accompanied by a certain probability of error, ri-
diculously small in ordinary circumstances (which is the reason
thinkers in the past believed they could formulate those “princi-
ples”). As one seeks to extend them to increasingly smaller objects,
this probabilty of failure increases. Once the atomic level is
reached, the probability is so large that Aristotle’s and Kant’s prin-
ciples collapse under the unbearable burden of error.

In closing, let us emphasize that the theory of knowledge we
have presented here is far from complete. At best, we have laid the
groundwork, and the fact that we have only discussed the sciences
of matter without mentioning those of life, and have talked about
the laws of particles but not elaborated on the rich complexity they
generate on a larger scale, should be enough indication that the
task of the cognition sciences is just beginning.

LOGOS

It is only now, almost at the end of the book, that we really address
the philosophy of knowledge. We cannot afford to treat the subject
in a hasty and necessarily inadequate manner, but only sketch
some broad outlines. This incursion into philosophy must begin
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with a return to a question we have not fully answered: that of the
nature of mathematics. This topic cannot be avoided, for the im-
manence of formalism demands it more than ever, and the “No
one may enter here who is not a geometer” must remain carved on
our pediment.

It is not necessary to repeat the arguments in favor of “mathe-
matical realism,” put forward by the supporters of a Logos exist-
ing by itself and whose nature is different from that of Reality. We
have also seen nominalism and its variants, supported by an even
weaker dialectic and rather limited in its justifications, except that
it does not presuppose the existence of another reality.

To that I shall add only one instance in the history of contempo-
rary science that seems revealing. Some twenty years ago, particle
physics made considerable progress toward its unification, first by
succeeding in the synthesis of electromagnetic and weak inter-
actions (responsible for the beta radioactivity of nuclei, probably
the heat inside volcanos, the first stage of the nuclear reactions in
the sun, and the mechanisms behind the explosion of supernovae).
Next came the unification of the multiple forms of strong inter-
actions (responsible for the forces inside the atomic nucleus), forc-
ing physicists to admit that many particles (such as the proton and
the neutron) are made up of more elementary components, known
as quarks. To be sure, experimental data played an essential role in
those advances. But it is less well known that the theoretical efforts
had been almost entirely mathematical, combining symmetry con-
siderations (or group theory) with others arising from the geome-
try of abstract spaces. Nowhere else has the penetrating force of
mathematics into the heart of Reality proved so prodigious, and no
awl perforates so deep and so well.

The nature of the laws leaves us even more perplexed. They are
extraordinarily subtle, and yet apply to objects that are, so to
speak, structureless: electrons, photons, or quarks. Consider, for
instance, an electron and a photon in an otherwise empty region of
space. Can we imagine anything more insignificant? They are mere
particles, almost nothing, monsters of simplicity compared to a
grain of sand. How could each of them carry more than an ele-
mentary symbol, 1 or 0, to mark their presence or absence at that
point, how could they conceal anything else? And yet, they behave
according to laws whose predictions can only be obtained through
long calculations on a powerful computer—and the two particles
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verify, with a precision of ten one-millionth, the results of those
calculations. What guides those two dumb, blind balls (not balls,
really: points, without a well-defined position). How do the laws
act? On what do they take hold? We know absolutely nothing.
Everything seems to indicate that they do not act. In Aristotle’s
words, they belong to the realm of power and not of action.

Once we are aware of this fact, together with the chasm we men-
tioned earlier and the arguments of the mathematicians regarding
the absolute consistency and miraculous prolificness of their sci-
ence (“It’s too beautiful, it’s too beautiful, but is necessary”), we
are led to the conclusion that the existence of Logos is an entirely
plausible hypothesis.

Thus, to the question concerning the nature of mathematics—is
it part of Reality, does it exist through Reality, or does it have an
independent existence? we shall answer: part of Reality? no, be-
cause of the chasm, that irreducible hiatus that separates Reality’s
skin from its garments; do they exist through Reality? no, because
the barren poverty of the particles reduced to themselves would be
unable to sustain any symbols that might conceal the laws. Hence
mathematics exist by itself, as the consistency and fecundity of the
fragments already discovered by the human mind suggests.

THE INSTAURATION

The profound duality we encounter here, where Logos and Reality
part, as well as the very existence of that Logos, are metaphysical
escapades provided by science whose consequences are not easy to
estimate, too important for us to consider exploring them by em-
barking on some hasty reflections. We can simply raise one or two
trivial questions, if only to give an idea of the immensity and the
difficulties—but also the promise—of the task ahead.

Let us begin by observing a weakness of this program, one by
which the very same science that suggested the enterprise may be
used to call it into question. While the existence of Reality is obvi-
ous, it took at least two stages to move from the certainty of Real-
ity to the less than certain existence of Logos. The first stage, which
seems to impose itself, is the pervasive presence of laws throughout
the universe. As for the second one, which we have called the
chasm, that is, the ultimate irreducibility of Reality to formalism,
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it is more vulnerable to criticism and open to a possible evolution
of knowledge. Even if some philolsophers are comfortable with
such a position, their arguments rest only on principles whose fra-
gility is all too apparent. Quantum theory is the only one that per-
mits us to oppose Reality and Logos in pure form, so to speak;
sword against sword, essence against essence. This direct confron-
tation is the key to their double and inexorable existence. A refuta-
tion of this argument, the loss of both its revelation and its
strength, would take away our certainty. It would then be enough
that some major breakthrough in physics should carry with it the
disappearance of the chasm to put us back in square one.

Even if we dismiss this possibility, other difficulties might arise.
The first one concerns questions of method: before science could
reach the threshold of Logos it had to go through a diet of severe
asceticism. It also had to partially abandon common sense, in
order to discover the extent to which the unrestricted philosophi-
cal principles of the past are unreliable. Now, those are precisely
the same principles used until now by the explorers of Logos.
Which explorers? you might ask. Plato, of course, but especially
Plotinus, the most rigorous of all in a domain where rigor is not
easily exercised. I would not hesitate to add Spinoza, whose posi-
tion seems to me more akin to the one presently taking shape than
it might appear at first sight. We are dualists, while Spinoza is said
to be a monist, but is he? Doesn’t he say, in the first propositon of
his Ethics, “By substance I understand what is in itself and is con-
ceived through itself,” a sentence in which a logician will not fail to
remark the role of kneecap played by “and”? We find in it what is,
a Reality, and what conceives and conceives itself, a Logos, just as
we find the same dichotomy in nature, under its forms natura natu-
rata and natura naturans (receiving and giving shape). There is
certainly a lot to be learned from Spinoza, as well as from Leibniz
and, obviously, more recently, from Heidegger. They all show di-
rections to be followed, but none of them offers a reliable method
to stipulate that Logos.

Another difficulty, and an eventual source of considerable puz-
zlement, has to do with the very notion of existence and how to
grasp it. There is a problem when we attribute it to Logos, but
what exactly is the problem? The idea of existence has already a
fleeting quality when applied to Reality, whose various compo-
nents exist during a more or less short interval of time: the things

274



VA N I S H I N G P E RS P E C T I V E S

that have existed and those which will exist, do they exist? There
is that which exists now, the Dasein, to use Heidegger’s term, and
there is the Being, something that the German philosopher imag-
ines, if I am not mistaken, as an entity combining Reality and
Logos. Be that as it may, to be, to exist, Logos and time, Being and
Time, Sein und Zeit, perform a divine ballet that we humans be-
hold without being able to pierce the secret.

One last difficulty and the most fascinating of all consists in de-
limiting Logos, in conceiving its scope. Science’s approach, cau-
tious, watching its every step, leads, almost against its will, to re-
discovering the metaphysical extent of what was familiar ground
from the beginning. But in restricting ourselves from the outset to
what science may attain, to things that are verifiable and quantifi-
able, aren’t we also restricting ourselves to knowing only that
which is most dry and arid? I recall an episode from Mahabharata,
when the hero, Arjuna, meets Shiva in the forest. At first, all Arjuna
sees in front of him is a repulsive and naked ascetic; it is only after
a trying ordeal that the Master of Worlds reveals himself to the
young man. Similarly, Logos introduced itself to us in the ascetic
nakedness of logic and mathematics, which appear to so many
people as dreary, lofty, and unwelcoming. It is, nonetheless, the
same name Plotinus used to speak of the Soul of the World, the
object of his blissful contemplation. Would that name be mislead-
ing, used carelessly with different meanings and having Plato as the
only common root? Or is it rather a clue, an opening? How far
then does Logos stretch? What is its range?

As we have already said, we are merely outlining some possible
paths to be explored. The book is coming to an end, and whatever
solid ground we have covered is behind us. Caution is no longer
required. Since we are advancing haphazardly, let us be daring.

First, we must deal with the question of method, without which
nothing can be said. Unlike Reality, Logos never offers itself in a
concrete form, even if it is present everywhere in the reality accessi-
ble to us. There is perhaps the beginning of an answer, a handle, so
to speak, for whoever tries to get a hold of it. We may not know
much about Logos, but we possess a sort of living mirror of it: the
brain, which was born and evolved to accommodate it, to exploit
it, to recognize it. The brain carries a trace of its matrix as a meteor
carries that of an inaccessible planet. The idea is quite simple:
everything our brain translates as some form of order is perhaps
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the reflection of a possibility of Logos. This is clearly a rough hy-
pothesis, and it propels us imprudently toward everything we have
tried so far to avoid: fuzziness, arbitrary and hastily formulated
principles. A severe criticism should follow—and I confess not to
know even where to start. But let us use this idea as a guide, not
with the insane purpose of determining Logos’ domain but to
imagine perhaps the extent of that domain. That restriction, the
word “perhaps,” is important, because it opens up possibilities
without guaranteeing them.

We have remarked several times the existence of a certain kind
of beauty, cold and pure, in mathematics. Let us turn the idea
around. Our brain seems capable of connecting the order and har-
mony it discovers in those sciences with what it perceives more
generally as being beautiful. Some will say that this is only a confu-
sion of psychological mechanisms without real significance, and
having many possible causes, a few molecules of liluberin tickling
the hypothalamus or some other hormonal effect of uncertain ori-
gin. But let us recall something Plotinus said about beauty. For
him, the beauty of the statue of a God did not reside only in the
shape of the marble proper, but also in what the artist had man-
aged to capture of the divine nature and had offered as a reflec-
tion—the manifestation, in a concrete and real object, of a form
whose natural dwelling was Logos. Using again words already em-
ployed, we could summarize this theory of beauty by saying that it
is a partial representation of Logos in Reality.

At the risk of invading a domain far removed from my field of
expertise, and one which only the masters of aesthetics may dis-
cuss, it appears to me that many among them have never re-
nounced Plotinus’s vision of beauty, even if they have qualified it.
If, for the sake of caution, we restrict ourselves to what in aesthet-
ics is closer to mathematics, the importance of the symmetries in a
figure, the accuracy of its proportions, which are, at a more ab-
stract level, another form of symmetry, another manifestation of
what is known as groups, then all that is well known. It is also
known that a discrete departure from an excess of symmetry may
break the coldness of a work and introduce a kind of presence of
the surrounding universe, a manifestation of life. Haven’t we re-
cently discovered in amazement that the shape of breaking waves,
of clouds crossing the sky, or of a mountainous landscape could be
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faithfully imitated by forms resulting from calculations represent-
ing fractals—that is, mathematical objects possessing a subtle sym-
metry that renders them similar to themselves on whatever scale
they are observed? Also, in that case, a certain lack of symmetry
removes a little of the mathematical perfection to give an impres-
sion closer to reality, without destroying the impression of beauty.

Does beauty belong in some sense to Logos? Many have be-
lieved so from Plato on, and our discussion of fractals, that tongue-
in-cheek message of the latest mathematics to aesthetics, renders
the idea more relevant and pressing than ever. Let us try to remain
scientific, tough. Beauty must be felt, it is something that manifests
itself in our brain. If we succeed in retracing its source to Logos, we
can also imagine that physiology can be short-circuited, that we
can bypass “this brain, this greyish and fatty mass,” to move right
into artificial intelligence (an unfortunate expression that includes
in principle the abstract structures of thought) and envisage an ex-
tension of the cognition sciences to aesthetics and, as a theoretical
parallel, an exploration of the aesthetic domain of Logos. This di-
rection, as soon as we timidly half-open it, appears immense. To
borrow Bacon’s words in his Great Instauration, one cannot ex-
pect it to be the work of a single generation.

Another indication in a similar direction was provided by Hei-
degger in his later works, where he proposes to find the best path
toward the knowledge of Being—or, from our point of view, of
Logos, at least—in the summits of poetry. Following the same ap-
proach as above we are led to some prospects that are frightening
in their boldness, but not necessarily absurd: we must explore the
poetic structures using the cognition sciences and artificial intelli-
gence as a guide, in order to grasp the underlying semantic forms,
symmetries, and fractures. And how about music and beyond?

Thus, whatever the extent of Logos, it may open up new do-
mains of knowledge whose vastness seems without limit. How-
ever, it would be a mistake to see in this opportunity only the
invasion of the domain of the chosen, that of art, by the narrow-
minded practitioners of science, a kind of blind trespassing. On the
contrary, one should see in it the consolidation, in a structured and
serene form of thought, of the most beautiful dreams and the most
lucid contemplations of the past. But how Cyclopean the task
appears!
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FOUNDING SCIENCE

I would like to finish with a question that can be very simply put:
How can science exist? Or: How is science possible? The obvious-
ness of this question and the silence surrounding it echo Aristotle’s
beautiful words: “Like night birds blinded by the glare of the sun,
such is the behavior of the eyes of our mind when they stare at the
most luminous facts.”

Why is such an obvious question so seldom asked? Are scientists
so indifferent to the spectacle taking place before their eyes that
they only see an ordinary, trivial scene? Are they preoccupied only
by their next discovery or interested only in impressing their peers?
Or is it perhaps the habit of seeing each problem end up in a solu-
tion, each experiment yield a result, that leads them to a kind of
unquestioned certainty, to an absolute faith? They possess in effect
an unshakable faith, the stronger because never explicitly declared.

If, nevertheless, we were to ask a scientist the question, “How is
science possible?”, the answer, almost certainly, would be a la-
conic “Let us not get into metaphysics,” meaning, “It is a domain
of dubious reputation, and I’m not willing to risk mine—my repu-
tation as a serious and competent scientist, that is—by being seen
in such an unrespectable company.” This was not Einstein’s re-
action, though, he who said, “It is a wonder that science should be
possible.” But where does this wonder come from?

The answer is perhaps as obvious as the question: science is pos-
sible because there is order in Reality. The laws that structure the
representation we form of Reality are an image of its own order.
The whole of science suggests such an answer, but science alone
cannot establish or even formulate it, for this assertion is beyond
science’s own representation. Science is restricted to the region of
Reality already explored; it cannot get out of it or assess it. To go
beyond what is known amounts to proposing a hypothesis about
the unknown, to leaving science and entering metaphysics.

For, after all, this very simple statement, “Reality is ordered,” is
enough to found science by turning the tables. It turns the tables
because the long path we traveled in order to understand what
science is now becomes clear: Reality possesses the highest possible
order (but does “possible,” as used here, have a sense?) or a perfect
simplicity (but does “perfect” have a sense?). This order organizes
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Reality from its most elementary to its most complex aspects, from
the smallest to the largest scale, with one sweeping stroke. The
potential for consciousness is already written in the laws that gov-
ern matter, and time might make it hatch. Science is possible be-
cause Reality’s order generates the consciousness that will discover
it. There is a strange resonance in Socrates’ “Know thyself,” which
takes us to a sort of “Know thyself knowing,” by which Reality
knows itself in human consciousness which belongs to it.

We must emphasize that the above statement only makes sense
if outside Reality there is something other than it, if there is Logos.
Surely, the existence of Logos is less convincing than that of a uni-
versal order, but only the former gives a sense to the latter. The
order of the world is of a logical and mathematical nature, and any
kind of nominalism would be equivalent to saying that, if the uni-
verse is ordered, its order stems from an arbitrary game of hy-
potheses and deductions, from my own capricious choices. Or else
I assume that mathematics comes from Reality (of which it forms
a “superstructure”), but we have seen why this position is also
untenable.

On the other hand, everything becomes clear if Logos is a con-
sistent entity independent of Reality. The order that seemed elusive
materializes in a correspondence between the two, between pure
order and perpetual change. It is then natural that the representa-
tion of Reality proposed by contemporary science should pass
through logic and mathematics, for they constitute the image that
we reach, the representation of Logos. If our ordinary language
and common sense experience this order that they express, it is
because they too are the consequence. It is possible to reconsider,
based on these new foundations, the old nominalism-realism con-
troversy, that is, the ability of language to convey meaning, a prob-
lem that Russell still recently considered to be relevant and urgent.

The separation of Logos and Reality thus appears both as the
most appealing hypothesis and the one promising to be the most
fruitful. It is also the only one that seems in agreement with what
we have called the chasm, the ultimate gap between reality and its
theoretical description. It allows us to conceive their correspon-
dence as a partial penetration of one into the other that gives in-
stant meaning to the key sentence “Reality is ordered,” which in
turn answers the necessary question: how is science possible? The
image of this penetration, which manifests itself at the level of our
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Figure 3. Representations of Reality and Logos.

representations, is simply the role of mathematics in the constitu-
tion of science. Its outrageously formal aspects are then no longer
surprising.

All that constitutes a metaphysical scheme from which a new
philosophy of knowledge might be built. Its structure is best sum-
marized by a diagram than by long explanations (fig. 3).

In this diagram, science is a representation of Reality; mathe-
matics and logic are representations of Logos. Each representation
progresses thanks to the efforts of humans; it inherits from humans
its fringe of uncertainty, its advances, its hesitations. In spite of that
we can witness the increasing role of mathematics and logic (which
are representations) in structuring science (itself a representation).
This may be interpreted as the reflection—the representation, in
fact—of a higher, intrinsic correspondence between the primal en-
tities, symbolized by the line joining them in figure 3.

It would be tempting to try to elaborate on the nature of that
connection, but I hesitate to do so. Everything I could say seems to
me hopelessly inadequate, dubious, or, more seriously and more
philosophically put, premature.

All parallel lines in a painting appear in perspective to converge
toward a common vanishing point, and the perspectives I present
here are no exception. The horizon tends to become indistinct near
that point, considered by geometers to be at infinity and to which
I have undoubtedly come too close. I had better stop here, and
leave to others the task of pursuing, improving, correcting, or trac-
ing other paths. Youth can be trusted with all that, so that it may
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listen, through the rough tunes that it was occasionally necessary
to play, the continuo of a song of hope. For it is irrelevant whether
the handful of ideas proposed in this last chapter are interesting or
not. What matters is to know that we are moving ahead, that there
will be celebrations of the mind, and that, perhaps, philosophy
may soon start again.
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✣ Glossary ✣

THROUGHOUT this book we have tried to avoid the use of technical or
scholarly terms, which often serve only to muddle the message if the re-
cipient is not familiar with them. A certain number of specific terms have
nonetheless found their way into the text (we have indicated their first
occurrence with an asterisk). Their complete list appears below, with
each term followed by a brief definition. An asterisk within a definition
refers to another term on the list.

Axiom — Originally, it was a mathematical proposition whose truth was
self-evident. In contemporary usage, it is a proposition belonging to a
formal language* that is assumed to be true by hypothesis.

Cartesian project — In philosophy, this is the name given by Heidegger
and Husserl to theoretical physics’ founding hypothesis stretched to the
limit, assuming that physical reality can be completely described using
mathematical rules.

Chasm — This is a term introduced in this book to designate the impossi-
bility for a theory to describe all aspects of physical reality. The gap
between theory and reality stems from a conflict between the unique-
ness of facts and the essentially probabilistic character of quantum the-
ory. It refers to perfectly visible facts, and not, as in the veiled Reality
proposed by d’Espagnat, to properties that are only conceivable and
cannot be assigned a truth value.

Commutativity — In mathematics and in quantum mechanics, to obtain
the product AB of two operators* A and B, one must first apply the
operator B to a given function u to form the new function Bu , and then
apply the operator A to the latter, which produces ABu. This defines
the action of AB on u. The operators A and B commute when AB = BA.
In general, the difference of the two products AB − BA is called the
commutator of A and B.

Decoherence — In quantum mechanics, decoherence is a physical effect
due to which quantum interference* effects between states that are dis-
tinct at the macroscopic level disappear very quickly.

Denkbereich — See Domain of propositions.
Diffraction — In optics, diffraction phenomena manifest themselves by

corrections to the linear propagation of light which show its undula-
tory nature. Thus, the edge of the shadow produced by a source re-
duced to a point is not completely sharp when closely observed.

Domain of propositions — In logic, it is the totality of the propositions
under consideration for the purpose of reasoning in a given context. It
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may be defined using sets as Boole did, or constructed by means of a
more or less formal language.

Empirical rule — This is a (possibly quantitative) rule, derived only by
empirical observation within a class of phenomena, whose explanation
in terms of laws* is not known.

Energy — In classical physics, energy is a physical quantity that remains
constant in any isolated system. It often has two components, one de-
pending only on velocity (kinetic energy) and another on position (po-
tential energy). In quantum mechanics, energy is an observable* also
called the hamiltonian.

Ether — This is a hypothetical medium assumed to fill all of space, whose
existence was postulated by classical physics. Originally, it was sup-
posed to provide a medium for light to propagate. Later, when light
was identified with a vibrating electromagnetic field, ether also pro-
vided a medium for this field to propagate. It disappeared as a scientific
concept following Michelson’s experiment.

Formal — The attribute formal, as used in this book, denotes the oppo-
site of intuitive, representable, visual, or expressible by words in the
language of common sense. More precisely, a concept about reality (in
physics, for instance) is considered as formal if it is expressible or can
be grasped only through mathematics. Logic and mathematics are for-
mal on the first level when they deal only with relations, and not with
meaningful objects that are completely and uniquely defined (for exam-
ple, a proposition about a relation among straight lines (meaningful
objects) is strictly equivalent, according to the theory of polarities, to a
proposition about points, as meaningful objects). Mathematics and
logic may be considered as purely formal when their foundation is
completely reduced to an axiom system* in some formal language.*

Formal language — In logic and mathematics, a formal language consists
in a set of symbols and another set of precise rules specifying how the
symbols may be combined to form propositions. The latter are not as-
sumed to refer to reality or to have a unique meaning.

History — In quantum mechanics, a history is a sequence of various
properties taking place at successive instants of time.

Interference — In optics and quantum mechanics, when a wave may fol-
low two different paths (through one or the other of two slits, as in
Young’s experiment, for instance) its intensity (or, in the quantum case,
its probability of occurrence) varies from one place to another and
shows maximum and minimun values (bright and dark fringes, in the
case of light), the existence of which constitute the interference phe-
nomenon. Basically, it is due to a superposition principle according to
which the amplitudes of waves that have followed different paths are
added together.
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Interpretation — In physics, interpretation, as we define it in this book, is
the process of deriving, from the formal principles of a theory (rela-
tivity or quantum mechanics) a logical representation of observable
reality in a form that is compatible with common sense and which may
be communicated in ordinary language; it must also conveniently de-
scribe the experiments that are performed in practice.

Law — In science, a logical consequence of the principles* that is con-
firmed by experience.

Maxwell’s equations — In physics (electrodynamics) it is a set of equa-
tions that govern the properties of the electric and magnetic fields and
their evolution in the course of time.

Metalanguage — A metalanguage is a formal language that gives a larger
meaning to another formal language. The propositions of the latter
then become words (signs) of the metalanguage.

Modus ponens — In logic, the possibility of beginning a new proof with
a theorem* that has already been proved without having to justify the
proof of the latter.

Momentum — In classical physics, momentum is the product of mass
times velocity. In quantum mechanics, each of the components of the
momentum vector is an observable*, that is, an operator* involving
the differentiation operation. Therefore, in this case, it is a very formal
notion.

Objectivity — A phenomenon, a concept, or a piece of knowledge is de-
clared objective, to different degrees, if its existence does not depend on
the human mind. This notion was introduced by Kant; it has been stud-
ied by the social sciences and only began to pose a problem in physics
with the advent of quantum mechanics. Then a question arose regard-
ing the objectivity of certain concepts, in particular that of the wave
function.* Are they directly associated with physical reality, or do they
exist only through our awareness of them? Bohr first, and modern re-
searchers later, pronounced themselves in favor of the objectivity of the
theory.

Observable — In classical physics, the basic physical quantities are the
coordinates of position and momentum. Then, a general physical
quantity such as energy is a function of those coordinates. In quantum
mechanics, the role of a physical quantity is played by an operator*
possessing certain mathematical properties (such as hermiticity), which
is called an observable. This is one of the theory’s most formal aspects.

Operator — In mathematics and in quantum mechanics, an operator A is
a mathematical operation which, acting on a given function u (usually
a wave function) generates another function, denoted Au. Linear oper-
ators, by far the most important ones, are those that preserve the sum
of two functions and the product of a function by a constant.
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Paradigm — In epistemology, this is a notion introduced by Thomas
Kuhn. A paradigm is a remarkable scientific breakthrough that be-
comes a model to be imitated by other researchers. To the explanation
of the evolution of research in terms of paradigms has been opposed
that of the advancement of science in terms of principles. The word
“paradigm,” originally not very well defined, may be found nowadays
in a multitude of jargons.

Positivism — In philosophy, this is a doctrine proposed by Auguste
Comte and followed by his emulator John Stuart Mill. In epistemology,
it designates the point of view according to which the criterion for true
knowledge is a consensus among the people concerned (assumed to be
acting in good faith, to have the required qualifications, etc., with all
the difficulties that the verification of such conditions entails). In quan-
tum mechanics, it is principally the doctrine denying the objective real-
ity of the wave function and claiming that this function represents only
the information available to the observer.

Pragmatism — In its strong sense, it is Hume’s philosophical doctrine,
according to which facts come first and are at the origin of thought and
language, the source of the order governing them being in principle
inaccessible.

Principle — In science, this is a universal proposition controlling physical
reality.

Principle of complementarity — This is a principle in quantum mechan-
ics formulated by Bohr. According to it, in describing physical reality,
certain incompatible notions cannot be employed at the same time—
for instance, position and velocity for a particle, or the field and the
corpuscular nature of light. In recent versions of the theory, this restric-
tion remains, but only as a consequence of other principles.

Principle of inertia — This is one of classical mechanics’ fundamental
principles. In the form given by Newton, it states that the center of mass
(also known as the center of gravity) of a body which is not subjected
to any force moves in absolute space along a straight line, with uniform
velocity with respect to absolute time. The same property is valid in
every (Galilean) reference system, itself moving with uniform velocity
and without rotation with respect to absolute space. In the special the-
ory of relativity, the principle of inertia applies in Galilean reference
systems moving without rotation and with uniform velocity with re-
spect to each other. These form a class independent of absolute space
and time.

Principle of minimal action — In physics, this is a principle from which
the equations of motion of a classical system can be deduced. Intro-
duced by Lagrange in the eighteenth century and extended by Hamil-
ton, it states (in its simplest case) that motion minimizes the value of a
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certain integral, known as action, which may be calculated from a
knowledge of both kinetic and potential energies.

Projector — In mathematics, and particularly in its applications to quan-
tum mechanics, a projector (P) is a particular kind of operator. When
it acts on a function u (a wave function, say), it generates another func-
tion v, denoted Pu. The main characteristic of P is to remain the same
upon iteration: P2u = Pu. This property is also possessed by the projec-
tion of a point in three-dimensional space on a plane, hence the name
projector. The quantum observable (the physical quantity) associated
to P can only take on the values 1 or 0, similar to “true” and “false.”
From this fact results the important role played by these operators in
questions involving logic.

Property — In quantum mechanics, a property means that a certain phys-
ical quantity (an observable*) falls within an interval of possible values
at a given instant. Properties are the basic elements of any description
of physics.

Propositional calculus — In logic, it is the manipulation of propositions
of a certain formal language* with the help of logical operations such
as “not,” “and,” “or,” and the introduction, among these proposi-
tions, of equivalence or implication relations.

Realism — The various forms of realism are doctrines belonging to the
philosophy of knowledge. Platonic realism assumes the existence of a
world of Ideas more real than our own world. A similar position, math-
ematical realism, believes in the independent existence of an entity that
mathematics explores but does not create. Physical realism comes in
many different forms. They all postulate the existence of a physical
reality independent of the human mind (as opposed to idealism) and,
often, also admit that this reality may be known in itself (contrary to
what both positivism and representationism maintain). The difficul-
ties of reconciling realism and quantum mechanics prompted Bernard
d’Espagnat to introduce the idea of “veiled reality,” which restricts
what aspects of reality may be known.

Schrödinger’s equation — In quantum mechanics, Schrödinger’s equa-
tion expresses the variation of the wave function* as a function of time,
and in this sense it plays the role of dynamics. It incorporates in an
essential way a particular observable,* the hamiltonian, or energy.*

Scientific revolution — This is a notion, introduced in the history of sci-
ence by Thomas Kuhn, that designates the discontinuous changes that
take place following major scientific discoveries. Each of these is asso-
ciated by Kuhn with the emergence of a new paradigm,* marking the
break with the past provoked by the given “revolution.” From the per-
spective of the principles* of science, such a “revolution” often consists
in a revision and an extension of these, within some specific domain of
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application. The former principles, reappearing as consequences of
new ones, then acquire the status of laws.*

Space-time — In physics, this term denotes the conjunction of space and
time in one single system, conceived as a primal entity and represented
by an abstract, four-dimensional mathematical space. There are many
ways to introduce coordinates in this abstract space, each of which
imposes a particular structure to space and time that can be empirically
verified by an observer in his or her own vicinity.

Spin — This is a quantity that characterizes a quantum system, akin to an
angular momentum. It is a vector of which only its magnitude and one
component can be specified, both values being multiples of h/4p, where
h is Planck’s constant. In a macroscopic system, the spin indicates
whether or not the system is rotating on itself, but this interpretation is
not valid for a particle.

Theorem — In logic and mathematics, a theorem is a proposition whose
truth has been established by a proof or demonstration under the as-
sumption that all the axioms* are true.

Truth — In logic, what characterizes truth is the possibility of assigning
a value 1 (true) or 0 (false) to a proposition. In logic and mathematics,
the axioms* are assumed to be true by hypothesis, and the theorems*
are propositions whose truth is established a fortiori by means of a
proof or demonstration. In the physical sciences, and especially in
physics, observed facts are considered to be true. In quantum mechan-
ics, there are properties* that are true without being directly observed
facts, but which are a consequence of those facts.

Uncertainty relations — Discovered by Heisenberg, these relations do
not constitute, as it is said sometimes, a principle of quantum mechan-
ics, but are a consequence of those principles. The best known case
involves the statistical uncertainty Dx of a position coordinate x and
the uncertainty Dp of the corresponding momentum component: the
product Dx Dp can never be less than h/4p, where h is Planck’s con-
stant. As a consequence, wave functions leading to increasingly precise
values of x produce at the same time values of momentum that are
increasingly uncertain.

Universe of discourse — See Domain of propositions.
Wave function — In quantum mechanics, the state of a system is defined

as datum, or information, from which the probability of every prop-
erty* may be calculated. This information is often expressed in mathe-
matical form by a function (the wave function) whose arguments are
the coordinates of the particles making up the system. Thus, the wave
function is a formal quantity containing what is needed to express
everything that can be said of the system at any given instant.
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Wave function reduction — This is one of the main hypotheses for the
interpretation of quantum mechanics according to Bohr. After measur-
ing some quantum physical system (an atom, for example) using a
measuring device, the system’s wave function is supposed to change
suddenly. Its new expression is then determined by the result of the
measurement as indicated by the instrument. The reduction, viewed
simply as a practical rule for the calculation of probabilities, remains
valid in the most recent versions of the interpretation, without having
to be considered as the consequence of any particular physical effect.
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