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1 Trajectories

QM: So you want to understand quantum mechanics, right?

LR: Yes. They have taught me everything about the wave function of the elec-
tron and how to use the Schrödinger equation to calculate its time evolution. I
have learned how to find the energies of the hydrogen atom and how its orbital
wave functions look like. I know how to solve scattering problems, when the
wave is partially reflected and partially goes through a barrier. And I was told
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that experimental predictions can be obtained by squaring the wave function,
because this gives you the probability of finding the electron here or there. But
I want to understand what really goes on. I want to grasp the physics behind
the formalism, so to speak!

QM: Well, what exactly do you hope for when you say you want to “under-
stand” it? Is it not enough to be able to make precise predictions for every
conceivable experiment? Do you expect to find that, after all, the electron’s
motion can be described in the same way as that of macroscopic bodies - say, a
stone being thrown or a satellite moving in orbit?

LR: No, of course not. It must be something very tricky, indeed.

QM: What about Maxwell’s equations of electrodynamics? Do you “under-
stand” them? Is it not also quite mysterious to have electric and magnetic
fields propagating through vacuum, without being attached to anything ma-
terial? But I guess you would not try to uncover some deeper reason behind
those equations, would you?

LR: No, I am satisfied with Maxwell’s equations as they stand now. But I claim
that they are different from quantum mechanics: The electric and magnetic
fields can always be measured, at every point and at every time, by looking
at the deflection of little test charges. So they are very real, in contrast to the
mysterious wave function! And I can imagine how these fields propagate as
time runs on. There is a definite physical picture behind it.

QM: Still, when these equations had been only a few decades old, people were
not at all content with that picture. They tried to “understand” them - I guess
much in the same way you are trying to understand the physics behind quan-
tum mechanics. They knew Maxwell’s equations are similar to other wave
equations, for example those describing the propagation of sound waves. So
it was entirely natural to try to reason by analogy: “air is to sound waves as
... is to light waves”. They even introduced a name for “...”, it was the “ether”
in which light was believed to propagate. But it could never be observed di-
rectly. With time, the properties one had to attribute to the “ether” in order
not to contradict the known facts became more and more mysterious. Nowa-
days, we can do without the “ether” and any deeper physical explanation of
electrodynamics. It is just a matter of getting used to it.

LR: Hold on. You have left out something important. I agree that we can do
very well without the ether. But consider this: If they had not looked for the
ether, they would not have found special relativity! So it paid off not to ignore
these questions, although the final answer turned out to be quite different from
that expected in the beginning.

QM: Well, I see you do not give up easily. So perhaps you should tell me in
more detail what exactly are the points you find so difficult to grasp in quan-
tum mechanics. Let us start with something basic: You mentioned the “prob-
ability of a particle being here or there” - so you agree that the wave function
does not describe a smeared-out particle?
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LR: Yes. Of course, that would have been the simplest possibility: to picture an
electron as a small wave packet moving in space or as a standing wave around
the nucleus of the atom. Waves would have been truly fundamental while
“particles” would have been the word for localized disturbances in the wave
field. In that interpretation, the square of the wave function would have given
directly the charge density of the extended electron...

QM: Which is the initial interpretation proposed by Schrödinger himself.

LR: ...In fact, it works nicely for a number of purposes: For example, the charge
density belonging to the ground state wave function of the atom is static - a
fuzzy, spherically symmetric cloud around the nucleus. So it is natural that
no electromagnetic field is radiated. But if you have excited the atom a little
bit, then the wave function consists of an admixture of the excited states and
the ground state, and the charge density starts to vibrate. The center of the
negative electronic charge density does not coincide any longer with the pos-
itive nucleus during the vibration. So the atom acquires an oscillating electric
dipole moment, just like a small antenna: Therefore, it radiates an electromag-
netic wave, and both the frequency and also the intensity of that wave can
be understood in this picture. The picture of a smeared-out charge density is
also nice and useful for visualizing molecules, so it has always been applied in
chemistry.

QM: But you know that it fails badly in other circumstances.

LR: Yes. For example, if we have an electron moving in free space, it may
be described by a wave packet. Still, even if the extent of that packet is very
small at first (say, only a few nanometers), it will necessarily spread further.
After a while, it will cover macroscopic distances (say, millimeters). But in
every experiment only localized, point-like electrons are detected. So the wave
function cannot really describe an extended electron.

QM: Right. In contrast, the probability interpretation has worked perfectly for
every experiment done so far. The square of the wave function at a particular
point in space is simply the probability of finding the electron near that point
in a measurement. But besides those problems with spreading wave packets,
the picture of the charge density cannot work for another reason: If you de-
scribe a system of more than one electron, you have to use a wave which is
a function of the coordinates of all the electrons. So this wave function does
no longer live in threedimensional space but, instead, in a 3 × N dimensional
space, if you have N electrons. Obviously, it makes no sense to talk of a charge
density in such a high-dimensional abstract space. On the other hand, it is
perfectly reasonable to ask for the probability of finding the electrons in some
particular configuration at a certain time: “What is the likelihood to find parti-
cle one at this point, and, at the same time, particle two at the other point over
there?” This is done by inserting the prescribed coordinates of all the electrons
into the many-particle wave function and squaring it. Anyway, this has not
been a new concept at all: The same is done in classical statistical mechanics,
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where one also deals with a probability distribution that depends on the coor-
dinates (and, maybe, momenta) of all the particles simultaneously. It gives the
probability of finding the set of particles in this or that configuration, when the
total system is in thermal equilibrium. The major difference is, of course, that
the quantum mechanical probability distribution will often show interference
patterns, because it is derived from a wave function.

LR: Agreed. We cannot easily interpret everything in terms of waves. And
the probabilities calculated using the wave function offer precisely the right
description of experiments. But what I want to know is: How do those proba-
bilities come about? You have mentioned statistical mechanics: We know that
it is just an efficient way of describing the complicated behaviour of a large
number of particles that excert forces on each other and move according to
Newton’s laws of motion. Since we do not know the precise initial positions
and velocities of all the particles, we have to resort to a probabilistic descrip-
tion. It is also practically infeasible to calculate in detail all the trajectories,
since they depend very sensitively on the initial conditions. Besides, we would
not want to know all those details anyway. We are particularly interested in the
average behaviour of the particles. And it is this average behaviour in the ther-
mal equilibrium state which is very well described using the comparatively
simple “Boltzmann distribution”. Now, given the probability interpretation
of quantum mechanics, is it not inevitable to wonder what is the microscopic
physics behind the efficient description provided by the wave function and the
Schrödinger equation? I could put it like this: “Newton’s laws of motion are to
classical statistical mechanics as ... is to quantum mechanics - fill in the missing
word!”

QM: Well, of course that is what people tried at first, even before they had
the final formalism of quantum mechanics in their hands. Perhaps it is best
to discuss your ideas on the “physics behind quantum mechanics” for some
concrete example. Let us take the double slit experiment, that should be simple
enough.

LR: Fine. In fact, there are even two different points that I find disturbing about
the usual description of this experiment. The first one is this: the wave spreads
continuously over all of the screen and develops the pattern that stems from
the interference of the waves coming from both slits. But, of course, we know
that there is no such thing as a “smeared-out” electron. Indeed, in the end the
electron hits the screen either here or there, at a well-localized spot. But what
to do with the extended wave function in that event? Well, here is what peo-
ple say and what sounds to my mind like a cheap excuse: They say the wave
function “collapses instantaneously to the point where the electron has been
detected”. But, tell me, how does the wave function that is spread out over a
larger portion of space “know” that the electron has been detected at a partic-
ular point, so it should immediately vanish everywhere except at that point?
Don’t we have the theory of special relativity which forbids influences to travel
faster than light? Is this not a mysterious “action at a distance”? Imagine some-
thing similar for the classical electromagnetic field: If radio waves encounter
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Figure 1: The double slit experiment: In the example shown here, a spherical
wave packet moves towards the two slits from the left. The probability density
is plotted in a grayscale plot, which means the electron is most likely to be
found in the darkest regions. As the wave approaches the slits, a large part of
it is reflected, such that a standing wave pattern develops to the left of the slits
(a,b). Only a smaller fraction passes through the slits. The waves emanating
from the two slits overlap and form an interference pattern (c,d), which might
be observed on a screen to the right. Note that the reflected wave to the left
also shows interference.

an antenna somewhere, then they may excite a current in it. This draws energy
out of the field and the excited antenna emits radiation, which is superimposed
onto the incoming field, canceling it partly. So the field is changed, but not in-
stantaneously over arbitrarily large distances. In contrast, the “collapse of the
wave function” is effective regardless of the distances between the different
parts of the wave. For example, the wave could be split into two wave packets
at a partially transparent barrier. Then one of the wave packets could travel to
Jupiter, the other one to Mercury and in the case of detection on either planet,
the other part of the wave would vanish at the same instant!

QM: True. But isn’t this quite natural in a probabilistic description? At first you
do not know whether the electron is here or there, so you ascribe a finite prob-
ability to both possibilities. As soon as you have detected it at a certain place,
you can update your probabilities, because you have gained some knowledge.
You can do further predictions on the basis of this refined information. This is
true in the same way for classical statistical mechanics or any classical reason-
ing based on probabilities. No mysterious “action at a distance” is involved.
What changes suddenly is just your knowledge about the actual situation.

LR: That sounds plausible. In that case the “collapse of the wave function”
isn’t really something to worry about. And it makes me confident that we can
find a more detailed “common-sense” theory underlying quantum mechanics
just as we know Newton’s law of motion is the microscopic theory underlying
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Figure 2: “Collapse of the wave function”: The wave function is extended be-
fore the electron is detected at some random point on the screen. After the
event, the wave function is to be replaced by a packet localized around that
point.

classical statistical mechanics. After all, what you say amounts to the follow-
ing: There always is some definite place for the electron, only we do not know
it!

QM: Uhm, well, you see... Actually that is not quite the point I wanted to
make. But I agree that what I have said sounds like that. In fact, things are
more complicated: In order to really understand the “measurement problem”,
one should deal not only with the single electron but also with all the particles
in the measuring apparatus - for example, those making up the screen in our
example. So it becomes a many-particle system and the wave function lives
in a higher dimensional space. Maybe that gets a bit too complicated at this
point. We should discuss these things later on. You mentioned you had a
second problem with the double slit experiment?

LR: Yes, it is this: Often, people say “the electron goes through both slits at once
and interferes with itself” - or something like that. That sounds very vague and
imprecise. Is it not entirely reasonable to assume that it goes either through this
slit or through the other one?

QM: But certainly you should have been taught in your quantum mechanics
course that this can never give you the correct interference pattern! Because if
the electron only goes through a single slit, how should it know about the pres-
ence of the other one? And if it does not know about the presence of the other
one, you will just end up with a distribution of electrons on the screen which
is the sum of the distributions you obtain for each slit alone - no interference
fringes!

LR: Of course I know this story. But there is a very naive classical reasoning
behind it - maybe the electron does know about the presence of the other slit,
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even though it only goes through a single one. There may be some long-range
forces involved, or perhaps it emits a photon which goes through the other slit
and is reabsorbed later, or maybe there is a mysterious wave field which per-
vades everything and influences the motion of the particle and knows about
the presence of both of the slits. Actually, I like that possibility: Imagine wa-
ter waves passing between some rocks. The ripples will form an interference
pattern, similar to that in the double-slit experiment. Now, if a small piece of
wood rides on the waves, it will be influenced by that pattern, although it has
not mysteriously traveled “all paths at once”. In any case, I am sure there is a
definite position of the electron at each and every moment, even when we do
not look at it. And therefore, the electron will follow some definite trajectory,
even though we do not know which one.

QM: Come on, you know there are no particle trajectories in quantum mechan-
ics!

LR: That’s what people say. But I have some good reasons for believing in tra-
jectories: First of all, you can detect the position of an electron instantaneously
- or nearly so - by scattering light off it. And when you repeat that observation
a short time later, you will find the electron at a position which is not too far
from the first one. So, not only does it have some precisely defined position
whenever we choose to observe it, but there are also no sudden jumps in its
position. And, of course, there should be no jumps, because that would mean
the particle could move faster than light. As far as I know, there is not a single
experimental result that would force us to conclude that such faster-than-light
motion can happen in quantum mechanics. So it is natural to assume the par-
ticle follows a continuous trajectory.

QM: Maybe...

LR: And secondly, it would be hard to imagine the particle being “everywhere
at once” in a kind of mysterious superposition until we measure it. After all, it
is not just a matter of a few nanometers: the different parts of the wave may be
separated by macroscopic distances; remember my example of a wave packet
going to Jupiter and the other one to Mercury. And it is not just about elec-
trons; interference experiments are done with all kinds of other particles: That
includes whole atoms or ions or even molecules composed of many individual
atoms. You can trap those particles and manipulate them individually. You
can even make pictures of them, for example with a scanning tunneling mi-
croscope and they appear to me very “real”. So it is no longer like in the early
days of quantum mechanics, when you could only do experiments on large en-
sembles of particles which you could not resolve individually. There, a merely
statistical interpretation may have been enough, but now it is not.

QM: I agree that it is hard to imagine how a whole “buckeyball” molecule can
be in a superposition of different places. But you must acknowledge that there
have been equally good reasons for ruling out the existence of trajectories: In
quantum mechanics, there is simply no way to have, at the same time, a pre-
cisely defined momentum and a precisely defined position of a particle. This is
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Figure 3: Trajectories are changed when one tries to measure them too accu-
rately: A series of position measurements, with a precision given by the gray
circles, is carried out in constant time intervals. When the spatial resolution
is increased (from left to right), the random deflections in momentum at each
step are also enlarged, which finally leads to something like a random walk.

forbidden by Heisenberg’s uncertainty relation, which is a direct consequence
of quantum mechanics itself.

LR: I know: ∆p∆x ≥ h/4π. If the spread in position ∆x is given, then the min-
imum spread in momentum ∆p can be calculated using this inequality. And
it means that the velocity of the electron will be defined with a precision no
better than 100 000 meters per second, for a position uncertainty of a nanome-
ter. If the spread in position is reduced by a factor of ten, then the minimum
spread in velocity must grow by the same factor. And, of course, a tenth of a
nanometer is just the diameter of a hydrogen atom, so the single electron inside
that atom must have typical velocities on the order of at least a million meters
per second, according to Heisenberg. Actually, this is indeed the correct mag-
nitude. For a heavier particle, of course, the spread in momentum would be
the same, only the spread in velocity would be reduced. That is all very fine -
but why should it rule out the existence of trajectories?

QM: Well, if you try to follow the trajectory of the particle, you have to carry
out successive position measurements. But, depending on how precisely these
measurements pinpoint the electron’s location, each of them will induce a smaller
or larger spread in its momentum. Thus, the trajectory is changed. If you want
to follow it very closely, measuring extremely often with high precision, you
will observe just a random walk. And the position that the electron reaches
at the end (on a screen, for example) will have nothing to do any more with
the position it would have reached if you had let it alone. So, maybe, you may
even choose to talk of a trajectory, but once you try to measure it, it is heavily
perturbed and becomes a different one.

In fact, that is not only demanded formally by Heisenberg’s uncertainty rela-
tion. It is an inevitable consequence of the physical measurement process. You
may know the example given by Heisenberg himself: if you want to observe
the position of the electron under a microscope, you have to scatter light off it.
If the position is to be determined accurately, you will have to choose light of
a short wave length. This means the photon which is scattered off the electron
carries a high momentum, because wavelength and momentum are inversely
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proportional, according to de Broglie: λ = h/p. A part of the momentum is
passed to the electron in the “collision” between photon and electron. And
since the lens of your microscope will collect photons flying in various direc-
tions, you can never determine precisely the momentum change of the photon.
Thus, the momentum transferred to the electron is not only random but un-
known, to an amount which turns out to be precisely that demanded by the
uncertainty relation! Everything fits together - the experiment cannot deter-
mine anything more precisely than the theory of quantum mechanics is able to
describe it and vice versa. Otherwise, there could be contradictions or at least
something would be missing in quantum mechanics.

LR: Hm, what happens if I do not use a lens?

QM: Then you are able to determine exactly which direction the photon went
after the scattering event, because you do not collect light going into all the
different angles. So, if you know which way it came, you can calculate the
momentum that must have been transferred to the electron, from momentum
conservation. Therefore, although the momentum of the electron still has been
changed by a random amount, you know its new value - provided you knew
the initial momentum. Of course, you have to pay a price: Without a lens, you
cannot any longer find out at which point exactly the photon was scattered,
so you don’t know where the electron is, you only know its momentum. You
simply cannot determine both position and momentum exactly at the same
time.

LR: I admit, it is impressive how quantum mechanics avoids all contradictions.
But still: If we know that the physical reason behind the uncertainty relation is
the inevitable perturbation during the measurement, it is all the more natural
to assume that, in reality, the electron follows some trajectory. Of course, we
can never find out which one without perturbing it, as you have said. But it
would be helpful nevertheless to be able to imagine a definite trajectory, at least.

QM: Now assume you measure the position of the electron following such a
trajectory. Why do you get a statistical distribution of positions? After all,
quantum mechanics tells us that you do get such a distribution if you repeat
the experiment several times, with a series of electrons being injected into your
apparatus, one after the other, each prepared in the same way. And you cannot
claim that it is the measurement which is responsible for the random compo-
nent: That would be true only for subsequent position measurements of the
same electron, because these are affected by the perturbation introduced by
the first measurement.

LR: Oh, the trajectories are random, of course. You take care to prepare the
wave function of each electron to be the same, with suitable velocity filters and
slits and so on. But this is not sufficient: quantum mechanics forbids you to de-
termine precisely both position and momentum. Both of them will have some
spread, depending on the wave function. So at least the initial conditions of
the trajectories are different and therefore you get a distribution of trajectories
and a distribution of arrival points on the screen. It is as simple as that.
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QM: I fear it is too simple! Remember, you could also choose to measure the
momentum of the particle, instead of the position.

LR: Then I find a distribution of momenta. What is the problem?

QM: So you claim you can make the distributions of momenta and positions
obtained from your trajectories coincide simultaneously with the quantum me-
chanical results? This is not possible, again due to Heisenberg’s uncertainty
relation. Because, what you would like to have is a kind of classical proba-
bility density that depends both on position and momentum simultaneously.
But remember, the square of the wave function only gives you a probability
distribution of the position alone. And if you want to get the distribution of
momenta, you have to Fourier transform the wave function and afterwards
take its square. That is, you have to change to the momentum basis. You can
never get both at the same time. In fact, the nearest thing to what you would
like to have that exists in quantum mechanics is the so-called Wigner density,
which is a function of both position and momentum. It fulfills everything you
would expect from a classical probability density, except that, unfortunately,
it turns out to be partly negative, for most wave functions. So there you have
“negative probabilities” - I guess you could not realize that with your random
trajectories!

LR: Well, I don’t know enough about the Wigner density you are talking about.
But I can easily demonstrate to you that you must be wrong: If quantum me-

chanics tells me that the probability distribution of position is |Ψ(x)|2 and that

of momentum is
∣

∣

∣
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, then I can set up a probability distribution that de-

pends both on x and p, gives back these probabilities when you only ask for
the position or for the momentum alone and is, on top of that, never negative.

Just take ρ(x, p) = |Ψ(x)|2 ·
∣

∣

∣
Ψ̂(p)

∣

∣

∣

2

. Of course, I still do not know how to find

a law of motion for my trajectories that gives this distribution at every instant
of time. But at least it is not impossible from the outset.

QM: Oops, you are right. I forgot to mention one requirement: You should
not only be able to obtain the correct probability distributions for position or
momentum but also for every combination of position and momentum, in the
form Ax+Bp. This is because you could choose to measure not in the position
basis, not in the momentum basis, but in a basis with respect to such a mixture
of both x and p.

LR: It seems you invent new rules whenever I have a good idea... Seriously,
why should anyone measure in such a basis? And how could that be done
physically, anyway? After all, I would be content to reproduce the real physical
observations, not every formal quirk of quantum mechanics.

QM: It is not something merely formal. Assume that the particle starts out at
position x and has momentum p. Then, if you measure its position after some
time t, this will be x+ vt = x+ pt/m in terms of the original position and mo-
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mentum. So it just corresponds to a measurement of such a linear combination
of x and p.

LR: Well, maybe you are right. But if I cannot reproduce all these probability

distributions at once, I decide in favor of the position distribution: |Ψ(x)|2. This
is what should be observed if one measures the positions of such an ensemble
of electrons following the random trajectories.

QM: Then the experimental results your theory predicts will no longer coin-
cide with those of quantum mechanics, because momentum measurements
will come out wrong!

LR: Oh yes, they will coincide! And you pointed out why they still can coin-
cide!

QM: How come?

LR: You gave the example of a position measurement at a time twhich is really,
in part, a measurement of the momentum at an earlier time. If you think of it,
the momentum is always measured indirectly in such a way: You may run the
particle through velocity filters or scatter it off a grating, where the scattering
angle depends on its momentum. But in the end you observe where it hits a
screen, so you actually carry out a position measurement!

QM: Hm, at least it is an excuse that I cannot immediately prove wrong. How-
ever, it spoils the beautiful symmetry between position and momentum, which
is basic for the theory of quantum mechanics.

LR: That does not matter to me. You could also claim that this symmetry is ba-
sic for classical mechanics, at least in Hamilton’s formulation. But it is a merely
formal symmetry. Physically, momentum and position are very different: The
position can be observed directly, momentum only indirectly, by measuring at
least two positions at different times. The position can have no jumps, because
there is no motion faster than light. The momentum can easily jump arbitrarily
fast, if a large force is applied suddenly. So they are not really similar.

QM: Agreed. But how do you think your trajectories look like? I mean, can
you give any example that appears to be plausible physically?

LR: Of course, it is very hard to make up any example that works...
Maybe the trajectories are just random walks, where the particle takes a step in
a random direction during each small time interval?

QM: Well, at least that would be a very simple possibility, if it worked...

LR: In fact, as I think about it, that is a particularly nice possibility, for the fol-
lowing reason: Random walks look “fractal”, which means if you zoom into
the details, they look similar to the larger picture. It also means that the “in-
stantaneous” velocity is not defined for a random walk, in contrast to a smooth
classical particle trajectory - the position x(t) as a function of time is nowhere
differentiable. This already fits nicely with the fact that, in quantum mechanics,
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Figure 4: A couple of random walks that have been chosen to pass through the
same point at a particular time. The space coordinate x is plotted vs. time t.
A zoom-in is displayed to the right, which looks similar to the overall picture
(“self-similarity”, “fractal nature” of random walks).

the momentum is completely uncertain if you measure a definite position of the
particle at a given time. But there is a much closer correspondence: Imagine
one tries to find out the velocity - and therefore the momentum - by measur-
ing the position twice, with a time interval t in between the measurements.
Of course, because this is a random walk, there will be a spread in measured
momenta...

QM: And the mean momentum is always zero! This is because the random
walk has a preferred frame of reference - the average velocity vanishes. That
rules out your theory.

LR: No. I just imagine there may be an average “drift” velocity - maybe a dif-
ferent one for each trajectory. Then, if one sets out to measure that velocity, one
simply divides the change in position by the time interval. The position will
have a component growing linearly with time, which is just vt, and an addi-
tional random component. The spread ∆x of the random component grows
only as the square root of time, as for any random walk. In order to obtain the
velocity you divide by t; thus the spread in momentum will actually decrease
with time, since you are able to measure the velocity ever more accurately. You
see, we already have obtained what Heisenberg’s uncertainty relation tells us:
If the spread in momentum decreases, the spread in position increases.

QM: But the uncertainty relation involves Planck’s constant, ~. Where does
that enter your theory?

LR: Well, I simply have to choose the diffusion constant D correctly. Let’s see:

For a random walk, ∆x is
√
Dt. We have ∆p = m∆v, which equals m∆x/t,

so if I multiply ∆x · ∆p, I get mD. According to Heisenberg, I should have
obtained something like ~. So I must have D = ~/m, up to some numerical
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factor. The larger Planck’s constant, the larger the diffusion constant, which
means the random component grows faster. That is reasonable, because the
classical limit must be reached for ~ = 0 and then there would indeed be no
random component at all.

QM: Diffusion constant equals ~/m! What a strange law!

LR: Oh, it is not strange at all! I can give you a very plausible interpreta-
tion: We have been taught that there is a minimum length scale down to which
the usual quantum mechanics of an electron can be trusted, it is the Compton
wavelength of the electron, λC = h/mc. That is about one hundreth the diam-
eter of the hydrogen atom. If you try to localize an electron in a region that
is smaller than this length, Heisenberg’s uncertainty relation tells you that the
velocity spread approaches the speed of light and the spread in kinetic energy
becomes larger than the energy contained in the mass of the electron, mc2.
Then electron-positron pairs will be created and peculiar things can happen.
Anyway, there is a time scale associated to the Compton wavelength, which
is the time it takes light to travel the length λC , namely τC = h/mc2. That is
about 1/10000 of the time it takes the electron to go around the nucleus once
in the hydrogen atom, so it is a very small time scale. Now in a usual random
walk, if I know that during time τ the average distance traveled is l, the dif-
fusion constant is D = l2/τ . Here I would claim that the random walk of the
electron takes random steps of size λC during times of size τC . If I insert that,
I get D = λ2

C/τC = h/m. There you are! It is interesting that the speed of light
plays an important role at first but cancels in the end. This is even necessary,
because the Schrödinger equation itself, whose results we want to reproduce,
does not depend on c. Of course, the random motion during these short time
intervals would proceed at the speed of light, but that is even to be expected
and nothing to worry about. It seems we are up to something...

QM: Hm, I would call that yet another unmerited success obtained with di-
mensional analysis! You see, the way you have introduced ∆x and ∆p is just
not honest; it does not correspond to the physical situation we talk about in
quantum mechanics. Imagine a wave packet, part of which goes through a
single slit of width ∆x. Then we will observe that, after the slit, the wave will
spread in the direction perpendicular to the initial velocity, because a momen-
tum spread ∆p has been introduced by the constriction of size ∆x. But in your
theory, you would have to start out with an ensemble of trajectories whose
drift velocities all coincide more or less with the average velocity of the wave
packet before the slit. Then, a few trajectories would pass the slit by chance,
while most would be reflected. But there is no way that this selection of a few
trajectories would produce the correct spread of the average drift velocities of
the trajectories which have passed through the slit. In your model, they would
not change at all. And your observation that the random component ∆x of a
random walk grows with time while the spread of the velocity decreases is just
completely irrelevant.

LR: I admit that it is not helpful here. Obviously, I would have to assume that
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the borders of the slit excert some forces on the particles. In fact, that is even
true in quantum mechanics: For when I start out with a wave packet which is
smaller than the slit, it will pass through the slit unhindered and will not ac-
quire an extra momentum spread after the slit. So it is not affected if it does
not touch the borders of the slit. The wave packet must feel the potential that
defines the slit. And if the particles are indeed reflected there, the average drift
velocity of the trajectories might change as well. Of course, I cannot immedi-
ately give you the right laws of motion...

QM: You would face still larger difficulties with the double slit experiment.
I suggest we do not try to figure out how the detailed laws of motion might
look like, at least for the moment. Let us just ask about some general features
which the trajectories should have in order to fit the experimental observations
predicted by quantum mechanics.

LR: OK. This is probably the most efficient way to proceed. The most impor-
tant requirement is that, at every instant of time, the probability distribution of
our imagined ensemble of electrons should be the one prescribed by quantum

mechanics, |Ψ(x)|2. In fact, I think this is the only requirement.

QM: Yes - it is the only requirement if we believe your assumption that, in
the end, every measurement is a measurement of position. Let us begin our
discussion with some very simple situations. For example, take a wave packet
moving along in free space. Then all the particles of our imagined ensemble
should better have the same velocity - at least on the average. Otherwise, the
probability distribution would not move according to quantum mechanics.

LR: Maybe they just move along smooth trajectories, like classical free particles,
with their velocity equal to the velocity of the wave packet as a whole. But we
cannot be sure. Perhaps, on top of that motion, they also perform some random
walk. Then, a particle that starts out in the middle of the wave packet would
not remain there all the time but it could wander around.

QM: If we have several wave packets that do not overlap, we can say some-
thing about the average velocities of all the particles inside each wave packet
separately. Besides, we could also look at the spreading of a wave packet.
Then, we might learn something about the spread of velocities of the particles
inside the wave packet.

LR: Wait a moment - we are always talking of velocities. But what if we really
have to deal with random walks? Then the instantaneous velocity is not even
defined.

QM: That is true. For these cases, one must be more careful about the calcula-
tion. We should find that the average drift velocity of all the particles equals the
velocity of the wave packet. And the spreading of the wave packet would not
only depend on the spread of drift velocities but also on the diffusion constant.
Maybe the diffusion constant could even be different for particles at different
positions and with different drift velocities. Who knows, maybe it is not even
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a random walk but something even more complicated. In the usual random
walk, the direction of each random step is independent of the previous history.
Perhaps this is not true for the trajectories of our particles. There might be cor-
relations in time, such that the random step the particle takes now depends on
what it did a long time ago.

LR: There seems to be an abundance of possibilities. By the way, how does it
look like for the double slit experiment that we started to discuss above? At
first, we have a wave packet moving towards the slits, so all particles move
with the same average velocity. But when the packet hits the slits, a compli-
cated pattern of standing waves develops. Afterwards, some particles must
have gone through the slits and others will have been reflected. And those that
have passed through the slits will be inside one of the several wave packets that
form the interference pattern and move on towards the screen. The average ve-
locities of these packets are different, they move along different directions.

QM: Of course, again we cannot tell what the particles do inside each packet,
apart from giving their average velocity. But one fact is very clear: They do not
cross the boundaries between the wave packets, provided the wave function
really vanishes there. The places with Ψ = 0 are forbidden for the particles.

LR: All right. However, that does not give us much information about the
trajectories.

QM: Oh, I believe it can already tell us a lot, in particular if we have a situation
where Ψ = 0 holds on a full plane dividing space in two halves. Then this
plane can never be crossed by particles. Admittedly, the double slit setup is
still a bit too complicated. The simplest situation would be this: Imagine two
wave packets of equal size crossing each other. As long as they overlap, they
form an interference pattern and we might have a plane with Ψ = 0.

LR: Of course this may only hold at a certain instant of time. Then the parti-
cles would not be allowed to cross that plane, but only at that particular time.
Again, it would not be very helpful to know that.

QM: That is the most common situation. However, I believe we can set up
the gedanken experiment in such a way that there is always a plane with Ψ =
0. First of all, the packets should be identical, apart from moving in exactly
opposite directions. Otherwise, a full cancellation is unlikely, since the waves
do not have the same magnitude. Secondly, the interference pattern depends
on the relative phase between the two wave packets, since this decides where
we get destructive rather than constructive interference. Now, if we set up the
two waves to have opposite signs, we will get a plane Ψ = 0 exactly in the
middle between the two packets. This persists all the time.

LR: OK. So we know the trajectories do never cross that plane...

QM: You should admit that this result is extraordinary from the usual point of
view. After all, any particle in the wave packet coming from the left must be
reflected to go back where it came from. Likewise for the particles in the packet
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Figure 5: A space-time plot showing the evolution of the probability density

|Ψ(x, t)|2 for two wave packets crossing each other (in one space dimension).
The dashed line belongs to Ψ = 0, which is the point (or, in three dimensions,
the plane) that cannot be crossed by any trajectory.

coming from the right. This is in stark contrast to what one would reasonably
expect. After all, the particles inside a single wave packet in free space move
along with the packet, more or less as expected from a classical point of view.
Maybe they also execute some random walk, but that is not very surprising.
However, when the two packets cross, the trajectories do not cross, as they
certainly would if this were a classical situation. Instead, they are reflected!

LR: This is indeed very strange. After all, there are no forces involved! Every-
thing takes place in free space. Besides, after the wave packets have crossed,
they proceed just with the same velocities as before. In the end, the particle
will be detected either to the left or to the right. Judging from that result alone,
we would conclude that, just as in the purely classical situation, nothing has
happened to the particle on its way to the detector. But your argument with
the plane Ψ = 0 indicates that, in fact, the particle has to be reflected on its way,
such that a particle coming from the left also ends up going left.

QM: It is even more surprising if one remembers that the trajectories would not
have been reflected if the packets had actually missed each other - I mean, if
we think of a fully threedimensional situation, where each packet is a spherical
cloud. Classically, it could never make a difference for the trajectories whether
the packets happen to meet or do not meet, since they only represent the prob-
ability of having a single particle moving along this way or that way.
We could even imagine a situation where we have a choice of whether the two
wave packets meet and therefore whether the trajectories get reflected: After
the two wave packets have been separated at a beam splitter, and before they
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are recombined, one decides whether one of them should be blocked. For ex-
ample, one may put a detector in its path. Alternatively, one could simply
remove the mirror that is normally used to reflect the packet, such that it will
not meet the other one any more. Then, we would find that a particle taking
the other way, where nothing is changed, is reflected or is not reflected at the
crossing point depending on what we decided to do at the other end of the
whole interference setup!

LR: Wait a moment. Actually, I begin to have some doubts about your asser-
tion that trajectories can never cross a plane with Ψ = 0. Of course, the square
of the wave function is used to calculate the probability of finding the particle
in a small volume around a given point. Therefore, our theory should correctly
reproduce this quantum mechanical prediction if we do not want to risk con-
tradictions with the measurement results in a real experiment. But Ψ = 0 only
holds exactly on a certain plane in space. If, in a measurement, one finds the
particle slightly removed from that plane, there is no contradiction. And re-
member, real measurements of the position cannot have unlimited precision.
At the very least, the precision probably will be limited by the Compton wave
length. If you did any measurement with a precision higher than that, using
light of very small wave length, electron-positron pairs would be created and
you could no longer tell which particle has been your original electron. Per-
haps this resolves the whole mystery - trajectories could pass through a Ψ = 0
plane without producing a conflict with real measurements.

QM: Again, I see you are not easily convinced. I will have to make up a rigor-
ous argument.
Imagine every particle actually crosses that plane, as we would expect it to do
classically. Then each trajectory has to spend some time ∆t near that plane -
say, inside a volume of extent ∆x in the direction perpendicular to the plane.
Of course, ∆t will vary and sometimes a trajectory may even cross that region
several times. Then ∆t should be considered the total time spent inside the
region. I want to show that ∆t has to be so small that the velocities of particles
going through that region come out larger than the speed of light!
Now let us ask: What is the average ∆t? If you think about it, it is the space-

integral of |Ψ|2 taken over that region, and afterwards integrated over all times!
Even if you do not understand it immediately, you can see that it is plausible: If
∆t is larger, it means the trajectories spend more time inside the region, which
must mean that either the probability of finding the particle inside the region
is relatively large at certain times or that the time it takes for the two packets to
cross is quite large or both. Now, if we know the average ∆t, we can conclude
that the maximum velocities reached by some particle trajectories cannot be
less than ∆x/∆t. If some relatively slow trajectories spend more than ∆t in-
side the region, others have to be faster than that. You can then easily estimate
this maximum velocity, for a situation where the wave packets move with ve-
locity v: It turns out to be v λ2/∆x2, where λ = h/mv is the wave length of
the packets. The wave length is important, because it determines how steep
the interference minimum at Ψ = 0 really is and how large the integral over
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|Ψ|2 is. In any case, if we could make ∆x tend to zero, the maximum velocities
would become infinite! But even if I accept your argument that the precision of
measurements is limited by the Compton wave length, so ∆x = λC = h/mc, I
still get maximum velocities that are larger than the speed of light, namely by
a large factor c/v.

LR: I agree, this does not work. So it seems we have to face the fact that,
regardless of how sophisticated our trajectories may be, they will not cross
the Ψ = 0 plane and they will be reflected. As you have said, that may even
depend on changes made to the experimental setup at places that the given
trajectory never comes close to.

QM: Of course, everything also depends on the relative phase between the two
wave packets. If we did not have the opposite sign, but the same sign of the
wave - or some different phase in between - then we could still get Ψ = 0 planes
at certain locations and certain times, but they would not persist all the time
and you could no longer demonstrate that the trajectories should be reflected.

LR: What determines the relative phase?

QM: It is simply the length difference between the two paths that are followed
by the wave packets. If we move one of the mirrors slightly, then the path
length changes and so does the relative phase. This is another example of a
“nonlocal” influence. After all, moving the mirror will also affect trajectories
that may actually have passed the other mirror, not the one we move. They will
feel the dependence of the interference pattern on the relative phase once they
go through the region where the wave packets cross.

LR: Does this influence go faster than light??

QM: No, at least we cannot claim that to be the case. This is because the change
in relative phase, or the change produced by blocking one of the wave packets,
will become important only at the time when the wave packets cross. But since
the packets move slower than light, there would have been plenty of time for
a light signal emanating from the mirror to reach that region before the trajec-
tories are actually changed.

LR: I am glad to hear that.

QM: Well, just wait...
But for the moment, I just want to point out that there is another, more elegant
and striking way of changing the relative phase between the paths. It is done
by placing a coil somewhere between the two paths. If an electric current flows
through the coil, it produces a magnetic field inside the coil, but not on the
outside. Then, the phase difference will start to depend on the magnetic flux
inside the coil. This is the famous “Aharonov-Bohm” effect.

LR: That is even more suprising, because the wave packets do not pass near
the coil that contains the magnetic flux! They never enter the region inside the
coil where the magnetic field could exert a force on the particle. It occurs to me
that this is a situation where the influence may travel faster than light. After all,
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the phase difference depends instantaneously on the flux inside the coil, which
may be far away.

QM: No, it is not really instantaneous. If you think about it, during the change of
the magnetic flux an electric field is generated around the circumference of the
coil. This electric field pulse travels outward, at the speed of light. Any influ-
ence on the wave packets will not propagate faster than that. If they are reached
by the electric field pulse before they overlap, their momenta will be changed
but the details depend on their positions and directions of flight. There is a
unique correspondence between the phase shift and the flux only if the mag-
netic flux remains the same during the time that the packets are separated.

2 David Bohm’s pilot wave

LR: I must admit that the trajectories of quantum-mechanical particles behave
in a strange way. For example, you have demonstrated to me in that situation
with the interfering wave packets that the particle will always be reflected at
the point where the waves meet - although there should be no forces in free
space. And this holds completely generally, whatever the microscopic laws of
motion might turn out to be! I hate to say it, but given this sort of behaviour,
perhaps one could go further and prove that there is no way of having such
trajectories at all? Perhaps there are no consistent microscopic laws of motion?
Up to now, we have only listed a few features which they would have to have
if they existed.

QM: Well, they do exist. It is time to tell you about Bohm’s theory. He made
up a microscopic law of motion that works.

LR: I am very curious. Does it involve random walks, as I expected?

QM: No, it is simpler than that. In fact, you could call it the simplest possible
“hidden variable” theory.

LR: What is “hidden” in “hidden variable” theories?

QM: It is the trajectories that are hidden, because you cannot really measure
them without disturbing them. Remember the discussion on Heisenberg’s
gamma-ray microscope. You will never be able to verify whether your pre-
dictions about the trajectories are correct. Which means, of course, you could
as well do without them. It also means that there is more than one possibility
and you cannot decide in favor of one or the other. But you wanted to have
trajectories, so here they are.

LR: So how does it work?

QM: We have to fulfill two requirements: First of all, we want to have con-
tinuous trajectories. And secondly, we want to reproduce the predictions of
quantum mechanics. If we assume that it is enough to reproduce correctly the
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outcome of position measurements, then this means: if we consider a situation
that quantum mechanics describes using a particular wave function, our “hid-
den variable” theory should always give the correct probability of finding the

particle around a certain point, namely the square of the wave function: |Ψ|2. It
is not self-evident that the two requirements are compatible. Imagine we have

two wave packets that are separated by a large distance. If |Ψ|2 could change
suddenly, such that the probability of finding the particle in the first packet de-
creases by a certain amount and this is compensated for by an increase for the
other packet, then we could not invent continuous trajectories that did the job.
The particle would have to jump instantaneously from one packet to the other,
with some probability. Fortunately, this does not happen in quantum mechan-

ics. The probability density |Ψ|2 always changes continuously. Moreover, its
increase at a certain point is given completely by the influx from neighboring
points.

LR: Yes, I know. It is similar to liquids or gases. There, you have some density ρ

and a current density~j that describes the streaming of particles. Both are func-
tions of position and time and they are coupled by the “equation of continuity”

∂ρ(~r, t)

∂t
= −div~j(~r, t)

which means the density ρ grows or shrinks where the vector field ~j has its
sinks or sources. So the change in ρ is indeed determined by the influx from
(or outflux to) neighboring points, because the latter is given by the divergence

of ~j.

QM: The same holds for quantum mechanics. There, we have ρ = |Ψ|2, de-
scribing the probability density. Obviously, the physical situation is different,
we are only dealing with a single particle and the probability to find it here or
there. But the mathematics is the same. We have a probability current den-

sity ~j, such that the equation of continuity holds. By the way, I hope you do
remember how the current density for a liquid can be related to the density,
apart from the equation of continuity?

LR: Why, yes, of course. In the simplest case, the streaming of particles may
be described by a velocity field ~v(~r, t): If a particle happens to be at ~r at time t,

then its velocity is given by ~v(~r, t). In that case, the current density ~j is larger
wherever the particles are streaming faster or there are more of them, it is sim-
ply the product of ρ and ~v:

~j(~r, t) = ρ(~r, t)~v(~r, t)

We can also use ~v to calculate the full trajectories ~r(t) of fluid particles, simply
by setting

d~r(t)

dt
= ~v(~r(t), t)
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All of this works perfectly for a liquid. But for a gas, ~v would only be the aver-
age velocity of particles at point ~r and time t. So if you pick a certain particle,
it will, in general, have a random velocity, distributed according to the Boltz-
mann distribution of statistical mechanics, with the average equal to ~v(~r, t).
In that case, you could not obtain the full particle trajectory by knowing only
~v. Besides, for that situation there is also another contribution to the current
density ~j, describing the diffusion of particles.

QM: Right. Now, the simple idea of Bohm’s theory is to imagine an ensemble

of particles, whose density is described by ρ = |Ψ|2 and that are moving like
the particles inside a liquid. So we obtain the trajectories just like you have
explained it for the liquid! Of course, for this we need a velocity field ~v(~r, t).
Quantum mechanics does not provide us with any. But it gives us the density

ρ = |Ψ|2. Then, if we also know the current density ~j, we can simply set ~v =
~j/ρ. You know the quantum-mechanical expression for ~j ?

LR: Yes. Given the wave function Ψ, we can write it as a magnitude times a
phase factor, Ψ = |Ψ| eiϕ. Then the current density points along the gradient of
the phase ϕ:

~j(~r, t) = |Ψ(~r, t)|2 ~~∇ϕ(~r, t)

m

In fact, for a plane wave Ψ ∝ exp(i(~k~r − ωt)), we just get ~j = |Ψ|2 ~~k/m. This

is very reasonable, since ~~k is equal to the momentum ~p of the particle, so
~j = |Ψ|2 ~p/m.

QM: This means: if we are to define our velocity field ~v(~r, t) by setting

~v(~r, t) =
~j(~r, t)

|Ψ(~r, t)|2
=

~~∇ϕ(~r, t)

m

we get the most reasonable result for a plane wave of momentum ~p: ~v(~r, t) =
~p/m. The same would be true for a wave packet: The particles in our imagined
ensemble would move, more or less, with the average velocity of the packet.
No extra random motion is involved.

LR: What will happen in the ground state of the hydrogen atom? There, the
phase does not depend on position. So, according to Bohm’s theory, the veloc-
ity is zero?

QM: Right. The electron sits here or there, but it does not move.

LR: Isn’t this quite strange? Wouldn’t we expect the electron to move around
the nucleus with a typical velocity of around 1 percent of the speed of light?
At least that’s what Bohr’s old quantum mechanics tells us. And it is also
what one expects if one calculates the probability distribution of the momen-
tum from the ground state wave function.
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Figure 6: According to Bohm’s theory, the particle moves along the gradient of
the phase, perpendicular to the “wavefronts” of constant phase.

QM: You are right. In fact, one could even try to argue that this could lead to a
conflict of Bohm’s hidden variable theory with experiment! The argument goes
like this: There are hydrogen atoms that contain a muon instead of an electron.
The muon is unstable and may decay after a certain time. However, if it is in
the ground state of the hydrogen atom, its decay time turns out to be longer
than usual. One can explain it by noting that it moves at a high velocity, such
that the relativistic time dilation will make the decay appear slowed down. In
this way, the muon decay acts as a kind of clock that tells us about the velocity
of the muon. But you cannot really demand Bohm’s theory to reproduce this.
After all, it builds on the nonrelativistic Schrödinger equation, while here we
are talking about a relativistic effect that reveals the nonzero velocity of the
particle in the ground state of the hydrogen atom. Still, a finite velocity would
look somewhat more reasonable, I agree.

LR: What is the prediction of Bohm’s theory for the trajectories in that situation
we discussed before, with two interfering wave packets? I would like to see
how the particles are actually reflected.

QM: You can easily calculate that: First you need to know the wave function
Ψ(~r, t), which you get by solving the Schrödinger equation. Then, you obtain
the current density and from that the velocity field and the trajectories. Of
course, in every run of the experiment, the single particle follows only one of
these paths. But when you repeat the experiment, the initial condition will be
different and the trajectory will be another one. There is, actually, a further
assumption involved in the theory: At some time the probability distribution

must be given correctly by |Ψ|2. If that holds for one particular point in time,
it will hold always, thanks to the equation of continuity, and because we have

set up the trajectories such that they give the correct ~j.

LR: I see. The particles seem to go faster in the interference minima and spend
more time in the maxima. That is how the probability of finding a particle at
the maxima is enhanced. All of the particles are reflected. I guess it must be
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Figure 7: Space-time diagram showing particle trajectories according to
Bohm’s theory for a situation with two wave packets crossing each other (in
one space dimension; time runs upward). The initial positions have been

picked at random, according to the probability density |Ψ|2. See Fig. 5 for a plot

of |Ψ(x, t)|2 for this situation. Magnification to the right: Velocities are highest
(slope ∆t/∆x smallest) whenever trajectories cross regions of low probability
density.

like that for the simple reaspon that the trajectories never cross.

QM: Yes, in a one-dimensional situation, the Bohmian trajectories never cross,
because the velocity is a unique function of the position. So, for Bohm’s the-
ory we could have proved the reflection of trajectories much easier, at least in
one dimension. Alternatively, we could simply have calculated the trajectories
without further thinking about why they should come out the way they do.
But it is important to know that we would necessarily end up with the same
behaviour even for completely different microscopic laws of motion.

LR: It seems the particles can move very fast in the interference minima. Is it
possible that they may exceed the speed of light?

QM: You are right. One can prove that in this situation, the particle velocities
calculated from the current density can become larger than the speed of light
at the minima! This is perhaps astonishing, since the wave packets themselves
may move at small velocities. However, it happens only in a very narrow range
around such a minimum - in fact, in a range that is necessarily on the order of
the Compton wavelength λC . Now we have already argued that we cannot
trust a nonrelativistic theory on such a small length scale. Thus, it is probably
an artefact that does not really speak against Bohm’s theory.

LR: Are there other situations where Bohm’s theory gives particle velocities
exceeding the speed of light?
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Figure 8: According to Bohm’s theory, a particle in a p-orbital will move faster if
it is nearer to the nucleus, since the phase gradient diverges when approaching
the origin.

QM: Yes: Take an excited state of the hydrogen atom that has a finite compo-
nent of the angular momentum - for example, a p-orbital. Then, the phase is
given by the angle in polar coordinates. If you calculate the gradient of ϕ, you
will see that its magnitude grows without bounds as you approach the origin.
Thus, a particle close to the origin may move faster than light. But again, this
happens only at distances of the order of λC where we should not be surprised
to find some artefacts in a nonrelativistic theory.

LR: I believe I know a situation where the particles move faster than light but
not only on a scale of λC . Consider the following: If you have, say, a pz orbital
of the hydrogen atom, then space is divided into two halves by a plane where
the wave function vanishes. Now, if we are able to rotate that plane with a cer-
tain angular frequency, the following will have to happen: Since the particles
cannot cross the plane, they will have to move. After half a revolution every
particle that had been in the right half-space will have to be in the left one
and vice versa. It is easy for the particles near the origin to switch sides, but
those that are sufficiently far from the origin will necessarily have to go faster
than light! This argument is completely general, it does not really depend on
Bohm’s theory, it will work for any theory that reproduces the quantum me-
chanical probability density at each instant of time.
Of course, you may ask: how do we rotate that plane? The answer is simple
- apply a magnetic field that points along the plane, say in x direction. Then,
you may consider the initial pz orbital to be a superposition of m = +1 and
m = −1 states for the x-quantization direction. Since the magnetic field lifts
the degeneracy of the energies of those two states, the relative phase in this
superposition will change in time and this just gives you the desired rotation
of the plane where Ψ = 0 . Voila!

QM: I agree that in Bohm’s theory the particles will indeed move faster than
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light for your example, if they are sufficiently far from the origin. But consider
how far they have to be: If the angular frequency of rotation is not larger than
the typical transition frequency between different atomic orbitals, then they
should be more than 100 atomic radii away from the nucleus. At that distance,
the wave function is extremely small, such that the probability of finding a
particle out there is almost zero. This means that subtle relativistic corrections
may apply that are not important for the bulk of the wave function. Indeed, the
picture of a simple change in energies of the m = +1 and m = −1 states is no
longer correct at these distances, because the contribution of the magnetic field
to the Hamiltonian is no longer a small perturbation. Anyway, if the current
density yields a speed larger than that of light, it seems we are overtaxing the
nonrelativistic theory in any case.

LR: OK. So is there a relativistic extension to Bohm’s theory? Taking Dirac’s
equation rather than Schrödinger’s equation as a starting point?

INSERT DISCUSSION ON RELATIVISTIC THEORIES

LR: Are there modifications to Bohm’s theory? How much freedom do we
have in choosing the trajectories?

QM: That is a good question. Indeed, there are plenty of possibilities to modify

the theory. For example, we can change the current density ~j as long as its
divergence stays the same. Then the equation of continuity will still give the
correct time evolution of the probability density, that is compatible with the
quantum mechanical evolution. So we can add any divergence-free vector field

to~j and use the new current density to calculate the velocity of the particle. The
resulting trajectories will be different but the coincidence with the quantum-
mechanical results will remain intact.

LR: OK. In this way we could make the electron move around the nucleus in
the ground state by adding some vector field that winds around it. But is it
also possible to add some diffusion?

QM: Indeed, we can do that. Just look at the situation in a gas, where the dif-
fusion of particles may be as important as their drift motion. There, the current
density contains an extra term,

~j = ρ~v −D~∇ρ
which is proportional to the diffusion constant D and to the gradient of the
density ρ. It will lead to the diffusive spreading of the density. Now we have
to be careful, since the divergence of this extra term does not vanish, so it could
change the time-evolution of the density. We must modify the definition of the
drift velocity, such that the current density remains the same - equal to the
quantum mechanical result. But this is simple enough. Just use the equation
above as the new definition of the velocity:

~v ≡ (~j +D~∇ρ)/ρ =
~~∇ϕ
m

+D
~∇ρ
ρ
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Figure 9: A particle trajectory according to Nelson’s theory for the case of the
harmonic oscillator, in a space-time diagram. The shading gives the stationary
probability density of the ground state. This kind of random walk, with a
drift velocity proportional to the distance to the origin, is called an "Ornstein-
Uhlenbeck process".

Of course, now this is only the average velocity of a given particle. There is an
extra random walk on top of that, with a diffusion constant equal to D.

LR: So we can set the value of D equal to ~/m? Then we are back to our
previous idea about random walks that derive from a jitter motion taking place
on the length-scale of the Compton wave length!

QM: Yes. But you can as well pick any other value of D! If you choose the
special value D = 0, there is no random walk and you are back to Bohm’s
theory. There is an infinity of possibilities.

LR: I see. But the choice D = ~/m gives physical results that seem to be the
most reasonable: In particular, the order of magnitude of the velocities comes
out as expected. The ground state of the hydrogen atom has an extent a, so the

magnitude of the density gradient is roughly ~∇ρ ∼ ρ/a. Therefore, we will get

a random walk with a typical drift velocity of about D~∇ρ/ρ ∼ ~/ma. This is
just what you would estimate from the momentum spread ~/a obtained from
Heisenberg’s uncertainty principle.

QM: Still, there is no particular reason why you shouldn’t choose D = 2~/m,
for example. And as I have told you before: There is no experimental way
to distinguish between these possibilities, since they are all compatible with
quantum mechanics. If there were any such experiment, quantum mechanics
would be “incomplete”, i.e. it couldn’t make a prediction for something which
can be measured.

LR: Perhaps one could turn this wealth of possibilities into a virtue: We could
put other demands on our theory, instead of just having the correct probability
density at each instant of time. For example, we could demand to have the
right momentum distribution as well.
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Figure 10: Particle trajectories according to Nelson’s theory for the case of two
interfering wave packets (compare Fig. 5), for some randomly chosen initial
conditions. In contrast to Bohm’s theory (compare Fig. 7), different trajectories
can cross, but still they never cross the middle of this picture, where Ψ = 0.

Figure 11: Left: A trajectory according to Nelson’s theory for the hydrogen
atom ground state, projected onto the xy-plane. The white dot marks the nu-
cleus, the black dot the final position of the electron. Right: A trajectory for
an excited state with angular momentum (p-orbital, m = +1). The electron
has some tendency to move counter-clockwise around the nucleus, not easily
discernible in the picture.

27



Figure 12: Another particle trajectory for the hydrogen p state with finite an-
gular momentum projection along the z-axis. In this case, the value of the dif-
fusion constant has been chosen smaller, such that the drift along the gradient
of the phase, associated with the circular motion, becomes visible more easily.

The resulting probability density is still equal to |Ψ|2.

QM: ...or perhaps the right correlation function of the position!
In classical statistical mechanics, when we are dealing with a particle whose
position x is statistically distributed around its average value, say around zero,
then we can calculate

〈

x2
〉

to learn something about the spread of position x.
We can extend this to learn something about the time evolution of our sys-
tem, by calculating the correlation function 〈x(t)x(0)〉. Its magnitude tells us
whether the value of x at time t is still statistically correlated with that at time
0 and its sign tells us whether the value of x at time t has a tendency to be
opposite to the initial value, perhaps because we are dealing with an oscillator
that swings back and forth between positive and negative values of x. After
half an oscillation period, the sign of x would be opposite to the initial value,
whatever that has been.

LR: I see. It would be nice to have a theory where the trajectories also give the
correct quantum-mechanical result for the correlation function of the position,
not only the correct distribution of the position at each single time point. Then
the theory would capture more of the real dynamics of the system. And, I
guess, this would rule out Bohm’s theory, because quantum-mechanics will
not predict the electron to sit at rest, if it is in the hydrogen atom’s ground
state!

QM: You are right. Let us test these things for the simple harmonic oscillator.
The quantum-mechanical correlation function of the position looks very rea-
sonable: At t = 0 it is of course equal to the spread

〈

x2
〉

in the ground state,
and after half a period it is again of the same magnitude, but with an opposite
sign. This just means the position x(t) will be minus the value of x(0) after half
a period. Besides, the correlation function is periodic, since the motion itself
is periodic, just as for the classical harmonic oscillator. In fact, the quantum
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Figure 13: Correlation function of the coordinate x of the harmonic oscillator
(right) and corresponding ensemble of trajectories (left), for three different de-
scriptions: Statistical ensemble of particles moving according to classical equa-
tions of motion (top), ensemble of Bohmian trajectories (middle), and ensemble
of trajectories according to Nelson’s theory (bottom).
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mechanical and the classical oscillator are practically the same, if you impose
the correct probability distribution; I will come to that in a minute.
Now look at the prediction of Bohm’s theory: In the ground state, the particle
always sits at the same place, so x(t) will not change over time, which also
means the correlation function does not change. This is in complete disagree-
ment with the oscillations. For the theory including diffusion, it is different,
but not necessarily better: There, if you start out with x(0), the average po-
sition will have a tendency to drift towards the bottom of the potential, and
this is reflected in the decay of the correlation function. Of course, there will
be an extra random walk on top of that, but since it is equally likely to lead to
higher or lower values of the position, it averages away when calculating the
correlator.

LR: So we have ruled out both of these hidden variable theories?

QM: No! The fact that their trajectories do not reproduce the quantum-mechanical
correlation function does not mean that they get into conflict with experiments.
The point is: There is no experimental procedure of measuring the quantum-
mechanical correlation function! This is because, if you were to measure the
position x at time 0, you would severely disturb the system and the particle
would obtain a momentum spread which would even be infinite if the position
measurement were infinitely accurate. So the dynamics would be altered com-
pletely and the distribution of x at time t would be quite different from what it
would have been if you had not measured at time 0. You cannot measure both
x(0) and x(t) in order to multiply their values and average over many runs, or
at least if you try this, the results would severely depend on your measurement
precision and have nothing to do with the quantum mechanical correlator.

LR: From what you say I would rather conclude that this correlator is quite a
useless and unphysical quantity!

QM: No. First of all, if you go towards superpositions of higher excited states,
such that the dynamics becomes more and more classical, the quantum-mechanical
correlator goes over into the classical version. And besides, in the quantum-
regime, the correlator is directly connected to the linear response of the system,
via the “fluctuation-dissipation theorem”, similarly to the connection in clas-
sical statistical mechanics. And the linear response of the system to a small
external perturbation is certainly measurable experimentally.

LR: Fine. So we should rather demand the theories to reproduce the linear
response.

QM: But they do that anyway, without difficulties. After all, linear response
means applying a small force initially and then measuring, for example, the
average change in the position after some time t. Since the dynamics of our
hidden variable theories are derived from the Schrödinger equation itself and
since they reproduce the correct probability density for the position at every in-
stant of time, they give just the correct answer. Of course, if you were to ask for
the average momentum, they could not give directly the proper answer. You
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would have to remember that finally every measurement boils down to a mea-
surement of position, so you just have to include the momentum measurement
apparatus in your description, as we have discussed before.

LR: You have mentioned some similarity between the classical and the quan-
tum mechanical harmonic oscillator?

QM: Yes. The harmonic oscillator is very special in many respects. In partic-
ular, you can reproduce an important part of the quantum mechanical results
by using the classical equations of motion. If the quantum oscillator is in the
ground state, its position and its momentum have a certain spread. You can set
up a statistical ensemble of particles inside a classical harmonic oscillator that
have the same distributions of position and momentum. Then, these distribu-
tions are stationary, i.e. they do not change over time if you let the particles
oscillate according to the classical equation of motion! If you tried to set up
the same for the ground state of a quantum-mechanical particle in a box, you
would fail.

LR: What about the correlation function?

QM: It is reproduced entirely within this classical statistical picture! And there
is more: You also get right the response to an arbitrary external time-dependent
force. This is remarkable, since you do not use the Schrödinger equation, in
contrast to Bohm’s theory or similar hidden variable theories. It just comes
out correctly from the classical dynamics. You can even apply an arbitrary
time-dependent variation of the oscillator frequency, that is you change the
steepness of the oscillator parabola. This will make the width of the particle
distribution oscillate in time, something which is called “squeezed states” in
quantum mechanics. But you do not need quantum mechanics to understand
these, classical mechanics of such a statistical ensemble of particles will give
you the right answers.

LR: This is indeed astonishing. Tell me: where, in the classical description, do
appear the energies and wave functions of the excited states of the harmonic
oscillator?

QM: Well, nowhere! You never need to know about them in the classical de-
scription. For example, if you apply a time-dependent force to the oscillator,
the Gaussian particle distribution will start to oscillate in the potential well.
Quantum-mechanically speaking, the wave function becomes a superposition
of excited states, more precisely a so-called “coherent state”. In the classical pic-
ture, Newton’s equation of motion automatically leads to the same results. The
same applies to collections of oscillators, coupled together by linear forces, for
example a vibrating molecule. If there were only oscillators, we really would
not need quantum mechanics.

LR: Is everything reproduced by the classical picture in the case of oscillators?

QM: Almost everything. Of course, if you drive with a force that depends
on position in a nonlinear way, then your equations of motion are no longer
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linear and you are leaving the regime where quantum mechanics and classical
mechanics yield the same answers. And then, there are some formal aspects:
For example, quantum-mechanics tells you that the energy does not fluctuate
if you are in the ground-state of the oscillator, while classical mechanics gives
you a finite spread of energy. However, this discrepancy does not affect the
dynamics nor any results for measurements of position and momentum.

LR: Isn’t it very strange that it just works perfectly for harmonic oscillators?

QM: Well, linear equations of motion are always special. In particular, you
can, say, add some high-frequency fluctuations on top of a trajectory without
disturbing this low-frequency average motion. As soon as you go towards
nonlinear equations, the fluctuations would influence the average motion. So
even from the viewpoint of classical statistical mechanics, it is not unreasonable
that the linear case may be deceptively simple.

LR: Up to now, you have told me about several hidden variable theories that
work, although it does not seem to be easy to fulfill requirements that go fur-
ther than just having the correct probability density. And, of course, we have
learned that the trajectories sometimes have to behave in a strange way. It is
nice to know that such theories are possible, but they seem to be a bit arbitrary.
Above all, they do not give any clear physical picture of why the Schrödinger
equation looks the way it does. Shouldn’t one be able to do better? Is there any
hidden variable theory which starts from some physical principles to derive the
Schrödinger equation?

QM: No, I fear there is no such theory. It is true that having such a theory
would be very gratifying, even if there would be no experimental procedure
by which it could be distinguished from usual quantum mechanics. I believe
that a theory like that would be adopted as the new “true” interpretation of
quantum mechanics. However, it is hard to imagine that any theory that nec-
essarily has to predict trajectories as strange as those we encountered for the
two interfering wave packets could be based on a sufficiently simple physical
picture. And, on the other hand, it is also hard to imagine that any theory with-
out those continuous trajectories could appear physically “natural”, given that
there are no experiments that indicate particle jumps.

3 The measurement process

LR: You promised to tell me more about the “collapse of the wavefunction”,
that is, about measurements.

QM: OK. The important lesson to learn is this: The measurement process can
be described completely within quantum mechanics, you do not need any ex-
tra postulate, no mysterious prescription for “collapsing the wave function”!
However, you must pay a prize: You have to include the detector into the de-
scription. This means you have to deal with a many-particle wave function
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Figure 14: The “detector” in this simple example is a mass attached to a spring
that feels a force when the particle moves through the interaction region (gray
oval). Afterwards it will oscillate.

that depends on all the coordinates of the particles in the detector plus the co-
ordinates of the particle you want to measure.

LR: Sounds pretty complicated.

QM: I will illustrate it in a very simple example, where the “detector” is just a
mass attached to a spring, or, in any case, a particle that can oscillate around
an equilibrium position. It will act as a detector for another particle because
we say there is an appreciable force between the two particles whenever they
come close to each other. Put simply, the “detector particle” will get a kick and
start to oscillate when the other particle moves past.

LR: That sounds very classical...

QM: Of course, in the quantum-mechanical description, we have to solve the
Schrödinger equation for the wave function of the two particles together. Let’s
keep things simple and assume that each of them can only move along one
direction, so the wave function just depends on two coordinates - Ψ(x1, x2),
where x1 belongs to the particle to be measured and x2 is the coordinate of the
mass attached to the detector spring, counted from its equilibrium position.
The detector is a harmonic oscillator, the particle itself is moving freely and
there is an interaction potential V (x1, x2) describing the mutual influence. We
want this potential to describe some force that acts on particle 2, the detector,
but only if particle 1 is near the origin, where the detector is located. So it
should be of the form V (x1, x2) = f(x1)x2 with a function f(x1) that is nonzero
only near the origin. You can imagine the detector spring to be placed below
the track on which the particle is moving, so that the mass on the spring will
feel a downward force if the particle moves nearby, provided f is positive.

LR: You claim that the “measurement process” somehow appears automati-
cally once we solve the Schrödinger equation for this situation? However, we
still need an initial condition for the time-evolution of the wave function!

QM: Yes. In the classical counterpart of this situation we would start with
the detector being exactly in its equilibrium position and the particle moving
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towards the detector. In quantum mechanics, we should demand the detector
to be in its ground state, since that is the state it will relax into, if left alone.
As for the particle itself, we will try an initial superposition of wave packets,
one moving to the left and the other one to the right, towards the detector.
Using this, we should be able to see how the initial superposition actually gets
“collapsed” onto one state or the other by the measurement.
Thus, our initial wave function should be a product of two wave functions, one
for the particle and one for the detector:

Ψ(x1, x2, t = 0) =
1√
2
(ψR(x1) + ψL(x1))φ0(x2)

Here ψR and ψL are the wave functions of the packets moving to the left and
to the right, which are added to form the superposition, and φ0 is the harmonic
oscillator ground state wave function, describing the detector. The prefactor is

for normalization, so that the integral of the probability density |Ψ(x1, x2)|2
over x1 and x2 is equal to one, if we assume the same for the integrals of

|ψR(x1)|2 and |ψL(x1)|2 over x1.
This form of Ψ means the particle and the detector are statistically indepen-
dent at first, because the probability of finding the particle at x1 and, at the

same time, the detector at x2, is |Ψ(x1, x2)|2, which will be simply the product
of the respective individual probabilities, calculated from the wave functions
of x1 and x2 separately.

LR: Before things become too complicated, let’s try to figure out what is the
classical behaviour in this situation. As you have said, the particle moving past
the detector will give it a kick, so it starts to oscillate. Of course, that means
energy has been transferred to the spring, so the particle should be somewhat
slower afterwards. However, maybe it is not really a sudden kick. If the func-
tion f is smooth, then the force acts for a while, becoming stronger gradually
and then fading away. If this process is slow enough, we may imagine the
spring to become compressed slowly and then to go back to its old equilibrium
position, once the particle has passed. In that case, there would be no detec-
tion, since afterwards there are no oscillations, so you cannot recognize that the
particle has been there if you look only at the detector. It seems that it depends
crucially on the speed of the particle whether we get one or the other situation.
Only if it is fast enough, we will have a “working detector”. If the particle is
very slow, it might even be reflected by the repulsive force!

QM: You are right. All of this remains true in the quantum-mechanical situa-
tion, apart from the quantitative details. In particular, if the particle is too slow,
the detector will just be influenced only as long as the particle is moving past
and there will be no trace left in the detector afterwards. That is essentially the
reason why, as a rule of thumb, it becomes harder to detect particles or radia-
tion when they do not carry much energy.
Let’s look at the actual quantum-mechanical evolution of the wave function.
Remember that we have to plot the probability density as a function of both x1
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and x2 in the two-dimensional plane, so that the product of a wave packet in
x1 and a Gaussian oscillator wave function in x2 gives some fuzzy blob. Since
there are two wave packets making up the particle’s wave function, ψL + ψR,
there are also two of them for the total wave function Ψ(x1, x2).
If the wave packet describing the particle is too slow, we will have essentially
the same situation before and after the particle passes nearby the detector. The
two-particle wave function Ψ(x1, x2) will be distorted by the interaction only
temporarily, and no trace will be left in the detector.

On the other hand, if the particle is fast enough, then the detector starts oscillat-

ing afterwards. In the picture of |Ψ(x1, x2)|2, we see the fuzzy blob moving up
and down in x2-direction, while it still proceeds to the right in the x1 direction,
corresponding to the free motion of the particle. Of course, this applies only to
the particle wave packet moving to the right, that has passed the detector. The
other one remains undisturbed. Now the detector carries information about
whether the particle has been there.
In this respect, there are not much qualitative differences to the classical be-
haviour. The most important one, perhaps, is that the energy transfer between
particle and detector is quantized. So the particle will lose some random inte-
ger number of energy quanta ~ω, if ω is the oscillator’s frequency. This is the
same physics that is behind the Franck-Hertz experiment, where fast-moving
electrons could transfer part of their kinetic energy to gas atoms with which

they collide, but only in discrete portions. All of this is contained in |Ψ(x1, x2)|2
and can be observed especially at late times, when the particle will have moved
a larger or a smaller distance depending on the loss of kinetic energy. But, of
course, this is rather unimportant for the detection process. The ideal detector
would have a very small frequency ω, so that the loss of kinetic energy does
not really matter.

LR: I do not quite understand. Now we still have two wave packets. Where’s
the collapse?

QM: Yes, the two-particle wave function still describes a superposition of two
possibilities: Either the particle is moving to the right and the detector has been
excited, or it is moving to the left and the detector has not been excited. Before,
either the particle was moving to the right or to the left, but the detector was
in its ground state regardless of what the particle was doing. So the important
point to notice is that the wave function Ψ(x1, x2) is qualitatively different from
before, since the state of the particle and that of the detector have become cor-
related: If you are to measure the detector’s position, x2, and you find a large
elongation, this must mean that the particle has passed the detector. Large am-
plitudes of x2 are a clear indication for “particle was (and is) moving to the
right”. This is what we would require from a detector.

LR: True. But still: Where is the “collapse” of the wave function? Or has this
been a completely wrong concept all along?

QM: No, it is a useful concept. But now we can tell much more precisely than
before what it really means: In the beginning, before the particle had a chance
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Figure 15: Plots of the probability density |Ψ(x1, x2)|2 to find the particle and
the detector mass at x1 and x2, respectively. At first (1) the two wave packets
of the superposition start to move to the left and the right, while the oscillator

(vertical component, x2) is in its ground state: |Ψ(x1, x2)|2 is a product. Only
the right-moving packet enters the interaction region (indicated by the bump
in the dashed line, that gives the minimum of the oscillator potential for x2,
as a function of x1). The detector gets deflected (2) and oscillates afterwards
(3,4,5), after the particle has already left the region. The left-moving packet
(not shown in 2-5) propagates freely, i.e. the detector is not excited.
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of reaching the detector, we could as well have used a single-particle wave
function for our description of the particle, depending only on x1 and describ-
ing the superposition of wave packets, ψL(x1) + ψR(x1). This is because the
particle and the detector are independent before they interact: The total wave
function Ψ(x1, x2) is simply given by the product of the individual wave func-
tions, each evolving according to its own single-particle Schrödinger equation.
We have used Ψ from the outset only because we anticipated we would need
it later. Of course, during the interaction, we must use the two-particle wave
function Ψ(x1, x2), in order to describe the effect of the interaction potential
V (x1, x2). But even afterwards, we have to use Ψ, provided the detector is work-
ing. After all, even after the particle has left the region where the interaction
takes place, there are correlations between particle and detector which means
Ψ is no longer simply the product of two single-particle wave functions. That
is to say, Ψ is now called “entangled”. Therefore, the wave function of the
particle, depending only on x1, ceases to be useful. In fact, it no longer exists
independently. The interaction with the detector forces us to consider the total
wave function Ψ. That is why we speak of the “collapse” of the wave function,
which means the collapse of the single-particle wave function.

LR: That sounds reasonable. But I expected only one out of the two wave pack-
ets to be picked at random by the measurement process. Then, afterwards we
would only have to deal with that particular wave packet and could follow its
further time-evolution without caring about the other packet any more.

QM: Indeed, that is essentially what has happened. However, it is the right
packet or the left packet which has been detected, each with a probability of
one half. That is the simple reason why, even after the measurement process,
Ψ still must contain the two possibilities.

LR: That sounds very convincing in a situation involving classical statistics.
But usually the wave function contains more than classical probabilities. Why
can you argue that, after the measurement, we should regard it in such a clas-
sical way, while, before the measurement, we have been talking of superposi-
tions?

QM: One way to distinguish between quantum-mechanical superpositions and
mere classical probabilities is to ask about interference effects. We could imag-
ine the two wave packets to be reflected, so that they overlap later on. Of
course, they should not hit the detector a second time, so let us assume it has
been removed in the meantime, or the packets follow another route that does
not pass nearby the detector. We imagine to measure the position of the parti-
cle at the time when the two wave packets should overlap again. Then, if no
detection had taken place previously, we would observe the usual interference
fringes that we have discussed before. That means: If we can observe interfer-
ence, then certainly we are not allowed to talk simply of classical probabilities
to have either one or the other possibility. However, if the detector has been
working, we do not observe any interference pattern at all! Now it is really the
probability densities rather than the wave functions which are superimposed,

37



in a completely classical manner.
That is already an indication that the “excuse” for still having two possibili-
ties contained in Ψ is correct. The interpretation is that we are averaging over
many runs of the same experiment, including those where the particle has been
detected to the right and those where it has not been detected, which means it
must have been moving to the left. In each of these runs, we could imagine
that actually only one packet is left after the detection event, so there cannot
be any further interference in the zone where usually we would expect the two
wave packets to overlap. However, because of the averaging over many runs,
we still don’t always observe the particle traveling only along one direction.
At least, this is a consistent interpretation of the experimental results in this
“gedanken experiment”.

LR: Wait a moment. You have talked about checking for interference by an-
other measurement. Certainly, this should be described by including also that
additional detector into the description, or rather even a whole detector array
in the region where the interference is expected?

QM: Of course. For that purpose, we would consider a total wave function
Ψ(x1, x2, x3, . . .) that is a function of all those detector coordinates.

LR: Another question comes to my mind: You said that the state of the particle
and that of the detector become correlated, such that, by “looking” at the de-
tector, one could learn something about whether the particle is moving to the
right or to the left. Certainly, this read-out of the detector state also involves
another measurement?

QM: Yes.

LR: So when, actually, are you allowed finally to take |Ψ|2 to calculate the prob-
abilities? It seems that this goes on forever, without any definite result. In the
end, you will have to deal with the computer that registers the detector signals,
and with the researcher that looks at the screen of the computer...

QM: It is true that, in principle, you cannot stop at any point of this “hierar-
chy” of measurements without introducing some extra postulate like “collapse
of the wave function”. But that does not mean that this whole line of descrip-
tion is useless. After you have described even the first measurement stage,
you may already stop. It is enough for all practical purposes, in the following
sense: If you apply the standard rule about “collapsing” the wave function of
the particle to one or the other state, and assume the respective probabilities
to be given by the magnitudes squared of the amplitudes, then this gives you
a consistent description. As I have explained just before, it describes correctly
the vanishing of the interference effect, and it also gives the relative weights
with which you have to superimpose the probability densities of the two wave
packets to obtain the probability of detecting the particle here or there after the
measurement. Of course, you can go further and include also another detec-
tor that measures the state of the first detector or the one which carries out a
further measurement on the particle after the initial detection event. The im-
portant point is that this will change nothing in the statistical predictions for
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the behaviour of the particle. You add more realism and more complications,
but the results are consistent with that simple rule. On the other hand, it is a
good way to verify that the rule is correct.

LR: So the message is that, although there is such a hierarchy, the first mea-
surement process is something special, since it really transforms a quantum-
mechanical superposition into two classical possibilities - while the other mea-
surements do not change the picture any more?

QM: That is exactly the point. In this sense, the quantum measurement process
is described completely within quantum mechanics, without introducing any
postulate about “collapse of the wave function”. Rather, this postulate arises
automatically from the description, as a convenient rule that summarizes the
effects of the measurement and tells you that you do not need to incorporate
all the further measurements into your description, although you could do it
and it would not hurt, so to speak.

LR: If that is true, not only the total probability of finding the particle some-
where after the measurement should come out correctly using the classical su-
perposition of the two possibilities. It is also the conditional probabilities that
should be right. For example, if we ask for the probability of a second detec-
tor being excited by the particle, given that the first detector has been excited,
then the classical expectation is that this should be zero if the second detector
is placed somewhere to the left of the first one, so it cannot be reached by a par-
ticle moving to the right. And it should be one if the second detector is placed
to the right of the first one and is working well, so it doesn’t let the particle go
unnoticed.

QM: That is exactly what we find: If you set up such a situation with two detec-
tors, and you look at the time-evolution of the total wave function Ψ(x1, x2, x3),
in the end the probability of having large elongations of x2 and x3 simultane-
ously vanishes, if you consider the first of the two possibilities you mentioned.
Thus, quantum-mechanics tells you that the simple classical picture of condi-
tional probabilities for different sequences of detection events is reliable, after
the first measurement has turned the quantum superposition into a classical
one.

LR: I see, this approach is self-consistent, at least in this example. But how can
we be sure that there cannot be any interference effects after the detection has
taken place? After all, the total wave function still contains both possibilities,
and it is not so clear to me that they are always to be considered mere classical
possibilities.

QM: You are asking about cases where one would make wrong predictions by
using merely classical probabilities after the measurement. Is it really enough
to start from the probability densities for the left- and right-moving wave pack-
ets separately and add them with weights given by the classical probabilities
of having measured one or the other possibility?
Fortunately, there is a straightforward proof that demonstrates why this works:
After the detection, the total wave function will be something like
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Figure 16: Mott’s gedanken experiment concerning conditional detection: How
is the classical particle picture of an α-particle emitted from a nucleus into a
particular direction (a) compatible with the quantum-mechanical wave spread-
ing out into all directions (b)? If two atoms are placed roughly in a line, as seen
from the nucleus, then the fully quantum-mechanical calculation (treating the
α and the electrons inside the atoms) predicts that in the end both atoms may
be found in an ionized state (c). However, if they are placed in different di-
rections, the many-particle wave function will vanish for such doubly-ionized
configurations: At most one of the atoms can be ionized (d). This works only
because the α-particle’s kinetic energy is so large that it is not deflected much
when kicking an electron out of the atom (the momentum uncertainty acquired
by the α is related to the resolution of the position measurement, given roughly
by the extent of the atom - which is obviously not drawn to scale with respect to
the nucleus.). Qualitatively, the correct prediction is also obtained by properly
invoking collapse of the wave function at the first ionized atom.
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Ψ(x1, x2) =
1√
2
{ψL(x1)φ0(x2) + ψR(x1)φ(x2)}

This is the entangled state, where the correlation between detector and particle
is apparent: φ0 is still the detector’s ground state, because the left-moving par-
ticle has never hit the detector. On the other hand, φ is an excited state of the
detector. Now, if the detector has been working properly, the overlap between
the quantum-mechanical states φ and φ0 is zero:

〈φ|φ0〉 =

∫

φ∗(x)φ0(x) dx = 0

Actually, that can be considered the definition of a perfect measurement. If the
particle had been relatively slow, the detector would have been excited only
with a small probability and the overlap would not be zero. In that case, by
looking at the state of the detector, you could not determine unambiguously
whether the particle has been there or not. But we will assume that the particle
is fast enough.

LR: Are you sure that, in the case of excitation, the wave function is simply a
product ψR(x1)φ(x1) ? Didn’t you tell me that, with certain probabilities, the
particle would transfer a larger or smaller number of energy quanta ~ω to the
detector? Then, I would expect each of the different possible excited states of
the harmonic oscillator to appear, with corresponding different states for the
particle’s wave function, since it will have different kinetic energies depending
on the energy transfer.

QM: Actually, you are right. In principle, we would have a more complicated
state, something like a1ψR1(x1)φ1(x1) + a2ψR2(x1)φ2(x2) + . . .. Each of these
contributions would correspond to 1, 2, . . . transferred quanta and the proba-

bilities would be |a1|2 , |a2|2 , . . . . But the point here is to discuss the ideal case
first, where the detector only distinguishes between left- and right-moving par-
ticles. We can set up a nearly ideal detector by having a very small frequency,
as discussed above. Then we may arrange parameters such that the particle
loses almost no kinetic energy although the harmonic oscillator will still go
into a superposition of excited states, which we call φ. In that case, for our
purposes, it is a good approximation to deal only with ψR(x1)φ(x2).
Then, if we want to calculate the probability of finding the particle itself around
a point x1, we get that by integrating the total probability density over the
unimportant detector coordinate x2:

p(x1) =

∫

|Ψ(x1, x2)|2 dx2

Now it becomes important that φ and φ0 are orthogonal, because it means that
p just turns out to be the classical superposition of probability densities of the

41



two wave packets. We just have to insert the expression for Ψ from above and
carry out the integration over x2:

p(x1) =
1

2

∫

|ψL(x1)|2 |φ0(x2)|2 + |ψR(x1)|2 |φ(x2)|2 +

ψ∗
L(x1)ψR(x1)φ

∗
0
(x2)φ(x2) + c.c. dx2

In the second line, the integration over x2 gives the overlap integral from
above, which is zero. In the first line, we may use the normalization of the
detector wave functions, which gives 1 for the x2 integral:

p(x1) =
1

2
|ψL(x1)|2 +

1

2
|ψR(x1)|2

That is just the classical superposition, as announced. The prefactors of 1/2 are

the classical probabilities. Of course, they would be equal to |aL|2 and |aR|2 if
we had set up the initial particle wave function to be aLψL(x1) + aRψR(x1).

LR: I see how it works out. But this is only right immediately after the detection
event. Couldn’t it happen that the interference reappears later on? After all, if
the detector is realized as a harmonic oscillator, like in our example, it swings
back and forth and also comes back to the origin at certain times. Maybe then
the interference term in p(x1) does not drop out any more?

QM: No, it vanishes at all times, in spite of the dynamics of the excited state
in the detector’s harmonic oscillator potential well. This is because the overlap
still remains zero. And it must remain zero because both φ0 and φ evolve ac-
cording to the same Schrödinger equation, that is according to the same Hamil-
tonian operator. It is a general rule that the overlap of two states, when they
evolve according to the same Hamiltonian, stays the same for all times. Of
course it is true that φ describes an oscillator wave packet that swings back to
the origin, so you might think it could have a nonzero overlap with the ground
state φ0 that just sits there, at the origin. However, the overlap still remains
zero, because φ has acquired a finite average velocity, while φ0 is at rest: In
momentum space, they are displaced with respect to each other. Therefore,
you could still distinguish perfectly between these two states - not by a po-
sition measurement of the detector, but by a momentum measurement. The
interference cannot reappear.

LR: Is there really no way of making the interference between the two wave
packets reappear? What about this: If we apply a carefully tuned force pulse
to the oscillator, we may stop its oscillation, such that it goes into the ground
state φ0 again. Then, the overlap of the two detector states would be reset to
unity and the interference pattern in the particle’s probability density would
reappear!
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QM: I do not doubt that, with a proper force pulse, you could turn the state
φ into the ground state φ0. However, you cannot be sure that the detector has
actually been excited into φ, without measuring its state. Maybe the particle
has been traveling to the left, such that the detector already is in the ground
state φ0, before you apply the force. In that case, you will excite it to another
state! That means your whole procedure is fruitless: Afterwards, the over-
lap between the two detector states, belonging to left- and right-moving wave
packets will still be zero, only the states have changed: the excited state has
been turned into the ground state and vice versa.

LR: Well, of course I assumed that, first of all, I look at the detector. Only when
I find it to be in its excited state, I will apply the force in order to reset it to the
ground state.

QM: This will not help. By “looking” at the detector, you have measured it,
that is you have to include another measuring device in the description. Let
us assume that, whenever this device finds the detector in the excited state, it
will automatically trigger a force that resets the detector, so you do not have
to bother about it and we don’t need to include you in the description. Such a
setup is certainly possible. However, afterwards, you will have an entangled
state of the following form:

Ψ(x1, x2, x3) =
1√
2
{ψL(x1)φ0(x2)χ0(x3) + ψR(x1)φ0(x2)χ(x3)}

Here χ0 is the ground state of the second measuring device, and χ an excited
state. You see: Entanglement has only been transferred to the second detector.
The interference terms will not reappear, simply because now it is the overlap
between χ0 and χ which is zero.
To put it in a nutshell: After you have read out the detector, you have no chance
of “undoing” the measurement.

LR: I see. Obviously the force pulse fails because it changes the state of the
detector in any case, even if the detector had been in its ground state. And,
as you have said, I cannot make sure that the detector is in its excited state
because that would mean another measurement. But suppose there is some
dissipation, such that the detector relaxes from its excited state into the ground
state after some time, without any intervention. On the other hand, if it already
is in the ground state, it will simply stay there. I know that this works at least
for excited states of an atom: it will decay to the ground state by spontaneous
emission of a photon. In that way, the detector will definitely go into its ground
state, without any further measurement, and without any carefully tailored
force pulse.

QM: Yes, the detector will relax to its ground state. But, no, the interference
will not reappear. That is because, by emitting a photon, the entanglement has
been transferred again, now into the electromagnetic field. It is just the case
we discussed before, only that the second measuring device has been replaced
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by the field. Although you do not know which state the detector had been in,
you could find out in principle by detecting the photon afterwards. This means,
from the point of view of quantum mechanics, it is the same story again.

LR: So there is no chance of “undoing” the measurement?

QM: There is, but only if the particle returns to the detector, before the state of
the detector has been read out. Only then the overlap between the two detector
states can be reset to unity, by employing the interaction between particle and
detector. This is possible because then the two detector states do not evolve
under the action of the same Hamiltonian. One of them is influenced by the
interaction with the particle, the other one is not. Imagine a setup where the
right-moving particle is reflected, goes back to the detector and reaches it just
at the right point in time in order to stop its oscillation when it is about to swing
through its equilibrium position. This could be done, with a proper tuning of
the path lengths and so on. On the other hand, if the particle had been moving
to the left originally, it will not be reflected and not disturb the detector. In
either case, the detector will end up in its ground state. Afterwards, you will
have a total wave function that is no longer entangled, and, consequently, any
subsequent interference experiment will show interference fringes again. The
modern buzz-word for this is “quantum eraser”: The measurement record has
been erased again. You have to make sure, that, in the end, the particle leaves
no trace anywhere, even though it had become entangled with the detector
temporarily.

LR: Well, it seems a little bit difficult to realize in this case, when you need just
the proper timing and so on. Are there situations where one can observe in
detail how this trick is performed?

QM: Of course, it gets easier if both the system and the detector are as simple
as possible. A good example is a spin measurement in a Stern-Gerlach device.
I assume you know how that works?

LR: Yes: You measure the spin by sending the particle through a magnetic field
whose strength varies with position. The spin has a magnetic moment attached
to it, which gives a different potential energy depending on the direction of the
spin with respect to the field and depending on the field strength. Therefore,
this energy will also vary with position. That means the particle experiences a
force that depends on its spin direction. If the spin is that of a single unpaired
electron inside an atom, it can assume only two quantum-mechanical states:
along the direction of the magnetic field or opposite to it. So the particle will
get deflected upwards or downwards, and you can find out the spin direction
by detecting the particle on a screen.

QM: Right. In that case, the “system” to be measured is the spin and the “de-
tector” is the particle’s coordinate, because it gets deflected according to the
state of the spin. Only later on, that kind of “detector” is “read out” when the
particle hits the screen. Let’s assume we start out with an arbitrary superposi-
tion of the two spin directions σ = ± 1

2
:
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Figure 17: Recombining the beams in a Stern-Gerlach apparatus before they
impinge on the screen “undoes” the measurement.

Ψ(σ) = aχ↑(σ) + bχ↓(σ)

Here I have written the spin-dependent wave function similar to a position-
dependent wave function. χ↑ is the eigenstate for “spin up”, it gives 1 if σ =
+ 1

2
and 0 otherwise. Similarly, χ↓ belongs to “spin down”. The “quantization

axis” that defines the meaning of “up” and “down” is given by the magnetic
field. Through the deflection by the magnetic field gradient, the position of
the particle will start to depend on the spin. That is, just as before, we are
now forced to consider the total wave function, depending on both spin and
coordinate. It will evolve into an entangled state:

Ψ(σ, x) = aχ↑(σ)ψ↑(x) + bχ↓(σ)ψ↓(x)

As you can guess, ψ↑(x) describes a wave packet that is deflected upwards, for
example, and ψ↓(x) is deflected downwards. Of course, the actual deflection
will depend on the direction of the magnetic field gradient.

LR: I see, it is the same story again. But perhaps it is a little bit more striking
than before. If we start out with a spin pointing along the y direction, then
we will always end up either with “spin up in z direction” or “spin down in
z direction”, if the magnetic field is pointing along the z direction. Both will
occur with equal probability, but it is not like in the corresponding classical
situation, where you would expect a spin not to be deflected at all if it points
in a direction orthogonal to the magnetic field. Here, only on the average there
is no deflection. And in order to describe that behaviour properly, we have to
think of the spin pointing along y as a superposition of those two possibilities,
which amounts to a change of basis states. It becomes more obvious than in
the previous example that the measurement device chooses a preferred basis
of quantum-mechanical states.
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QM: Yes. Now back to your initial question of “undoing” the measurement.
Here it can be done relatively easily: You simply have to consider an extended
apparatus, where a field gradient of opposite direction applies a force of equal
strength but different sign to the particle. Actually, you have to apply it twice
as long, such that the wave packet that initially moved upwards is now moving
downwards, and vice versa for the other packet. Afterwards you still have to
stop the particle by applying a field gradient along the initial direction. In this
way, the two wave packets, corresponding to the two different spin directions,
will be recombined. Then, the total wave function is “dis-entangled” again,
and the measurement has been undone. Now, if you had a spin pointing along
y initially, you will also end up again with a spin pointing along y. On the
other hand, assume you had chosen to measure the spin state of the particle
in the “upper” wave packet before they had been recombined, using another
measurement device. If that device had been set up to measure the spin in
the y-direction, you would have found “up” or “down” with equal probability,
because these are the results for a spin pointing along z direction. In this inter-
mediate situation, the correct description has been: The spin is either “up” or

“down” along z, with classical probabilities given by |a|2 or |b|2. However, the
fact that one is able to undo the measurement shows that the information about
the initial spin state still has been around in the total wave function. But, just as
before, in order to “erase” the measurement record and restore the initial state,
we needed to employ again the interaction between “system” and “detector”.
Here, it was the additional field gradient which was able to reset the entangled
wave function to the original state. If the particle had not been allowed to inter-
act with any magnetic field afterwards, we could not have achieved our goal,
because then every deflection would have been spin-independent, similar to
the force pulse that did not help to undo the measurement either.

LR: Doesn’t that mean that it is somewhat dangerous in general to rely only
on the simple picture of classical probabilities after the interaction with the
detector?

QM: Well, in practice it is much harder to “undo” the measurement, if the
measurement device is really “macroscopic”, i.e. if the detection excites a lot
of degrees of freedom. We can observe this very nicely in the previous exam-
ple where the detector has been represented by an oscillator. Imagine that this
oscillator, in turn, is coupled to many other particles that form a whole crys-
tal. Then, the energy transferred to the “detector” will spread out through the
crystal in the form of vibrations, i.e. sound waves. Now, if you want to undo
the measurement, you would have to time the return of the particle in such a
way that, when it gives the detector a second kick, all the sound waves have
just reconverged and the whole vibrational energy is contained, once again,
only in the detector particle. Even classically, you can imagine that this is an
extremely improbable event, especially if the crystal is large and especially if
it is not shaped extremely regularly. In this way, the first detection event has
become irreversible, for all practical purposes. That’s why you usually do not
have to bother about the possibility of the interference terms showing up later
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Figure 18: If the “detector” is actually part of a larger crystal, then sound waves
will spread through the crystal and it becomes practically impossible to “undo”
the measurement later on. This is a very simple example of “irreversibility”
introduced by a macroscopic measurement device.

on, because, even if you let the particle interact with the detector again, it is
very unlikely that this will “erase the measurement record”.

LR: I see: for all practical purposes we may treat the measurement as being
irrevocable, after the first detection has taken place, apart from examples like
the Stern-Gerlach apparatus, where not many degrees of freedom are involved
in the first stage of the measurement. And subsequent measurements give
results that can be readily understood within the context of classical probability
theory, nothing mysterious.

QM: Yes, but remember that the quantum-mechanical measurement is still
very different from merely detecting a statistically distributed pre-defined prop-
erty: If you want to measure different kinds of observables, for example mo-
mentum as opposed to position, you have to change the whole setup and can-
not measure them both at the same time, because that is not allowed by Heisen-
berg’s uncertainty relation.

LR: You told me about Bohm’s theory. There, we did have a “pre-defined prop-
erty”, some “hidden variable”, namely the position of the particle. Of course,
you have pointed out that, in order to measure the momentum instead, we
would have to consider a different setup, where, ultimately, different momenta
are mapped onto different positions. But I wonder how the measurement pro-
cess is described there - or whether we need any special description at all when
the position is assumed to be real all the time anyway!

QM: The important idea behind Bohm’s theory is to stick very closely to the
Schrödinger equation, so that all the statistical results will remain completely
compatible with the “usual” quantum mechanics. This means that the mea-
surement process is also described just as we have learned it, with many-
particle wave functions depending on the coordinates of particle and detec-
tors together. The only difference is the following: now we imagine that, at
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every instant of time, the particle itself and also all the particles in the detec-
tors are at certain positions and they move along continuous trajectories as
time progresses. The trajectories are deterministic and can be calculated once
the time-evolution of the complete wave function is known. The statistical el-
ement enters only because the initial positions of all particles are distributed
randomly. In our example of the measurement process, sometimes you will
happen to start out with a particle moving to the left, sometimes with a par-
ticle moving to the right. In the first case, the detector does not get excited:
the detector mass will always remain at rest, since that is what a particle does
in Bohm’s theory when it is in the ground state. In the other case, when the
particle is actually moving to the right, the detector mass will start to oscillate
after the interaction between particle and detector has taken place.

LR: I remember that, in Bohm’s theory, the velocity of the particle is given by
the gradient of the phase of the wave function, evaluated at the current position
of the particle. But now the wave function depends on many coordinates, so
what should I insert for all the other coordinates? Should I average over them?

QM: No, you simply have to insert the coordinates of all the other particles,
with the values they happen to have in the current configuration of the com-
plete system. So the velocity of particle number 1 will be given by

~v1 =
~~∇1ϕ(~r1, ~r2, ~r3, . . . , t)

m
.

The phase ϕ is the phase of the many-particle wave function: Ψ(~r1, ~r2, . . .) =
|Ψ(~r1, ~r2, . . .)| exp[iϕ(~r1, ~r2, . . .)]. The gradient of the phase is only taken with
respect to ~r1.

LR: This is remarkable. The velocity of particle 1 depends on the current posi-
tions of all the other particles as well.

QM: That’s true. Of course, there are important exceptions: If the total wave
function is a product of wave functions belonging to the different particles, the
phase becomes a sum of phases depending on the individual particle coordi-
nates separately, ϕ(~r1, ~r2, . . .) = ϕ1(~r1) + ϕ2(~r2) + . . .. Then the velocity ~v1
will only depend on ~r1, as in the single-particle case. This is reasonable: If the
particles have never interacted, then their trajectories are independent.

LR: And obviously we shouldn’t be surprised that their trajectories start to
depend on each other once the particles are interacting.

QM: Yes. However, even after they have interacted, this dependence does not
cease. The wave function will in general have become entangled: it is not a
product of individual particle wave functions any longer and the phase is not
a sum of individual phases. Then the particles “influence” each other’s motion
in Bohm’s theory although we would not expect any such influence on classical
grounds. It is not just the same as some statistical correlation appearing in the
positions of the particles after they have left the zone of interaction. Of course,

48



something like that is to be expected and it will also lead to correlations in the
further time evolution of the trajectories. But it is more than that: If one of the
particles experiences some force, the whole many-particle wave function will
evolve in a different way and that will also change the trajectories of the other
particles which may be far away.

LR: Doesn’t that contradict the special theory of relativity? Couldn’t we use it
to send messages over large distances, faster than the speed of light?

QM: No, we cannot. We could only do that if we were able to actually observe
those trajectories. But we can’t, without disturbing them. The first measure-
ment of the particle’s position will disturb all future measurements. And we
know that Bohm’s theory will yield just the same probability distribution for
this measurement as quantum mechanics predicts. What is most important:
This probability distribution is independent of what you do to the other particle
far away, once the interaction has ceased. That can be proven in a straightfor-
ward way, using essentially the same arguments as those which tell us that a
measurement cannot be undone unless particle and detector interact again. So
the statistical feature of quantum mechanics prevents us from sending faster-
than-light messages by this nonlocal influence. Of course, within the standard
interpretation of quantum mechanics, this suggestion would never come up
anyway, since there we do not have any of those “hidden variables” that could
experience such influences.

LR: When we discussed the behaviour of trajectories in general, we came across
a peculiar effect: In a situation with two wave packets crossing each other, all
the trajectories had to be reflected in the zone of overlap, if they were assumed
to be continuous and no faster-than-light motion was allowed. This was also
the case for Bohm’s theory, in particular. Now you have told me that a mea-
surement will destroy interference effects. If we place a detector in one of the
arms of the interferometer, sometimes we will detect a particle there and some-
times the particle will go the other way. No interference effects will show up
any more in the zone where the wave packets overlap - even if the particle is
not absorbed by the detector but instead allowed to move on after it has been
detected. My question is the following: Are the trajectories still reflected or
do they cross each other? I cannot rule out either of these possibilities, since
they could lead to the same probability density, which is the only quantity that
has to be reproduced correctly by Bohm’s theory or any other hidden variable
theory of this kind.

QM: You are right, in principle both alternatives are possible. However, when
we actually describe the complete situation, including the detector, using Bohm’s
theory, we find the following: The trajectories are not reflected anymore! Re-
member that previously, at least for the one-dimensional situation, the trajec-
tories simply had to be reflected, because they are not allowed to cross each
other, according to Bohm’s theory. But now we are dealing effectively with a
higher-dimensional situation, because the trajectories also have to describe the
time-evolution of the detector’s coordinate. When the particle moves nearby
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the detector and is detected, the detector’s coordinate will change. More pre-
cisely, the wave packet describing both detector and particle will get displaced
in configuration space, along the dimension belonging to the detecor. The “sys-
tem point” of Bohm’s theory will follow suit, if it had been located within that
wave packet previously, i.e. if it had described a situation with the particle ac-
tually moving along the arm of the interferometer where the detector has been
placed. Afterwards, when the wave packets would usually overlap, they just
miss each other in the higher-dimensional space we are dealing with. There-
fore, no interference pattern will show up in the probability density of finding
the particle here or there. And, at the same time, the trajectories living in that
space will neither cross each other nor be reflected, they will simply pass by
each other. If you are interested in the trajectory of the particle alone, you have
to project the higher-dimensional trajectory onto the dimension of the parti-
cle’s coordinate. Then you may, and will, get a crossing of those trajectories in
the zone were they would be reflected in the setup without a detector.

4 Local realistic theories

LR: I have read about a hidden variable theory which seems to be much more
natural and physical than Bohm’s theory. It is called “Stochastic Electrodynam-
ics”.

QM: Tell me more about that theory - does it involve continuous trajectories as
well?

LR: Yes, it even starts from the classical equations of motion! And it avoids any
“nonlocal influences”.

QM: Well, I doubt that is possible... But go on.

LR: Perhaps it is most natural to introduce this theory in relation to the stabil-
ity of atoms. You know that the classical model of an atom, with an electron
tracing its orbit around the nucleus like a planet revolving around the sun, is
unstable. The electron represents an accelerated charge that will radiate away
its energy and will spiral into the nucleus, after about a million revolutions
or so. Therefore, one might imagine that in a universe dominated by classical
laws, all the atoms would collapse within a mere nanosecond. But now try to
go one step further in this story: The energy radiated away by the atoms is
not lost. Instead, empty space is now filled with electromagnetic energy in the
form of fluctuations of the electric and magnetic field. This means the electron
in any given atom will experience some fluctuating force that tends to increase
its energy. In other words, the possibility arises of a balance between energy
input due to fluctuations and energy dissipation due to the radiation of the
accelerated electron. In this way, the atoms could become stable.

QM: So you want to tell me that we settle into a thermodynamic equilibrium
belonging to some finite temperature?
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LR: No. The idea would be that these fluctuations in the electromagnetic field
are not just classical heat radiation. In fact, for this effect to be fundamental,
we would require the fluctuations to be Lorentz-invariant. Heat radiation is
not Lorentz-invariant, because it prefers a certain frame of reference, the frame
where the hot material objects, that have equilibrated with the radiation field,
are at rest. We should ask: Is there any classical fluctuating electromagnetic
field which is statistically Lorentz-invariant? For example, the average energy
contained in a given volume and a given frequency interval is called the power
spectrum, when you consider it as a function of frequency. Can we set up fluc-
tuations such that their power spectrum will be the same in every frame of ref-
erence? The answer is yes. And what is more, it is found that this requirement
of Lorentz-invariance fixes the power-spectrum of the fluctuations uniquely,
up to a constant factor that determines the overall strength of the fluctuations.
The power spectrum has to rise like the third power of the frequency, ω3. Only
then the transition to another frame of reference will reproduce the same spec-
trum, due to a delicate cancellation of Doppler shifts and Lorentz contraction
effects.

QM: So you are talking about the zero-point fluctuations of the electromagnetic
field in vacuum?

LR: Yes, the ω3 spectrum is exactly the power spectrum which one obtains
from the quantum theory of the electromagnetic field. But there, it is obtained
in quite a different fashion: The field is formally equivalent to a collection
of harmonic oscillators, one for each mode of the field. At zero temperature,
each of those oscillators still has some finite average energy, the so-called zero-
point energy ~ω/2, which is proportional to both Planck’s constant and the fre-
quency. Now in order to obtain the power spectrum, one still has to multiply by
the number of modes contained in a given frequency interval, which is propor-
tional to ω2. Then one arrives at a spectrum proportional to ω3, with a prefac-
tor involving Planck’s constant. When we compare with the derivation based
upon Lorentz-invariance, we learn two important facts: First of all, the fact
that in quantum mechanics a harmonic oscillator has an energy proportional
to its frequency is absolutely necessary to obtain a Lorentz-invariant power
spectrum for the zero-point fluctuations. This is amazing, since the quantum-
mechanical derivation of this harmonic oscillator ground state energy seems to
be completely independent of special relativity. In a way, one could claim that
the requirement of Lorentz-invariance is an alternative derivation of E ∝ ω for
harmonic oscillators in quantum theory! And secondly, we see that the overall
strength of the fluctuations is proportional to Planck’s constant ~. That is also
very reasonable, since in a completely classical world, ~ would be zero and
therefore the zero-point fluctuations would vanish.

QM: So how does ~ appear in the theory of “Stochastic Electrodynamics”?

LR: It does not have to be introduced at all. On the contrary: We start with
fluctuations whose spectrum goes like ω3, and then the prefactor describing
the overall strength of these fluctuations will serve to define Planck’s constant.
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That is the principal idea of Stochastic Electrodynamics: Nothing is changed
about classical mechanics and electromagnetism, apart from the initial condi-
tions for the electromagnetic field in vacuum. Instead of having both electric
and magnetic fields equal to zero in free space, the world is assumed to be ac-
tually described by a solution of Maxwell’s equations that consists of a random
superposition of plane waves, with a power spectrum rising like ω3. This then
will induce stability of atoms and it should lead to all the other effects known
from quantum mechanics.

QM: I agree it sounds interesting. But does it work?

LR: Well, of course it is very hard to actually solve the equations of motion of
an electron subject to these fluctuations and to the Coulomb potential of the
atom’s nucleus. It is so difficult because the force fluctuations are correlated
over large time spans, they are not just simple “white noise” as it is encoun-
tered in the theory of Brownian motion. But in the case of the harmonic oscil-
lator, it can be done relatively easily, and it works indeed! One has to take into
account both the fluctuations and the radiation damping force. Then one ob-
tains an equilibrium distribution for the particle’s position which is of Gaussian
shape and exactly equal to the quantum-mechanical expectation. Provided, of
course, that one inserts the correct power-spectrum of the zero-point fluctua-
tions.
Qualitatively, you can also describe many other things in quantum-mechanics
using such fluctuations. For example, tunneling through a barrier, which is
classically impossible, could be made possible by some temporary energy in-
put due to the fluctuations. I have also read that people have been able to
derive the correct Planck spectrum of heat radiation within Stochastic Electro-
dynamics.

QM: That is interesting. However, I am a little bit skeptical of that example
of the harmonic oscillator. It is well known that systems with linear equations
of motion, that is collections of oscillators, show a very close correspondence
between classical and quantum-mechanical results - I have told you about that
earlier. But in the case of nonlinear systems, like the atom, you will probably
run into trouble: If I am not mistaken, the fluctuations will be able to ionize
the atom, and then the electron will not return. This is in contrast to quantum
mechanics, where an atom in its ground state is stable against ionization. But
of course, as you have said, this situation is extremely difficult to analyze in
detail.
Therefore, let us look at a simpler example: A potential well with infinite walls.
It is hard to imagine that, in this case, you will be able to obtain the correct
ground state probability density of quantum mechanics. This is because the
fluctuations are not very strong: You yourself mentioned that, in the case of
the hydrogen atom, radiation damping would considerably affect the orbit
roughly after one million revolutions. Since this effect is to be compensated
by the fluctuations, we know that they will not severely alter the dynamics of
a system during one period of revolution, or one period of oscillation in the
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case of the potential well. This fact is also confirmed explicitly by the calcula-
tion in the case of the harmonic oscillator. Now we know that the quantum-
mechanical ground state distribution for the potential well with infinite walls
is concentrated in the middle of the well. However, this distribution is not
stable under the time-evolution according to the classical equations of motion,
regardless of which momentum distribution you prescribe. And since the fluc-
tuations are so relatively weak, I do not think they could stabilize this distribu-
tion.
But even worse, if we go away from these bound systems and just consider mo-
tion in free space and interference effects of overlapping wave packets: How
do you think those phenomena could be described by a theory that essentially
only introduces fluctuations?

LR: Well, frankly speaking I do not know. But one could speculate that, per-
haps, the interference pattern is actually first in the electromagnetic field, which
then acts as a sort of “guiding wave” or “pilot wave” for the electron. This
would be similar to Bohm’s theory, only the “guiding wave” would have a
direct physical meaning. Or one may speculate that the high-frequency fluc-
tuations of the electromagnetic field, around the Compton frequency, become
important. Perhaps this would not only lead to some jitter motion, as we dis-
cussed it earlier, but it would also have a relatively large effect on the motion
of the electron, because the power spectrum grows towards high frequencies.
Then we could hope to get the correct ground state distribution even for such
examples like the potential well. Even better, I have read that one can actually
get the de-Broglie relation λ = h/mv out of these high-frequency modes, in
a way. Consider standing waves formed out of superpositions of electromag-
netic plane waves at the Compton frequency: the interference pattern of these
plane waves will develop a beating period if one changes to a different frame
of reference via a Lorentz transformation. And this spatial period will be just
h/mv, if one moves at velocity v with respect to the original frame of reference!
Therefore, somehow this may then govern the motion of the electrons, which
would open the possibility of deriving Schrödinger’s equation from physical
principles!

QM: That gets too speculative for my taste. Of course you can always keep me
busy by introducing yet another hard-to-analyze feature into the theory.
But I think there is a simple gedanken experiment that demonstrates why ev-
ery theory that uses just the vacuum electromagnetic field as a sort of “guiding
wave” for the electron must fail. The point is not to analyze something as com-
plicated as a bound state or motion through a double slit, where one cannot
really carry through the analysis. Instead, let’s imagine an electron that has
been prepared in a wave packet which is spread over a rather large region of
space, such that its momentum uncertainty is relatively small. This we could
check experimentally by repeatedly preparing an electron in the same wave
function and then measuring its position at some variable instant of time. In
this way, we could observe the probability density of the wave packet and we
would find that it expands only rather slowly, because of the small momen-
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Figure 19: “Cut-away” gedanken experiment demonstrating failure of certain
theories using the vacuum electromagnetic fluctuations as a “guiding field”
for the electron. Left: A pulse of gamma rays will hit the electron, unless it
happens to be in the central region of the wave packet. Right: If it has not been
hit, it is described by a narrow wave packet that expands fast.

tum uncertainty. Now imagine an intense pulse of gamma rays is fired at the
region where the electron must reside, so that it will receive a substantial im-
pulse and will fly towards an array of detectors. However, the gamma pulse
is shaped such that a small region in the center of the wave packet is spared.
That means, in some trials the electron will not be registered by the detectors,
simply because it has been missed by the gamma rays. Quantum-mechanically
speaking, after the “position measurement” performed by the gamma rays has
failed to detect the electron, it is described by a much smaller wave packet,
corresponding to the central region. This will have a considerable momentum
uncertainty and will expand fast in space. That can be confirmed experimen-
tally by subsequent position measurements.
Now try to explain this using a theory like “Stochastic Electrodynamics”. The
gamma rays are just part of the electromagnetic field, they corrrespond to an
intense additional field superimposed onto the vacuum fluctuations. It is easy
to understand that they give a kick to the electron if it is located in the region
that is exposed to the rays, but they should not influence at all an electron
that happens to be in the central region. Therefore, this electron could by no
means acquire a sufficiently large momentum to explain the fast expansion
of the probability density in the case where the electron has been missed by
the gamma pulse. And, on the other hand, it cannot have had this large mo-
mentum even before the pulse, because that contradicts the observations made
when no pulse is applied. The only way out seems to be either to postulate
some nonlocal influence or at least some nonlinear interaction within the elec-
tromagnetic field, such that the field will be changed by the passage of the
pulse. In any case, that would destroy the simple structure of a theory like this.
Of course, physically the same thing happens already when a wave packet
passes through a narrow slit and starts to expand afterwards in the transverse
direction because of the momentum spread acquired according to Heisenberg’s
uncertainty relation. But for our purposes this experiment would not be suit-
able, because you could always argue that the matter making up the constric-
tion will influence the vacuum electromagnetic field in the region of the slit
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Figure 20: EPR’s original reasoning, Bell’s result, and its consequences

and this could indeed alter the trajectory of the electron.

5 John Bell’s inequality

LR: I agree that it seems to be difficult to build a theory that gives the same re-
sults as quantum mechanics, like Bohm’s theory, and which, at the same time,
only involves local influences, like Stochastic Electrodynamics. On the other
hand, there are so many complicated phenomena in the field of classical non-
linear dynamics and chaos. I would guess there must be some such description,
perhaps involving fluctuating fields with nonlinear field equations. The par-
ticles might be some sort of singularities in the field, like the “soliton” pulses
known from nonlinear optics, or some kind of vortices...

QM: Certainly it would be hard to invent a crucial “gedanken experiment”
for each and every such theory in order to demonstrate that it gives results
that are incompatible with quantum mechanics. And even if you succeeded in
each case, still you could never be sure that there is not a working local hidden
variable theory waiting around the corner, so to speak.
But fortunately, we do not have to analyze every such theory anew. There is a
general theorem by John Bell which rules out all local hidden variable theories
at once!

LR: How is that possible? We cannot enlist all of those theories.

QM: The idea is to use only the general features common to all of these theories
to show that in a certain kind of experiment they must necessarily give results
which deviate from those of quantum mechanics. This experiment is a vari-
ation on a gedanken experiment due to Einstein, Podolsky and Rosen (EPR),
whose intention had been to prove that there should be local hidden variable
theories!
Now let me explain the EPR experiment, as it was proposed originally. This
was before Bohm invented his hidden variable theory, so it was not even clear

55



at the time whether any hidden variable theory existed at all! They wanted
to demonstrate that one should indeed expect there to be such a “deeper” de-
scription underlying quantum mechanics, just as classical mechanics underlies
statistical physics.
Of course, quantum mechanics tells us, for example, that it is impossible to
measure precisely both the position and the momentum at the same time, in
contrast to classical mechanics. But this does not necessarily mean that one
could not at least think of them as having some well defined values simulta-
neously, before the measurement. After all, Heisenberg himself has explained
how the measurement of the position will invariably disturb the momentum,
and vice versa, in his “gamma ray microscope” gedanken experiment. There-
fore, one might conclude that the particle does have a well-defined momentum
and a well-defined position as long as we do not start to make a measurement.
The problem with this “realistic” interpretation is simply that you could never
hope to prove it in an experiment, because of this unavoidable disturbance. It
is the same story as with the trajectories in Bohm’s theory, which cannot be ob-
served. Therefore, a skeptic might argue that you should not attribute reality
to both position and momentum, because that exceeds what actually can be
measured. It seems to become a matter of taste whether you want to believe in
position and momentum taking on some definite values before the measure-
ment.
However, EPR invented a clever scheme involving two particles, where the
measurement on one of the particles will tell us something about the momen-
tum or position of the other particle as well, because the properties of the parti-
cles are correlated. If they are far apart, this should not involve any disturbance
of the other particle, so the usual objection is avoided. In order to introduce
the desired correlation between the positions and the momenta of the two par-
ticles, they are assumed to be prepared in a wave function like this:

Ψ(x1, x2) ∝ δ(x1 − x2 − x)

This is an entangled state, since it cannot be written as a product of two func-
tions that only depend on x1 and x2 separately. Obviously, the relative coor-
dinate x1 − x2 takes on a precisely defined value, namely x. This necessar-
ily means the relative momentum p1 − p2 can take on every possible value,
with equal probability, due to Heisenberg’s uncertainty relation. On the other
hand, the wave function does not depend at all on the center-of-mass position
(x1 +x2)/2. That position can therefore take on any possible value. This is con-
sistent with the fact that the center-of-mass momentum (p1 + p2)/2 is precisely
defined, it is equal to zero.
Now the argument of EPR goes like this: if one were to measure the position
x1 of the first particle, one could immediately conclude that the position of the
other particle must be x2 = x1 − x, even before any measurement. If one actu-
ally does the position measurement on the second particle, one will obtain pre-
cisely that value. On the other hand, one could still choose to measure instead
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the momentum p2 of the second particle. Since the first measurement cannot
possibly disturb the far-away second particle, one may be sure that p2 is still
equal to its “original” value. Similarly, if one measures p1, one can immedi-
ately deduce the value of the momentum p2 = −p1, but one can still choose to
measure x2. In this way, it is possible to find out both the values of the posi-
tion and the momentum of the second particle. Therefore, it is not a matter of
taste any more whether to think of them as having some definite values prior
to the measurement. Since quantum mechanics only makes statistical predic-
tions and does not say anything in detail about the behaviour of the position
and momentum of a given particle, it is “incomplete”. It is not the full truth,
so to speak. That was the conclusion of EPR, although, at that time, they could
not yet present a working hidden variable theory to bolster their conclusion.
There is one important assumption in the argument, which EPR stated right at
the beginning: It is assumed that, in accordance with the theory of special rel-
ativity, no faster-than-light influences can travel from one particle to the other.
Therefore, if the particles are sufficiently far apart and the measurements are
carried out in quick succession, there is no time for any signal to travel from
one to the other particle, which could bring about a disturbance similar to that
in the “gammy ray microscope”. In other words, EPR assumed locality to show
that the results which quantum mechanics gives for such a gedanken experi-
ment prove the existence of “independent elements of reality”, i.e. a hidden
variable theory.

LR: Did they explain how a state like this could be prepared in the first place?

QM: No. But at least in principle this is a valid quantum-mechanical two-
particle state. Of course, the wave function given here is symmetric under
interchange of the particles, so it cannot describe fermions of equal spin direc-
tion, since then it would have to be antisymmetric. However, it is valid for the
case of two atoms of spin zero, since they are bosons. In addition, one definitely
needs some interaction between the two particles to produce this state. An in-
direct interaction may be enough for this purpose: For example, both of them
could be scattered off the same object whose momentum would be measured
before and after the event. Then momentum conservation would automatically
introduce a correlation between the momenta p1 and p2, although it would still
require some effort to produce exactly that state.
In fact, nowadays there are even approximate realizations of this original EPR
state, in the field of quantum optics, where the coordinates x1 and x2 may
be thought of as the electric field amplitudes at two different points in space,
rather than the positions of two particles. However, there the field oscillates,
which does not correspond to free motion in the original problem.

LR: Suppose you have been able to produce this state. Isn’t it true that it will
only describe the situation at a single instant of time? After all, if we think of a
particle that is prepared in a localized wave packet, it will soon start to spread
out, because the momentum uncertainty is necessarily large. The same should
happen here, in the case of the two particles that are prepared in a state which
is localized at x1 − x2 = x with respect to their relative coordinate.
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Then, maybe, the whole procedure of measuring either position or momentum
of each particle becomes problematic. Each measurement will take some time
to proceed and the state may change significantly. At least it is not obvious that
everything can be carried out in this idealized fashion or that the deviations
will turn out to be unimportant for the argument.

QM: It is true that the two-particle wave function given above will spread, at
least as long as the particles are moving freely.
However, we should not bother about any of these concerns. This is because
there are other variants of the original EPR experiment that do not have such
problems. In order to demonstrate the essential features of the EPR argument,
we only need the following: First of all, two observables that cannot be mea-
sured simultaneously, such as position and momentum. Secondly, two parti-
cles which are in an entangled state, such that their properties become corre-
lated with respect to these observables. And thirdly, a way to separate them
and to measure either one or the other observable at each of the particles.
The most important of these EPR variants has been proposed by David Bohm.
He considered a correlation between the spins of particles. The different spin
components Sx, Sy and Sz cannot be measured simultaneously: If you send
a particle through a Stern-Gerlach magnet that measures the z-component Sz ,
then you will end up with the particle whose spin points along +z or −z, de-
pending on whether it is found in the upper or lower beam. In both cases,
any subsequent measurement of the x-component will only give 50/50 spin up
or down in x-direction, which doesn’t reveal anything about what you would
have obtained if you had chosen to measure the x-component in the first place.
So the spin components replace position and momentum. That has the nice
effect that now the state does not evolve with time, at least as far as the entan-
gled spin part of the total wave function is considered and as long as there is
no magnetic field.
The state that is assumed to describe the correlations between the spins of the
two particles is the singlet state:

1√
2
(|↑〉

1
|↓〉

2
− |↓〉

1
|↑〉

2
)

This state is a superposition of two possibilities, each of which occurs with the
same probability of 1/2: either the spin of particle 1 points in +z direction and,
at the same time, that of particle 2 points in −z direction, or it is the other way
round. If we measure the z-component of the spin of each particle, we will
always obtain results that are opposite to each other. This is analogous to the
perfect anticorrelation between momenta in the original EPR proposal. How-
ever, there we could also choose to measure the position instead of the momen-
tum. In that case, again a perfect correlation was found, namely x1 − x2 = x.
Likewise, in the spin version of the EPR experiment, we want to find out what
happens if we measure the spins in x-direction, instead of the z-direction.
Therefore, we should ask how the singlet state looks like if we write it in spin
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states that refer to the x-axis. Do you remember the connection between z- and
x- basis for a spin 1/2 ?

LR: Of course: If the states describing spin up and down in z-direction are
denoted as |↑z〉 and |↓z〉, then the analogous basis vectors for the x quantization
axis are given by symmetric and antisymmetric superpositions:

|↑x〉 =
1√
2
(|↑z〉 + |↓z〉)

|↓x〉 =
1√
2
(|↑z〉 − |↓z〉)

QM: Now, if you use these equations to express |↑z〉 , |↓z〉 in terms of |↑x〉 , |↓x〉
and insert the results into the singlet state, you will find that many terms can-
cel. We end up with the same form of the singlet state again, although now it is
written with respect to the x axis:

1√
2
(|↑z〉1 |↓z〉2 − |↓z〉1 |↑z〉2) =

1√
2
(|↑x〉1 |↓x〉2 − |↓x〉1 |↑x〉2)

This only works because of the minus sign in front of the second contribution.
If you were to transform to the y-basis, you would still recover the same form,
and that holds for any other direction as well! The singlet state is isotropic,
there is no preferred direction. This feature will become very convenient in
our discussion of the correlations between the two particles’ spins, although it
is not a necessary condition for obtaining those striking results.

LR: I agree that there are perfect anticorrelations between the spin directions,
regardless of the direction in which you measure the spin components. But
this is not all too surprising. I can even make up a similar completely classi-
cal model. Suppose you have two asteroids orbiting around each other. Each
of them may rotate around some axis, so they have intrinsic angular momen-
tum in addition to the angular momentum associated with their orbital motion.
They are similar to two particles with spin that interact with each other. In the
course of their motion, they may exchange angular momentum, due to tidal
forces. At some point, they might fly apart, with some random orientations of
their angular momenta. But if you have been able to measure the total angu-
lar momentum in the beginning, you will find that, in the end, their angular
momenta are perfectly correlated, since they always add up to the value of the
total angular momentum which has been conserved. Of course, some part of it
may have gone into the orbital angular momentum, so it is not as nice as with
the two particles in the singlet state. Nevertheless, it demonstrates that even
perfect correlations are not very surprising, in particular if conservation laws
are involved. Why should such a gedanken experiment serve to rule out local
hidden variable theories?
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QM: Of course, it is very easy to imagine that perfect correlations are observed
because they have been there already at the time at which the two particles
separated. If you take this viewpoint, it even appears to support the assump-
tion that there are hidden variables. After all, it is most natural to assume that
the correlations between the measurement results arise because of such hidden
variables that have become correlated at the time of interaction.
But there is an important difference between the classical angular momentum
of a rotating rigid body and the spin: You cannot measure the different spin
components simultaneously. You have to choose a single particular direction
along which to measure the projection of the spin, and still you will always
find only the two maximum values of “spin up” or “spin down” along that
direction, not any intermediate results. Therefore, measuring the spin does
not mean you obtain a vector, as in the classical case. Rather, you provide a
direction and get either of two possibilities as a result.

LR: OK, so I have to start from spin 1/2 particles rather than classical rotat-
ing bodies. Why not simply say: When the particles fly apart, their spins are
pointing into some definite, but opposite, directions. However, in order to ex-
plain the isotropy, we postulate that the initial directions are random for each
experimental run.

QM: If I understand you correctly, your initial states are of the type

|↑n̂〉 |↓n̂〉

where the spin is written in a basis that belongs to some direction n̂, which is
chosen at random for each pair. Unfortunately, this does not work. Although
the measurement results will be isotropic indeed, and there are obviously some
correlations between the spin directions, these correlations will not be perfect:
Suppose you choose to measure along x but the direction n̂ of the current pair
happens to be z. Then the results will be 50/50 up/down, independently at each
measurement apparatus. Therefore, sometimes you will get both spins up, for
example. This is in contrast to what is expected for the singlet state.

LR: I see. The trick is to have isotropy, perfect anticorrelations and only up/down
results, all at the same time...

QM: In fact, there is a working local hidden variable model that is able to re-
produce these results. It has been invented by John Bell. In principle, it is
just like the model which you proposed: randomly oriented initial spin direc-
tions, which are always exactly opposite for the two particles. However, these
“spins” are modeled in a manner that goes beyond usual quantum mechanics.
One has to do this in order to avoid the problem of having less than perfect
correlations if the measurement direction is different from the direction n̂ of
the current pair.
The model can be visualized very easily by imagining the particle to be a globe
that is painted black and white on its northern and southern hemisphere, re-
spectively. The spin of the particle points along an axis that goes through the
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poles. The rule for the spin measurement along an arbitrary direction d̂ is the

following: If the vector d̂ points onto the northern hemisphere, the result is
“up”, otherwise it is “down”. For any given pair, characterized by n̂, and any

measurement direction, described by d̂, we get perfect anticorrelation between

the results: If the direction d̂ points onto the northern (black) hemisphere for
particle 1, it will necessarily point onto the southern (white) hemisphere for
particle 2, and vice versa. Since the directions n̂ are distributed randomly, we
also have isotropy.

LR: Fine. Now we have at least one working local hidden variable model for
this situation. Of course, it sounds a bit unrealistic, but certainly we will be
able to find some modifications to improve it. Where, then, is the contradiction
with local hidden variable theories?

QM: There is no contradiction as long as you choose to measure both spins
along the same direction. However, as soon as the two measurement directions
are tilted with respect to each other, you find quantitative deviations between
quantum mechanics and our toy model. Of course, qualitatively, they both give
the same answer, namely a decrease of correlations. For example, in our model,

it becomes possible that the measurement direction d̂1 points onto the north-

ern hemisphere of particle 1 and d̂2 also points onto the northern hemisphere of
particle 2, even though particle 2 is colored in exactly the reverse manner. This

is because d̂1 and d̂2 do not point at the same place on the globe any longer.
Therefore, there is some small percentage of cases where the perfect anticor-
relations are not observed. As you can imagine, this percentage grows if you

increase the angle between d̂1 and d̂2 even further. In fact, you can find that
percentage if you imagine the two globes to be tilted with respect to each other

by the angle between d̂1 and d̂2. Then the fraction of “wrong” cases is propor-
tional to the area on globe 1 that has a different color from globe 2. It grows
linearly with the tilt angle.

LR: Let me see: If I want to quantify these correlations, I could attribute a value
of “+1” to spin up and “−1” to spin down. Then, if the measurement direc-
tions are the same, one will always get +1,−1 or −1,+1, but never +1,+1 or
−1,−1 for the two spin measurements at the two particles. So the product of
the results is always −1. These are the perfect anticorrelations. Now if we tilt

d̂1 versus d̂2 by an angle θ, we will sometimes get the “wrong” results +1,+1
or −1,−1. This happens in a fraction θ/π of all cases: If θ = π, the measure-

ment directions d̂1 and d̂2 are opposite to each other and we only get the wrong
results. If we take the average over the product, which is −1 for the right cases
and +1 for the wrong ones, we have:

(−1)P (right) + (+1)P (wrong) =

(−1)(1 − θ

π
) + (+1)

θ

π
= 2

π
θ − 1
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When the measurement directions are at right angles, at θ = π/2, we get ex-
actly zero: Then, there are as many “right” results as there are “wrong” ones
and overall there are no correlations at all. If θ is negative, the fraction of the
“wrong” results will be |θ|/π, so we should use |θ| instead of θ.

QM: Now we would like to compare that result with what quantum mechan-
ics has to tell us. We can understand quite easily what happens at θ = π/2:
Suppose the measurement at particle 1 is carried out along the z-direction and
gives “spin down”. This means the total singlet state is projected onto that part
which is compatible with this measurement result:

1√
2
(|↑z〉1 |↓z〉2 − |↓z〉1 |↑z〉2) 7→ |↓z〉1 |↑z〉2

Now particle 2 is definitely “spin up” in z direction, so we would observe
perfect anticorrelations if we also measured in that direction. However, the
measurement at particle 2 is carried out in a direction perpendicular to z, let’s
take the x direction. We know that we will obtain 50/50 spin up/down along
x if we start from a spin up in z direction. Therefore, we get the same result as
in our toy model: no correlations at all for θ = π/2.

LR: This has been a particular choice of measurement directions. What hap-
pens for others?

QM: As long as they are perpendicular, we will get the same result, because
the singlet is isotropic. But suppose we do not measure particle 2 along x, but
along a direction which is tilted with respect to the z axis by an arbitrary angle
θ. Then our task is to find the probability of having “spin up” in this more
general case. That is easy if you know the expression for the state of “spin up”
pointing along an arbitrary direction, written down in the z-basis. In any case,
here is the result for the probability:

(cos(
θ

2
))2

This is reasonable: At θ = 0, we definitely get “up”, at θ = π, we have “spin
down”, so we get 0 for the probability of observing “up”, and at θ = π/2 both
possibilities are equally likely, so we obtain 1/2. Now this probability for “spin
up” is equal to the fraction of “right” results, since we had measured “down”
at particle 1. If we had measured “up” at particle 1, the same reasoning would
go through and we would still get the same probability of having a “right”
result, with perfect anticorrelation. Overall, quantum mechanics tells us that
the correct expression for the correlation function is

(−1)P (right) + (+1)P (wrong) =

(−1)(cos(
θ

2
))2 + (+1)(1 − (cos(

θ

2
))2) = − cos(θ)
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This also starts at −1, goes through 0 at θ = π/2 and ends up with +1 at θ = π.
But for angles smaller than π/2, it gives stronger anticorrelations than our toy
model.

This is the essential point of Bell’s argument: For the singlet state, quantum
mechanics predicts stronger correlations than any possible local hidden vari-
able model!
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