Quantum mechanics in a two-dimensional state space

Consider a system described by the Hamiltonian H

m= (5 %)

and by a second observable operator €2

n:(‘; —O").

At t = 0, this system is initially in the state | ¢)(t = 0) > represented by N <i)

Calculate the normalization constant N.

Find the eigenvalues and the eigenvectors of the Hamiltonian operator. Whether you find them by
inspection, or by full calculation, show that they work!

Find the eigenvalues and the eigenvectors of the Omega operator. Whether you find them by inspection,
or by full calculation, show that they work!

Use outer products the eigenvectors of the Hamiltonian operator to calculate the two matrices that
represent the two energy-subspace projection operators. Show that the eigenvectors of the Hamiltonian
operator H form a basis for the two-dimensional state space by showing that the sum of the two energy-
subspace projection operators is equal to the identity operator.

Use outer products the eigenvectors of the Omega operator to calculate the two matrices that represent
the two omega-subspace projection operators. Show that the eigenvectors of the € operator form a
basis for the two-dimensional state space by showing that the sum of the two omega-subspace projection
operators is equal to the identity operator.

Calculate the commutator [ H, Q2 ]. Do H and € commute?

If you were to measure the energy at time ¢ = 0, what results could you obtain, and with what proba-
bilities would you obtain them? What would the state vector be right after each energy measurement?

If instead you were to measure the omega-ness at time ¢ = 0, what results could you obtain, and with
what probabilities would you obtain them? What would the state vector be right after each omega-ness
measurement?

Calculate the t = 0 expectation values of H and €2 using

<H >=<(0)|H|¢(0) > and

< Q >=<¢(0)|Qy(0) >.

Then show that your results agree with the values that you obtained above, i.e., show that

< P(0)[H[y(0) >= > P(E;) E;

and show that

< $(0)|Q[y(0) >= 3 P(w;) wi.



()

Calculate the ¢ = 0 uncertainties AH and A2 using

AH =< (0)| (H- < H >)? [4(0) >%5 and

AQ =< p(0)] (2— < Q@ >)? [(0) >*°

Then show that your results agree with the values that you obtained above, i.e., show that
< (0)] (H= < H >)2 [1:(0) >09= ( X P(E;) (Ei— < H >)? )05

and show that

<P(0)] (= <@ >)? [$(0) >*° = (X P(wi) (wi— < Q>?))".

For measurements at t = 0, sketch P(E;) versus E and sketch P(w;) versus w. Indicate your calculated
values of < H > and AH and your calculated values of < € > and A€ on your respective sketches.

Consider extremely fast alternating energy and omega-ness measurements—so fast that you can neglect
the much slower time evolution produced by the Hamiltonian. Draw and explain the branches of the
probability tree for the case where the first measurement is an energy measurement. You can stop at the
fourth generation: H, Q, H, Q. Your probability tree should show the possibilities, the probabilities,
and the resulting state vectors for each measurement.

Consider extremely fast alternating omega-ness and energy measurements—so fast that you can neglect
the much slower time evolution produced by the Hamiltonian. Draw and explain the branches of the
probability tree for the case where the first measurement is an omega-ness measurement. You can stop at
the fourth generation: 2, H, Q H. Your probability tree should show the possibilities, the probabilities,
and the resulting state vectors for each measurement.

Finally, consider the time-dependence of this system.

Expand | ¥(0) > in the energy eigenbasis and then write down the time evolution of | ¥ (t) >.

If you were to measure the energy at time ¢, what results could you obtain, and with what probabilities
would you obtain them? What would the state vector be right after each energy measurement?

If instead you were to measure the omega-ness at time ¢, what results could you obtain, and with what
probabilities would you obtain them? What would the state vector be right after each omega-ness

measurement?

Explain why the energy measurements are time-independent, but the w measurements are not.



