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Photons:
Particles of Light

This is the second in a series of lectures about quantum
electrodynamics, and since it’s clear that none of you were
here last time (because I told everyone that they weren’t
going to understand anything), I'll briefly summarize the
first lecture.

We were talking about light. The first important feature
about light is that it appears to be particles: when very weak
monochromatic light (light of one color) hits a detector,
the detector makes equally loud clicks less and less often
as the light gets dimmer.

The other important feature about light discussed in the
first lecture is partial reflection of monochromatic light. An
average of 4% of the photons hitting a single surface of
glass is reflected. This is already a deep mystery, since it is
impossible to predict which photons will bounce back and
which will go through. With a second surface, the results
are strange: instead of the expected reflection of 8% by the
two surfaces, the partial reflection can be amplified as high
as 16% or turned off, depending on the thickness of the
glass.

This strange phenomenon of partial reflection by two
surfaces can be explained for intense light by a theory of
waves, but the wave theory cannot explain how the detector
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makes equally loud clicks as the light gets dimmer. Quan-
tum electrodynamics “resolves” this wave-particle duality
by saying that light is made of particles (as Newton origi-
nally thought), but the price of this great advancement of
science is a retreat by physics to the position of being able
to calculate only the probability that a photon will hit a de-
tector, without offering a good model of how it actually
happens.

In the first lecture I described how physicists calculate
the probability that a particular event will happen. They
draw some arrows on a piece of paper according to some
rules, which go as follows:

—GRAND PrincipLE: The probability of an event is equal
to the square of the length of an arrow called the “prob-
ability amplitude.” An arrow of length 0.4, for example,
represents a probability of 0.16, or 16%.

—GENERAL RULE for drawing arrows if an event can hap-
pen in alternative ways: Draw an arrow for each way,
and then combine the arrows (“add” them) by hooking
the head of one to the tail of the next. A “final arrow”
is then drawn from the tail of the first arrow to the head
of the last one. The final arrow is the one whose square
gives the probability of the entire event.

There were also some specific rules for drawing arrows in
the case of partial reflection by glass (they can be found on
pages 26 and 27).

All of the preceding is a review of the first lecture.

What I would like to do now is show you how this model
of the world, which is so utterly different from anything
you've ever seen before (that perhaps you hope never to
see it again), can explain all the simple properties of light
that you know: when light reflects off a mirror, the angle
of incidence is equal to the angle of reflection; light bends
when it goes from air into water; light goes in straight lines;
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light can be focused by a lens, and so on. The theory also
describes many other properties of light that you are prob-
ably not familiar with. In fact, the greatest difficulty I had
in preparing these lectures was to resist the temptation to
derive all of the things about light that took you so long to
learn about in school—such as the behavior of light as it
goes past an edge into a shadow (called diffraction)—but
since most of you have not carefully observed such phe-
nomena, I won’t bother with them. However, I can guar-
antee you (otherwise, the examples I'm going to show you
would be misleading) that every phenomenon about light
that has been observed in detail can be explained by the
theory of quantum electrodynamics, even though I'm going
to describe only the simplest and most common phe-
nomena.

We start with a mirror, and the problem of determining
how light is reflected from it (see Fig. 19). At S we have a
source that emits light of one color at very low intensity
(let’s use red light again). The source emits one photon at
a time. At P, we place a photomultiplier to detect photons.
Let’s put it at the same height as the source—drawing ar-
rows will be easier if everything is symmetrical. We want
to calculate the chance that the detector will make a click
after a photon has been emitted by the source. Since it is
possible that a photon could go straight across to the de-
tector, let’s place a screen at Q to prevent that.

Now, we would expect that all the light that reaches the
detector reflects off the middle of the mirror, because that’s
the place where the angle of incidence equals the angle of
reflection. And it seems fairly obvious that the parts of the
mirror out near the two ends have as much to do with the
reflection as with the price of cheese, right?

Although you might think that the parts of the mirror
near the two ends have nothing to do with the reflection
of the light that goes from the source to the detector, let
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FI1GURE 19. The classical view of the world says that a mirror will reflect
light where the angle of incidence is equal to the angle of reflection, even if
the source and the detector are at different levels, as in (b).

us look at what quantum theory has to say. Rule: The prob-
ability that a particular event occurs is the square of a final
arrow that is found by drawing an arrow for each way the
event could happen, and then combining (“adding”) the
arrows. In the experiment measuring the partial reflection
of light by two surfaces, there were two ways a photon could
get from the source to the detector. In this experiment,
there are millions of ways a photon could go: it could go
down to the left-hand part of the mirror at A or B (for
example) and bounce up to the detector (see Fig. 20); it
could bounce off the part where you think it should, at G;
or, it could go down to the right-hand part of the mirror
at K or M and bounce up to the detector. You might think



40 Chapter 2
%
S é p
Q
C ]
A B ) G H K M

Ficure 20. The quantum view of the world says that light has an equal
amplitude to reflect from every part of the mirror, from A to M.

I'm crazy, because for most of the ways I told you a photon
could reflect off the mirror, the angles aren’t equal. But
I'm not crazy, because that’s the way light really goes! How
can that be?

'To make this problem easier to understand, let’s suppose
that the mirror consists of only a long strip from left to
right—it’s just as well that we forget, for a moment, that
the mirror also sticks out from the paper (see Fig. 21). While
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FiGuRre 21. To calculate more easily where the light goes, we shall tem-
porarily consider only a strip of mirror divided into little squares, with one
path for each square. This simplification in no way detracts from an accurate
analysis of the situation.

there are, in reality, millions of places where the light could
reflect from this strip of mirror, let's make an approxi-
mation by temporarily dividing the mirror into a definite
number of little squares, and consider only one path for
each square—our calculation gets more accurate (but
harder to do) as we make the squares smaller and consider
more paths.
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Now, let’s draw a little arrow for each way the light could
go in this situation. Each little arrow has a certain length
and a certain direction. Let’s consider the length first. You
might think that the arrow we draw to represent the path
that goes to the middle of the mirror, at G, is by far the
longest (since there seems to be a very high probability that
any photon that gets to the detector must go that way), and
the arrows for the paths at the ends of the mirror must be
very short. No, no; we should not make such an arbitrary
rule. The right rule—what actually happens—is much sim-
pler: a photon that reaches the detector has a nearly equal
chance of going on any path, so all the little arrows have
nearly the same length. (There are, in reality, some very
slight variations in length due to the various angles and
distances involved, but they are so minor that I am going
to ignore them.) So let us say that each little arrow we draw
will have an arbitrary standard length—I will make the
length very short because there are many of these arrows
representing the many ways the light could go (see Fig. 22).

FIGURE 22. Each way the light can go will be represented
in our calculation by an arrow of an arbitrary standard length, 7
as shown.

Although it is safe to assume that the length of all the
arrows will be nearly the same, their directions will clearly
differ because their timing is different—as you remember
from the first lecture, the direction of a particular arrow
is determined by the final position of an imaginary stop-
watch that times a photon as it moves along that particular
path. When a photon goes way off to the left end of the
mirror, at A, and then up to the detector, it clearly takes
more time than a photon that gets to the detector by re-
flecting in the middle of the mirror, at G (see Fig. 23). Or,
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imagine for a moment that you were in a hurry and had
to run from the source over to the mirror and then to the
detector. You'd know that it certainly isn’t a good idea to
go way over to A and then all the way up to the dectector;
it would be much faster to touch the mirror somewhere in
the middle.

A G

FIGURE 23. While the length of each arrow is essentially the same, the
direction will be different because the time it takes for a photon to go on each
path is different. Clearly, it takes longer to go from S to A to P than from S
toGtoP.

To help us calculate the direction of each arrow, I'm
going to draw a graph right underneath my sketch of the
mirror (see Fig. 24). Directly below each place on the mirror
where the light could reflect, I'm going to show, vertically,
how much time it would take if the light went that way.
The more time it takes, the higher the point will be on the
graph. Starting at the left, the time it takes a photon to go
on the path that reflects at A is pretty long, so we plot a
point pretty high up on the graph. As we move toward the
center of the mirror, the time it takes for a photon to go
the particular way we’re looking at goes down, so we plot
each successive point lower than the previous one. After
we pass the center of the mirror, the time it takes a photon
to go on each successive path gets longer and longer, so we
plot our points correspondingly higher and higher. To aid
the eye, let’s connect the points: they form a symmetrical
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FIGURE 24. Each path the light could go (in this simplified situation) is
shown at the top, with a point on the graph below it showing the time it takes
a photon to go from the source to that point on the mirror, and then to the
photomultiplier. Below the graph is the direction of each arrow, and at the
bottom is the result of adding all the arrows. It is evident that the magor
cqntribution to the final arrow’s length is made by arrows E through I, whose
directions are nearly the same because the timing of their paths is nearly the
same. This also happens to be where the total time is least. It is therefore
approximately right to say that light goes where the time is least.

curve that starts high, goes down, and then goes back up
again.

Now, what does that mean for the direction of the little
arrows? The direction of a particular arrow corresponds
to the amount of time it would take a photon to get from
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the source to the detector following that particular path.
Let’s draw the arrows, starting at the left. Path A takes the
most time; its arrow points in some direction (Fig. 24). The
arrow for path B points in a different direction because its
time is different. At the middle of the mirror, arrows F, G,
and H point in nearly the same direction because their
times are nearly the same. After passing the center of the
mirror, we see that each path on the right side of the mirror
corresponds to a path on the left side whose time is exactly
the same (this is a consequence of putting the source and
the detector at the same height, and path G exactly in the
middle). Thus the arrow for path ], for example, has the
same direction as the arrow for path D.

Now, let’s add the little arrows (Fig. 24). Starting with
arrow A, we hook the arrows to each other, head to tail.
Now, if we were to take a walk using each little arrow as a
step, we wouldn’t get very far at the beginning, because
the direction from one step to the next is so different. But
after a while the arrows begin to point in generally the
same direction, and we make some progress. Finally, near
the end of our walk, the direction from one step to the
next is again quite different, so we stagger about some
more.

All we have to do now is draw the final arrow. We simply
connect the tail of the first little arrow to the head of the
last one, and see how much direct progress we made on
our walk (Fig. 24). And behold—we get a sizable final ar-
row! The theory of quantum electrodynamics predicts that
light does, indeed, reflect off the mirror!

Now, let’s investigate. What determines how long the
final arrow is? We notice a number of things. First, the ends
of the mirror are not important: there, the little arrows
wander around and don’t get anywhere. If I chopped off
the ends of the mirror—parts that you instinctively knew
I was wasting my time fiddling around with—it would
hardly affect the length of the final arrow.
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So where is the part of the mirror that gives the final
arrow a substantial length? It’s the part where the arrows
are all pointing in nearly the same direction—because their
time is almost the same. If you look at the graph showing
the time for each path (Fig. 24), you see that the time is
nearly the same from one path to the next at the bottom
of the curve, where the time is least.

To summarize, where the time is least is also where the
time for the nearby paths is nearly the same; that’s where
the little arrows point in nearly the same direction and add
up to a substantial length; that’s where the probability of
a photon reflecting off a mirror is determined. And that’s
why, in approximation, we can get away with the crude
picture of the world that says that light only goes where
the time is least (and it’s easy to prove that where the time
is least, the angle of incidence is equal to the angle of re-
flection, but I don’t have the time to show you).

So the theory of quantum electrodynamics gave the right
answer—the middle of the mirror is the important part for
reflection—but this correct result came out at the expense
of believing that light reflects all over the mirror, and hav-
ing to add a bunch of little arrows together whose sole
purpose was to cancel out. All that might seem to you to
be a waste of time—some silly game for mathematicians
only. After all, it doesn’t seem like “real physics” to have
something there that only cancels out!

Let’s test the idea that there really i reflection going on
all over the mirror by doing another experiment. First, let’s
chop off most of the mirror, and leave about a quarter of
it, over on the left. We still have a pretty big piece of mirror,
but it’s in the wrong place. In the previous experiment the
arrows on the left side of the mirror were pointing in di-
rections very different from one another because of the
large difference in time between neighboring paths (Fig.
24). In this experiment I am going to make a more detailed
calculation by taking intervals on that left-hand part of the
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mirror that are much closer together—fine enough that
there is not much difference in time between neighboring
paths (see Fig. 25). With this more detailed picture, we see
that some of the arrows point more or less to the right; the
others point more or less to the left. If we add all the.arrows
together, we have a bunch of arrows going around in what
is essentially a circle, getting nowhere.
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FIGURE 25. To test the idea that there is really reflection happening at the
ends of the mirror (but it is just cancelling out), we do an experiment with a
large piece of mirror that is located in the wrong place for reflection from S
to P. This piece of mirror s divided into muc}} smaller sections, so that the
timing from one path to the next is not very different. When all the arrows
are added, they get nowhere: they go in a circle and add up to nearly nothing.

But let’s suppose we carefully scrape the mirror away in
those areas whose arrows have a bias in one direction—let’s
say, to the left—so that only those places whose arrows point
generally the other way remain (see Fig. 26). When‘we add
up only the arrows that point more or less to the right, we
get a series of dips and a substantial final arrow—ac-
cording to the theory, we should now have a strong re-
flection! And indeed, we do—the theory is correct! Such a
mirror is called a diffraction grating, and it works like a

charm. . .
Isn’t it wonderful—you can take a piece of mirror where
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FIGURE 26. If only the arrows with a bias in a particular direction—such
as to the right—are added, while the others are disregarded (by etching away
the mirror in those places), then a substantial amount of light reflects from
this prece of mirror located in the wrong place. Such an etched mirror is called
a diffraction grating.

you didn’t expect any reflection, scrape away part of it, and
it reflects!!

The particular grating that I just showed you was tailor-
made for red light. It wouldn’t work for blue light; we
would have to make a new grating with the cut-away strips
spaced closer together because, as I told you in the first
lecture, the stopwatch hand turns around faster when it
times a blue photon compared to a red photon. So the cuts
that were especially designed for the “red” rate of turning
don’t fall in the right places for blue light; the arrows get
kinked up and the grating doesn’t work very well. But as
a matter of accident, it happens that if we move the pho-
tomultiplier down to a somewhat different angle, the grat-
ing made for red light now works for blue light. It’s just a

! The areas of the mirror whose arrows point generally to the left also
make a strong reflection (when the areas whose arrows point the other
way are erased). It's when both left-biased and right-biased areas reflect
together that they cancel out. This is analogous to the case of partial
reflection by two surfaces: while either surface will reflect on its own, if
the thickness is such that the two surfaces contribute arrows pointing in
opposite directions, reflection is cancelled out.
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lucky accident, a consequence of the geometry involved (see
Fig. 27).

If you shine white light down onto the grating, red light
comes out at one place, orange light comes out slightly
above it, followed by yellow, green, and blue light—all the

S Bl ue
Red

FiGure 27. A diffraction grating with grooves
at the right distance for red light also works for
other colors, if the detector is in a different place.
Thus it is possible to see different colors reflecting
from a grooved surface—such as a phonograph
record—depending on the angle.

colors of the rainbow. Where there is a series of grooves
close together, you can often see colors—for example, when
you hold a phonograph record (or better, a videodisc)—
under bright light at the correct angles. Perhaps you have
seen those wonderful silvery signs (here in sunny California
they’re often on the backs of cars): when the car moves,
you see very bright colors changing from red to blue. Now
you know where the colors come from: you’re looking at
a grating—a mirror that’s been scratched in just the right
places. The sun is the light source, and your eyes are the
detector. I could go on to easily explain how lasers and
holograms work, but I know that not everyone has seen
these things, and I have too many other things to talk
about.?

21 can't resist telling you about a grating that Nature has made: salt
crystals are sodium and chlorine atoms packed in a regular pattern.

g e
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So a grating shows that we can’t ignore the parts of a
mirror that don’t seem to be reflecting; if we do some clever
things to the mirror, we can demonstrate the reality of the
reflections from all parts of the mirror and produce some
striking optical phenomena.
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FiGURE 28. Nature has made many types of
diffraction gratings in the form of crystals. A salt
crystal reflects X-rays (light for which the imagi-
nary stopwatch hand moves extremely fast—per-
haps 10,000 times faster than for visible light) at
various angles, from which can be determined the
exact arrangement and spacings of the individual
atoms.

More importantly, demonstrating the reality of reflection
from all parts of the mirror shows that there is an ampli-
tude—an arrow—for every way an event can happen. And
in order to calculate correctly the probability of an event
in different circumstances, we have to add the arrows for
every way that the event could happen—not just the ways
we think are the important ones!

Their alternating pattern, like our grooved surface, acts like a grating
when light of the right color (X-rays, in this case) shines on it. By finding
the specific locations where a detector picks up a lot of this special re-
flection (called diffraction), one can determine exactly how far apart the
grooves are, and thus how far apart the atoms are (see Fig. 28). Itis a
beautiful way of determining the structure of all kinds of crystals as well
as confirming that X-rays are the same thing as light. Such experiments
were first done in 1914. It was very exciting to see, in detail, for the first
time how the atoms are packed together in different substances.
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Now, I would like to talk about something more familiar
than gratings—about light going from air into water. This
time, let’s put the photomultiplier underwater—we sup-
pose the experimenter can arrange that! The source of
light is in the air at S, and the dectector is underwater, at
D (see Fig. 29). Once again, we want to calculate the prob-
ability that a photon will get from the light source to the
detector. To make this calculation, we should consider all
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FIGURE 29. Quantum theory says that light can go from a source in air
to a detector in water in many ways. If the problem is simplified as in the case
of the mirror, a graph showing the timing of each path can be drawn, with
the direction of each arrow below it. Once again, the major contribution toward
the length of the final arrow comes from those paths whose arrows point in
nearly the same direction because their timing is nearly the same; once again,
this is where the time is least.
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the ways the light could go. Each way the light could go
contributes a little arrow and, as in the previous example,
all the little arrows have nearly the same length. We can
again make a graph of the time it takes a photon to go on
each possible path. The graph will be a curve very similar
to the one we made for light reflecting off a mirror: it starts
up high, goes down, and then back up again; the most
important contributions come from the places where the
arrows point in nearly the same direction (where the time
is nearly the same from one path to the nexi}, which is at
the bottom of the curve. That is also where the time is the
least, so all we have to do is find out where the time is least.

It turns out that light seems to go slower in water than
it does in air (I will explain why in the next lecture), which
makes the distance through water more “costly,” so to
speak, than the distance through air. It’s not hard to figure
out which path takes the least time: suppose you're the
lifeguard, sitting at S, and the beautiful girl is drowning,
at D (Fig. 30). You can run on land faster than you can
swim in water. The problem is, where do you enter the
water in order to reach the drowning victim the fastest?
Do you run down to the water at A, and then swim like

path of least water
path of least time
path of least distance

air
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FIcure 30. Finding the path of least time for light is like finding the path
of least time for a lifeguard running and then swimming to rescue a drowning
victim: the path of least distance has too much water in it; the path of least
water has too much land in it; the path of least time is a compromise between
the two.
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hell? Of course not. But running directly toward the victim
and entering the water at J is not the fastest route, either.
While it would be foolish for a lifeguard to analyze and
calculate under the circumstances, there is a computable
position at which the time is minimum: it’s a compromise
between taking the direct path, through J, and taking the
path with the least water, through N. And so it is with
light—the path of least time enters the water at a point
between J and N, such as L.

Another phenomenon of light that I would like to men-
tion briefly is the mirage. When you’re driving along a road
that is very hot, you can sometimes see what looks like water
on the road. What you're really seeing is the sky, and when
you normally see sky on the road, it’s because the road has
puddles of water on it (partial reflection of light by a single
surface). But how can you see sky on the road when there’s
no water there? What you need to know is that light goes
slower through cooler air than through warmer air, and
for a mirage to be seen, the observer must be in the cooler
air that is above the hot air next to the road surface (see
Fig. 31). How it is possible to look down and see the sky can
be understood by finding the path of least time. I'll let you
play with that one at home—it’s fun to think about, and
pretty easy to figure out.

SKY
AN COOLER AIR //§>
"W
WARMER AIR
ROAD

FiGure 31. Finding the path of least time explains how a mirage works.
Light goes faster through warm air than through cool air. Some of the sky
appears to be on the road because some of the light from the sky reaches the
eye by coming up from the road. The only other time sky appears to be on the
road is when water is reflecting it, and thus a mirage appears to be water.
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In the examples I showed you of light reflecting off a
mirror and of light going through air and then water, I
was making an approximation: for the sake of simplicity,
I drew the various ways the light could go as double straight
lines—two straight lines that form an angle. But we don’t
have to assume that light goes in straight lines when it is in
a uniform material like air or water; even that is explainable
by the general principle of quantum theory: the probability
of an event is found by adding arrows for all the ways the
event could happen.

So for our next example, I'm going to show you how, by
adding little arrows, it can appear that light goes in a
straight line. Let’s put a source and a photomultiplier at S
and P, respectively (see Fig. 32), and look at all the ways
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FIGURE 32. Quantum theory can be used to show why light appears to
travel in straight lines. When all possible paths are considered, each crooked
path has a nearby path of considerably less distance and therefore much less
time (and a substantially different direction for the arrow). Only the paths
near the straight-line path at D have arrows pointing in nearly the same
direction, because their timings are nearly the same. Only such arrows are
important, because it is from them that we accumulate a large final arrow.
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the light could go—in all sorts of crooked paths—to get
from the source to the detector. Then we draw a little arrow
for each path, and we’re learning our lesson well!

For each crooked path, such as path A, there’s a nearby
path that’s a little bit straighter and distinctly shorter—that
is, it takes much less time. But where the paths become
nearly straight—at C, for example—a nearby, straighter
path has nearly the same time. That’'s where the arrows
add up rather than cancel out; that’s where the light goes.

It is important to note that the single arrow that repre-
sents the straight-line path, through D (Fig. 32), is not
enough to account for the probability that light gets from
the source to the detector. The nearby, nearly straight
paths—through C and E, for example—also make impor-
tant contributions. So light doesn’t really travel only in a
straight line; it “smells” the neighboring paths around it,
and uses a small core of nearby space. (In the same way, a
mirror has to have enough size to reflect normally: if the
mirror is too small for the core of neighboring paths, the
light scatters in many directions, no matter where you put
the mirror.)

Let’s investigate this core of light more closely by putting
a source at S, a photomultiplier at P, and a pair of blocks
between them to keep the paths of light from wandering
too far away (see Fig. 33). Now, let’s put a second photo-
multiplier at Q, below P, and assume again, for the sake of
simplicity, that the light can get from S to Q only by paths
of double straight lines. Now, what happens? When the gap
between the blocks is wide enough to allow many neigh-
boring paths to P and to Q, the arrows for the paths to P
add up (because all the paths to P take nearly the same
time), while the paths to Q cancel out (because those paths
have a sizable difference in time). Thus the photomultiplier
at Q doesn'’t click.

But as we push the blocks closer together, at a certain
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FIGURE 33. Light travels in not just the straight-line
path, but in the nearby paths as well. When two blocks are
separated enough to allow for these nearby paths, the photons
proceed normally to P, and hardly ever go to Q.

point, the detector at Q starts clicking! When the gap is
nearly closed and there are only a few neighboring paths,
the arrows to Q also add up, because there is hardly any
difference in time between them, either (see Fig. 34). Of
course, both final arrows are small, so there’s not much
light either way through such a small hole, but the detector
at Q clicks almost as much as the one at P! So when you
try to squeeze light too much to make sure it’s going in
only a straight line, it refuses to cooperate and begins to
spread out.?

8 This is an example of the “uncertainty principle”: there is a kind of
“complementarity” between knowledge of where the light goes between
the blocks and where it goes afterwards—precise knowledge of both is
impossible. I would like to put the uncertainty principle in its historical
place: When the revolutionary ideas of quantum physics were first coming
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FIGURE 34. When light is restricted so much that only a
few paths are possible, the light that is able to get through
the narrow slit goes to Q almost as much as to P, because
there are not enough arrows representing the paths to Q to
cancel each other out.

So the idea that light goes in a straight line is a convenient
approximation to describe what happens in the world that
is familiar to us; it’s similar to the crude approximation that
says when light reflects off a mirror, the angle of incidence
is equal to the angle of refiection.

Just as we were able to do a clever trick to make light
reflect off a mirror at many angles, we can do a similar

out, people still tried to understand them in terms of old-fashioned ideas
(such as, light goes in straight lines). But at a certain point the old-‘fash-
ioned ideas would begin to fail, so a warning was developed that said, in
effect, “Your old-fashioned ideas are no damn good when . . .” If you get
rid of all the old-fashioned ideas and instead use the ideas that I'm ex-
plaining in these lectures—adding arrows for all the ways an event can
happen—there is no need for an uncertainty principle!

R T £
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trick to get light to go from one point to another in many
ways.

First, to simplify the situation, I'm going to draw a vertical
dashed line (see Fig. 35) between the light source and the
detector (the line means nothing; it’s just an artificial line)
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FIGURE 35.  Analysis of all possible paths from S to P is simplified to include
only double straight lines (in a single plane). The effect is the same as in the
more complicated, real case: there is a time curve with a minimwm, where most
of the contribution to the final arrow is made.

and say that the only paths we’re going to look at are double
straight lines. The graph that shows the time for each path
looks the same as in the case of the mirror (but I'll draw it
sideways, this time): the curve starts at A, at the top, and
then it comes in, because the paths in the middle are shorter
and take less time. Finally, the curve goes back out again.

Now, let’s have some fun. Let’s “fool the light,” so that
all the paths take exactly the same amount of time. How
can we do this? How can we make the shortest path,
through M, take exactly the same time as the longest path,
through A?

Well, light goes slower in water than it does in air; it also
goes slower in glass (which is much easier to handle!). So,
if we put in just the right thickness of glass on the shortest
path, through M, we can make the time for that path exactly
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the same as for the path through A. The paths next to M,
which are just a little longer, won’t need quite as much glass
(see Fig. 36). The nearer we get to A, the less glass we have
to put in to slow up the light. By carefully calculating and
putting in just the right thickness of glass to compensate
for the time along each path, we can make all the times the
same. When we draw the arrows for each way the light
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FIGURE 36. A “trick” can be played on Nature by slowing down the light
that takes shorter paths: glass of just the right thickness is inserted so that all
the paths will take exactly the same time. This causes all of the arrows to point
in the same direction, and to produce a whopping final arrow—lots of light!
Such a piece of glass made to greatly increase the probability of light getting
from a source to a single point is called a focusing lens.

could go, we find we have succeeded in straightening them
all out—and there are, in reality, millions of tiny arrows—
so the net result is a sensationally large, unexpectedly enor-
mous final arrow! Of course you know what I'm describing;
it’s a focusing lens. By arranging things so that all the times
are equal, we can focus light—we can make the probability
very high that light will arrive at a particular point, and
very low that it will arrive anywhere else.

I have used these examples to show you how the theory
of quantum electrodynamics, which looks at first like an
absurd idea with no causality, no mechanism, and nothing
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real to it, produces effects that you are familiar with: light
bouncing off a mirror, light bending when it goes from air
into water, and light focused by a lens. It also produces
other effects that you may or may not have seen, such as
the diffraction grating and a number of other things. In
fact, the theory continues to be successful at explaining
every phenomenon of light.

I have shown you with examples how to calculate the
probability of an event that can happen in alternative ways:
we draw an arrow for each way the event can happen, and
add the arrows. “Adding arrows” means the arrows are
placed head to tail and a “final arrow” is drawn. The square
of the resulting final arrow represents the probability of
the event.

In order to give you a fuller flavor of quantum theory,
I would now like to show you how physicists calculate the
probability of compound events—events that can be broken
down into a series of steps, or events that consist of a num-
ber of things happening independently.

An example of a compound event can be demonstrated
by modifying our first experiment, in which we aimed some
red photons at a single surface of glass to measure partial
reflection. Instead of putting the photomultiplier at A (see
Fig. 37), let’s put in a screen with a hole in it to let the
photons that reach point A go through. Then let’s put in
a sheet of glass at B, and place the photomultiplier at C.
How do we figure out the probability that a photon will get
from the source to C?

We can think of this event as a sequence of two steps.
Step 1: a photon goes from the source to point A, reflecting
off the single surface of glass. Step 2: the photon goes from
point A to the photomultiplier at C, reflecting off the sheet
of glass at B. Each step has a final arrow—an “amplitude”
(I'm going to use the words interchangeably)—that can be
calculated according to the rules we know so far. The am-
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plitude for the first step has a length of 0.2 (whose square
is 0.04, the probability of reflection by a single surface of
glass), and is turned at some angle—let’s say, 2 o’clock (Fig.
37).

To calculate the amplitude for the second step, we tem-
porarily put the light source at A and aim the photons at
the layer of glass above. We draw arrows for the front and
back surface reflections and add them—Ilet’s say we end up
with a final arrow with a length of 0.3, and turned toward
5 o’clock.
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FIGURE 37. A compound event can be analyzed as a succession of steps.
In this example, the path of a photon going from S to C can be divided into
two steps: 1) a photon gets from S to A, and 2) the photon gets from A to C.
Each step can be analyzed separately to produce an arrow that can be regarded
in a new way: as a unit arrow (an arrow of length 1 pointed at 12 o’clock)
that has gone through a shrink and turn. In this example, the shrink and turn
for Step 1 are 0.2 and 2 o’clock; the shrink and turn for Step 2 are 0.3 and
5 o’clock. To get the amplitude for the two steps in succession, we shrink and
turn in succession: the unit arrow is shrunk and turned to produce an arrow
of length 0.2 turned to 2 o’clock, which itself is shrunk and turned (as if it
were the unit arrow) by 0.3 and 5 o’clock to produce an arrow of length 0.06
and turned to 7 o’clock. This process of successive shrinking and turning is
called “multiplying” arrows.
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Now, how do we combine the two arrows to draw the
amplitude for the entire event? We look at each arrow in
a new way: as instructions for a shrink and turn.

In this example, the first amplitude has a length of 0.2
and is turned toward 2 o'clock. If we begin with a “unit
arrow”—an arrow of length 1 pointed straight up—we can
shrink this unit arrow from 1 down to 0.2, and turn it from
12 o’clock to 2 o’clock. The amplitude for the second step
can be thought of as shrinking the unit arrow from 1 to
0.3 and turning it from 12 o’clock to 5 o’clock.

Now, to combine the amplitudes for both steps, we shrink
and turn in succession. First, we shrink the unit arrow from
1 to 0.2 and turn it from 12 to 2 o’clock; then we shrink
the arrow further, from 0.2 down to three-tenths of that,
and turn it by the amount from 12 to 5—that is, we turn
it from 2 o’clock to 7 o'clock. The resulting arrow has a
length of 0.06 and is pointed toward 7 o’clock. It represents
a probability of 0.06 squared, or 0.0036.

Observing the arrows carefully, we see that the result of
shrinking and turning two arrows in succession is the same
as adding their angles (2 o'clock + 5 o'clock) and multi-
plying their lengths (0.2 * 0.3). To understand why we add
the angles is easy: the angle of an arrow is determined by
the amount of turning by the imaginary stopwatch hand.
So the total amount of turning for the two steps in succes-
sion is simply the sum of the turning for the first step plus
the additional turning for the second step.

Why we call this process “multiplying arrows” takes a bit
more explanation, but it’s interesting. Let’s look at multi-
plication, for a moment, from the point of view of the
Greeks (this has nothing to do with the lecture). The Greeks
wanted to use numbers that were not necessarily integers,
so they represented numbers with lines. Any number can
be expressed as a transformation of the unit line—by ex-
panding it or shrinking it. For example, if Line A is the
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unit line (see Fig. 38), then line B represents 2 and line C
represents 3.

Now, how do we multiply 3 times 2? We apply the trans-
formations in succession: starting with line A as the unit line,
we expand it 2 times and then 3 times (or 3 times and then
2 times—the order doesn’t make any difference). The re-
sult is line D, whose length represents 6. What about mul-
tiplying 1/3 times 1/2? Taking line D to be the unit line,
now, we shrink it to 1/2 (line C) and then to 1/3 of that.
The result is line A, which represents 1/6.

C

D + + +
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FIGURE 38. We can express any number as a transformation of the unit
line through expansion or shrinkage. If A is the unit line, then B represents
2 (expansion), and C represents 3 (expansion). Multiplying lines is achieved
through successive transformations. For example, multiplying 3 by 2 means
that the unit line is expanded 3 times and then 2 times, producing the answer,
an expansion of 6 (line D). If D is the unit line, then line C represents 1/2
(shrinkage), line B represents 1/3 (shrinkage), and multiplying 112 by 1/3
means the unit line D is shrunk to 1/2, and then to 1/3 of that, producing
the answer, a shrinkage to 1/6 (line A).

Multiplying arrows works the same way (see Fig. 39). We
apply transformations to the unit arrow in succession—it
just happens that the transformation of an arrow involves
two operations, a shrink and turn. To multiply arrow V
times arrow W, we shrink and turn the unit arrow by the
prescribed amounts for V, and then shrink it and turn it
the amounts prescribed for W—again, the order doesn’t
make any difference. So multiplying arrows follows the
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FiGURE 39. Mathematicians found that multiplying arrows can also be
expressed as successive transformations (for our purposes, successive shrinks
and turns) of the unit arrow. As in normal multiplication, the order is not
important: the answer, arrow X, can be obtained by multiplying arrow V by
arrow W or arrow W by arrow V.

same rule of successive transformations that work for reg-
ular numbers.*

+ Mathematicians have tried to find all the objects one could possibly
find that obey the rules of algebra (A + B = B + A, A*B = B A,
and so on). The rules were originally made for positive integers, used for
counting things like apples or people. Numbers were improved with the
invention of zero, fractions, irrational numbers—numbers that cannot be
expressed as a ratio of two integers—and negative numbers, and contin-
ued to obey the original rules of algebra. Some of the numbers that
mathematicians invented posed difficulties for people at first—the idea
of half a person was difficult to imagine—but today, there’s no difficulty
at all: nobody has any moral qualms or discomforting gory feelings when
they hear that there is an average of 3.2 people per square mile in some
regions. They don’t try to imagine the 0.2 people; rather, they know what
3.2 means: if they multiply 3.2 by 10, they get 32. Thus, some things that
satisfy the rules of algebra can be interesting to mathematicians even
though they don’t always represent a real situation. Arrows on a plane
can be “added” by putting the head of one arrow on the tail of another,
or “multiplied” by successive turns and shrinks. Since these arrows obey
the same rules of algebra as regular numbers, mathematicians call them
numbers. But to distinguish them from ordinary numbers, they're called
“complex numbers.” For those of you who have studied mathematics
enough to have come to complex numbers, I could have said, “the prob-
ability of an event is the absolute square of a complex number. When an
event can happen in alternative ways, you add the complex numbers;
when it can happen only as a succession of steps, you multiply the complex
numbers.” Although it may sound more impressive that way, I have not
said any more than I did before—I just used a different language.
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Let’s go back to the first experiment from the first lec-
ture—partial reflection by a single surface—with this idea
of successive steps in mind (see Fig. 40). We can divide the
path of reflection into three steps: 1) the light goes from
the source down to the glass, 2) it is reflected by the glass,
and 3) it goes from the glass up to the detector. Each step
can be considered as a certain amount of shrinking and
turning of the unit arrow.
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FIGURE 40. Reflection by a single surface can be divided into three steps,
each with a shrink and/or turn of the unit arrow. The net result, an arrow
of length 0.2 pointed in some direction, is the same as before, but our method
of analysis is more detailed now.

You'll remember that in the first lecture, we did not con-
sider all of the ways the light could reflect off the glass,
which requires drawing and adding lots and lots of little
tiny arrows. In order to avoid all that detail, I gave the
impression that the light goes down to a particular point
on the surface of the glass—that it doesn’t spread out.
When light goes from one point to another, it does, in
reality, spread out (unless it’s fooled by a lens), and there
is some shrinkage of the unit arrow associated with that.
For the moment, however, I would like to stick to the sim-
plified view that light does not spread out, and so it is ap-
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propriate to disregard this shrinkage. It is also appropriate
to assume that since the light doesn’t spread out, every
photon that leaves the source ends up at either A or B.

So: in the first step there is no shrinking, but there is
turning—it corresponds to the amount of turning by the
imaginary stopwatch hand as it times the photon going
from the source to the front surface of the glass. In this
example, the arrow for the first step ends up with a length
of 1 at some angle—let’s say, 5 o'clock.

The second step is the reflection of the photon by the
glass. Here, there is a sizable shrink—from 1 to 0.2—and
half a turn. (These numbers seem arbitrary now: they de-
pend upon whether the light is reflected by glass or some
other material. In the third lecture, I'll explain them, too!)
Thus the second step is represented by an amplitude of
length 0.2 and a direction of 6 o’clock (half a turn).

The last step is the photon going from the glass up to
the detector. Here, as in the first step, there is no shrinking,
but there is turning—let’s say this distance is slightly shorter
than in step 1, and the arrow points toward 4 o’clock.

We now “multiply” arrows 1, 2, and 3 in succession (add
the angles, and multiply the lengths). The net effect of the
three steps—1) turning, 2) a shrink and half a turn, and
3) turning—is the same as in the first lecture: the turning
from steps 1 and 3—(5 o'clock plus 4 o’clock) is the same
amount of turning that we got then when we let the stop-
watch run for the whole distance (9 o’clock); the extra half
turn from step 2 makes the arrow point in the direction
opposite the stopwatch hand, as it did in the first lecture,
and the shrinking to 0.2 in the second step leaves an arrow
whose square represents the 4% partial reflection observed
for a single surface.

In this experiment, there is a question we didn’t look at
in the first lecture: what about the photons that go to B—
the ones that are transmitted by the surface of the glass?
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The amplitude for a photon to arrive at B must have a
length near 0.98, since 0.98 * 0.98 = 0.9604, which 1s close
enough to 96%. This amplitude can also be analyzed by
breaking it down into steps (see Fig. 41).

The first step is the same as for the path to A—the photon
goes from the light source down to the glass—the unit
arrow is turned toward 5 o’clock.

The second step is the photon passing through the sur-
face of the glass: there is no turning associated with trans-
mission, just a little bit of shrinking—to 0.98.
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FicuURE 41. Transmission by a single surface can also be divided into three
steps, with a shrink andlor turn for each step. An arrow of length 0.98 has
a square of about 0.96, representing a probabilty of transmission of 96%
(which, combined with the 4% probability of reflection, accounts for 100% of
the light).

The third step—the photon going through the interior
of the glass—involves additional turning and no shrinking.

The net result is an arrow of length 0.98 turned in some
direction, whose square represents the probability that a
photon will arrive at B—96%.

Now let’s look at partial reflection by two surfaces again.
Reflection from the front surface is the same as for a single
surface, so the three steps for front surface reflection are
the same as we saw a moment ago (Fig. 40).

Photons: Particles of Light 67

Reflection from the back surface can be broken down
into seven steps (see Fig. 42). It involves turning equal to
the total amount of turning of the stopwatch hand timing
a photon over the entire distance (steps 1, 3, 5, and 7),
shrinking to 0.2 (step 4), and two shrinks to 0.98 (steps 2
and 6). The resulting arrow ends up in the same direction
as before, but the length is about 0.192 (0.98 * 0.2 * 0.98),
which I approximated as 0.2 in the first lecture.

FIGURE 42. Reflection from the back sur-

face of a layer of glass can be divided into @
seven steps. Steps 1, 3, 5, and 7 involve turn-

ing only; steps 2 and 6 involve shrinks to 0.98,
and step 4 involves a shrink to 0.2. The result
is an arrow of length 0.192—which was ap-
proximated as 0.2 in the first lecture—turned
at an angle that corresponds to the total GCASS
amount of turning by the imaginary stopwatch 3\/5
hand. X

In summary, here are the rules for reflection and trans-
mission of light by glass: 1) reflection from air back to air
(off a front surface) involves a shrink to 0.2 and half a turn;
2) reflection from glass back to glass (off a back surface)
also involves a shrink to 0.2, but no turning; and 3) trans-
mission from air to glass or from glass to air involves a
shrink to 0.98 and no turning in either case.

Perhaps it is too much of a good thing, but I cannot resist
showing you a cute further example of how things work
and are analyzed by these rules of successive steps. Let us
move the detector to a location below the glass, and con-
sider something we didn’t talk about in the first lecture—
the probability of transmission by two surfaces of glass (see
Fig. 43).

Of course you know the answer: the probability of a



68 Chapter 2

photqn to arrive at B is simply 100% minus the probability
to arrive at A, which we worked out beforehand. Thus, if
we .found the chance to arrive at A is 7%, the chance to
arrive at B must be 93%. And as the chance for A varies
from zero through 8% to 16% (due to the different thick-

nesses of glass), the chance for B changes from 100%
through 92% to 84%.

FIGURE 43. Transmission by two surfaces
can be broken down into five steps. Step 2
shrinks the unit arrow to 0.98, step 4 shrinks
the 0.98 arrow to 0.98 of that (about 0.96);
steps 1, 3, and 5 involve turning only. The
resulting arrow of length 0.96 has a square
of about 0.92, representing a probability of

transmission by two surfaces of 92% (which
GLASS \i " corresponds to the expected 8% reflection,
which is right only “twice a day”). When the

5 thickness of the layer is right to produce a prob-
ability of 16% reflection, with a 92% proba-
(8] bility of transmission, 108% of the light is
accounted for! Something is wrong with this

analysis!

That is the right answer, but we are expecting to calculate
all probabilities by squaring a final arrow. How do we cal-
culate the amplitude arrow for transmission by a layer of
gla}ss, and how does it manage to vary in length so appro-
priately as to fit with the length for A in each case, so the
probability for A and the probability for B always add up
to exactly 100%? Let us look a little into the details.

For a photon to go from the source to the detector below
the glass, at B, five steps are involved. Let’s shrink and turn
the unit arrow as we go along.

The first three steps are the same as in the previous
exam‘ple: the photon goes from the source to the glass
(turning, no shrinking); the photon is transmitted by the
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front surface (no turning, shrinking to 0.98); the photon
goes through the glass (turning, no shrinking).

The fourth step—the photon passes through the back
surface of the glass—is the same as the second step, as far
as shrinks and turns go: no turns, but a shrinkage to 0.98
of the 0.98, so the arrow now has a length of 0.96.

Finally, the photon goes through the air again, down to
the detector—that means more turning, but no further
shrinking. The result is an arrow of length 0.96, pointing
in some direction determined by the successive turnings of
the stopwatch hand.

An arrow whose length is 0.96 represents a probability
of about 92% (0.96 squared), which means an average of
92 photons reach B out of every 100 that leave the source.
That also means that 8% of the photons are reflected by
the two surfaces and reach A. But we found out in the first
lecture that an 8% reflection by two surfaces is only right
sometimes (“twice a day”)—that in reality, the reflection by
two surfaces fluctuates in a cycle from zero to 16% as the
thickness of the layer steadily increases. What happens
when the glass is just the right thickness to make a partial
reflection of 16%? For every 100 photons that leave the
source, 16 arrive at A and 92 arrive at B, which means
108% of the light has been accounted for—horrifying!
Something is wrong.

We neglected to consider all the ways the light could get
to B! For instance, it could bounce off the back surface, go
up through the glass as if it were going to A, but then
reflect off the front surface, back down toward B (see Fig.
44). This path takes nine steps. Let’s see what happens
successively to the unit arrow as the light goes through each
step (don’t worry; it only shrinks and turns!).

First step—photon goes through the air—turning; no
shrinking. Second step—photon passes through the glass—
no turning, but shrinking to 0.98. Third step—photon goes



70 Chapter 2

through the glass—turning; no shrinking. Fourth step—

reflection off the back surface—no turning, but shrinking
to 0.2 of 0.98, or 0.196. Fifth step—photon goes back up
through the glass—turning; no shrinking. Sixth step—pho-

ton bounces off front surface (it’s really a “back” surface,

because the photon stays inside the glass)—no turning, but
shrinking to 0.2 of 0.196, or 0.0392. Seventh step—photon

FIGURE 44. Another way that light could
be transmitted by two surfaces must be consid-

@ ered in order to make the calculation more
T accurate. This path involves two shrinks of
1 @ 0.98 (steps 2 and 8) and two shrinks of 0.2
/ (steps 4 and 6), resulting in an arrow of length
2\ is 0.0384 (rounded off to 0.04).
YA
GLASS 4\ [\,
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goes back down through glass—more turning; no shrink-

ing. Eighth step—photon passes through back surface—no
turning, but shrinking to 0.98 of 0.0392, or 0.0384. Finally,

the ninth step—photon goes through air to detector—turn-
ing; no shrinking.
The result of all this shrinking and turning is an ampli-
tude of length 0.0384—call it 0.04, for all practical pur-
poses—and turned at an angle that corresponds to the total
amount of turning by the stopwatch as it times the photon
going through this longer path. This arrow represents a
second way that light can get from the source to B. Now we
have two alternatives, so we must add the two arrows—the
arrow for the more direct path, whose length is 0.96, and
the arrow for the longer way, whose length is 0.04—to make

the final arrow.
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The two arrows are usually not in the same direction,
because changing the thickness of the glass changes the
relative direction of the 0.04 arrow to the 0.96 arrow. But
look how nicely things work out: the extra turns made by
the stopwatch timing a photon during steps 3 and 5 (on its
way to A) are exactly equal to the extra turns it makes timing
a photon during steps 5 and 7 (on its way to B). That means
when the two reflection arrows are cancelling each other
to make a final arrow representing zero reflection, the ar-
rows for transmission are reinforcing each other to make
an arrow of length 0.96 + 0.04, or 1—when the probability
of reflection is zero, the probability of transmission is 100%

(see Fig. 45). And when the arrows for reflection are rein-

Reflection
\\ 6%

; 100 % j { 84 %

Transmission
H 0.96 + 0.04
/ 096 - 0.04

FIGURE 45. Nature always makes sure 100% of the light is accounted for.

When the thickness is right for the transmission arrows to accumulate, the
arrows for reflection oppose each other; when the arrows for reflection accu-

mulate, the arrows for transmission oppose each other.
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forcing each other to make an amplitude of 0.4, the arrows
for transmission are going against each other, making an
amplitude of length 0.96 — 0.04, or 0.92—when reflection
is calculated to be 16%, transmission is calculated to be 84%
(0.92 squared). You see how clever Nature is with Her rules
to make sure that we always come out with 100% of the
photons accounted for!

Finally, before I go, I would like to tell you that there is
an extension to the rule that tells us when to multiply arrows:
arrows are to be multiplied not only for an event that con-
sists of a succession of steps, but also for an event that
consists of a number of things happening concomitantly—
independently and possibly simultaneously. For example,
suppose we have two sources, X and Y, and two detectors,
A and B (see Fig. 47), and we want to calculate the prob-

FIGURE 46. Yet other ways the light could
reflect should be considered for a more accurate
calculation. In this figure, shrinks of 0.98 oc-
cur at steps 2 and 10; shrinks of 0.2 occur at
steps 4, 6, and 8. The result is an arrow with
11 a length of about 0.008, which is another al-
ternative for reflection, and should therefore

0 be added to the other arrows which represent
GLASS 3\A79 reflection (0.2 for the front surface and 0.192
o Sfor the back surface).

® You'll notice that we changed 0.0384 to 0.04 and used 84% as the
square of 0.92, in order to make 100% of the light accounted for. But
when everything is added together, 0.0384 and 84% don’t have to be
rounded off—all the little bits and pieces of arrows (representing all the
ways the light could go) compensate for each other and keep the answer
correct. For those of you who like this sort of thing, here is an example
of another way that the light could go from the light source to the detector
at A—a series of three reflections (and two transmissions), resulting in a
final arrow of length 0.98 * 0.2 * 0.2 % 0.2 % 0.98, or about 0.008—a very
tiny arrow (see Fig. 46). To make a complete calculation of partial re-
flection by two surfaces, you would have to add in that small arrow, plus
an even smaller one that represents five reflections, and so on.

i e e ot e e
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ability for the following event: after X and Y each lose a
photon, A and B each gain a photon.

In this example, the photons travel through space to get
to the detectors—they are neither reflected nor transmit-
ted—so now is a good time for me to stop disregarding the
fact that light spreads out as it goes along. I now present
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FIGURE 47. If one of the ways a particular event can happen depends on
a number of things happening independently, the amplitude for this way 1s
calculated by multiplying the arrows of the independent things. In this case,
the final event is: after sources X and Y each lose a photon, photomultipliers
A and B make a click. One way this event could happen is that a photon _could
go from X to A and a photon could go from Y to B (two independent things).
To calculate the probability for this “first way,” the arrows for each_mdependmt
thing—X to A and Y to B—are multiplied to produce the amplitude for this
particular way. (Analysis continued in Fig. 48.)

you with the complete rule for monochromatic light travelling
from one point to another through space—there is nothing
approximate here, and no simplification. This is all there
is to know about monochromatic light going through space
(disregarding polarization): the angle of the arrow depenc.is
on the imaginary stopwatch hand, which rotates a certain
number of times per inch (depending on the color of the
photon); the length of the arrow is inversely proportional
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to the distance the light goes—in other words, the arrow
shrinks as the light goes along.®

Let’s suppose the arrow for X to A is 0.5 in length and
is pointing toward 5 o’clock, as is the arrow for Y to B (Fig.
47). Multiplying one arrow by the other, we get a final arrow
of length 0.25, pointed at 10 o’clock.

X A
Y B
g &4 g
5! 51 51
= gt 125

P
Y
N

Xto B YtoA XtoBand Yto A
~ - e‘@
X to A XtoB
and and amplitude
Y toB Y toA for
("first ("second entire event
way') way ) (final arrow)

FIGURE 48. The other way the event described in Figure 47 could happen—
a photon goes from X to B and a photon goes from Y to A—also depends on
two independent things happening, so the amplitude for this “second way” is
also calculated by multiplying the arrows of the independent things. The “first
way” and “second way” arrows are ultimately added together, resulting in the
final arrow for the event. The probability of an event is always represented by
a single final arrow—no matter how many arrows were drawn, multiplied,
and added to achieve it.

6 This rule checks out with what they teach in school—the amount of
light transmitted over a distance varies inversely as the square of the
distance—because an arrow that shrinks to half its original size has a square
one-fourth as big.
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But wait! There is another way this event could happen:
the photon from X could go to B, and the photon from Y
could go to A. Each of these subevents has an amplitude,
and these arrows must also be drawn and multiplied to
produce an amplitude for this particular way the event
could happen (see Fig. 48). Since the amount of shrinkage
over distance is very small compared to the amount of
turning, the arrows from X to B and Y to A have essentially
the same length as the other arrows, 0.5, but their turning
is quite different: the stopwatch hand rotates 36,000 times
per inch for red light, so even a tiny difference in distance
results in a substantial difference in timing.

The amplitudes for each way the event could happen
are added to produce the final arrow. Since their lengths
are essentially the same, it is possible for the arrows to
cancel each other out if their directions are opposed to
each other. The relative directions of the two arrows can

- be changed by changing the distance between the sources

or the detectors: simply moving the detectors apart or to-
gether a little bit can make the probability of the event
amplify or completely cancel out, just as in the case of
partial reflection by two surfaces:’

In this example, arrows were multiplied and then added
to produce a final arrow (the amplitude for the event),
whose square is the probability of the event. It is to be
emphasized that no matter how many arrows we draw, add,
or multiply, our objective is to calculate a single final arrow
for the event. Mistakes are often made by physics students
at first because they do not keep this important point in
mind. They work for so long analyzing events involving a
single photon that they begin to think that the arrow is

7 This phenomenon, called the Hanbury-Brown-Twiss effect, has been
used to distinguish between a single source and a double source of radio
waves in deep space, even when the two sources are extremely close
together.
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somehow associated with the photon. But these arrows are
probability amplitudes, that give, when squared, the prob-
ability of a complete event.®

In the next lecture I will begin the process of simplifying
and explaining the properties of matter—to explain where
the shrinking to 0.2 comes from, why light appears to go
slower through glass or water than through air, and so on—
because I have been cheating so far: the photons don’t
really bounce off the surface of the glass; they interact with
the electrons inside the glass. I'll show you how photons do
nothing but go from one electron to another, and how
reflection and transmission are really the result of an elec-
tron picking up a photon, “scratching its head,” so to speak,
and emitting a new photon. This simplification of every-
thing we have talked about so far is very pretty.

8 Keeping this principle in mind should help the student avoid being
confused by things such as the “reduction of a wave packet” and similar
magic.



