
Hints for Homework Assignment 6

1. Consider a hydrogen atom in its ground state

Φ100(r; µ; `) = exp(−r=a0)=
√

…a0
3.

(a) To find the most probable distance between the proton and the electron, you need to find the
point with the largest probability—which is the point with zero slope in the probability versus r
curve. The probability curve P (r) is given by the square of the wavefunction with r2 weighting:

P (r) = |Φ100(r; µ; `)|2 r2 dr dΩ.

(b) To find the average distance between the proton and the electron, you need to calculate the
expectation value of r for the Φ100(r; µ; `) state. So you need to do the r expectation value integral:

< r > =
∫
0
∞ Φ∗

100(r; µ; `) r Φ100(r; µ; `) r2 dr dΩ.

(c) To calculate ∆r, the rms width of the probability distribution versus r, you need to do the r2

expectation value integral:

< r2 > =
∫
0
∞ Φ∗

100(r; µ; `) r2 Φ100(r; µ; `) r2 dr dΩ,

and to combine your result with your result from part b to obtain ∆r.

(d) To calculate the probability that the electron will be found at a greater distance from the
nucleus than would be allowed classically: First, figure out r∗, the largest classical distance that
the electron can be from the proton. Second, integrate the probability distribution from r∗ to
infinity to find the probability that the separation will be greater than r∗. To find r∗, the “largest
possible classical distance,” set the electrostatic energy equal to the binding energy and solve for
r∗. Once you have r∗, do the integral

∫
r∗

∞ Φ∗
100(r; µ; `) Φ100(r; µ; `) r2 dr dΩ.

2. Consider a muonic atom which consists of a nucleus with positive charge Ze with a negative
muon moving around it. The muon’s charge is −e and the muons mass is 207 times the electron
mass. For a muonic atom with Z = 6 calculate:

(a) the radius of the first Bohr orbit;

(b) the energies of the first three bound states (i.e., the ground state, and the first and second
excited states;

(c) the frequencies associated with the following transitions: ni = 2 → nf = 1, ni = 3 → nf = 1,
and ni = 3 → nf = 2.

This problem is very straightforward: you must simply repeat the same calculations that you would
do for a hydrogen-like atom with Z = 6—except that you must use the reduced mass of muonium
instead of the reduced mass of hydrogen.
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3. Consider a hydrogen atom in the n = 4, l = 3, and m = 3 energy eigenstate.

(a) What is the magnitude of the angular momentum of the electron around the proton?

(b) What is the angle between the angular momentum vector and the z-axis? Can this angle be
changed by changing n or m if l is held constant? What is the physical significance of this result?

(c) Sketch the probability distribution for finding the electron a distance r from the proton.

This problem is also very straightforward. It is designed to help you make sure that you understand
the semiclassical vector model for angular momentum, and the radial probability distributions for
the hydrogen atom.

4. Consider a hydrogen atom in the n = 2, l = 1, m = −1 energy eigenstate

`21−1(r; µ; `) = N r exp(−r=2a0) Y1−1(µ; `).

(a) To calculate the normalization constant N , you must do the normalization integral:
∫
0
∞

N∗ r∗ exp(−r=2a0)∗ Y1−1(µ; `)∗ N r exp(−r=2a0) Y1−1(µ; `) r2 dr dΩ = 1.

(b) To calculate the probability per unit volume of finding the electron at r = a0, µ = 45◦, and
` = 60◦, you must calculate the probability density with r2 weighting:

P (r) = |Φ21−1(r; µ; `)|2 r2 dr dΩ.

(c) What is the probability per unit radial distance dr of finding the electron at r = 2a0? N.B.,
you must average over µ and `.

(d) If you measure the energy, what are the possiblities and what are the probabilities?

(e) If you measure L2, what are the possiblities and what are the probabilities?

(f) If you measure Lz, what are the possiblities and what are the probabilities?
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5. Consider a hydrogen atom which is in the following superposition of its energy eigenstates Φnlm

at t = 0

ˆ = N [
√

3 Φ100 +
√

2 Φ211 − Φ21−1 +
√

5 Φ322 −
√

3 Φ320 −
√

2 Φ43−3].

(a) To calculate the normalization constant N , you must do the normalization integral:
∫
0
∞

ˆ∗ˆ r2 dr dΩ = 1.

To do this integral it is much easier to use the orthonormality of the spherical harmonics and of
the radial functions than it is to do a lot of hairy integrals!

(b) Write down the time-dependent wavefunction.

(c) If you measure the energy, what are the possibilities and what are the probabilities?

(d) To calculate the expectation value of the energy, you must do the expectation value integral:

< E >=
∫
0
∞

ˆ∗ Hop ˆ r2 dr dΩ.

Remember that you know precisely what Hop does to its eigenfunctions, and that you know that
both the spherical harmonics and the radial functions are orthonormal.

(e) If you measure L2, what are the possibilities and what are the probabilities?

(f) To calculate the expectation value of L2, you must do the expectation value integral:

< L2 >=
∫
0
∞

ˆ∗ L2 ˆ r2 dr dΩ.

Remember that you know precisely what L2 does to its eigenfunctions, and that you know that
both the spherical harmonics and the radial functions are orthonormal.

(g) If you measure Lz, what are the possibilities and what are the probabilities?

(h) Calculate the expectation value of Lz, you must do the expectation value integral:

< Lz >=
∫
0
∞

ˆ∗ Lz ˆ r2 dr dΩ.

Remember that you know precisely what Lz does to its eigenfunctions, and that you know that
both the spherical harmonics and the radial functions are orthonormal.
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