Homework Assignment 5

Consider a system with angular momentum $l=1$. In the L_{z} basis, the three L_{i} operators are given by:

$$
L_{x}=(\hbar / \sqrt{2})\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad L_{y}=(\hbar / \sqrt{2})\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right) \quad L_{z}=\hbar\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

(a) Calculate L_{x}^{2}, L_{y}^{2} and L_{z}^{2} and then add them to find L^{2}.
(b) Calculate the angular momentum ladder operators L_{+}and L_{-}.
(c) Show by explicit matrix multiplication for the $m=+1,0$ and -1 states that:

$$
\begin{aligned}
& L_{-}|l=1, m>=\sqrt{l(l+1)-m(m-1)} \hbar| l=1, m-1> \\
& L_{+}|l=1, m>=\sqrt{l(l+1)-m(m+1)} \hbar| l=1, m+1> \\
& L^{2}\left|l=1, m>=l(l+1) \hbar^{2}\right| l=1, m> \\
& L_{z}|l=1, m>=m \hbar| l=1, m>
\end{aligned}
$$

Remember that

$$
\begin{aligned}
& \mid l=1, m=+1>=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& \mid l=1, m=0>=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& \mid l=1, m=-1>=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

Next consider the $t=0$ wavefunction:
$\mid \psi(t=0)>=A(3|l=1, m=1>+2| l=1, m=0>+4 \mid l=1, m=-1>)$
so
$\left\lvert\, \psi(t=0)>=A\left(\begin{array}{l}3 \\ 2 \\ 4\end{array}\right)\right.$.
(d) Calculate the normalization constant A.
(e) If you measure L^{2}, what results can you obtain and with what probabilities will you obtain them?
(f) If you measure L_{z}, what results can you obtain and with what probabilities will you obtain them?
(g) Calculate $<L^{2}>, \Delta L^{2},\left\langle L_{z}\right\rangle$ and ΔL_{z}.
(h) Show that your results to parts (e), (f) and (g) are consistent by calculating the mean and the variance directly from the probabilities, i.e., calculate:
$<\Omega>=\sum_{i} P\left(\omega_{i}\right) \omega_{i}$
and
$\Delta \Omega=\sqrt{\sum_{i} P\left(\omega_{i}\right)\left(\omega_{i}-<\Omega>\right)^{2}}$
for $\Omega=L^{2}$ and for $\Omega=L_{z}$.
(i) Plot $P\left(L^{2}\right)$ versus L^{2} and $P\left(L_{z}\right)$ versus L_{z}, and indicate $<L^{2}>, \Delta L^{2},<L_{z}>$ and ΔL_{z} on your plot.
(j) Show that $\left\langle L_{x}\right\rangle=\left\langle L_{y}\right\rangle=0$ and that $\left\langle L^{2}-L_{z}^{2}\right\rangle=\left\langle L_{x}^{2}+L_{y}^{2}\right\rangle$ for any eigenstate of L_{z}.

Hint: $\left\langle L^{2}-L_{z}^{2}\right\rangle=\left\langle L^{2}\right\rangle-\left\langle L_{z}^{2}\right\rangle$ and $\left\langle L_{x}^{2}+L_{y}^{2}\right\rangle=\left\langle L_{x}^{2}\right\rangle+\left\langle L_{y}^{2}\right\rangle$.
(k) Sketch the semiclassical vector model for angular momentum states with $l=1$ and $m=$ $+1,0,-1$. Explain how this geometry agrees with part j.

Now consider the time evolution of the wavefunction. You'll need the Hamiltonian. Suppose your system can only rotate about the z axis. Then it is described by the Hamiltonian $H=L_{z}^{2} / 2 I$ where I is the moment of inertia about the z axis.
(1) Write down the Hamiltonian matrix (in the L_{z} basis) and then find its eigenvectors and eigenvalues (by inspection).
(m) Calculate the time-dependent wavefunction $\mid \psi(t)>$ using parts (d) and (l).
(n) For your time-dependent wavefunction $\mid \psi(t)>$, calculate the expectation values of the energy and the angular momentum: $\langle E\rangle,\left\langle L^{2}\right\rangle,\left\langle L_{z}\right\rangle,\left\langle L_{x}\right\rangle$ and $\left\langle L_{y}\right\rangle$. Why are L_{x} and L_{y} time dependent? Why are L^{2} and L_{z} time independent?
(o) Express the energy eigenfunctions in position space (think $Y_{l m}$). Express the TISE and the TDSE as a differential equation in position space.
(p) Express the TISE and the TDSE as matrix equations.

