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Electrons and Their

Interactions

This is the third of four lectures on a rather difficult sub-
ject—the theory of quantum electrodynamics—and since
there are obviously more people here tonight than there
were before, some of you haven’t heard the other two lec-
tures and will find this lecture almost incomprehensible.
Those of you who have heard the other two lectures will
also find this lecture incomprehensible, but you know that
that’s all right: as I explained in the first lecture, the way
we have to describe Nature is generally incomprehensible
to us.

In these lectures I want to tell you about the part of
physics that we know best, the interaction of light and elec-
trons. Most of the phenomena you are familiar with involve
the interaction of light and electrons—all of chemistry and
biology, for example. The only phenomena that are not
covered by this theory are phenomena of gravitation and
nuclear phenomena; everything else is contained in this
theory.

We found out in the first lecture that we have no satis-
factory mechanism to describe even the simplest of phe-
nomena, such as partial reflection of light by glass. We also
have no way to predict whether a given photon will be
reflected or transmitted by the glass. All we can do is cal-
culate the probability that a particular event will happen—
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whether the light will be reflected, in this case. (This is about
4%, when the light shines straight down on a single surface
of glass; the probability of reflection increases as the light
hits the glass at more of a slant.)

When we deal with probabilities under ordinary circum-
stances, there are the following “rules of composition”: 1)
if something can happen in alternative ways, we add the
probabilities for each of the different ways; 2) if the event
occurs as a succession of steps—or depends on a number of
things happening “concomitantly” (independently)—then
we multiply the probabilities of each of the steps (or things).

In the wild and wonderful world of quantum physics,
probabilities are calculated as the square of the length of an
arrow: where we would have expected to add the proba-
bilities under ordinary circumstances, we find ourselves
“adding” arrows; where we normally would have multiplied
the probabilities, we “multiply” arrows. The peculiar an-
swers that we get from calculating probabilities in this man-
ner match perfectly the results of experiment. I'm rather
delighted that we must resort to such peculiar rules and
strange reasoning in order to understand Nature, and I
enjoy telling people about it. There are no “wheels and
gears” beneath this analysis of Nature; if you want to un-
derstand Her, this is what you have to take.

Before I go into the main part of this lecture, I'd like to
show you another example of how light behaves. What I
would like to talk about is very weak light of one color—
one photon at a time—going from a source, at S, to a de-
tector, at D (see Fig. 49). Let’s put a screen in between the
source and the detector and make two very tiny holes a few
millimeters apart from each other, at A and B. (If the source
and detector are 100 centimeters apart, the holes have to
be smaller than a tenth of a millimeter.) Let’s put A in line
with S and D, and put B somewhere to the side of A, not
in line with S and D.
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When we close the hole at B, we get a certain number
of clicks at D—which represents the photons that came
through A (let’s say the detector clicks an average of one
time for every 100 photons that leave S, or 1%). When we
close the hole at A and open the hole at B, we know from
the second lecture that we get nearly the same number of
clicks, on average, because the holes are so small. (When
we “squeeze” light too much, the rules of the ordinary
world—such as light goes in straight lines—fall apart.)

s/)\ D
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s

FI1GURE 49. Tuwo tiny holes (at A and B) in a screen that is between a
source S and a detector D let nearly the same amount of light through (in this
case 1%) when one or the other hole is open. When both holes are open,
“interference” occurs: the detector clicks from zero to 4% of the time, depending
on the separation of A and B—shown in Figure 51 (a).

When we open both holes we get a complicated answer,
because interference is present: If the holes are a certain
distance apart, we get more clicks than the expected 2%
(the maximum is about 4%); if the two holes are a slightly
different distance apart, we get no clicks at all.

One would normally think that opening a second hole
would always increase the amount of light reaching the
detector, but that’s not what actually happens. And so say-
ing that the light goes “either one way or the other” is false.
I still catch myself saying, “Well, it goes either this way or
that way,” but when I say that, I have to keep in mind that
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I mean in the sense of adding amplitudes: the photon has
an amplitude to go one way, and an amplitude to go the
other way. If the amplitudes oppose each other, the light
won’t get there—even though, in this case, both holes are
open.

Now, here’s an extra twist to the strangeness of Nature
that I'd like to tell you about. Suppose we put in some
special detectors—one at A and one at B (it is possible to
design a detector that can tell whether a photon went
through it)—so we can tell through which hole(s) the pho-
ton goes when both holes are open (see Fig. 50). Since the

*special detectors

FIGURE 50. When special detectors are put in at A and B to tell which
way the light went when both holes are open, the experiment has been changed.
Because a photon always goes through one hole or the other (when you are
checking the holes), there are two distinguishable final conditions: 1) the de-
tectors at A and D go off, and 2) the detectors at B and D go off. The probability
of either event happening is about 1%. The probabilities of the two events are
added in the normal way, which accounts for a 2% probability that the detector
at D goes off—shown in Figure 51(b).

probability that a single photon will get from S to D is
affected only by the distance between the holes, there must
be some sneaky way that the photon divides in two and
then comes back together again, right? According to this
hypothesis, the detectors at A and B should always go off
together (at half strength, perhaps?), while the detector at
D should go off with a probability of from zero to 4%,
depending on the distance between A and B.
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Here’s what actually happens: the detectors at A and B
never go off together—either A or B goes off. The photon
does not divide in two; it goes one way or the other.

Furthermore, under such conditions the detector at D
goes off 2% of the time—the simple sum of the probabilities
for A and B (1% + 1%). The 2% is not affected by the
spacing between A and B; the interference disappears when
detectors are put in at A and B!

Nature has got it cooked up so we’ll never be able to
figure out how She does it: if we put instruments in to find
out which way the light goes, we can find out, all right, but
the wonderful interference effects disappear. But if we
don’t have instruments that can tell which way the light
goes, the interference effects come back! Very strange,
indeed!

To understand this paradox, let me remind you of a most
important principle: in order to correctly calculate the
probability of an event, one must be very careful to define
the complete event clearly—in particular, what the initial con-
ditions and the final conditions of the experiment are. You
look at the equipment before and after the experiment,
and look for changes. When we were calculating the prob-
ability that a photon gets from S to D with no detectors at
A or B, the event was, simply, the detector at D makes a
click. When a click at D was the only change in conditions,
there was no way to tell which way the photon went, so
there was interference.

When we put in detectors at A and B, we changed the
problem. Now, it turns out, there are two complete events—
two sets of final conditions—that are distinguishable: 1) the
detectors at A and D go off, or 2) the detectors at B and
D go off. When there are a number of possible final con-
ditions in an experiment, we must calculate the probability
of each as a separate, complete event.

To calculate the amplitude that the detectors at A and
D go off, we multiply the arrows that represent the follow-
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ing steps: a photon goes from S to A, the photon goes from
A to D, and the detector at D goes off. The square of the
final arrow is the probability of this event—1%—the same
as when the hole at B was closed, because both cases have
exactly the same steps. The other complete event is the
detectors at B and D go off. The probability of this event
is calculated in a similar way, and is also the same as be-
fore—about 1%.

If we want to know how often the detector at D goes off
and we don’t care whether it was A or B that went off in
the process, the probability is the simple sum of the two
events—2%. In principle, if there is something left in the
system that we could have observed to tell which way the
photon went, we have different “final states” (distinguish-
able final conditions), and we add the probabilities—not the
amplitudes—for each final state.!

I have pointed out these things because the more you
see how strangely Nature behaves, the harder it is to make
a model that explains how even the simplest phenomena
actually work. So theoretical physics has given up on that.

We saw in the first lecture how an event can be divided
into alternative ways and how the arrow for each way can
be “added.” In the second lecture, we saw how each way
can be divided into successive steps, how the arrow for each
step can be regarded as the transformation of a unit arrow,

1 The complete story on this situation is very interesting: if the detectors
at A and B are not perfect, and detect photons only some of the time, then
there are three distinguishable final conditions: 1) the detectors at A and
D go off; 2) the detectors at B and D go off, and 3) the detector at D goes
off alone, with A and B unchanged (they are left in their initial state).
The probabilities for the first two events are calculated in the way ex-
plained above (except that there will be an extra step—a shrink for the
probability that the detector at A [or B] goes off, since the detectors are
not perfect). When D goes off alone, we can’t separate the two cases, and
Nature plays with us by bringing in interference—the same peculiar an-
swer we would have had if there were no detectors (except that the final
arrow is shrunk by the amplitude that the detectors do not go off). The
final result is a mixture, the simple sum of all three cases (see Fig. 51).
As the reliability of the detectors increases, we get less interference.
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and how the arrows for each step can be “multiplied” by
successive shrinks and turns. We are thus familiar with all
the necessary rules for drawing and combining arrows (that
represent bits and pieces of events) to obtain a final arrow,
whose square is the probability of an observed physical
event.

It is natural to wonder how far we can push this process
of splitting events into simpler and simpler subevents. What
are the smallest possible bits and pieces of events? Is there

Percentage of Light

reaching D (a) (b)
4% 4%}
3% 3%
2% 2%
1% 1%
0% 0%

Distance SBD-SAD

(c) (d)

4% 4%
3% 3%
2% 2%

1% 1%
0% 0%

FIGURE 51. When there are no detectors at A or B, there is interference—
the amount of light varies from zero to 4% (a). When there are detectors at
A and B that are 100% reliable, there is no interference—the amount of light
reaching D is a constant 2% (b). When the detectors at A and B are not 100%
reliable (i.e., when sometimes there is nothing left in A or in B that can be
detected), there are now three possible final conditions—A and D go off, B
and D go off, and D goes off alone. The final curve is thus a mixture, made
up of contributions from each possible final condition. When the detectors at
A and B are less reliable, there is more interference present. Thus the detectors
in case (c) are less reliable than in case (d). The principle regarding interference
is: The probability of each of the different possible final conditions must be
independently calculated by adding arrows and squaring the length of the
final arrow; after that, the several probabilities are added together in the normal
fashion.
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a limited number of bits and pieces that can be com-
pounded to form all the phenomena that involve light and
electrons? Is there a limited number of “letters” in this
language of quantum electrodynamics that can be com-

bined to form “words” and “phrases” that describe nearly -

every phenomenon of Nature?

The answer is yes; the number is three. There are only
three basic actions needed to produce all of the phenomena
associated with light and electrons.

Before I tell you what these three basic actions are, I
should properly introduce you to the actors. The actors
are photons and electrons. The photons, particles of light,
have been discussed at length in the first two lectures. Elec-
trons were discovered in 1895 as particles: you could count
them; you could put one of them on an oil drop and meas-
ure its electric charge. It gradually became apparent that
the motion of these particles accounted for electricity in
wires.

Shortly after electrons were discovered it was thought
that atoms were like little solar systems, made up of a cen-
tral, heavy part (called the nucleus) and electrons, which
went around in “orbits,” much like the planets do when
they go around the sun. If you think that’s the way atoms
are, then you're back in 1910. In 1924 Louis De Broglie
found that there was a wavelike character associated with
electrons, and soon afterwards, C. J. Davisson and L. H.
Germer of the Bell Laboratories bombarded a nickel crystal
with electrons and showed that they, too, bounced off at
crazy angles (just like X-rays do), and that these angles
could be calculated from De Broglie’s formula for the wave-
length of an electron.

When we look at photons on a large scale—much larger
than the distance required for one stopwatch turn—the
phenomena that we see are very well approximated by rules
such as “light travels in straight lines,” because there are
enough paths around the path of minimum time to rein-
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force each other, and enough other paths to cancel each
other out. But when the space through which a photon
moves becomes too small (such as the tiny holes in the
screen), these rules fail—we discover that light doesn’t have
to go in straight lines, there are interferences created by
two holes, and so on. The same situation exists with elec-
trons: when seen on a large scale, they travel like particles,
on definite paths. But on a small scale, such as inside an
atom, the space is so small that there is no main path, no
“orbit”; there are all sorts of ways the electron could go,
each with an amplitude. The phenomenon of interference
becomes very important, and we have to sum the arrows
to predict where an electron is likely to be.

It’s rather interesting to note that electrons looked like
particles at first, and their wavish character was later dis-
covered. On the other hand, apart from Newton making
a mistake and thinking that light was “corpuscular,” light
looked like waves at first, and its characteristics as a particle
were discovered later. In fact, both objects behave some-
what like waves, and somewhat like particles. In order to
save ourselves from inventing new words such as “wavicles,”
we have chosen to call these objects “particles,” but we all
know that they obey these rules for drawing and combining
arrows that I have been explaining. It appears that all the
“particles” in Nature—quarks, gluons, neutrinos, and so
forth (which will be discussed in the next lecture)—behave
in this quantum mechanical way.

So now, I present to you the three basic actions, from
which all the phenomena of light and electrons arise.

—AcTION #1: A photon goes from place to place.
—AcTION #2: An electron goes from place to place.
—AcTION #3: An electron emits or absorbs a photon.

Each of these actions has an amplitude—an arrow—that
can be calculated according to certain rules. In a moment,
I'll tell you those rules, or laws, out of which we can make
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the whole world (aside from the nuclei, and gravitation, as
always!).

Now, the stage on which these actions take place is not
just space, it is space and time. Until now, I have disre-
garded problems concerning time, such as exactly when a
photon leaves the source and exactly when it arrives at the
detector. Although space is really three-dimensional, I'm
going to reduce it to one dimension on the graphs that 'm
going to draw: I will show a particular object’s location in
space on the horizontal axis, and the time on the vertical
axis.

The first event I am going to draw in space and time—
or space-time, as I might inadvertently call it—is a baseball
standing still (See Fig. 52). On Thursday morning, which

Time F1GURE 52. The stage on which all ac-
tions in the universe take place is space-
time. Usually consisting of four dimensions
- (three for space and one for time), space-
time will be represented here in two dimen-
sions—one for space, in the horizontal di-

T mension, and one for time, in the vertical.
Tt Each time we look at the baseball (such as
To at time Ts), it is in the same place. This

Yo Space produces a “band of baseball” going
straight up, as time goes on.

baseball

I will label as T, the baseball occupies a certain space, which
I will label as X,. A few moments later, at T, it occupies
the same space, because it’s standing still. A few moments
later, at T, the baseball is still at X,. So the diagram of a
baseball standing still is a vertical band, going straight up,
with baseball all over it inside.

What happens if we have a baseball drifting in the weight-
lessness of outer space, going straight toward a wall? Well,
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on Thursday morning (T)) it starts at X, (see Fig. 53), but
a little bit later, it’s not in the same place—it has drifted
over a little bit, to X;. As the baseball continues to drift, it
creates a slanted “band of baseball” on the diagram of
space-time. When the baseball hits the wall (which is stand-
ing still and is therefore a vertical band), it goes back the
other way, exactly where it came from in space (Xo), but
to a different point in time (Ts).

FIGURE 53. A baseball drifting di- Time
rectly toward a wall at right angles and T [
then bouncing back to its original loca- 1
tion (shown below the graph) is moving
in one dimension and appears as a
slanted “band of baseball.” At times T, [
and T, the baseball is getting closer to Tr
the wall; at T it hits the wall, and begins Tt
to go back.

rreg
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As for the time scale, it is most convenient to represent
the time not in seconds, but in much smaller units. Since
we will be dealing with photons and electrons, which move
very rapidly, I am going to have a 45° angle represent
something going the speed of light. For example, for a
particle moving at the speed of light from X, T, to X,Ty,
the horizontal distance between X, and X, is the same as
the vertical distance between T, and T, (see Fig. 54). The
factor by which time is stretched out (to make a 45° angle
represent a particle going the speed of light) is called ¢,
and you'll find ¢'s flying around everywhere in Einstein’s
formulas—they are the result of the unfortunate choice of
the second as the unit of time, rather than the time it takes
light to go one meter.

Now, let’s look at the first basic action in detail—a photon



88 Chapter 3

goes from place to place. I will draw this action as a wiggly
line from A to B for no good reason. I should be more
careful: I should say, a photon that is known to be at a
given place at a given time has a certain amplitude to get
to another place at another time. On my space-time graph
(see Fig. 55), the photon at point A—at X, and T,—has an
amplitude to appear at point B—X, and T,. The size of
this amplitude I will call P(A to B).

Time Ficure 54. The time scale |
will use in these graphs will show
Taf particles going at the speed of light
(T,hf t‘i(me to be travelling at a 45-degree an-
:ig:, g gle through space-time. The
go 30cm) amount of time it takes light to go
30 centimeters—from X, to X, or
T from X, to X;—is about one-bil-

lionth of a second.

Time
B
T
T+
X X2 Space

FIGURE 55. A photon (represented by a wavy line) has an amplitude to go
from a point A in space-time to another point, B. This amplitude, which I
will call P(A to B), is calculated from a formula that depends only on the
difference in location—(X, — X,;)—and the difference of the time—(T, —
T)). In fact, it’s a simple function that is the inverse of the difference of their
squares—an “interval,” 1, that can be written as (X, —X,;)? — (T, — T))>
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There is a formula for the size of this arrow, P(A to B).
It is one of the great laws of Nature, and it’s very simple.
It depends on the difference in distance and the difference
in time between the two points. These differences can be
expressed mathematically? as (X, — X,) and (T, — T)).

The major contribution to P(A to B) occurs at the con-
ventional speed of light—when (X,—X,) is equal to
(Ty—T,)—where one would expect it all to occur, but there
is also an amplitude for light to go faster (or slower) than
the conventional speed of light. You found out that in the
last lecture that light doesn’t go only in straight lines; now,
you find out that it doesn’t go only at the speed of light!

It may surprise you that there is an amplitude for a
photon to go at speeds faster or slower than the conven-
tional speed, ¢. The amplitudes for these possibilities are
very small compared to the contribution from speed ¢; in
fact, they cancel out when light travels over long distances.
However, when the distances are short—as in many of the

2In these lectures, I am plotting a point’s location in space in one
dimension, along the x-axis. To locate a point in three-dimensional space,
a “room” has to be set up, and the distance of the point from the flioor
and from each of two adjacent walls (all at right angles to each other) has
to be measured. These three measurements can be labeled X,, Y,, and
Z,. The actual distance from this point to a second point with measure-
ments X,, Y, Z; can be calculated using a “three-dimensional Pythagorean
Theorem”: the square of this actual distance is

Xe = X2 + (Yo = Y02 + (2o — Z)~
The excess of this over the time difference, squared—
X = X2 + (Yo — Y02 + (Zo = Z))* = (Tp = T0)?

—is sometimes called “the Interval,” or I, and is the combination that
Einstein’s theory of relativity says that P(A to B) must depend on. Most
of the contribution to the final arrow for P(A to B) is just where you
would expect it—where the difference in distance is equal to the difference
in time (that is, when I is zero). But in addition; there is a contribution
when I is not zero, that is inversely proportional to I: it points in the
direction of 3 o’clock when [ is more than zero (when light is going faster
than ¢), and points toward 9 o’clock when [ is less than zero. These later
contributions cancel out in many circumstances (see Fig. 56).



90 Chapter 3

diagrams I will be drawing—these other possibilities be-
come vitally important and must be considered.

So that’s the first basic action, the first basic law of
physics—a photon goes from point to point. That explains
all about optics; that’s the entire theory of light! Well, not
quite: I left out polarization (as always), and the interaction
of light with matter, which brings me to the second law.

1=0 (speedC)

—t

(slower than C) I<O I1>O{faster than C)

Ficure 56. When light goes at the speed C, the “interval,” 1, equals zero,
and there is a large contribution in the 12 o’clock direction. When I i greater
than zero, there is a small contribution in the three o’clock direction inversely
proportional to I; when I is less than zero, there is a similar contribution in
the nine o’clock direction. Thus light has an amplitude to go faster or slower
than speed C, but these amplitudes cancel out over long distances.

The second action fundamental to quantum electrody-
namics is: An electron goes from point A to point B in
space-time. (For the moment we will imagine this electron
as a simplified, fake electron, with no polarization—what
the physicists call a “spin-zero” electron. In reality, electrons
have a type of polarization, which doesn’t add anything to
the main ideas; it only complicates the formulas a little bit.)
The formula for the amplitude for this action, which I will
call E(A to B) also depends on (X;—X,) and (Ty—T)) (in
the same combination as described in note 2) as well as on
a number I will call “n,” a number that, once determined,
enables all our calculations to agree with experiment. (We
will see later how we determine n’s value.) It is a rather
complicated formula, and I'm sorry that I don’t know how
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to explain it in simple terms. However, you might be in-
terested to know that the formula for P(A to B)—a photon
going from place to place in space-time—is the same as that
for E(A to B)—an electron going from place to place—if n
is set to zero.?

The third basic action is: an electron emits or absorbs a
photon—it doesn’t make any difference which. I will call
this action a “junction,” or “coupling.” To distinguish elec-
trons from photons in my diagrams, I will draw each elec-
tron going through space-time as a straight line. Every cou-
pling, therefore, is a junction between two straight lines
and a wavy line (see Fig. 58). There is no complicated for-
mula for the amplitude of an electron to emit or absorb a
photon; it doesn’t depend on anything—it’s just a number!
This junction number I will call j—its value is about —0.1:
a shrink to about one-tenth, and half a turn.*

Well, that’s all there is to these basic actions—except for
some slight complications due to this polarization that we're

3 The formula for E(A to B) is complicated, but there is an interesting
way to explain what it amounts to. E(A to B) can be represented as a giant
sum of a lot of different ways an electron could go from point A to point
B in space-time (see Fig. 57): the electron could take a “one-hop flight,”
going directly from A to B; it could take a “two-hop flight,” stopping at
an intermediate point C; it could take a “three-hop flight,” stopping at
points D and E, and so on. In such an analysis, the amplitude for each
“hop”—from one point F to another point G—is P(F to G), the same as
the amplitude for a photon to go from a point F to a point G. The
amplitude for each “stop” is represented by n?, n being the same number
1 mentioned before which we used to make our calculations come out
right.

gThe formula for E(A to B) is thus a series of terms: P(A to B) [the “one-
hop” flight] + P(A to C)*n2P(C to B) [“two-hop” flights, stopping at C]
+ P(A to D)*n2*P(D to E) * n2+xP(E to B) [“three-hop” flights, stopping at
D and E] + ... for all possible intermediate points C, D, E, and so on.

Note that when 7 increases, the nondirect paths make a greater con-
tribution to the final arrow. When = is zero (as for the photon), all terms
with an » drop out (because they are also equal to zero), leaving only the
first term, which is P(A to B). Thus E(A to B) and P(A to B) are closely
related.

+ This number, the amplitude to emit or absorb a photon, is sometimes
called the “charge” of a particle.



92 Chapter 3

Time Time o
’\
1] ~
I’ \\\
B ! ,-—;’
C —I””— /’/’B
[ {
:, ’l S E \\‘
i .
e
P
‘/
A A
Space Space

FIGURE 57. An electron has an amplitude to go from point to point in
space-time, which I will call “E(A to B).” Although I will represent E(A to
B) as a straight line between two points (a), we can think of it as the sum of
many amplitudes (b)—among them, the amplitude for the electron to change
direction at points C or C' on a “two-hop” path, and the amplitude to change
direction at D and E on a “three-hop” path—in addition to the direct path
from A to B. The number of times an electron can change direction is anywhere
from zero to infinity, and the points at which the electron can change direction
on its way from A to B in space-time are infinite. All are included in E(A
to B).

Time FIGURE 58. An electron, depicted by a
straight line, has a certain amplitude to
emit or absorb a photon, shown by a wavy
line. Since the amplitude to emit or absorb
is the same, I will call either case a “cou-
pling.” The amplitude for a coupling is a
number that I will call j; it is about —0.1
for the electron (this number is sometimes
called the “charge”).

Space

always leaving out. Our next job is to put these three actions
together to represent circumstances that are somewhat
more complicated.

For our first example, let’s calculate the probability that
two electrons, at points 1 and 2 in space-time, end up at
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points 3 and 4 (see Fig. 59). This event can happen in
several ways. The first way is that the electron at 1 goes to
3—computed by putting 1 and 3 into the formula E(A to
B), which I will write as E(1 to 3)—and the electron at 2
goes to 4—computed by E(2 to 4). These are two “sube-
vents” happening concomitantly, so the two arrows are mul-
tiplied to produce an arrow for this first way the event could
happen. Therefore we write the formula for the “first-way
arrow” as E(1 to 3) * E(2 to 4).

Time Time

1 2 1 2

Space Space

FIGURE 59. To calculate the probability that electrons at points 1 and 2
in space-time end up at points 3 and 4, we calculate the “first way” arrow
for 1 going to 3 and 2 going to 4 with the formula for E(A to B); then we
calculate the “second way” arrow for 1 going to 4 and 2 going to 3 (a “cross-
over”). Finally, we add the “first way” and “second way” arrows to arrive at
a good approximation of the final arrow. (This is true for the fake, simplified
“spin zero” electron. Had we included the polarization of the electron, we
would have subtracted—rather than added—the two arrows.)

Another way this event could happen is that the electron
at 1 goes to 4 and the electron at 2 goes to 3—again, two
concomitant subevents. The “second-way arrow” is E(1 to
4) * E(2 to 3), and we add it to the “first-way” arrow.?

This is a good approximation for the amplitude of this
event. To make a more exact calculation that will agree
more closely with the results of experiment, we must con-

5 Had I included the effects of the polarization of the electron, the

“second-way” arrow would have been “subtracted”—turned 180° and
added. (More on this comes later in this lecture.)
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sider other ways this event could happen. For instance, for
each of the two main ways the event can happen, one elec-
tron could go charging off to some new and wonderful
place and emit a photon (see Fig. 60). Meanwhile, the other
electron could go to some other place and absorb the pho-

Time Time

1 2

Space Space

FIGURE 60. Two “other ways” the event in Fig. 59 could happen are: a
photon is emitted at 5 and absorbed at 6 for each case. The final conditions
of these alternatives are the same as for the other cases—two electrons went
in, and two electrons came out—and these results are indistinguishable from
the other alternatives. Therefore the arrows for these “other ways” must be
added to the arrows in Fig. 59 to arrive at a better approximation of the final
arrow for the event.

ton. Calculating the amplitude for the first of these new
ways involves multiplying the amplitudes for: an electron
goes from 1 to the new and wonderful place, 5 (where it
emits a photon), and then goes from 5 to 3; the other
electron goes from 2 to the other place, 6 (where it absorbs
the photon), and then goes from 6 to 4. We must remember
to include the amplitude that the photon goes from 5 to
6. I'm going to write the amplitude for this way the event
could happen in a high-class mathematical fashion, and you
can follow along: E(1 to 5)#%*E(5 to 3) * E(2 to 6)**E(6 to
4) * P(5 to 6)—a lot of shrinking and turning. (I'll let you
figure out the notation for the other case, where the elec-
tron at 1 ends up at 4, and the electron at 2 ends up at 3.)°

® The final conditions of the experiment for these more complicated
ways are the same as for the simpler ways—electrons start at points 1 and
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But wait: positions 5 and 6 could be anywhere in space
and time—yes, anywhere—and the arrows for all of those
positions have to be calculated and added together. You
see it’s getting to be a lot of work. Not that the rules are
so difficult—it’s like playing checkers: the rules are simple,
but you use them over and over. So our difficulty in cal-
culating comes from having to pile so many arrows to-
gether. That's why it takes four years of graduate work for
the students to learn how to do this efficiently—and we’re
looking at an easy problem! (When the problems get too
difficult, we just put them on the computer!)

I would like to point out something about photons being
emitted and absorbed: if point 6 is later than point 5, we
might say that the photon was emitted at 5 and absorbed
at 6 (see Fig. 61). If 6 is earlier than 5, we might prefer to
say the photon was emitted at 6 and absorbed at 5, but we
could just as well say that the photon is going backwards
in time! However, we don’t have to worry about which way
in space-time the photon went; it’s all included in the for-
mula for P(5 to 6), and we say a photon was “exchanged.”
Isn’t it beautiful how simple Nature is!”

Now, in addition to the photon that is exchanged between
5 and 6, another photon could be exchanged—between two
points, 7 and 8 (see Fig. 62). I'm too tired to write down
all the basic actions whose arrows have to be multiplied,
but—as you may have noticed—every straight line gets an
E(A to B), every wavy line gets a P(A to B), and every
coupling gets a j. Thus, there are six E(A to B)’s, two P(A
to B)’s, and four j’s—for every possible 5, 6, 7, and 8! That
makes billions of tiny arrows that have to be multiplied and
then added together!

2 and end up at points 3 and 4—so we cannot distinguish between these
alternatives and the first two. Therefore we must add the arrows for these
two ways to the two ways just previously considered.

7 Such an exchanged photon that never really appears in the initial or
final conditions of the experiment is sometimes called a “virtual photon.”
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Time

(a) (b) (c)

Space

FiGURe 61. Since light has an amplitude to go faster or slower than the
conventional speed of light, the photons in all three examples above can be
thought of as being emitted from point 5 and absorbed at point 6, even though
the photon in example (b) is emitted at the same time that it is absorbed, and
the photon in (c) is emitted later than it is absorbed—a situation in which you
might have preferred to say that it was emitted by 6 and absorbed by 5; otherwise,
the photon would have to go backwards in time! As far as calculating (and
Nature) is concerned, it’s all the same (and it’s all possible), so we simply say
a photon is “exchanged” and plug the locations in space-time into the formula
for P(A to B).

Time FIGURE 62. Yet another way the event in
Fig. 59 could happen is that two photons could
be exchanged. Many diagrams of this way are
possible (as we will see in more detail later);
one of them is shown here. The arrow for this
way tnvolves all possible intermediate points
5,6, 7, and 8, and is calculated with great
difficulty. Because j is less than 0.1, the length
of this arrow is generally less than 1 part in
10,000 (because there are four couplings in-
volved) compared to the “first way” and “sec-
ond way” arrows in Fig. 59 that contained
no j’s.

It appears that calculating the amplitude for this simple
event is a hopeless business, but when you're a graduate
student you've got to get your degree, so you keep on going.

But there is hope for success. It is found in that magic
number, j. The first two ways the event could happen had
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no j’s in the calculation; the next way had j#j, and the last
way we looked at had j¥j%j*/. Since j#j is less than 0.01, it
means the length of the arrow for this way is generally less
than 1% of the arrow for the first two ways; an arrow with
J*%7%j in it is less than 1% of 1%—one part in 10,000—
compared to the arrows that have noj. If you've got enough
time on the computer, you can work out the possibilities
that involve j%—one part in a million—and match the ac-
curacy of the experiments. That’s how the calculations of
simple events are made. That’s the way it works; that’s all
there is to it!

Let’s look at another event now. We begin with a photon
and an electron, and we end with a photon and an electron.
One way this event can happen is: a photon is absorbed by
an electron, the electron continues on a bit, and a new
photon comes out. This process is called the scattering of
light. When we make the diagrams and calculations for
scattering, we must include some peculiar possibilities (see
Fig. 63). For example, the electron could emit a photon
before absorbing one (b). Even more strange is the possibility

Time

(a) (b) (c)

Space

Fi1GURE 63. The scattering of light involves a photon going into an electron
and a photon coming out—not necessarily in that order, as seen in example
(b). The example in (c) shows a strange but real possibility: the electron emits
a photon, rushes backwards in time to absorb a photon, and then continues
forwards in time.
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(c) that the electron emits a photon, then travels backwards
in time to absorb a photon, and then proceeds forwards in
time again. The path of such a “backwards-moving” elec-
tron can be so long as to appear real in an actual physical
experiment in the laboratory. Its behavior is included in
these diagrams and the equation for E(A to B).

The backwards-moving electron when viewed with time
moving forwards appears the same as an ordinary electron,
except it’s attracted to normal electrons—we say it has a
“positive charge.” (Had I included the effects of polariza-
tion, it would be apparent why the sign of j for the back-
wards-moving electron appears reversed, making the
charge appear positive.) For this reason it's called a “pos-
itron.” The positron is a sister particle to the electron, and
is an example of an “anti-particle.”®

This phenomenon is general. Every particle in Nature
has an amplitude to move backwards in time, and therefore
has an anti-particle. When a particle and its anti-particle
collide, they annihilate each other and form other particles.
(For positrons and electrons annihilating, it is usually a pho-
ton or two.) And what about photons? Photons look exactly
the same in all respects when they travel backwards in
time—as we saw earlier—so they are their own anti-parti-
cles. You see how clever we are at making an exception
part of the rule!

I'd like to show you what this backwards-moving electron
looks like to us, as we move forwards in time. With a se-
quence of parallel lines to aid the eye, I'm going to divide
the diagram into blocks of time, T, to T, (see F ig. 64). We
start at T, with an electron moving toward a photon, which
is moving in the opposite direction. All of a sudden—at
‘Ty—the photon turns into two particles, a positron and an

® Dirac proposed the reality of “anti-electrons” in 1931; in the following
year, Carl Anderson found them experimentally and called them “posi-

trons.” Today, positrons can be easily made (for example, by making two
photons collide with each other) and kept for weeks in a magnetic field.
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FiGURE 64. Looking at example (c) Time

from Fig. 63 going only forwards in time
(as we are forced to do in the laboratory),  To T 7
from Tyto T; we see the electron and pho- T, 2 A

X 8 2 /
ton moving toward each other. All of a T T 7
sudden, at T; the photon “disintegrates”  ® S—+~

; T AN

and two particles appear—an electron and 4 ] ~J
a new kind of particle (called a “positron”) T / ?7
which is an electron going backwards in i ?
time and which appears to move toward the ¢ Space

original electron (itself!). At Ts the posi-
tron annihilates with the original electron
to produce a new photon. Meanwhile, the
electron created by the earlier photon con-
tinues forwards in space-time. This se-
quence of events has been observed in the
laboratory, and is included automatically
in the formula for E(A to B) without any
modification.

electron. The positron doesn’t last very long: it soon runs
into the electron—at T, where they annihilate and produce
a new photon. Meanwhile, the electron created earlier by
the original photon continues on through space-time.

The next thing I would like to talk about is an electron
in an atom. In order to understand the behavior of elec-
trons in atoms, we have to add one other feature, the nu-
cleus—the heavy part at the center of an atom that contains
at least one proton (a proton is a “Pandora’s Box” that we
will open in the next lecture). I will not give you the correct
laws for the behavior of the nucleus in this lecture; they
are very complicated. But in this case, where the nucleus
is quiet, we can approximate its behavior as that of a particle
with an amplitude to go from one place to another in space-
time according to the formula for E(A to B), but with a
much higher number for n. Since the nucleus is so heavy
compared to an electron, we can deal with it approximately
here by saying that it stays in essentially one place as it
moves through time.
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The simplest atom, called hydrogen, is a proton and an
electron. By exchanging photons, the proton keeps the
electron nearby, dancing around it (see Fig. 65).° Atoms
that contain more than one proton and the corresponding
number of electrons also scatter light (atoms in the air scat-
ter light from the sun and make the sky blue), but the
diagrams for these atoms would involve so many straight
and wiggly lines that they’d be a complete mess!

Time FIGURE 65. An electron is kept within
profon  electron a certain range of distance to the nucleus
of an atom by photon exchanges with a
proton (a “Pandora’s Box” that we will
look into in Chapter 4). For now, the
proton can be approximated as a station-
ary particle. Shown here is a hydrogen
atom, consisting of a proton and an elec-
tron exchanging photons.

Space

Time FIGURE 66. The scattering of light by
proton  electron an electron in an atom is the phenomenon
that accounts for partial reflection in a
layer of glass. The diagram shows one
way this event can happen in a hydrogen
atom.

scattered
photon

incoming
photon

Space

Now, I'd like to show you a diagram of an electron in a
hydrogen atom scattering light (see Fig. 66). As the electron
and the nucleus are exchanging photons, a photon comes

® The amplitude for the photon exchange is (—j) * P(A—B) * j—two

couplings and the amplitude for a photon to go from place to place. The
amplitude for a proton to have a coupling with a photon is —j.
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from outside the atom, hits the electron and is absorbed;
then a new photon is emitted. (As usual, there are other
possibilities to be considered, such as the new photon is
emitted before the old photon is absorbed.) The total am-
plitude for all the ways an electron can scatter a photon
can be summed up as a single arrow, a certain amount of
shrink and turn. (Later, we will call this arrow “S.”) This
amount depends on the nucleus and the arrangement of
the electrons in the atoms, and is different for different
materials.

Now, let’s look again at the partial reflection of light by
a layer of glass. How does it work? I talked about light
being reflected from the front surface and the back surface.
This idea of surfaces was a simplification I made in order
to keep things easy at the beginning. Light is really not
affected by surfaces. An incoming photon is scattered by
the electrons in the atoms inside the glass, and a new photon
comes back up to the detector. It’s interesting that instead
of adding up all the billions of tiny arrows that represent
the amplitude for all the electrons inside the glass to scatter
an incoming photon, we can add just two arrows—for the
“front surface” and “back surface” reflections—and come
out with the same answer. Let’s see why.

To discuss reflection by a layer from our new point of
view we must take into account the dimension of time.
Previously, when we talked about light from a monochro-
matic source, we used an imaginary stopwatch that times
a photon as it moves—the hand of this stopwatch deter-
mined the angle of the amplitude for a given path. In the
formula for P(A to B) (the amplitude for a photon to go
from point to point) there is no mention of any turning.
What happened to the stopwatch? What happened to the
turning?

In the first lecture I simply said that the light source was
monochromatic. To correctly analyze partial reflection by
a layer, we need to know more about a monochromatic
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light source. The amplitude for a photon to be emitted by
a source varies, in general, with the time: as time goes on,
the angle of the amplitude for a photon to be emitted by
a source changes. A source of white light—many colors
mixed together—emits photons in a chaotic manner: the
angle of the amplitude changes abruptly and irregularly in
fits and starts. But when we construct a monochromatic
source, we are making a device that has been carefully
arranged so that the amplitude for a photon to be emitted
at a certain time is easily calculated: it changes its angle at
a constant speed, like a stopwatch hand. (Actually, this arrow
turns at the same speed as the imaginary stopwatch we used
before, but in the opposite direction—see Fig. 67.)

Time FIGURE 67. A mono-
chromatic source is a beau-
tifully constructed apparatus
that emits a photon in a very
predictable way: the ampli-
tude for a photon to be emit-
ted at a certain time rotates
counterclockwise as  time
moves forwards. Thus the
amplitude for the source to
emit a photon at a later time
has a lesser angle. It will be
assumed that all the light
emitted from the source goes
at speed c (since the distances
are large).

7 F

amplitudes

PSE

w

Space
(monochromotic)
source

The rate of turning depends on the color of the light: the
amplitude for a blue source turns nearly twice as fast as
that for a red source, just as before. So the timer we used
for the “imaginary stopwatch” was the monochromatic
source:—in reality, the angle of the amplitude for a given
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path depends on what time the photon is emitted from the
source.

Once a photon has been emitted, there is no further
turning of the arrow as a photon goes from one point to
another in space-time. Although the formula P(A to B) says
that there is an amplitude for light to go from one place
to another at speeds other than ¢, the distance from the
source to the detector in our experiment is relatively large
(compared to an atom), so the only surviving contribution
to P(A to B)’s length that counts comes from speed c.

To begin our new calculation of partial reflection, let’s
start by defining the event completely: the detector at A
makes a click at a certain time, T. Then, let’s divide the layer
of glass into a number of very thin sections—let’s say, six

(see Fig. 68a). From the analysis we did in the second lecture

in which we found that nearly all the light is reflected from
the middle of a mirror, we know that although each elec-
tron is scattering light in all directions, when all the arrows
for each section are added, the only place where they don’t
cancel out is where light goes straight down to the middle
of the section and scatters in one of two directions—straight
back up to the detector or straight down through the glass.
The final arrow for the event will thus be determined by
adding the six arrows representing the scattering of light
from the six middle points—X, to X¢—arranged vertically
throughout the glass.

All right, let’s calculate the arrow for each of these ways
the light could go—uvia the six points, X, to Xg. There are
four steps involved in each way (which means four arrows
will be multiplied):

—STEP #1: A photon is emitted by the source at a certain
time.

—STEP #2: The photon goes from the source to one of
the points in the glass.
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FIGURE 68. We begin our new analysis of partial reflection by dividing a
layer of glass into a number of sections (here, six), and looking at the various
ways the light could go from the source to the glass and back up to the detector
at A. The only important points in the glass (where the amplitudes for scattering
light don’t cancel out) are located at the middle of each section; X; to X, are
shown in (a) at their physical location inside the glass, and in ( b) as vertical
lines on the space-time graph. The event whose probability we are calculating
is: the detector at A makes a click at a certain time, T. Thus the event appears
as a point (where A and T intersect) on the space-time graph.

For each of the ways the event can happen, four steps must occur in succes-
sion, so four arrows have to be multiplied. The steps are shown in (b): 1) a
photon leaves the source at a certain time (the arrows at T, to Ty represent
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the amplitude to do that for six different times); 2) the photon goes from the
source to one of the points in the glass (the six alternatives are depicted as
wavy lines going up to the right); 3) an electron at one of the poinis scatters
a photon (shown as short, wide vertical lines); and 4) a new photon goes to
the detector and arrives at the appointed time, T (shown as a wavy line going
up to the left). The amplitudes for steps 2, 3, and 4 are the same for the six
alternatives, while the amplitudes for step 1 are different: compared to a photon
scattered by an electron at the top of the glass (at X,), a photon scattered deeper
in the glass—at X,, for example—must leave the source earlier, at T,.
When we are finished multiplying the four arrows for each alternative, the
resulting arrows, shown in (c), are shorter than those in (b); each has been
turned 90° (in accordance with the scattering characteristics of electrons in
glass). When these six arrows are added together in order, they form an arc;
the final arrow is its chord. The same final arrow can be obtained by drawing
two radius arrows, shown in (d), and “subtracting” them (turning the “front
surface” arrow around in the opposite direction and adding it to the “back
surface” arrow). This shortcut was used as a simplification in the first lecture.

—STEP #3: The photon is scattered by an electron at that
point.
—STEP #4: A new photon makes its way up to the detector.

We will say the amplitudes for steps 2 and 4 (a photon goes
to or from a point in the glass) involve no shrinking or turn-
ing, because we can assume that none of the light gets
lost or spread out between the source and the glass or
between the glass and the detector. For step 3 (an electron
scatters a photon) the amplitude for scattering is a con-
stant—a shrink and a turn by a certain amount, S—and is
the same everywhere in the glass. (This amount is, as I
mentioned before, different for different materials. For
glass, the turn of S is 90°.) Therefore, of the four arrows
to be multiplied, only the arrow for step 1—the amplitude
for a photon to be emitted from the source at a certain
time—is different from one alternative to the next.

The time at which a photon would have to have been
emitted to reach the detector A at time T (see Fig. 68b) is
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not the same for the six different paths. A photon scatterd
by X, would have to have been emitted slightly earlier than
a photon scattered by X, because that path is longer. Thus
the arrow at T, is turned slightly more than the arrow at
T, because the amplitude for a monochromatic source to
emit a photon at a certain time rotates counterclockwise as
time goes on. The same goes for each arrow down to Te:
all six arrows have the same length, but they are turned at
different angles—that is, they are pointing in different di-
rections—because they represent a photon emitted by the
source at different times.

After shrinking the arrow at T, by the amounts pre-
scribed in steps 2, 3 and 4—and turning it the 90° pre-
scribed in step 3—we end up with arrow 1 (see Fig. 68c).
The same goes for the arrows 2 through 6. Thus arrows 1
through 6 are all the same (shortened) length, and are
turned relative to each other in exactly the same amount
as the arrows at T, through T,.

Next, we add arrows 1 to 6. Connecting the arrows in
order from 1 to 6, we get something like an arc, or part of
a circle. The final arrow forms the chord of this arc. The
length of the final arrow increases with the thickness of the
glass—thicker glass means more sections, more arrows, and
therefore more of a circle—until half a circle is reached
(and the final arrow is its diameter). Then the length of
the final arrow decreases as the thickness of the glass con-
tinues to increase, and the circle becomes complete to begin
a new cycle. The square of this length is the probability of
the event, and it varies in the cycle of zero to 16%.

There is a mathematical trick we can use to get the same
answer (see Fig. 68d): If we draw arrows from the center
of the “circle” to the tail of arrow 1 and to the head of
arrow 6, we get two radii. If the radius arrow from the
center to arrow 1 is turned 180° (“subtracted”), then it can
be combined with the other radius arrow to give us the
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same final arrow! That’s what I was doing in the first lec-
ture: these two radii are the two arrows I said represented
the “front surface” and “back surface” reflections. They
each have the famous length of 0.2.1°

Thus we can get the correct answer for the probability
of partial reflection by imagining (falsely) that all reflection
comes from only the front and back surfaces. In this in-
tuitively easy analysis, the “front surface” and “back sur-
face” arrows are mathematical constructions that give us
the right answer, whereas the analysis we just did—with
the space-time drawing and the arrows forming part of a
circle—is a more accurate representation of what is really
going on: partial reflection is the scattering of light by elec-
trons inside the glass.

Now, what about the light that goes through the layer of
glass? First, there is an amplitude that the photon goes
straight through the glass without hitting any electrons (see
Fig. 69a). This is the most important arrow in terms of
length. But there are six other ways a photon could reach
the detector below the glass: a photon could hit X, and
scatter the new photon down to B; a photon could hit X,
and scatter the new photon down to B, and so on. These
six arrows all have the same length as the arrows that
formed the “circle” in the previous example: their length .

10 The radius of the arc evidently depends on the length of the arrow
for each section, which is ultimately determined by the amplitude S that
an electron in an atom of glass scatters a photon. This radius can be
calculated using the formulas for the three basic actions for the multitude
of photon exchanges involved and summing up the amplitudes. It is a
very difficult problem, but the radius has been calculated for relatively
simple substances with considerable success, and the variation of the radius
from substance to substance is fairly well understood using these ideas of
quantum electrodynamics. It must be said, however, that no direct cal-
culation from first principles for a substance as complex as glass has ever
actually been done. In such cases, the radius is determined by experiment.
For glass, it has been determined from experiment that the radius is
approximately 0.2 (when the light shines directly onto the glass at right
angles).
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F1GURE 69. The largest amplitude for light that is transmitted through the
layer of glass to the detector at B comes from the part that represents no
scattering by the electrons inside the glass, shown in (a). To this arrow we add
six small arrows that represent the scattering of light from each of the sections,
represented by points X, to X,. These six arrows have the same length (because
the amplitude for scattering is the same anywhere in the glass) and point in
the same direction (because the length of each path from the source through
any point X to B is the same). After adding the small arrows to the large one,
we find the final arrow for the transmission of light through a layer of glass
ts turned more than what we would have expected if the light came only directly.
For this reason it appears to us that light takes longer to go through glass
than it takes to go through a vacuum or through air. The amount of turning by
the final arrow caused by the electrons in a material is called the “index of
refraction.”

For transparent materials, the little arrows are at right angles to the main
arrow (they actually curve around when we include double and triple scat-
terings, keeping the final arrow from being longer than the main arrow: Nature
always has it worked out so we never get more light out than we put in). For
materials that are partially opaque—that absorb light to an extent—the little
arrows point toward the main arrow, resulting in a final arrow that is sig-
nificantly shorter than expected, shown in (b). This shorter final arrow rep-
resents a reduced probability of a photon being transmitted through partially
opaque material.

e e n
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is based on that same amplitude of an electron in the glass
to scatter a photon, S. But this time, all six arrows point in
the same direction, because the length of all six paths that
involve one scattering is the same. The direction of these
minor arrows is at right angles to the main arrow for trans-
parent substances such as glass. When the minor arrows
are added to the main arrow, they result in a final arrow
that has the same length as the main arrow, but is turned
in a slightly different direction. The thicker the glass, the
more minor arrows there are, and the more the final arrow
is turned. That’s how a focusing lens really works: the final
arrows for all the paths can be made to point in the same
direction by inserting extra thicknesses of glass into the
shorter paths.

The same effect would appear if photons went slower
through glass than through air: there would be extra turn-
ing of the final arrow. That’s why I said earlier that light
appears to go slower through glass (or water) than through
air. In reality, the “slowing” of the light is extra turning
caused by the atoms in the glass (or water) scattering the
light. The degree to which there is extra turning of the
final arrow as light goes through a given material is called
its “index of refraction.””!

For substances that absorb light, the minor arrows are at

11 Each of the arrows for reflection by a section (that form a “circle”)
has the same length as each of the arrows that make the final arrow from
transmission appear to turn more. Thus there is 2 relationship between
the partial reflection of a material and its index of refraction.

It appears that the final arrow has become longer than 1, which means
that more light comes out through the glass than went into it! It looks
that way because I disregarded the amplitudes for a photon to go down
to one section, 2 new photon to scatter up to another section, and then a
third photon to scatter back down through the glass—and other, more
complicated possibilities—which result in the little arrows curving around
and keeping the length of the final arrow between 0.92 and 1 (so the total
probability of light being reflected or transmitted by the layer of glass is
always 100%).
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less than right angles to the main arrow (see Fig. 69b). This
causes the final arrow to be shorter than the main arrow,
indicating that the probability of a photon going through
partially opaque glass is smaller than through transparent
glass.

Thus it is that all the phenomena and the arbitrary num-
bers mentioned in the first two lectures—such as partial
reflection with an amplitude of 0.2, the “slowing” of light
in water and glass, and so on—are explained in more detail
by just the three basic actions—three actions that do, in
fact, explain nearly everything else, too.

It is hard to believe that nearly all the vast apparent
variety in Nature results from the monotony of repeatedly
combining just these three basic actions. But it does. I'll
outline a bit of how some of this variety arises.

We may start with photons (see Fig. 70). What is the
probability that two photons, at points 1 and 2 in space-
time, go to two detectors, at points 3 and 4? There are two
main ways this event could happen and each depends on
two things happening concomitantly: the photons could go
directly—P(1 to 3)*P(2 to 4)—or they could “cross over’—
P(1 to 4)*P(2 to 3). The resulting amplitudes for these two
possibilities are added, and there is interference (as we saw
in the second lecture), making the final arrow vary in
length, depending on the relative location of the points in
space-time.

What if we make 3 and 4 the same point in space-time
(see Fig. 71)? Let’s say both photons end up at point 3, and
see how this affects the probability of the event. Now we
have P(1 to 3)*P(2 to 3) and P(2 to 8)*P(1 to 3), which result
in two identical arrows. When added, their sum is twice the
length of either one, and produces a final arrow whose
square is four times the square of either arrow alone. Be-
cause the two arrows are identical, they are always “lined
up.” In other words, the interference doesn't fluctuate ac-

o W a -

Electrons and Their Interactions 111

Time Time

Space Space

] : -time have an amplitude
FIGURE 70. Photons at points I and 2 in space-time plit
to arrive at points 3 and 4 in space-time that is approximated by considering
two main ways the event could happen: P(I to 3 )'* P2 to 4) and E( 1t4)
* P(2 to 3), shown above. Depending on the relative locations of points 1, 2,
3, and 4, there are varying degrees of interference.

Time

P(1-3)% P(2-3)
P(2-3)%P(1-3)

1 2

Space

. When points 4 and 3 are made to converge,.the {wo arrows—
E’; 1G I;OR; ) 7*1p(2 to 3) fz)nd P(2to3)*P(I to 3 )—a:e identical in length af;i
direction. When they are added they alwqys “line up” and form an arrow Tthz
twice the length of either arrow alone, with a square four times as large. T u;
photons tend to go to the same point in space-time. Tfus effect is magnifie
even more by more photons. This is the basis of a laser’s operation.

cording to the relative separation between points 1 and 2;
it is always positive. If we didn’t think about the always
positive interference of the two photons, we should have
thought that we would get twice the probability, onaverage.
Instead, we get four times the probability all the time. When
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many photons are involved, this more-than-expected prob-
ability increases even further.

This results in a number of practical effects. We can say
that photons tend to get into the same condition, or “state”
(the way the amplitude to find one varies in space). The
chance that an atom emits a photon is enhanced if some
photons (in a state that the atom can emit into) are already
present. This phenomenon of “stimulated emission” was
discovered by Einstein when he launched the quantum the-
ory proposing the photon model of light. Lasers work on
the basis of this phenomenon.

Time FIGURE 72. If two electrons (with the
same polarization) try to go to the same
point in space-time, the interference is al-
ways negative because of the effects of po-
larization: the two identical arrows—E(1
to 3) * E(2 to 3) and E(2 to 3) * E(I to
3)—are subtracted to make a final arrow

/ > of no length. The aversion of two electrons

to occupy the same place in space-time is

called the “Exclusion Principle,” and ac-
counts for the great variety of atoms in the
universe.

Space

5“‘3’*5‘2‘3%-:(2-3)*5(1-3)

If we made the same comparison with our fake, spin-
zero electrons, the same thing would happen. But in the
real world, where electrons are polarized, something very
different happens: the two arrows, E(1 to 8) * E(2 to 4) and
E(1 to 4) * E(2 to 3), are subtracted—one of them is turned
180° before they are added. When points 3 and 4 are the
same, the two arrows have the same length and direction
and thus cancel out when they are subtracted (see Fig. 72).
That means electrons, unlike photons, do not like to go to
the same place; they avoid each other like the plague—no
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two electrons with the same polarization can be at the same
point in space-time—it’s called the “exclusion principle.”

This exclusion principle turns out to be the origin of the
great variety of chemical properties of the atoms. One pro-
ton exchanging photons with one electron dancing around
it is called a hydrogen atom. Two protons in the same
nucleus exchanging photons with two electrons (polarized
in opposite directions) is called a helium atom. You see, the
chemists have a complicated way of counting: instead of
saying “one, two, three, four, five protons,” they say, “hy-
drogen, helium, lithium, beryllium, boron.”

There are only two states of polarization available to elec-
trons, so in an atom with three protons in the nucleus
exchanging photons with three electrons—a condition
called a lithium atom—the third electron is farther away
from the nucleus than the other two (which have used up
the nearest available space), and exchanges fewer photons.
This causes the electron to easily break away from its own
nucleus under the influence of photons from other atoms.
A large number of such atoms close together easily lose
their individual third electrons to form a sea of electrons
swimming around from atom to atom. This sea of electrons
reacts to any small electrical force (photons), generating a
current of electrons—I am describing lithium metal con-
ducting electricity. Hydrogen and helium atoms do not lose
their electrons to other atoms. They are “insulators.”

All the atoms—more than one hundred different kinds—
are made up of a certain number of protons exchanging
photons with the same number of electrons. The patterns
in which they gather are complicated and offer an enor-
mous variety of properties: some are metals, some are in-
sulators, some are gases, others are crystals; there are soft
things, hard things, colored things, and transparent
things—a terrific cornucopia of variety and excitement that
comes from the exclusion principle and the repetition again
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and again and again of the three very simple actions P(A
to B), E(A to B), and j. (If the electrons in the world were
unpolarized, all the atoms would have very similar prop-
erties: the electrons would all cluster together, close to the
nucleus of their own atom, and would not be easily attracted
to other atoms to make chemical reactions.)

You might wonder how such simple actions could pro-
duce such a complex world. It’s because phenomena we
see in the world are the result of an enormous intertwining
of tremendous numbers of photon exchanges and inter-
ferences. Knowing the three fundamental actions is only a
very small beginning toward analyzing any real situation,
where there is such a multitude of photon exchanges going
on that it is impossible to calculate—experience has to be
gained as to which possibilities are more important. Thus
we invent such ideas as “index of refraction” or “compres-
sibility” or “valence” to help us calculate in an approximate
way when there’s an enormous amount of detail going on
underneath. It’s analogous to knowing the rules of chess—
which are fundamental and simple—compared to being
able to play chess well, which involves understanding the
character of each position and the nature of various situ-
ations—which is much more advanced and difficult.

The branches of physics that deal with questions such as
why iron (with 26 protons) is magnetic, while copper (with
29) is not, or why one gas is transparent and another one
is not, are called “solid-state physics,” or “liquid-state phys-
ics,” or “honest physics.” The branch of physics that found
these three simple little actions (the easiest part) is called
“fundamental physics"—we stole that name in order to
make the other physicists feel uncomfortable! The most
interesting problems today—and certainly the most prac-
tical problems—are obviously in solid-state physics. But
someone said there is nothing so practical as a good theory,
and the theory of quantum electrodynamics is definitely a
good theory!
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Finally, T would like to return to that number
1.00115965221, the number that I told you about in the
first lecture that has been measured and calculated so care-
fully. The number represents the response of an electron
to an external magnetic field—something called the “mag-
netic moment.” When Dirac first worked out the rules to
calculate this number, he used the formula for E(A to B)
and got a very simple answer, which we will consider in
our units as 1. The diagram for this first approximation of
the magnetic moment of an electron is very simple—an
electron goes from place to place in space-time and couples
with a photon from a magnet (see Fig. 73).

Time

{photon from magnet)

Space

FIGURE 73. The diagram for Dirac’s calculation of the magnetic moment
of an electron is very simple. The value represented by this diagram will be
called 1.

After some years it was discovered that this value was
not exactly 1, but slightly more—something like 1.00116.
This correction was worked out for the first time in 1948
by Schwinger as j*j divided by 2 pi, and was due to an
alternative way the electron can go from place to place:
instead of going directly from one point to another, the
electron goes along for a while and suddenly emits a pho-
ton; then (horrors!) it absorbs its own photon (see Fig. 74).
Perhaps there’s something “immoral” about that, but the
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electron does it! To calculate the arrow for this alternative,
we have to make an arrow for every place in space-time
that the photon can be emitted and every place it can be
absorbed. Thus there will be two extra E(A to B)’s, a P(A
to B) and two extra j’s, all multiplied together. Students
learn how to do this simple calculation in their elementary
quantum electrodynamics course, in their second year of
graduate school.

Time

(photon from magnet)

Space

FIGURE 74. Laboratory experiments show that the actual value of the mag-
netic moment of an electron is not 1, but a little bit more. This is because there
are alternatives: the electron can emit a photon and then absorb it—requiring
two extra E(A to B)’s, a P(A to B), and two extra js. Schwinger calculated
the adjustment that takes this alternative into account to be j*| divided by 2
pi. Since this alternative is indistinguishable experimentally from the original
way the electron can go—an electron starts at point 1 and ends up at point
2—the arrows for the two alternatives are added, and there is interference.

But wait: experiments have measured the behavior of an
electron so accurately that we have to consider still other
possibilities in our calculations—all the ways the electron
can go from place to place with four extra couplings (see
Fig. 75). There are three ways the electron can emit and
absorb two photons. There’s also a new, interesting possi-
bility (shown at the right of Fig. 75): one photon is emitted;
it makes a positron-electron pair, and—again, if you’ll hold
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your “moral” objections—the electron and positron anni-
hilate, creating a new photon that is ultimately absorbed
by the electron. That possibility also has to be figured in!

It took two “independent” groups of physicists two years
to calculate this next term, and then another year to find

T

Time

Space

FIGURE 75. Laboratory experiments became so accurate that further alter-
natives, involving four extra couplings (over all possible intermediate points
in space-time), had to be calculated, some of which are shown here. The
alternative on the right involves a photon disintegrating into a positron-
electron pair (as described in Fig. 64), which annihilates to form a new photon,
which is ultimately absorbed by the electron.

out there was a mistake—experimenters had measured the
value to be slightly different, and it looked for awhile that
the theory didn’t agree with experiment for the first time,
but no: it was a mistake in arithmetic. How could two
groups make the same mistake? It turns out that near the
end of the calculation the two groups compared notes and
ironed out the differences between their calculations, so
they were not really independent.

The term with six extra j’s involves even more possible
ways the event can happen, and I'll draw a few of them for
you now (see Fig. 76). It took twenty years to get this extra
accuracy figured into the theoretical value of the magnetic
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moment of an electron. Meanwhile the experimenters
made even more detailed experiments and added a few
more digits onto their number—and the theory still agreed
with it.

Time

Space

FIGURE 76. Calculations are presently going on to make the theoretical
value even more accurate. The next contribution to the amplitude, which
represents all possibilities with six extra couplings, involves something like
70 diagrams, three of which are shown here. As of 1983, the theoretical number
was 1.00115965246, with an uncertainty of about 20 in the last two digits,
the experimental number was 1.00115965221, with an uncertainty of about 4
in the last digit. This accuracy ts equivalent to measuring the distance from
Los Angeles to New York, a distance of over 3,000 miles, to within the width of
a human hair.

So, to make our calculations we make these diagrams,
write down what they correspond to mathematically, and
add the amplitudes—a straightforward, “cookbook” proc-
ess. Therefore, it can be done by machines. Now that we
have super-duper computers, we have begun to compute
the term with eight extra j’s. At the present time the the-
oretical number is 1.00115965246; experimentally, it’s
1.00115965221, plus or minus 4 in the last decimal place.
Some of the uncertainty in the theoretical value (about 4
in the last decimal place) is due to the computer’s rounding
off numbers; most of it (about 20) is due to the fact that
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the value for j is not exactly known. The term for eight extra
#’s involves something like nine hundred diagrams, with a
hundred thousand terms each—a fantastic calculation—
and it’s being done right now.

I am sure that in a few more years, the theoretical and
experimental numbers for the magnetic moment of an elec-
tron will be worked out to still more places. Of course, I
am not sure whether the two values will still agree. That,
one can never tell until one makes the calculation and does
the experiments.

And so we have come full circle to the number I chose
to “intimidate” you with at the beginning of these lectures.
I hope you understand the significance of this number
much better now: it represents the extraordinary degree
to which we’ve been constantly checking that the strange
theory of quantum electrodynamics is indeed correct.

Throughout these lectures I have delighted in showing
you that the price of gaining such an accurate theory has
been the erosion of our common sense. We must accept
some very bizarre behavior: the amplification and suppres-
sion of probabilities, light reflecting from all parts of a
mirror, light travelling in paths other than a straight line,
photons going faster or slower than the conventional speed
of light, electrons going backwards in time, photons sud-
denly disintegrating into a positron-electron pair, and so
on. That we must do, in order to appreciate what Nature
is really doing underneath nearly all the phenomena we
see in the world.

With the exception of technical details of polarization, I
have described to you the framework by which we under-
stand all these phenomena. We draw amplitudes for every
way an event can happen and add them when we would
have expected to add probabilities under ordinary circum-
stances; we multiply amplitudes when we would have ex-
pected to multiply probabilities. Thinking of everything in
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terms of amplitudes may cause difficulties at first because
of their abstraction, but after a while, one gets used to this
strange language. Underneath so many of the phenomena
we see every day are only three basic actions: one is de-
scribed by the simple coupling number, j; the other two by
functions—P(A to B) and E(A to B)—both of which are
closely related. That’s all there is to it, and from it all the
rest of the laws of physics come.

However, before I finish this lecture, I would like to make
a few additional remarks. One can understand the spirit
and character of quantum electrodynamics without includ-
ing this technical detail of polarization. But I'm sure you’ll
all feel uncomfortable unless I say something about what
I've been leaving out. Photons, it turns out, come in four
different varieties, called polarizations, that are related geo-
metrically to the directions of space and time. Thus there
are photons polarized in the X, Y, Z, and T directions.
(Perhaps you have heard somewhere that light comes in
only two states of polarization—for example, a photon
going in the Z direction can be polarized at right angles,
either in the X or Y direction. Well, you guessed it: in
situations where the photon goes a long distance and ap-
pears to go at the speed of light, the amplitudes for the Z
and T terms exactly cancel out. But for virtual photons
going between a proton and an electron in an atom, it is
the T component that is the most important.)

In a similar manner, an electron can be in one of four
conditions that are also related to geometry, but in a some-
what more subtle manner. We can call these conditions 1,
2, 3, and 4. Calculating the amplitude for an electron going
from point A to point B in space-time becomes somewhat
more complicated, because we can now ask questions such
as, “What is the amplitude that an electron liberated in
condition 2 at the point A arrives in condition 3 at the point
B?” The sixteen possible combinations—coming from the
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four different conditions an electron can start in at A and
the four different conditions it can end up in at B—are
related in a simple mathematical way to the formula for
that E(A to B) I told you about.

For a photon, no such modification is necessary. Thus a
photon polarized in the X direction at A will still be polar-
ized in the X direction at B, arriving with the amplitude
P(A to B).

Polarization produces a large number of different pos-
sible couplings. We could ask, for example, “What is the
amplitude that an electron in condition 2 absorbs a photon
polarized in the X direction and thereby turns into an elee-
tron in condition 3?” All the possible combinations of po-
larized electrons and photons do not couple, but those that
do, do so with the same amplitude j, but sometimes with
an additional turn of the arrow by some multiple of 90°.

These possibilities for the different kinds of polarization
and the nature of the couplings can all be deduced in a
very elegant and beautiful manner from the principles of
quantum electrodynamics and two further assumptions: 1)
the results of an experiment are not affected if the appa-
ratus with which you are making experiments is turned in
some other direction, and 2) it also doesn’t make any dif-
ference if the apparatus is in a spaceship moving at some
arbitrary speed. (This is the principle of relativity.)

This elegant and general analysis shows that every par-
ticle must be in one or another class of possible polariza-
tions, which we call spin 0, spin 1/2, spin 1, spin 3/2, spin
2, and so on. The different classes behave in different ways.
A spin 0 particle is the simplest—it has just one component,
and is not effectively polarized at all. (The fake electrons
and photons that we have been considering in this lecture
are spin 0 particles. So far, no fundamental spin 0 particles
have been found.) A real electron is an example of a spin

1/2 particle, and a real photon is an example of a spin 1
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particle. Both spin 1/2 and spin 1 particles have four com-
ponents. The other types would have more components,
such as spin 2 particles, with ten components.

I said that the connection between relativity and polar-
ization is simple and elegant, but 'm not sure I can explain
it simply and elegantly! (It would take me at least one ad-
ditional lecture to do it.) Although the details of polariza-
tion are not essential to understanding the spirit and char-
acter of quantum electrodynamics, they are, of course,
essential to the correct calculation of any real process, and
often have profound effects.

In these lectures we have been concentrating on relatively
simple interactions between electrons and photons at very
small distances, in which only a few particles are involved.
But I would like to make one or two remarks about how
these interactions appear in the larger world, where very,
very large numbers of photons are being exchanged. On
such a large scale, the calculation of arrows gets very
complicated.

There are, however, some situations that are not so dif-
ficult to analyze. There are circumstances, for example,
where the amplitude to emit a photon by a source is in-
dependent of whether another photon has been emitted.
This can happen when the source is very heavy (the nucleus
of an atom), or when a very large number of electrons are
all moving the same way, such as up and down in the an-
tenna of a broadcasting station or going around in the coils
of an electromagnet. Under such circumstances a large
number of photons are emitted, all of exactly the same
kind. The amplitude of an electron to absorb a photon in
such an environment is independent of whether it or any
other electron has absorbed other photons before. There-
fore its entire behavior can be given by just this amplitude
for an electron to absorb a photon, which depends only on
the electron’s position in space and time. Physicists use or-
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dinary words to describe this circumstance. They say the
electron is moving in an external field.

Physicists use the word “field” to describe a quantity that
depends on position in space and time. Temperatures in
the air provide a good example: they vary according to
where and when you make your measurements. When we
take polarization into account, there are more components
to the field. (There are four components—corresponding
to the amplitude to absorb each of the different kinds of po-
larization (X, Y, Z, T) the photon might be in—technically
called the vector and scalar electromagnetic potentials.
From combinations of these, classical physics derives more
convenient components called the electric and magnetic
fields.)

In a situation where the electric and magnetic fields are
varying slowly enough, the amplitude for an electron to
travel over a very long distance depends on the path it takes.
As we saw earlier in the case of light, the most important
paths are the ones where the angles of the amplitudes from
nearby paths are nearly the same. The result is that the par-
ticle doesn’t necessarily go in a straight line.

This brings us all the way back to classical physics, which
supposes that there are fields and that electrons move
through them in such a way as to make a certain quantity
least. (Physicists call this quantity “action” and formulate
this rule as the “principle of least action.”) This is one ex-
ample of how the rules of quantum electrodynamics pro-
duce phenomena on a large scale. We could expand in
many directions from here, but we have to limit the scope of
these lectures somewhere. I just wanted to remind you that
the effects that we see on a large scale and the strange phe-
nomena we see on a small scale are both produced by the
interaction of electrons and photons, and are all described,
ultimately, by the theory of quantum electrodynamics.



