The double slit experiment and the essential
mystery of quantum mechanics

(1) Read Feynman’s Messenger Lecture about the double slit experiment and write a two page
summary and explanation of it in your own words. Feynman’s lecture is in my posted lecture
notes for lecture 2.

(2) Read the two excerpts from the Feynman Lectures on Physics about the double slit experiment
and write a two page summary and explanation about what they contain that his Messenger
Lecture does not. The two excerpts are attached.

Read the notes about the double slit experiment that follow and then consider the double slit
experiments described below. All of the experiments have

Two equal slits
With slit 1 open, 10,000 electrons per second
With slit 2 open, 10,000 electrons per second
Very narrow slits => 10,000 electrons per second across the entire screen
(3) Calculate and draw the intensity patterns on the screen for the three cases
only slit 1 open
only slit 2 open
both slits open
Next, consider adding a 50% efficient electron detector behind slit 1
(4) Calculate and draw the intensity patterns on the screen with both slits open for the two cases
When detector 1 sees the electron
When detector 1 does not see the electron
Finally, consider 50% efficient detectors behind both slits
(5) Calculate and draw the intensity patterns on the screen with both slits open for the four cases
When detector 1 sees the electron and detector 2 does not
When detector 2 sees the electron and detector 1 does not

When both detectors see the electron
When both detectors do not see the electron

(6) For each case above, show that electrons are conserved---i.e., show that the average number
of electrons detected is equal to the number of electrons that pass thru the slits



Fig. 12-4. Experiment to show wave properties of electrons.
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Fig. 12-5. Electron distributions according to classical
physics.
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12-3 Wave-Particle Duality

Particles are waves are particles

Phenomena such as the photoelectric effect indicated that
light must have the properties of particles along with its
known wave nature. This behavior of light becomes para-
doxical when one considers Young’s double-slit experiment
performed with a light source so faint that only one photon
at a time can enter the apparatus. Photomultiplier tubes
which utilize the photoelectric effect can detect the photons
one at a time. Let us use photomultiplier tubes in place of the
screen in Fig. 10-18. The distance from source to screen is
typically about 100 cm, so each photon “lives” for

(=S 100 cm

—__ Wem -9
v 3 x 1010 cm/sec 3 X 1079 sec

If the time between “clicks” from the photomultiplier tubes
is less than this, only one photon at a time reaches the double
slit. This experiment can be performed (see the Educational
Services Inc. film on double-slit interference) and the result
is that the interference pattern remains exactly the same.
How can one photon pass through #wo slits? One way to re-
state the question is, how can light have both particle and
wave properties in the same experiment? This question is
one of the most important in all of physics and we will try
to answer it in the following paragraphs.

It is now known that this wave-particle relationship or
“duality” applies to all particles and waves and is the basic
principle of the modern quantum theory. At first it may
sound quite farfetched to claim that material particles have
a wave nature similar to that of photons. Before describing
just what is meant by the wave associated with any particle,
let us consider the idealized experiment of Fig. 12-4.

An electron gun shoots a beam of electrons at a barrier
that has two slits, A and B. On the other side there is a
Geiger counter that counts each individual electron that hits
it. Suppose we count 100 electrons per minute coming from
slit A (slit B is closed). The counting rate from slit B alone is
also 100 counts per minute. If we open only slit A and then
gradually open slit B, we would expect (according to common
sense and everything we have ever learned) the counting rate
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Fig. 12-6. Electron distribution according to quantum

theory.
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Fig. 12-7. Drawing from research paper by C. Jonsson in
Zeitschrift fiir Physik, Vol. 161 (1961), showing his experi-
mental arrangement for obtaining double-slit interference

pattern of electrons.
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to increase gradually from 100 to 200 counts per minute as
slit B is opened. However, depending on the position of the
counter, the true experimental result could be a gradual de-
crease from 100 to zero counts per minute! How can the act
of opening slit B possibly influence those electrons that
would have gone through slit A? Another violation of com-
mon sense is that a counter position can be found where the
rate would increase from 100 to 400 counts per minute as slit
Bis opened. Then there would be twice as many electrons as
obtained from the direct sum of the two separate con-
tributions.

Figure 12-5 shows the expected classical electron distribu-
tions at the position of the counter as the counter is moved
across the beam (electron intensity is plotted to the right in
red). But if we actually do the experiment, we obtain a quite
different pattern as shown in Fig. 12-6! Note that this experi-
mental electron intensity pattern is of the same type as the
double-slit interference pattern of light waves. If D; — D, =
N, there would be an interference maximum; if Dy — D, =
(N + 1A, there would be a minimum of intensity. As we shall
see in the next paragraph, electrons usually have wave-
lengths much smaller than that of visible light; hence it is
difficult to perform Young’s experiment with electrons.
However, C. Jonsson in 1961 was able to obtain a genuine
double-slit interference pattern of electrons on a photo-
graphic “screen.” The experimental layout is shown
schematically in Fig. 12-7 and the results are shown in
Fig. 12-8a.

Each electron produces a black spot at the position where
it hits the film. This photograph using a double-slit source
of electrons is the result of thousands of electron impacts. For
comparison, Fig. 12-8b shows a typical double-slit inter-
ference pattern using light.

But how can electrons that we know to be particles of
definite mass and charge at the same time be waves? Actually
this possibility was first proposed by a student, Louis de
Broglie, in his Ph. D. thesis in 1924. He proposed that all
particles must have a wave nature in the same manner that
light has a wave nature. The physical interpretation of the
wave-particle duality is that the intensity of the particle wave
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Fig. 12-8. (a) A double slit interference pattern of electrons
Each grain in the photographic negative is produced by a
single electron. For comparison, (b) is the double slit interfer-
ence pattern of light shown in Chapter 10 (Fig. 10-15). Like-
wise, each grain in the negative is produced by a single
photon. ((¢) was made by Professor C. Jonsson at the Univer-
sity of Tubingen.)

(@

at any given point is proportional to the probability of finding
the particle at that point. This is what is meant by the wave-
particle duality. The word duality is perhaps a poor choice.
What is meant is that there is the definite relationship as
italicized above between the particle characteristics and the
wave characteristics of any particle (or wave). De Broglie
proposed a quantitative relationship between the wave-
length of the particle wave and the momentum of the
particle:

The de Broglie relationship A= (12-6)

=l

for any particle of momentum P.

Example 4

Starting with the de Broglie relationship, derive the formula
W = hf for particles of zero rest mass (note that this formula holds
only for particles of zero rest mass). Relativistically

P=Mv and M:E
o2

Therefore
Wu
2

For a particle of zero rest mass v = ¢ and then P = W/c. Substitut-
ing in 12-6:

W=hnS=h
or X f

In Eq. 12-6, the wave nature, the left-hand side, is directly
and intimately related to the particle nature, the right-hand
side. The proportionality constant, 4, is Planck’s constant,
which had previously been determined by phenomena such
as black body radiation, the photoelectric effect, and the
hydrogen spectrum.

The wave-particle duality raises puzzling questions that
require some further physical interpretation. Let us shoot
only one electron at a time. Then according to this wave
picture, each electron is represented by a wave train or wave
packet that splits equally between the two slits. But we can
put a geiger counter, cloud chamber, or other particle de-
tector at slit A and observe that there is never in nature half
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Q.4: Assume a thin-walled Geiger counter is placed behind
slit A only. Whenever an electron goes through slit A it gives
a “click” in the detector and passes through the Geiger coun-
ter tube to the screen. If the Geiger counter is turned off (but
not removed), what will be the pattern on the screen?

of an electron. We either observe all of a particle, or else no
particle at all. This is called the principle of indivisibility and
is consistent with the hypothesis that the wave intensity at
slit A is the probability of finding one whole electron at that
position. Furthermore, if a detector is placed at slit A, the
interference pattern smooths out and the classical result is
then observed. To be detected, the electron must have an
interaction with the detector. According to the quantum
theory, we then have a new electron wave starting out from
the point of interaction which produces just a single slit pat-
tern. On the other hand, if an electron appears on the screen
without being detected by the detector at slit A, we then
know its wave must have gone through slit B only. Thus the
presence of a detector changes the result from the inter-
ference pattern of Fig. 12-6 to the classical result of Fig. 12-5.
Actually many physicists, including Einstein, have tried to
contrive an experiment that would reveal the slit used by
individual electrons without destroying the interference, but
all such efforts have failed.

Just what is it that waves in an electron wave? We must
give the same kind of answer we gave for photons. Electro-
magnetic waves travel freely through pure vacuum. In con-
trast to mechanical waves, no material of any kind is waving.
Physicists use the symbol ¢ for the amplitude of a particle
wave. The intensity is the square of the absolute value of the
amplitude or [:/|2. Hence |{/(x)|2 is proportional to the prob-
ability of finding the particle at position x. The wave ampli-
tude (x) has no direct physical meaning, and in this sense
nothing is waving. It is just that quantum mechanical prob-
lems are solved mathematically in the same way that water
wave or other kinds of classical wave problems are solved.
Classical waves and particle waves both obey the same kind
of mathematical wave equation. However, in the case of
classical waves, the wave amplitude is directly observable,
whereas { is not (except in certain special cases for the
photon). Another nonclassical characteristic of quantum
mechanical waves is that even though the wave intensity is
always a real positive number, sometimes the wave ampli-
tude must be expressed as a complex number containing
v/ —1. We will not deal with examples requiring complex
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Fig. 12-9. Set up for Example 5.
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Fig. 12-10. Intensity pattern of electrons hitting screen in

Example 6.
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Ans. 4: One still observes the classical pattern on the screen.
The electrons are still interacting in the Geiger tube whether
or not we bother to record those interactions.

numbers in this book. Now we shall illustrate the mathe-
matics of particle waves by a few simple examples.

Example 5

There is a Geiger counter at point P in Fig. 12-9. The part of the
wave amplitude coming through slit A and reaching point P is
Y4 = 2 units, and through slit B is Y5 = 6 units. When only slit A is
open, 100 electrons per second are observed at point P.

(a) How many electrons per second are observed when only slit B
is open?

(b) Assuming a constructive interference, how many electrons per
second are observed when both slits are open?

(c) Assuming a destructive interference, how many electrons per
second are observed when both slits are open?

Answer: We are told that the particle wave intensity Y42 = 4
corresponds to 100 electrons per second. Hence y5? = 36 will cor-
respond to nine times as many particles, or 900 electrons per second.

For part (b) the total wave amplitude is ¥ = {4 + {5, or ¢ = 8.
Since y2 = 64 is sixteen times {2, there will be 1600 electrons per
second.

For part (c) ¥4 and Y must be of opposite sign to give a destructive
interference. Hence ¢ = ¢4 +¢yg=2 — 6= —4. Now ¢2=16
which is four times y42. This corresponds to 400 electrons per second.

Example 6

What will be the intensity pattern of a double-slit interference
experiment if slit B is four times as wide as slit A?

Answer: Four times as many electrons can get through slit B,
hence the intensity 52 = 4y,42, or Y5 = 244 The total intensity ob-
served on a screen at a maximum is proportional to (Y4 + ¥g)2, or

Imax = (‘pA + Z‘PA 2 = 9¢A2
At an intensity minimum, we use a minus sign giving
TInin = (Y4 — 244)? = 4

The ratio Tmax = 3
Imin 1

The intensity pattern would appear as in Fig. 12-10.

Example 7

Now we go back again to two slits of equal sizes; however, we put
a small, thin detector behind slit A in an attempt to determine which
slit each electron goes through. Suppose, however, that the detector
is not perfect; that is, it is so thin that an electron has one chance
out of four of passing through it without interacting. What now is
the interference pattern?
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Fig. 12-11. Intensity pattern of electrons hitting screen in
Example 7.
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Q.5: Two light beams strike a screen. There are 3 times as
many photons per sec in beam 1 as in beam 2. What is the
ratio of the electric fields in the two beams?

Answer: Let us call y, the part of the beam going through slit A
that is undetected and can therefore interfere with the electron
waves going through slit B. Since only 4 get through the detector
Y4? = hg?. Let us denote the intensity of the detected electrons at
slit A by y.4-2 where Y42 = $452 and cannot interfere. We must treat
Y- as a new localized source of electron waves which have no fixed
phase relation with respect to ¢;. In such cases of independent (also
called incoherent) sources of particles one must add intensities, not
amplitudes. The grand total intensity is then the sum of the two
intensities:

I'=(a+ yB)? + Ya?
Now substitute 4 for ., and $52 for 4.2

The result is Imax _ (Ws +¥8)° + Wa® _ W + {Ws° _3

Inn  (Ws — 8 + We® W+ We? 1
The resulting interference pattern is shown in Fig. 12-11. If the de-
tector were removed the intensity minima would be zero and one
would then have a pure double-slit interference pattern.

12-4 Electron Diffraction
An accident

De Broglie’s hypothesis was first verified by the experi-
mental observation of electron diffraction in 1927 by two
American physicists, C. J. Davisson and L. H. Germer. It is
interesting that in this experiment, as in others that were of
extreme importance to physics, the great discovery was
“accidental.” Davisson and Germer were not looking for elec-
tron diffraction. In fact, in the early stages of their experi-
ment, they had never even heard of electron diffraction. In
1926, Davisson took some of his preliminary data to an inter-
national conference in Oxford, England. European physicists
suggested to him that his results might be interpreted as
electron diffraction rather than the classical electron scatter-
ing that he had been studying. Just a few months later,
Davisson and Germer obtained data that conclusively
demonstrated the wave nature of electrons and gave Planck’s
constant to an accuracy of about 1%. They scattered low-
energy electrons off the surface of a single metallic crystal.
The regular rows of atoms at the surface act as the lines of a
very fine diffraction grating. The electron wavelength is
determined by knowing the atomic spacing.
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EXAMPLE 1

EQUAL SLITS
With Slit 1 open 100 photons/second => A41=10

With Slit 2 open 100 photons/second => A2=10

HOW MANY WHEN 1 AND 2 CONSTRUCTIVE?
A=Aq+A2 = 20

A2 = 400 photons/second

HOW MANY WHEN 1 AND 2 DESTRUCTIVE?
A=Aq+A2 =0

A2=0 photons/second



EXAMPLE 2

Aq=2
A2>=6
With slit 1 open 100 photons/second

HOW MANY WITH ONLY SLIT 2 OPEN?
(A1)2 =4

4*(25 photons/sec) = 100 photons/second
(A2)? = 36

36*(25 photons/sec) = 900 photons/second
HOW MANY WHEN 1 AND 2 CONSTRUCTIVE?
A=Aq+A2=8

A2 = 64

64*(25 photons/sec) = 1600 photons/second
HOW MANY WHEN 1 AND 2 DESTRUCTIVE?
A=Ar-Aq=14

A2 = 16
16*(25 photons/sec) = 400 photons/second



EXAMPLE 3

put a partial detector behind slit 1
for a total of 100 photons/second thru slit 1
50 photons/second are not detected => Aq = 7.07

50 photons/second are detected => Aqq = 7.07

no partial detector behind slit 2 => A3 =10
100 photons/second not detected thru slit 2

FOR THE PHOTONS NOT DETECTED:
HOW MANY CONSTRUCTIVE?
A=Aq+Ar2=7.07 +10

A2 = 291.42 photons/second
HOW MANY DESTRUCTIVE?
A=Aq +A2=10-7.07

A2 = 8,58 photons/second

FOR THE PHOTONS DETECTED:
NO INTERFERENCE

(A1 d)z = 50 photons/second



EXAMPLE 4

equal slits
put a partial detector behind slit 1
3/4 of the photons/second are not detected A4

1/4 of the photons/second are detected A4g

(Aqg)2 = 1/4 (A2)2=> Aqq = 1/2 Ao
(Aq)? = 3/4 (A2)2 => A4 = (3/14)0-9 A5

The total intensity is proportional to

I ~ (Aq + A2)? + (A1q)?

The Intensity Contrast = Ihax/Imin IS given by
((1/2)*Ao + A2)2 + 3/4 (A2)2 divided by
((1/2)*A2 - A2)2 + 3/4 (A3)2

So, the Intensity Contrast = 3/1



Quantum Behavior

1-1 Atomic mechanics

“Quantum mechanics™ is the description of the behavior of matter and light
in all its details and, in particular, of the happenings on an atomic scale. Things
on a very small scale behave like nothing that you have any direct experience
about. They do not behave like waves, they do not behave like particles, they do
not behave like clouds, or billiard balls, or weights on springs, or like anything
that you have ever seen.

Newton thought that light was made up of particles, but then it was discovered
that it behaves like a wave. Later, however (in the beginning of the twentieth
century), it was found that light did indeed sometimes behave like a particle.
Historically, the electron, for example, was thought to behave like a particle, and
then it was found that in many respects it behaved like a wave. So it really behaves
like neither. Now we have given up. We say: “It is like neither.”

There is one lucky break, however—electrons behave just like light. The
quantum behavior of atomic objects (electrons, protons, neutrons, photons, and
so on) is the same for all, they are all “particle waves,” or whatever you want to
call them. So what we learn about the properties of electrons (which we shall use
for our examples) will apply also to all “particles,” including photons of light.

The gradual accumulation of information about atomic and small-scale be-
havior during the first quarter of this century, which gave some indications about
how small things do behave, produced an increasing confusion which was finally
resolved in 1926 and 1927 by Schrodinger, Heisenberg, and Born. They finally
obtained a consistent description of the behavior of matter on a small scale. We
take up the main features of that description in this chapter.

Because atomic behavior is so unlike ordinary experience, it is very difficult
to get used to, and it appears peculiar and mysterious to everyone—both to the
novice and to the experienced physicist. Even the experts do not understand it
the way they would like to, and it is perfectly reasonable that they should not,
because all of direct, human experience and of human intuition applies to large
objects. We know how large objects will act, but things on a small scale just do
not act that way. So we have to learn about them in a sort of abstract or imagi-
native fashion and not by connection with our direct experience.

In this chapter we shall tackle immediately the basic element of the mysterious
behavior in its most strange form. We choose to examine a phenomenon which is
impossible, absolutely impossible, to explain in any classical way, and which has
in it the heart of quantum mechanics. In reality, it contains the only mystery.
We cannot make the mystery go away by ‘“‘explaining” how it works. We will just
tell you how it works. In telling you how it works we will have told you about the
basic peculiarities of all quantum mechanics.

1-2 An experiment with bullets

To try to understand the quantum behavior of electrons, we shall compare
and contrast their behavior, in a particular experimental setup, with the more
familiar behavior of particles like bullets, and with the behavior of waves like
water waves. We consider first the behavior of bullets in the experimental setup
shown diagrammatically in Fig. 1-1. We have a machine gun that shoots a stream
of bullets. It is not a very good gun, in that it sprays the bullets (randomly) over a
fairly large angular spread, as indicated in the figure. In front of the gun we have
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Fig. 1-1.
with bullets.

Interference

experiment

a wall (made of armor plate) that has in it two holes just about big enough to let a
bullet through. Beyond the wall is a backstop (say a thick wall of wood) which will
“absorb” the bullets when they hit it. In front of the wall we have an object which
we shall call a “detector” of bullets. It might be a box containing sand. Any bullet
that enters the detector will be stopped and accumulated. When we wish, we can
empty the box and count the number of bullets that have been caught. The
detector can be moved back and forth (in what we will call the x-direction). With
this apparatus, we can find out experimentally the answer to the question: “What
is the probability that a bullet which passes through the holes in the wall will
arrive at the backstop at the distance x from the center?” First, you should
realize that we should talk about probability, because we cannot say definitely
where any particular bullet will go. A bullet which happens to hit one of the holes
may bounce off the edges of the hole, and may end up anywhere at all. By “prob-
ability” we mean the chance that the bullet will arrive at the detector, which we can
measure by counting the number which arrive at the detector in a certain time and
then taking the ratio of this number to the zotal number that hit the backstop during
that time. Or, if we assume that the gun always shoots at the same rate during the
measurements, the probability we want is just proportional to the number that
reach the detector in some standard time interval.
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For our present purposes we would like to imagine a somewhat idealized
experiment in which the bullets are not real bullets, but are indestructible bullets—
they cannot break in half. In our experiment we find that bullets always arrive in
lumps, and when we find something in the detector, it is always one whole bullet.
If the rate at which the machine gun fires is made very low, we find that at any given
moment either nothing arrives, or one and only one—exactly one—bullet arrives
at the backstop. Also, the size of the lump certainly does not depend on the rate
of firing of the gun. We shall say: “Bullets always arrive in identical lumps.” What
we measure with our detector is the probability of arrival of a lump. And we meas-
ure the probability as a function of x. The result of such measurements with this
apparatus (we have not yet done the experiment, so we are really imagining the
result) are plotted in the graph drawn in part (¢) of Fig. 1-1. In the graph we plot
the probability to the right and x vertically, so that the x-scale fits the diagram of
the apparatus. We call the probability P;, because the bullets may have come
either through hole 1 or through hole 2. You will not be surprised that P, is
large near the middle of the graph but gets small if x is very large. You may
wonder, however, why P, has its maximum value at x = 0. We can understand
this fact if we do our experiment again after covering up hole 2, and once more
while covering up hole 1. When hole 2 is covered, bullets can pass only through
hole 1, and we get the curve marked P in part (b) of the figure. As you would
expect, the maximum of P, occurs at the value of x which is on a straight line with
the gun and hole 1. When hole 1 is closed, we get the symmetric curve P, drawn
in the figure. P, is the probability distribution for bullets that pass through hole
2. Comparing parts (b) and (c) of Fig. 1-1, we find the important result that

P13 = Py + P (1.D)



The probabilities just add together. The effect with both holes open is the sum of
the effects with each hole open alone. We shall call this result an observation of
“no interference,” for a reason that you will see later. So much for bullets. They
come in lumps, and their probability of arrival shows no interference.

1-3 An experiment with waves

Now we wish to consider an experiment with water waves. The apparatus is
shown diagrammatically in Fig. 1-2. We have a shallow trough of water. A small
object labeled the “wave source” is jiggled up and down by a motor and makes
circular waves. To the right of the source we have again a wall with two holes,
and beyond that is a second wall, which, to keep things simple, is an “absorber,”
so that there is no reflection of the waves that arrive there. This can be done by
building a gradual sand “beach.” In front of the beach we place a detector which
can be moved back and forth in the x-direction, as before. The detector is now a
device which measures the “intensity” of the wave motion. You can imagine a
gadget which measures the height of the wave motion, but whose scale is calibrated
in proportion to the square of the actual height, so that the reading is proportional
to the intensity of the wave. Our detector reads, then, in proportion to the energy
being carried by the wave—or rather, the rate at which energy is carried to the
detector.
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With our wave apparatus, the first thing to notice is that the intensity can
have any size. If the source just moves a very small amount, then there is just a
little bit of wave motion at the detector. When there is more motion at the source,
there is more intensity at the detector. The intensity of the wave can have any
value at all. We would not say that there was any “lumpiness” in the wave intensity.

Now let us measure the wave intensity for various values of x (keeping the
wave source operating always in the same way). We get the interesting-looking
curve marked 7,5 in part (c) of the figure.

We have already worked out how such patterns can come about when we
studied the interference of electric waves in Volume 1. In this case we would
observe that the original wave is diffracted at the holes, and new circular waves
spread out from each hole. If we cover one hole at a time and measure the intensity
distribution at the absorber we find the rather simple intensity curves shown in part
(b) of the figure. I, is the intensity of the wave from hole 1 (which we find by
measuring when hole 2 is blocked off) and I, is the intensity of the wave from hole
2 (seen when hole 1 is blocked).

The intensity I,, observed when both holes are open is certainly nof the sum
of I; and I,. We say that there is “interference” of the two waves. At some places
(where the curve I;, has its maxima) the waves are “in phase” and the wave
peaks add together to give a large amplitude and, therefore, a large intensity. We
say that the two waves are “interfering constructively” at such places. There will
be such constructive interference wherever the distance from the detector to one
hole is a whole number of wavelengths larger (or shorter) than the distance fro:i
the detector to the other hole.

1-3

Fig. 1-2. Interference
with water waves.
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Fig. 1-3.
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Interference

experiment

At those places where the two waves arrive at the detector with a phase differ-
ence of = (where they are “out of phase”) the resulting wave motion at the detector
will be the difference of the-two amplitudes. The waves “interfere destructively,”
and we get a low value for the wave intensity. We expect such low values wherever
the distance between hole 1 and the detector is different from the distance between
hole 2 and the detector by an odd number of half-wavelengths. The low values of
I4in Fig. 1-2 correspond to the places where the two waves interfere destructively.

You will remember that the quantitative relationship between I, I, and I,
can be expressed in the following way: The instantaneous height of the water wave
at the detector for the wave from hole 1 can be written as (the real part of) A;e*,
where the “amplitude” £, is, in general, a complex number. The intensity is
proportional to the mean squared height or, when we use the complex numbers,
to the absolute value squared |/,|2. Similarly, for hole 2 the height is /,¢*“t and the
intensity is proportional to |hs|%. When both holes are open, the wave heights
add to give the height(#; + hs)e™’ and the intensity |#; + h3|%. Omitting the
constant of proportionality for our present purposes, the proper relations for
interfering waves are

I, = lh1|2a I, = |h2|2: Iy = |hy + h2|2. (1.2)

You will notice that the result is quite different from that obtained with bullets
(Eq. 1-1). If we expand |h; + h3|® we see that

lhy + hal? = |hy|? + |ha|? + 2lhi]hs| cos 5, (1.3)

where § is the phase difference between %, and h,. In terms of the intensities, we
could write

112 = I +12+2\/1112005 d. (14)

The last term in (1.4) is the “interference term.” So much for water waves. The
intensity can have any value, and it shows interference.

1-4 An experiment with electrons

Now we imagine a similar experiment with electrons. It is shown diagram-
matically in Fig. 1-3. We make an electron gun which consists of a tungsten wire
heated by an electric current and surrounded by a metal box with a hole in it. If
the wire is at a negative voltage with respect to the box, electrons emitted by the
wire will be accelerated toward the walls and some will pass through the hole.
All the electrons which come out of the gun will have (nearly) the same energy.
In front of the gun is again a wall (just a thin metal plate) with two holes in it.
Beyond the wall is another plate which will serve as a “backstop.” In front of the
backstop we place a movable detector. The detector might be a geiger counter or,
perhaps better, an electron multiplier, which is connected to a loudspeaker.

We should say right away that you should not try to set up this experiment
(as you could have done with the two we have already described). This experiment
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has never been done in just this way. The trouble is that the apparatus would have
to be made on an impossibly small scale to show the effects we are interested in.
We are doing a “thought experiment,” which we have chosen because it is easy to
think about. We know the results that would be obtained because there are many
experiments that have been done, in which the scale and the proportions have
been chosen to show the effects we shall describe.

The first thing we notice with our electron experiment is that we hear sharp
“clicks” from the detector (that is, from the loudspeaker). And all “clicks” are
the same. There are no “half-clicks.”

We would also notice that the ‘“clicks” come very erratically. Something like:
click..... click-click . . .click........ click . ...click-click...... click...,
etc., just as you have, no doubt, heard a geiger counter operating. If we count
the clicks which arrive in a sufficiently long time—say for many minutes—and
then count again for another equal period, we find that the two numbers are very
nearly the same. So we can speak of the average rate at which the clicks are heard
(so-and-so-many clicks per minute on the average).

As we move the detector around, the rate at which the clicks appear is faster
or slower, but the size (loudness) of each click is always the same. If we lower the
temperature of the wire in the gun, the rate of clicking slows down, but still each
click sounds the same. We would notice also that if we put two separate detectors
at the backstop, one or the other would click, but never both at once. (Except that
once in a while, if there were two clicks very close together in time, our ear might
not sense the separation.) We conclude, therefore, that whatever arrives at the
backstop arrives in “lumps.” All the “lumps” are the same size: only whole
“lumps” arrive, and they arrive one at a time at the backstop. We shall say:
“Electrons always arrive in identical lumps.”

Just as for our experiment with bullets, we can now proceed to find experi-
mentally the answer to the question: “What is the relative probability that an
electron ‘lump’ will arrive at the backstop at various distances x from the center?”
As before, we obtain the relative probability by observing the rate of clicks, holding
the operation of the gun constant. The probability that lumps will arrive at a
particular x is proportional to the average rate of clicks at that x.

The result of our experiment is the interesting curve marked P, in part (c)
of Fig. 1-3. Yes! That is the way electrons go.

1-5 The interference of electron waves

Now let us try to analyze the curve of Fig. 1-3 to see whether we can under-
stand the behavior of the electrons. The first thing we would say is that since they
come in lumps, each lump, which we may as well call an electron, has come either
through hole 1 or through hole 2. Let us write this in the form of a “Proposition”:

Proposition A: Each electron either goes through hole 1 or it goes through
hole 2.

Assuming Propositon A, all electrons that arrive at the backstop can be di-
vided into two classes: (1) those that come through hole 1, and (2) those that come
through hole 2. So our observed curve must be the sum of the effects of the elec-
trons which come through hole 1 and the electrons which come through hole 2.
Let us check this idea by experiment. First, we will make a measurement for those
electrons that come through hole 1. We block off hole 2 and make our counts of
the clicks from the detector. From the clicking rate, we get Py. The result of the
measurement is shown by the curve marked P, in part (b) of Fig. 1-3. The result
seems quite reasonable. In a similar way, we measure P, the probability distribu-
tion for the electrons that come through hole 2. The result of this measurement
is also drawn in the figure.

The result P, , obtained with both holes open is clearly not the sum of P, and
P, the probabilities for each hole alone. In analogy with our water-wave experi-
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ment, we say: “There is interference.”
For electrons: Pyy = Py + P, (1.5

How can such an interference come about? Perhaps we should say: “Well,
that means, presumably, that it is not true that the lumps go either through hole
1 or hole 2, because if they did, the probabilities should add. Perhaps they go in a
more complicated way. They split in half and . ..” But no! They cannot, they
always arrive in lumps ... “Well, perhaps some of them go through 1, and then
they go around through 2, and then around a few more times, or by some other
complicated path . . . then by closing hole 2, we changed the chance that an elec-
tron that started out through hole 1 would finally get to the backstop...” But
notice! There are some points at which very few electrons arrive when both holes
are open, but which receive many electrons if we close one hole, so closing one
hole increased the number from the other. Notice, however, that at the center
of the pattern, P, , is more than twice as large as Py + P,. Itis as though closing
one hole decreased the number of electrons which come through the other hole.
It seems hard to explain both effects by proposing that the electrons travel in
complicated paths.

It is all quite mysterious. And the more you look at it the more mysterious
it seems. Many ideas have been concocted to try to explain the curve for Py, in
terms of individual electrons going around in complicated ways through the holes.
None of them has succeeded. None of them can get the right curve for Py, in
terms of P, and P,.

Yet, surprisingly enough, the mathematics for relating P; and P, to Py5 is
extremely simple. For P, is just like the curve 115 of Fig. 1-2, and thar was
simple. What is going on at the backstop can be described by two complex numbers
that we can call ¢ and ¢, (they are functions of x, of course). The absolute square
of ¢ gives the effect with only hole 1 open. Thatis, Py = |¢;|2. The effect with
only hole 2 open is given by ¢, in the same way. Thatis, P, = |¢5]% And the
combined effect of the two holes is just Py = |p; + ¢9|% The mathematics
is the same as that we had for the water waves! (It is hard to see how one could
get such a simple result from a complicated game of electrons going back and forth
through the plate on some strange trajectory.)

We conclude the following: The electrons arrive in lumps, like particles, and
the probability of arrival of these lumps is distributed like the distribution of
intensity of a wave. It is in this sense that an electron behaves “sometimes like a
particle and sometimes like a wave.”

Incidentally, when we were dealing with classical waves we defined the in-
tensity as the mean over time of the square of the wave amplitude, and we used
complex numbers as a mathematical trick to simplify the analysis. But in quantum
mechanics it turns out that the amplitudes must be represented by complex num-
bers. The real parts alone will not do. That is a technical point, for the moment,
because the formulas look just the same.

Since the probability of arrival through both holes is given so simply, although
it is not equal to (P, + P,), that is really all there is to say. But there are a large
number of subtleties involved in the fact that nature does work this way. We
would like to illustrate some of these subtleties for you now. First, since the num-
ber that arrives at a particular point is nor equal to the number that arrives through
1 plus the number that arrives through 2, as we would have concluded from
Proposition A, undoubtedly we should conclude that Proposition A is false. 1t is
not true that the electrons go either through hole 1 or hole 2. But that conclusion
can be tested by another experiment.

1-6 Watching the electrons

We shall now try the following experiment. To our electron apparatus we
add a very strong light source, placed behind the wall and between the two holes,
as shown in Fig. 1-4. We know that electric charges scatter light. So when an

1-6



7 P’ P’
a 1 12
t
= ]
T 7%/ g
ELECTRON ‘7’2
GUN ; R’
2
g
7
/
AL

(a) (b} (c)

electron passes, however it does pass, on its way to the detector, it will scatter some
light to our eye, and we can see where the electron goes. If, for instance, an electron
were to take the path via hole 2 that is sketched in Fig. 1-4, we should see a flash
of light coming from the vicinity of the place marked A in the figure. If an electron
passes through hole 1, we would expect to see a flash from the vicinity of the upper
hole. If it should happen that we get light from both places at the same time,
because the electron divides in half . .. Let us just do the experiment!

Here is what we see: every time that we hear a “click” from our electron de-
tector (at the backstop), we also see a flash of light either near hole 1 or near hole
2, but never both at once! And we observe the same result no matter where we put
the detector. From this observation we conclude that when we look at the electrons
we find that the electrons go either through one hole or the other. Experimentally,
Proposition A is necessarily true.

‘What, then, is wrong with our argument against Proposition A? Why isn’t
Py justequal to Py 4 P3? Back to experiment! Let us keep track of the electrons
and find out what they are doing. For each position (x-location) of the detector
we will count the electrons that arrive and also keep track of which hole they went
through, by watching for the flashes. We can keep track of things this way:
whenever we hear a “click” we will put a count in Column 1 if we see the flash near
hole 1, and if we see the flash near hole 2, we will record a count in Column 2.
Every electron which arrives is recorded in one of two classes: those which come
through 1 and those which come through 2. From the number recorded in Column
1 we get the probability P; that an electron will arrive at the detector via hole 1;
and from the number recorded in Column 2 we get P}, the probability that an
electron will arrive at the detector via hole 2. If we now repeat such a measurement
for many values of x, we get the curves for P; and P} shown in part (b) of Fig. 1-4.

Well, that is not too surprising! We get for Py something quite similar to
what we got before for P by blocking off hole 2; and P} is similar to what we got
by blocking hole 1. So there is not any complicated business like going through
both holes. When we watch them, the electrons come through just as we would
expect them to come through. Whether the holes are closed or open, those which
we see come through hole 1 are distributed in the same way whether hole 2 is open
or closed.

But wait! What do we have now for the rotal probability, the probability that
an electron will arrive at the detector by any route? We already have that informa-
tion. We just pretend that we never looked at the light flashes, and we lump to-
gether the detector clicks which we have separated into the two columns. We
must just add the numbers. For the probability that an electron will arrive at the
backstop by passing through either hole, we do find P;, = P, + P,. That is,
although we succeeded in watching which hole our electrons come through, we
no longer get the old interference curve P,,, but a new one, P1,, showing no
interference! If we turn out the light P, is restored.

We must conclude that when we look at the electrons the distribution of them
on the screen is different than when we do not look. Perhaps it is turning on our
light source that disturbs things? It must be that the electrons are very delicate,
and the light, when it scatters off the electrons, gives them a jolt that changes their
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motion. We know that the electric field of the light acting on a charge will exert
a force on it. So perhaps we should expect the motion to be changed. Anyway,
the light exerts a big influence on the electrons. By trying to “watch’ the electrons
we have changed their motions. That is, the jolt given to the electron when the
photon is scattered by it is such as to change the electron’s motion enough so that
if it might have gone to where P, was at a maximum it will instead land where
P, was a minimum; that is why we no longer see the wavy interference effects.

You may be thinking: “Don’t use such a bright source! Turn the brightness
down! The light waves will then be weaker and will not disturb the electrons so
much. Surely, by making the light dimmer and dimmer, eventually the wave
will be weak enough that it will have a negligible effect.” O.K. Let’s try it. The
first thing we observe is that the flashes of light scattered from the electrons as
they pass by does not get weaker. It is always the same-sized flash. The only thing
that happens as the light is made dimmer is that sometimes we hear a ‘“click”
from the detector but see no flush at all. The electron has gone by without being
“seen.”” What we are observing is that light also acts like electrons, we knew that
it was “wavy,” but now we find that it is also “lumpy.” It always arrives—or is
scattered—in lumps that we call “photons.”” As we turn down the intensity of
the light source we do not change the size of the photons, only the rate at which
they are emitted. That explains why, when our source is dim, some electrons get
by without being seen. There did not happen to be a photon around at the time
the electron went through.

This is all a little discouraging. If it is true that whenever we “see” the electron
we see the same-sized flash, then those electrons we see are always the disturbed
ones. Let us try the experiment with a dim light anyway. Now whenever we hear
a click in the detector we will keep a count in three columns: in Column (1) those
electrons seen by hole 1, in Column (2) those electrons seen by hole 2, and in
Column (3) those electrons not seen at all. When we work up our data (computing
the probabilities) we find these results: Those “seen by hole 1°° have a distribution
like Py ; those “seen by hole 2" have a distribution like P; (so that those “seen by
either hole 1 or 2 have a distribution like P15); and those “not seen at all”’ have a
“wavy” distribution just like Pyo of Fig. 1-3! If the electrons are not seen, we
have interference!

That is understandable. When we do not see the electron, no photon disturbs
it, and when we do see it, a photon has disturbed it. There is always the same
amount of disturbance because the light photons all produce the same-sized effects
and the effect of the photons being scattered is enough to smear out any inter-
ference effect.

Is there not some way we can see the electrons without disturbing them?
We learned in an earlier chapter that the momentum carried by a “photon”
is inversely proportional to its wavelength (p = A/)\). Certainly the jolt given
to the electron when the photon is scattered toward our eye depends on the
momentum that photon carries. Aha! If we want to disturb the electrons only
slightly we should not have lowered the intensity of the light, we should have
lowered its frequency (the same as increasing its wavelength). Let us use light of
a redder color. We could even use infrared light, or radiowaves (like radar), and
“see” where the electron went with the help of some equipment that can “see”
light of these longer wavelengths. If we use “gentler” light perhaps we can avoid
disturbing the electrons so much.

Let us try the experiment with longer waves. We shall keep repeating our ex-
periment, each time with light of a longer wavelength. At first, nothing seems to
change. The results are the same. Then a terrible thing happens. You remember
that when we discussed the microscope we pointed out that, due to the wave narure
of the light, there is a limitation on how close two spots can be and still be seen
as two separate spots. This distance is of the order of the wavelength of light. So
now, when we make the wavelength longer than the distance between our holes,
we see a big fuzzy flash when the light is scattered by the electrons. We can no
longer tell which hole the electron went through! We just know it went somewhere!
And it is just with light of this color that we find that the jolts given to the electron
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are small enough so that Py, begins to look like P ,—that we begin to get some
interference effect. And it is only for wavelengths much longer than the separation
of the two holes (when we have no chance at all of telling where the electron went)
that the disturbance due to the light gets sufficiently small that we again get the
curve P, shown in Fig. 1--3.

In our experiment we find that it is impossible to arrange the light in such a
way that one can tell which hole the electron went through, and at the same time
not disturb the pattern. It was suggested by Heisenberg that the then new laws of
nature could only be consistent if there were some basic limitation on our experi-
mental capabilities not previously recognized. He proposed, as a general principle,
his uncertainty principle, which we can state in terms of our experiment as follows:
“It is impossible to design an apparatus to determine which hole the electron passes
through, that will not at the same time disturb the electrons enough to destroy the
interference pattern.” If an apparatus is capable of determining which hole the
electron goes through, it cannot be so delicate that it does not disturb the pattern in
an essential way. No one has ever found (or even thought of) a way around the
uncertainty principle. So we must assume that it describes a basic characteristic
of nature.

The complete theory of quantum mechanics which we now use to describe
atoms and, in fact, all matter, depends on the correctness of the uncertainty prin-
ciple. Since quantum mechanics is such a successful theory, our belief in the
uncertainty principle is reinforced. But if a way to “beat” the uncertainty principle
were ever discovered, quantum mechanics would give inconsistent results and
would have to be discarded as a valid theory of nature.

“Well,” you say, “what about Proposition A? Is it true, or is it not true,
that the electron either goes through hole 1 or it goes through hole 2?7’ The only
answer that can be given is that we have found from experiment that there is a
certain special way that we have to think in order that we do not get into incon-
sistencies. What we must say (to avoid making wrong predictions) is the following.
If one looks at the holes or, more accurately, if one has a piece of apparatus which
is capable of determining whether the electrons go through hole 1 or hole 2, then
one can say that it goes either through hole 1 or hole 2. But, when one does not
try to tell which way the electron goes, when there is nothing in the experiment to
disturb the electrons, then one may not say that an electron goes either through
hole 1 or hole 2. If one does say that, and starts to make any deductions from the
statement, he will make errors in the analysis. This is the logical tightrope on
which we must walk if we wish to describe nature successfully.

If the motion of all matter—as well as electrons—must be described in terms
of waves, what about the bullets in our first experiment? Why didn’t we see an
interference pattern there? It turns out that for the bullets the wavelengths were so
tiny that the interference patterns became very fine. So fine, in fact, that with any
detector of finite size one could not distinguish the separate maxima and minima.
What we saw was only a kind of average, which is the classical curve. In Fig. 1-5
we have tried to indicate schematically what happens with large-scale objects.
Part (a) of the figure shows the probability distribution one might predict for
bullets, using quantum mechanics. The rapid wiggles are supposed to represent
the interference pattern one gets for waves of very short wavelength. Any physical
detector, however, straddles several wiggles of the probability curve, so that the
measurements show the smooth curve drawn in part (b) of the figure.

1-7 First principles of quantum mechanics

We will now write a summary of the main conclusions of our experiments.
We will, however, put the results in a form which makes them true for a general
class of such experiments. We can write our summary more simply if we first
define an “ideal experiment” as one in which there are no uncertain external
influences, i.e., no jiggling or other things going on that we cannot take into ac-
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count. We would be quite precise if we said: “An ideal experiment is one in which
all of the initial and final conditions of the experiment are completely specified.”
What we will call “an event” is, in general, just a specific set of initial and final
conditions. (For example: “an electron leaves the gun, arrives at the detector, and
nothing else happens.””) Now for our summary.

SUMMARY

(1) The probability of an event in an ideal experiment is given by the square of
the absolute value of a complex number ¢ which is called the probability

amplitude:
P = probability,
¢ = probability amplitude, (1.6)
P = ¢/

(2) When an event can occur in several alternative ways, the probability ampli-
tude for the event is the sum of the probability amplitudes for each way
considered separately. There is interference:

¢ = ¢1 + ¢23
P = |¢p1 + ¢2|% 1.7

(3) If an experiment is performed which is capable of determining whether one or
another alternative is actually taken, the probability of the event is the sum
of the probabilities for each alternative. The interference is lost:

P =P, + P, (1.8)

One might still like to ask: “How does it work? What is the machinery behind
the law?” No one has found any machinery behind the law. No one can “explain”
any more than we have just “explained.” No one will give you any deeper repre-
sentation of the situation. We have no ideas about a more basic mechanism from
which these results can be deduced.

We would like to emphasize a very important difference between classical and
quantum mechanics. We have been talking about the probability that an electron
will arrive in a given circumstance. We have implied that in our experimental
arrangement (or even in the best possible one) it would be impossible to predict
exactly what would happen. We can only predict the odds! This would mean, if
it were true, that physics has given up on the problem of trying to predict exactly
what will happen in a definite circumstance. Yes! physics Aas given up. We do
not know how to predict what would happen in a given circumstance, and we believe
now that it is impossible—that the only thing that can be predicted is the prob-
ability of different events. It must be recognized that this is a retrenchment in our
earlier ideal of understanding nature. It may be a backward step, but no one
has seen a way to avoid it.

We make now a few remarks on a suggestion that has sometimes been made
to try to avoid the description we have given: “Perhaps the electron has some kind
of internal works—some inner variables—that we do not yet know about. Perhaps
that is why we cannot predict what will happen. If we could look more closely at
the electron, we could be able to tell where it would end up.” So far as we know,
that is impossible. We would still be in difficulty. Suppose we were to assume that
inside the electron there is some kind of machinery that determines where it is
going to end up. That machine must also determine which hole it is going to go
through on its way. But we must not forget that what is inside the electron should
not be dependent on what we do, and in particular upon whether we open or close
one of the holes. So if an electron, before it starts, has already made up its mind
(a) which hole it is going to use, and (b) where it is going to land, we should find
P for those electrons that have chosen hole 1, P, for those that have chosen hole
2, and necessarily the sum P, + P, for those that arrive through the two holes.
There seems to be no way around this. But we have verified experimentally that
that is not the case. And no one has figured a way out of this puzzle. So at the
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present time we must limit ourselves to computing probabilities. We say “at the
present time,” but we suspect very strongly that it is something that will be with
us forever—that it is impossible to beat that puzzle—that this is the way nature
really is.

1-8 The uncertainty principle

This is the way Heisenberg stated the uncertainty principle originally: If you
make the measurement on any object, and you can determine the x-component of
its momentum with an uncertainty Ap, you cannot, at the same time, know its
x-position more accurately than Ax = h/Ap, where A is a definite fixed number
given by nature. It is called “Planck’s constant,” and is approximately 6.63 X
1073* joule-seconds. The uncertainties in the position and momentum of a
particle at any instant must have their product greater than Planck’s constant.
This is a special case of the uncertainty principle that was stated above more
generally. The more general statement was that one cannot design equipment in
any way to determine which of two alternatives is taken, without, at the same
time, destroying the pattern of interference.

Let us show for one particular case that the kind of relation given by Heisen-
berg must be true in order to keep from getting into trouble. We imagine a modifi-

cation of the experiment of Fig. 1-3, in which the wall with the holes consists of a ROLLERS %
plate mounted on rollers so that it can move freely up and down (in the x-direction), 2
as shown in Fig. 1-6. By watching the motion of the plate carefully we can try to %AP

tell which hole an electron goes through. Imagine what happens when the detector el 1B x:wm
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equal momentum in the opposite direction. The plate will get an upward kick. MOTION FREE | Ol é
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It is clear that for every position of the detector, the momentum received by the WALL BACKSTOP
plate will have a different value for a traversal via hole 1 than for a traversal via

hole 2. So! Without disturbing the electrons az all, but just by watching the plate, Fig. 1-6. An experiment in which
we can tell which path the electron used. the recoil of the wall is measured.

Now in order to do this it is necessary to know what the momentum of the
screen is, before the electron goes through. So when we measure the momentum
after the electron goes by, we can figure out how much the plate’s momentum has
changed. But remember, according to the uncertainty principle we cannot at the
same time know the position of the plate with an arbitrary accuracy. But if we do
not know exactly where the plate is, we cannot say precisely where the two holes are.
They will be in a different place for every electron that goes through. This means
that the center of our interference pattern will have a different location for each
electron. The wiggles of the interference pattern will be smeared out. We shall show
quantitatively in the next chapter that if we determine the momentum of the plate
sufficiently accurately to determine from the recoil measurement which hole was
used, then the uncertainty in the x-position of the plate will, according to the un-
certainty principle, be enough to shift the pattern observed at the detector up and
down in the x-direction about the distance from a maximum to its nearest minimum.
Such a random shift is just enough to smear out the pattern so that no interference
is observed.

The uncertainty principle “protects” quantum mechanics. Heisenberg recog-
nized that if it were possible to measure the momentum and the position simultane-
ously with a greater accuracy, the quantum mechanics would collapse. So he
proposed that it must be impossible. Then people sat down and tried to figure out
ways of doing it, and nobody could figure out a way to measure the position and
the momentum of anything—a screen, an electron, a billiard ball, anything—with
any greater accuracy. Quantum mechanics maintains its perilous but still correct
existence.



spectral frequencies was noted before quantum mechanics was discovered, and it is
called the Ritz combination principle. This is again a mystery from the point of
view of classical mechanics. Let us not belabor the point that classical mechanics
is a failure in the atomic domain; we seem to have demonstrated that pretty well.

We have already talked about quantum mechanics as being represented by
amplitudes which behave like waves, with certain frequencies and wave numbers.
Let us observe how it comes about from the point of view of amplitudes that the
atom has definite energy states. This is something we cannot understand from what
has been said so far, but we are all familiar with the fact that confined waves have
definite frequencies. For instance, if sound is confined to an organ pipe, or any-
thing like that, then there is more than one way that the sound can vibrate, but
for each such way there is a definite frequency. Thus an object in which the waves
are confined has certain resonance frequencies. It is therefore a property of waves
in a confined space—a subject which we will discuss in detail with formulas later
on—that they exist only at definite frequencies. And since the general relation
exists between frequencies of the amplitude and energy, we are not surprised to
find definite energies associated with electrons bound in atoms.

2-6 Philosophical implications

Let us consider briefly some philosophical implications of quantum mechanics.
As always, there are two aspects of the problem: one is the philosophical implica-
tion for physics, and the other is the extrapolation of philosophical matters to
other fields. When philosophical ideas associated with science are dragged into
another field, they are usually completely distorted. Therefore we shall confine
our remarks as much as possible to physics itself.

First of all, the most interesting aspect is the idea of the uncertainty principle;
making an observation affects the phenomenon. It has always been known that
making observations affects a phenomenon, but the point is that the effect cannot
be disregarded or minimized or decreased arbitrarily by rearranging the apparatus.
When we look for a certain phenomenon we cannot help but disturb it in a certain
minimum way, and the disturbance is necessary for the consistency of the viewpoint.
The observer was sometimes important in prequantum physics, but only in a
trivial sense. The problem has been raised: if a tree falls in a forest and there
is nobody there to hear it, does it make a noise? A real tree falling in a real forest
makes a sound, of course, even if nobody is there. Even if no one is present to hear
it, there are other traces left. The sound will shake some leaves, and if we were
careful enough we might find somewhere that some thorn had rubbed against a
leaf and made a tiny scratch that could not be explained unless we assumed the
leaf were vibrating. So in a certain sense we would have to admit that there is a
sound made. We might ask: was there a sensation of sound? No, sensations have
to do, presumably, with consciousness. And whether ants are conscious and
whether there were ants in the forest, or whether the tree was conscious, we do not
know. Let us leave the problem in that form.

Another thing that people have emphasized since quantum mechanics was
developed is the idea that we should not speak about those things which we cannot
measure. (Actually relativity theory also said this.) Unless a thing can be defined
by measurement, it has no place in a theory. And since an accurate value of the
momentum of a localized particle cannot be defined by measurement it therefore
has no place in the theory. The idea that this is what was the matter with classical
theory is a false position. It is a careless analysis of the situation. Just because we
cannot measure position and momentum precisely does not a priori mean that we
cannot talk about them. It only means that we need not talk about them. The
situation in the sciences is this: A concept or an idea which cannot be measured
or cannot be referred directly to experiment may or may not be useful. It need
not exist in a theory. In other words, suppose we compare the classical theory of
the world with the quantum theory of the world, and suppose that it is true ex-
perimentally that we can measure position and momentum only imprecisely. The
question is whether the ideas of the exact position of a particle and the exact
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momentum of a particle are valid or not. The classical theory admits the ideas;
the quantum theory does not. This does not in itself mean that classical physics
is wrong. When the new quantum mechanics was discovered, the classical people—
which included everybody except Heisenberg, Schrodinger, and Born—said:
“Look, your theory is not any good because you cannot answer certain questions
like: what is the exact position of a particle?, which hole does it go through?,
and some others.” Heisenberg’s answer was: “I do not need to answer such ques-
tions because you cannot ask such a question experimentally.” It is that we do
not save to. Consider two theories (a) and (b); (a) contains an idea that cannot be
checked directly but which is used in the analysis, and the other, (b), does not
contain the idea. If they disagree in their predictions, one could not claim that
(b) is false because it cannot explain this idea that is in (a), because that idea is
one of the things that cannot be checked directly. It is always good to know which
ideas cannot be checked directly, but it is not necessary to remove them all. It is
not true that we can pursue science completely by using only those concepts which
are directly subject to experiment.

In quantum mechanics itself there is a probability amplitude, there is a
potential, and there are many constructs that we cannot measure directly. The basis
of a science is its ability to predict. To predict means to tell what will happen in an
experiment that has never been done. How can we do that? By assuming that we
know what is there, independent of the experiment. We must extrapolate the
experiments to a region where they have not been done. We must take our con-
cepts and extend them to places where they have not yet been checked. If we do
not do that, we have no prediction. So it was perfectly sensible for the classical
physicists to go happily along and suppose that the position—which obviously
means something for a baseball—meant something also for an electron. It was
not stupidity. It was a sensible procedure. Today we say that the law of relativity
is supposed to be true at all energies, but someday somebody may come along and
say how stupid we were. We do not know where we are “stupid” until we “stick
our neck out,” and so the whole idea is to put our neck out. And the only way to
find out that we are wrong is to find out whar our predictions are. It is absolutely
necessary to make constructs.

We have already made a few remarks about the indeterminacy of quantum
mechanics. That is, that we are unable now to predict what will happen in physics
in a given physical circumstance which is arranged as carefully as possible. If
we have an atom that is in an excited state and so is going to emit a photon, we
cannot say when it will emit the photon. It has a certain amplitude to emit the
photon at any time, and we can predict only a probability for emission; we cannot
predict the future exactly. This has given rise to all kinds of nonsense and questions
on the meaning of freedom of will, and of the idea that the world is uncertain.

Of course we must emphasize that classical physics is also indeterminate, in a
sense. It is usually thought that this indeterminacy, that we cannot predict the
future, is an important quantum-mechanical thing, and this is said to explain the
behavior of the mind, feelings of free will, etc. But if the world were classical—if
the laws of mechanics were classical—it is not quite obvious that the mind would
not feel more or less the same. It is true classically that if we knew the position and
the velocity of every particle in the world, or in a box of gas, we could predict ex-
actly what would happen. And therefore the classical world is deterministic.
Suppose, however, that we have a finite accuracy and do not know exactly where
just one atom is, say to one part in a billion. Then as it goes along it hits another
atom, and because we did not know the position better than to one part in a billion,
we find an even larger error in the position after the collision. And that is amplified,
of course, in the next collision, so that if we start with only a tiny error it rapidly
magnifies to a very great uncertainty. To give an example: if water falls over a dam,
it splashes. If we stand nearby, every now and then a drop will land on our nose.
This appears to be completely random, yet such a behavior would be predicted
by purely classical laws. The exact position of all the drops depends upon the
precise wigglings of the water before it goes over the dam. How? The tiniest
irregularities are magnified in falling, so that we get complete randomness. Ob-
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viously, we cannot really predict the position of the drops unless we know the
motion of the water absolutebz exactly.

Speaking more precisely, given an arbitrary accuracy, no matter how precise,
one can find a time long enough that we cannot make predictions valid for that
long a time. Now the point is that this length of time is not very large. It is not
that the time is millions of years if the accuracy is one part in a billion. The time
goes, in fact, only logarithmically with the error, and it turns out that in only a
very, very tiny time we lose all our information. If the accuracy is taken to be one
part in billions and billions and billions—no matter how many billions we wish,
provided we do stop somewhere—then we can find a time less than the time it
took to state the accuracy—after which we can no longer predict what is going
to happen! It is therefore not fair to say that from the apparent freedom and
indeterminacy of the human mind, we should have realized that classical “deter-
ministic” physics could not ever hope to understand it, and to welcome quantum
mechanics as a release from a “completely mechanistic”” universe. For already in
classical mechanics there was indeterminability from a practical point of view.
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3

Probability Amplitudes

3-1 The laws for combining amplitudes

When Schridinger first discovered the correct laws of quantum mechanics,
he wrote an equation which described the amplitude to find a particle in various
places. This equation was very similar to the equations that were already known
to classical physicists—equations that they had used in describing the motion of
air in a sound wave, the transmission of light, and so on. So most of the time at
the beginning of quantum mechanics was spent in solving this equation. But at the
same time an understanding was being developed, particularly by Born and Dirac,
of the basically new physical ideas behind quantum mechanics. As quantum
mechanics developed further, it turned out that there were a large number of things
which were not directly encompassed in the Schrédinger equation—such as the
spin of the electron, and various relativistic phenomena. Traditionally, all courses
in quantum mechanics have begun in the same way, retracing the path followed in
the historical development of the subject. One first learns a great deal about clas-
sical mechanics so that he will be able to understand how to solve the Schrodinger
equation. Then he spends a long time working out various solutions. Only after
a detailed study of this equation does he get to the “advanced” subject of the
electron’s spin.

We had also originally considered that the right way to conclude these lectures
on physics was to show how to solve the equations of classical physics in compli-
cated situations—such as the description of sound waves in enclosed regions, modes
of electromagnetic radiation in cylindrical cavities, and so on. That was the original
plan for this course. However, we have decided to abandon that plan and to give
instead an introduction to the quantum mechanics. We have come to the con-
clusion that what are usually called the advanced parts of quantum mechanics are,
in fact, quite simple. The mathematics that is involved is particularly simple,
involving simple algebraic operations and no differential equations or at most
only very simple ones. The only problem is that we must jump the gap of no
longer being able to describe the behavior in detail of particles in space. So this
is what we are going to try to do: to tell you about what conventionally would be
called the “advanced” parts of quantum mechanics. But they are, we assure you,
by all odds the simplest parts—in a deep sense of the word—as well as the most
basic parts. This is frankly a pedagogical experiment; it has never been done
before, as far as we know.

In this subject we have, of course, the difficulty that the quantum mechanical
behavior of things is quite strange. Nobody has an everyday experience to lean
on to get a rough, intuitive idea of what will happen. So there are two ways of
presenting the subject: We could either describe what can happen in a rather
rough physical way, telling you more or less what happens without giving the
precise laws of everything; or we could, on the other hand, give the precise laws
in their abstract form. But, then because of the abstractions, you wouldn’t know
what they were all about, physically. The latter method is unsatisfactory because
it is completely abstract, and the first way leaves an uncomfortable feeling because
one doesn’t know exactly what is true and what is false. We are not sure how to
overcome this difficulty. You will notice, in fact, that Chapters 1 and 2 showed
this problem. The first chapter was relatively precise; but the second chapter was
a rough description of the characteristics of different phenomena. Here, we will
try to find a happy medium between the two extremes.
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3-1. Interference experiment with electrons.

We will begin in this chapter by dealing with some general quantum me-
chanical ideas. Some of the statements will be quite precise, others only partially
precise. It will be hard to tell you as we go along which is which, but by the time
you have finished the rest of the book, you will understand in looking back which
parts hold up and which parts were only explained roughly. The chapters which
follow this one will not be so imprecise. In fact, one of the reasons we have tried
carefully to be precise in the succeeding chapters is so that we can show you one of
the most beautiful things about quantum mechanics—how much can be deduced
from so little.

We begin by discussing again the superposition of probability amplitudes.
As an example we will refer to the experiment described in Chapter 1, and shown
again here in Fig. 3-1. There is a source s of particles, say electrons; then there
is a wall with two slits in it; after the wall, there is a detector located at some
position x. We ask for the probability that a particle will be found at x. Our first
general principle in quantum mechanics is that the probability that a particle will
arrive at x, when let out at the source s, can be represented quantitatively by the
absolute square of a complex number called a probability amplitude—in this case,
the “amplitude that a particle from s will arrive at x.” We will use such amplitudes
so frequently that we will use a shorthand notation—invented by Dirac and
generally used in quantum mechanics—to represent this idea. We write the proba-
bility amplitude this way:

(Particle arrives at x | particle leaves s). 3.1

In other words, the two brackets { ) are a sign equivalent to *“‘the amplitude that”;
the expression at the right of the vertical line always gives the starting condition,
and the one at the left, the final condition. Sometimes it will also be convenient to
abbreviate still more and describe the initial and final conditions by single letters.
For example, we may on occasion write the amplitude (3.1) as

(x| s). 3.2

We want to emphasize that such an amplitude is, of course, just a single number—
a complex number.

We have already seen in the discussion of Chapter 1 that when there are two
ways for the particle to reach the detector, the resulting probability is not the
sum of the two probabilities, but must be written as the absolute square of the
sum of two amplitudes. We had that the probability that an electron arrives at the
detector when both paths are open is

Piz = |¢1 + ¢2|% (3.3)
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Fig. 3-2. A more complicated inter-
ference experiment.

We wish now to put this result in terms of our new notation. First, however, we
want to state our second general principle of quantum mechanics: When a particle
can reach a given state by two possible routes, the total amplitude for the process
is the sum of the amplitudes for the two routes considered separately. In our new
notation we write that

<X I s>both holes open = <x I S>through 1 + <x | s>t.hrough 2. (34)

Incidentally, we are going to suppose that the holes 1 and 2 are small enough that
when we say an electron goes through the hole, we don’t have to discuss which part
of the hole. We could, of course, split each hole into pieces with a certain amplitude
that the electron goes to the top of the hole and the bottom of the hole and so on.
We will suppose that the hole is small enough so that we don’t have to worry about
this detail. That is part of the roughness involved; the matter can be made more
precise, but we don’t want to do so at this stage.

Now we want to write out in more detail what we can say about the amplitude
for the process in which the electron reaches the detector at x by way of hole 1.
We can do that by using our third general principle: When a particle goes by some
particular route the amplitude for that route can be written as the product of the
amplitude to go part way with the amplitude to go the rest of the way. For the
setup of Fig. 3—1 the amplitude to go from s to x by way of hole 1 is equal to the
amplitude to go from s to 1, multiplied by the amplitude to go from 1 to x.

(x| $hvia 1 = x| 1)1 |s). 3.5

Again this result is not completely precise. We should also include a factor for the
amplitude that the electron will get through the hole at 1; but in the present case
it is a simple hole, and we will take this factor to be unity.

You will note that Eq. (3.5) appears to be written in reverse order. It is to
be read from right to left: The electron goes from s to 1 and then from 1 to x.
In summary, if events occur in succession—that is, if you can analyze one of the
routes of the particle by saying it does this, then it does this, then it does that—the
resultant amplitude for that route is calculated by multiplying in succession the
amplitude for each of the successive events. Using this law we can rewrite Eq.
(3.4) as

(X[ $hbotn = x| IXL]s) + (x[2)2] ).

Now we wish to show that just using these principles we can calculate a much
more complicated problem like the one shown in Fig. 3-2. Here we have two
walls, one with two holes, 1 and 2, and another which has three holes, a, b, and c.
Behind the second wall there is a detector at x, and we want to know the amplitude
for a particle to arrive there. Well, one way you can find this is by calculating the
superposition, or interference, of the waves that go through; but you can also do
it by saying that there are six possible routes and superposing an amplitude for
each. The electron can go through hole 1, then through hole a, and then to x; or
it could go through hole 1, then through hole b, and then to x; and so on. Accord-
ing to our second principle, the amplitudes for alternative routes add, so we should
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be able to write the amplitude from s to x as a sum of six separate amplitudes.
On the other hand, using the third principle, each of these separate amplitudes
can be written as a product of three amplitudes. For example, one of them is the
amplitude for s to 1, times the amplitude for 1 to a, times the amplitude for a to x.
Using our shorthand notation, we can write the complete amplitude to go from
sto x as

(x|sy = (x|aXa| 1)1 |s) + x|b)b|1)1|s) + -+ (x|e)e|2)2]s).
We can save writing by using the summation notation

(x|sy =D (x|a)al|i)i]|s). (3.6)

acarbe

In order to make any calculations using these methods, it is, naturally, neces-
sary to know the amplitude to get from one place to another. We will give a rough
idea of a typical amplitude. It leaves out certain things like the polarization of
light or the spin of the electron, but aside from such features it is quite accurate.
We give it so that you can solve problems involving various combinations of slits.
Suppose a particle with a definite energy is going in empty space from a location
r; to a location r,. In other words, it is a free particle with no forces on it. Except
for a numerical factor in front, the amplitude to go from r; to ¢s is

iPeTya/h

(ra|ry) = - ’ 3.7

F12
where r12 = rp — ry, and p is the momentum which is related to the energy E
by the relativistic equation

p2C2 — E2 - (moc2)2,

or the nonrelativistic equation

5 = Kinetic energy.
Equation (3.7) says in effect that the particle has wavelike properties, the amplitude
propagating as a wave with a wave number equal to the momentum divided by 4.

In the most general case, the amplitude and the corresponding probability
will also involve the time. For most of these initial discussions we will suppose
that the source always emits the particles with a given energy so we will not need to
worry about the time. But we could, in the general case, be interested in some
other questions. Suppose that a particle is liberated at a certain place P at a certain
time, and you would like to know the amplitude for it to arrive at some location,
say r, at some later time. This could be represented symbolically as the amplitude
{r,t = t;|P,t = 0). Clearly, this will depend upon both r and 7. You will get
different results if you put the detector in different places and measure at different
times. This function of r and ¢, in general, satisfies a differential equation which is
a wave equation. For example, in a nonrelativistic case it is the Schrddinger equa-
tion. One has then a wave equation analogous to the equation for electromagnetic
waves or waves of sound in a gas. However, it must be emphasized that the wave
function that satisfies the equation is not like a real wave in space; one cannot
picture any kind of reality to this wave as one does for a sound wave.

Although one may be tempted to think in terms of “particle waves” when
dealing with one particle, it is not a good idea, for if there are, say, two particles,
the amplitude to find one at r; and the other at r, is not a simple wave in three-
dimensional space, but depends on the six space variables r, and r,. If we are,
for example, dealing with two (or more) particles, we will need the following
additional principle: Provided that the two particles do not interact, the amplitude
that one particle will do one thing and the other one something else is the product
of the two amplitudes that the two particles would do the two things separately.
For example, if (a | s,) is the amplitude for particle 1 to go from s; to a,and (b | s2)
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is the amplitude for particle 2 to go from s to b, the amplitude that both things
will happen together is
(a|s1){b]|s2).

There is one more point to emphasize. Suppose that we didn’t know where
the particles in Fig. 3-2 come from before arriving at holes 1 and 2 of the first
wall. We can still make a prediction of what will happen beyond the wall (for
example, the amplitude to arrive at x) provided that we are given two numbers:
the amplitude to have arrived at 1 and the amplitude to have arrived at 2. In other
words, because of the fact that the amplitude for successive events multiplies, as
shown in Eq. (3.6), all you need to know to continue the analysis is tWwo numbers—
in this particular case (1 | s) and (2 | s). These two complex numbers are enough
to predict all the future. That is what really makes quantum mechanics easy. It
turns out that in later chapters we are going to do just such a thing when we specify
a starting condition in terms of two (or a few) numbers. Of course, these numbers
depend upon where the source is located and possibly other details about the
apparatus, but given the two numbers, we do not need to know any more about
such details.

Fig. 3-3. An experiment to deter-
mine which hole the electron goes through.
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3-2 The two-slit interference pattern

Now we would like to consider a matter which was discussed in some detail
in Chapter 1. This time we will do it with the full glory of the amplitude idea
to show you how it works out. We take the same experiment shown in Fig.
3-1, but now with the addition of a light source behind the two holes, as shown
in Fig. 3-3. In Chapter 1, we discovered the following interesting result. If
we looked behind slit 1 and saw a photon scattered from there, then the distribu-
tion obtained for the electrons at x in coincidence with these photons was the same
as though slit 2 were closed. The total distribution for electrons that had been
“seen” at either slit 1 or slit 2 was the sum of the separate distributions and was
completely different from the distribution with the light turned off. This was true
at least if we used light of short enough wavelength. If the wavelength was made
longer so we could not be sure at which hole the scattering had occurred, the
distribution became more like the one with the light turned off.

Let’s examine what is happening by using our new notation and the principles
of combining amplitudes. To simplify the writing, we can again let ¢, stand for
the amplitude that the electron will arrive at x by way of hole 1, that is,

¢1 = (x| {1 ]s).

Similarly, we’ll let ¢, stand for the amplitude that the electron gets to the detector
by way of hole 2:
b2 = (x[2)2]s).

These are the amplitudes to go through the two holes and arrive at x if there is no
light. Now if there is light, we ask ourselves the question: What is the amplitude
for the process in which the electron starts at s and a photon is liberated by the
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Fig. 3-4. The probability of count-
ing an electron at x in coincidence with a
photon at D in the experiment of Fig.
3 3: {a) for b = 0; (b) for b = a; (c)
for0 < b < a.

light source L, ending with the electron at x and a photon seen behind slit 17
Suppose that we observe the photon behind slit 1 by means of a detector D,, as
shown in Fig. 3-3, and use a similar detector Dy to count photons scattered
behind hole 2. There will be an amplitude for a photon to arrive at Dy and an
electron at x, and also an amplitude for a photon to arrive at D, and an electron
at x. Let’s try to calculate them.

Although we don’t have the correct mathematical formula for all the factors
that go into this calculation, you will see the spirit of it in the following discussion.
First, there is the amplitude (1 | s) that an electron goes from the source to hole 1.
Then we can suppose that there is a certain amplitude that while the electron is at
hole 1 it scatters a photon into the detector D. Let us represent this amplitude by
a. Then there is the amplitude (x | 1) that the electron goes from slit 1 to the elec-
tron detector at x. The amplitude that the electron goes from s to x via slit 1 and
scatters a photon into D, is then

(x| Da(l]s)

Or, in our previous notation, it is just a¢j.

There is also some amplitude that an electron going through slit 2 will scatter
a photon into counter D;. You say, ‘“That’s impossible; how can it scatter into
counter D, if it is only looking at hole 1?”” If the wavelength is long enough, there
are diffraction effects, and it is certainly possible. If the apparatus is built well and
if we use photons of short wavelength, then the amplitude that a photon will be
scattered into detector 1, from an electron at 2 is very small. But to keep the
discussion general we want to take into account that there is always some such
amplitude, which we will call 5. Then the amplitude that an electron goes via
slit 2 and scatters a photon into D, is

(x[2)b(2]s) = boo.

The amplitude to find the electron at x and the photon in D, is the sum of
two terms, one for each possible path for the electron. Each term is in turn made
up of two factors: first, that the electron went through a hole, and second, that the
photon is scattered by such an electron into detector 1; we have

<electron at x

electron from s\ _
photon at D, apy + bos. (3.8)

photon from L/ —

We can get a similar expression when the photon is found in the other detector
D,. If we assume for simplicity that the system is symmetrical, then « is also the
amplitude for a photon in D, when an electron passes through hole 2, and 4 is
the amplitude for a photon in D, when the electron passes through hole 1. The
corresponding total amplitude for a photon at D, and an electron at x is

electron from s
photon from L

/electron at x
\photon at D,

= aps + bo1. (3.9

Now we are finished. We can easily calculate the probability for various
situations. Suppose that we want to know with what probability we get a count
in D, and an electron at x. That will be the absolute square of the amplitude
given in Eq. (3.8), namely, just |ag; + bgs|2. Let’s look more carefully at this
expression. First of all, if b is zero—which is the way we would like to design the
apparatus—then the answer is simply |¢4|? diminished in total amplitude by the
factor |a|?. This is the probability distribution that you would get if there were
only one hole—as shown in the graph of Fig. 3—-4(a). On the other hand, if the
wavelength is very long, the scattering behind hole 2 into D; may be just about
the same as for hole 1. Although there may be some phases involved in a and b,
we can ask about a simple case in which the two phases are equal. If a is practically
equal to b, then the total probability becomes |¢; + ¢2|?> multiplied by |a|2,
since the common factor a can be taken out. This, however, is just the probability
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distribution we would have gotten without the photons at all. Therefore, in the
case that the wavelength is very long—and the photon detection ineffective—you
return to the original distribution curve which shows interference effects, as shown
in Fig. 3-4(b). In the case that the detection is partially effective, there is an inter-
ference between a lot of ¢, and a little of ¢, and you will get an intermediate
distribution such as is sketched in Fig. 3-4(c). Needless to say, if we look for
coincidence counts of photons at D, and electrons at x, we will get the same kinds
of results. If you remember the discussion in Chapter 1, you will see that these
results give a quantitative description of what was described there.

Now we would like to emphasize an important point so that you will avoid
a common error. Suppose that you only want the amplitude that the electron ar-
rives at x, regardless of whether the photon was counted at D, or D,. Should you
add the amplitudes given in Egs. (3.8) and (3.9)? No! You must never add
amplitudes for different and distinct final states. Once the photon is accepted by
one of the photon counters, we can always determine which alternative occurred
if we want, without any further disturbance to the system. Each alternative has a
probability completely independent of the other. To repeat, do not add amplitudes
for different final conditions, where by “final” we mean at that moment the
probability is desired—that is, when the experiment is “finished.” You do add the
amplitudes for the different indistinguishable alternatives inside the experiment,
before the complete process is finished. At the end of the process you may say that
you ““don’t want to look at the photon.” That’s your business, but you still do not
add the amplitudes. Nature does not know what you are looking at, and she
behaves the way she is going to behave whether you bother to take down the data
or not. So here we must not add the amplitudes. We first square the amplitudes
for all possible different final events and then sum. The correct result for an
electron at x and a photon at either D; or Ds is

/e at x z

\ph at D1

efroms \
ph from L/

/e at x efroms \
\ph at D, | ph from L/

= lagy + bda|? + |ads + bé1|%.  (3.10)

2+

3-3 Scattering from a crystal

Our next example is a phenomenon in which we have to analyze the inter-
ference of probability amplitudes somewhat carefully. We look at the process of
the scattering of neutrons from a crystal. Suppose we have a crystal which has a
lot of atoms with nuclei at their centers, arranged in a periodic array, and a neutron
beam that comes from far away. We can label the various nuclei in the crystal by
an index 7, where i runs over the integers 1, 2, 3, ... N, with N equal to the total
number of atoms. The problem is to calculate the probability of getting a neutron
into a counter with the arrangement shown in Fig. 3-5. For any particular atom
i, the amplitude that the neutron arrives at the counter C is the amplitude that the
neutron gets from the source S to nucleus 7, multiplied by the amplitude a that it
gets scattered there, multiplied by the amplitude that it gets from i to the counter
C. Let’s write that down:

(neutron at C | neutron from S)yiy ; = (C|iya (i |S). (3.11)

In writing this equation we have assumed that the scattering amplitude a is the
same for all atoms. We have here a large number of apparently indistinguishable
routes. They are indistinguishable because a low-energy neutron is scattered from
a nucleus without knocking the atom out of its place in the crystal—no ‘“‘record”
is left of the scattering. According to the earlier discussion, the total amplitude
for a neutron at C involves a sum of Eq. (3.11) over all the atoms:

N
(neutron at C | neutron from S) = Z (Cliyali| S). (3.12)

=1

NEUTRON
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NEUTRON
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Fig. 3—-5. Measuring the scattering
of neutrons by a crystal.
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