
Angular Momentum Eigenvalue Picture for Eigenstates
What is |l; m>? It is an eigenstate of the commuting operators L2 and Lz. The quantum

numbers l and m are not eigenvalues. The corresponding eigenvalues are h̄2l(l + 1) and mh̄.
Were we to use eigenvalues in the ket, the eigenstate would look like |h̄2l(l + 1); mh̄>. But just
l and m uniquely identify the state, and that is more economical, so only the quantum numbers
are conventionally used. This is essentially the same sort of convenient shorthand used to denote
an eigenstate of a SHO |n>, vice using the eigenvalue

∣∣(n + 1
2

)
h̄!>.

Only one quantum number is needed to uniquely identify an eigenstate of a SHO, but two are
needed to uniquely identify an eigenstate of angular momentum. Because the angular momentum
component operators do not commute, a complete set of commuting observables are needed. Each
of the component operators commutes with L2, so we use it and one other, which is Lz chosen
by convention. One quantum number is needed for each operator in the complete set. Multiple
quantum numbers used to identify a ket denote a complete set of commuting observables is needed.

Remember that a system is assumed to exist in a linear combination of all possible eigenstates
until we measure. If we measure, what are the possible outcomes? Possible outcomes are the
eigenvalues. For a given value of the orbital angular momentum quantum number, the magnetic
quantum number can assume integer values ranging from −l to l. The simplest case is
l = 0 ⇒ m = 0 is the only possible value of the magnetic quantum number. The possible
outcomes of a measurement of such a system are eigenvalues of h̄2(0

)(
0+1

)
= 0h̄2 or just 0 for

L2, and mh̄ =
(
0
)
h̄ or just 0 for Lz as well, corresponding to figure 9–2.a.

Figure 9 − 2:a: l = 0: Figure 9 − 2:b: l = 1: Figure 9 − 2:c: l = 2:

If we somehow knew l = 1, which could be ascertained by a measurement of h̄2(1
)(

1 + 1
)

= 2h̄2

for L2, the possible values of the magnetic quantum number are m = −1; 0, or 1, so the
eigenvalues which could be measured are −h̄; 0, or h̄ for Lz, per figure 9–2.b. If we measured
h̄2(2

)(
2+1

)
= 6h̄2 for L2, we would know we had l = 2, and the possible values of the magnetic

quantum number are m = −2; −1; 0; 1, or 2, so the eigenvalues which could be measured
are −2h̄; −h̄; 0; h̄, or 2h̄ for Lz, per figure 9–2.c. Though the magnetic quantum number
is bounded by the orbital angular momentum quantum number, the orbital angular momentum
quantum number is not bounded, so we can continue indefinitely. Notice there are 2l +1 possible
values of m for every value of l.

A semi–classical diagram is often used. A simple interpretation of |l; m> is that it is a vector
quantized in length of ∣∣L

∣∣ →
∣∣L

∣∣ =
√

L2 = h̄
√

l(l + 1):
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This vector has values for which the z component is also quantized in units of mh̄. These

Figure 9 − 3: Semi − Classical Picture for l = 2:

features are illustrated in figure 9–3 for l = 2. The vectors are free to rotate around the z axis at
any azimuthal angle `, but are fixed at polar angles µ determined by the fact the projection on
the z axis must be −2h̄; −h̄; 0; h̄, or 2h̄. Notice there is no information concerning the x or y
components other than the square of their sum is fixed. We could express this for |ˆ(t)> = |l; m>
by stating the projection on the xy plane will be cos(!t) or sin(!t). In such a case we can
determine x and y component expectation values from symmetry alone, i.e.,

<Lx> = 0; <Ly> = 0:

Finally, what fixes any axis in space? And how do we know which axis is the z axis? The
answer is we must introduce some asymmetry. Without an asymmetry of some sort, the axes and
their labels are arbitrary. The practical assymmetry to introduce is a magnetic field, and that will
establish a component quantization axis which will be the z axis.

Eigenvalue/Eigenvector Equations for the Raising and
Lowering Operators

Using quantum number notation, the fact L+
∣∣fi; fl> is and eigenstate of Lz would be

written
LzL+

∣∣l; m> =
(
mh̄ + h̄

)
L+

∣∣l; m>

=
(
m + 1

)
h̄L+

∣∣l; m>

= °Lz

∣∣l; m + 1>;

where ° is a proportionality constant. Then

LzL+
∣∣l; m> = Lz°

∣∣l; m + 1>

⇒ L+
∣∣l; m> = °

∣∣l; m + 1>;

is the eigenvalue/eigenvector equation for the raising operator, where ° is evidently the eigenvalue,
and the eigenvector is raised by one element of quantization in the z component. This means if
the z component of the state on which the raising operator acts is mh̄, the new state has a z
component of mh̄ + h̄ = (m + 1)h̄, and thus the index m + 1 is used in the new eigenket. We
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want to solve for ° and have an equation analogous to the forms of equations (9–28) and (9–29).
Forming the adjoint equation,

<l; m
∣∣L†

+ = <l; m + 1
∣∣°∗ ⇒ <l; m

∣∣L− = <l; m + 1
∣∣°∗;

because L†
+ = L−. Forming a braket with the original equation

<l; m
∣∣L−L+

∣∣l; m> = <l; m + 1
∣∣°∗°

∣∣l; m + 1> :

Though we did it for flmax, the maximum eigenvalue of Lz, the algebra leading to equation
(9–22) remains the same for any fl, any eigenvalue of Lz, so we know

L−L+ = fi − fl2 − h̄fl = h̄2 l(l + 1) − m2h̄2 − mh̄2:

Using this in the braket,

<l; m
∣∣h̄2

(
l(l + 1) − m2 − m

)∣∣l; m> = <l; m + 1
∣∣°∗°

∣∣l; m + 1>

⇒ h̄2
(
l(l + 1) − m(m + 1)

)
<l; m

∣∣l; m> =
∣∣°∗°

∣∣ <l; m + 1
∣∣l; m + 1>

⇒ h̄2
(
l(l + 1) − m(m + 1)

)
=

∣∣°
∣∣2 (9 − 30)

⇒ ° =
√

l(l + 1) − m(m + 1) h̄;

where we used the orthonormality of eigenstates to arrive at equation (9–30). The eigenvalue/
eigenvector equation is then

L+
∣∣l; m> =

√
l(l + 1) − m(m + 1) h̄

∣∣l; m + 1> :

Were we to do the similar calculation for L−, we find

L−
∣∣l; m> =

√
l(l + 1) − m(m − 1) h̄

∣∣l; m − 1> :

These are most often expressed as one relation,

L±
∣∣l; m> =

√
l(l + 1) − m(m ± 1) h̄

∣∣l; m ± 1> : (9 − 31)

Example 9–14: For the eigenstate
∣∣l; m> =

∣∣3; m>, what measurements are possible for L2

and Lz?

The only measurements that are possible are the eigenvalues. From equation (9–28), the
eigenvalue of L2 is h̄2 l(l + 1) = h̄2 3(3 + 1) = 12h̄2.

For l = 3, the possible eigenvalues of Lz can range from −3h̄ to 3h̄ in increments
of h̄. Explicitly, the measurements that are possible for Lz for the eigenstate

∣∣3; m> are
−3h̄; −2h̄; −h̄; 0; h̄; 2h̄, or 3h̄.

Example 9–15: What are L+ and L− operating on the eigenstate
∣∣2; −1>?
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Using equation (9–31),

L+
∣∣2; −1> =

√
2(2 + 1) − (−1)((−1) + 1) h̄

∣∣2; −1 + 1>

=
√

2(3) − (−1)(0) h̄
∣∣2; 0>

=
√

6 h̄
∣∣2; 0> :

L−
∣∣2; −1> =

√
2(2 + 1) − (−1)((−1) − 1) h̄

∣∣2; −1 − 1>

=
√

2(3) − (−1)(−2) h̄
∣∣2; −2> =

√
6 − 2 h̄

∣∣2; −2> =
√

4 h̄
∣∣2; −2>

= 2h̄
∣∣2; −2> :

Possibilities, Probabilities, Expectation Value,
Uncertainty, and Time Dependence
Examples 9–16 through 9–21 are intended to interface, apply, and extend calculations de-

veloped previously to eigenstates of angular momentum. As indicated earlier, a state vector will
be a linear combination of eigenstates, which this development should reinforce. Examples 9–16
through 9–21 all refer to the t = 0 state vector

∣∣ˆ(t = 0)> = A
(∣∣2; 1> +3

∣∣1; −1>
)

(9 − 32)

is is a linear combination of two eigenstates.

Example 9–16: Normalize the state vector of equation (9–32).

There are two eigenstates, so we can work in a two dimensional subspace. We can model the

first eigenstate
(

1
0

)
and the second

(
0
1

)
. Then the state vector can be written

∣∣ˆ(0)> = A

[(
1
0

)
+ 3

(
0
1

)]
= A

(
1
3

)
:

Another way to look at it is the state vector is two dimensional with one part the first eigenstate
and three parts the second eigenstate. This technique makes the normalization calculation, and a
number of others, particularly simple.

(
1; 3

)
A∗A

(
1
3

)
=

∣∣A
∣∣2(1 + 9

)
= 10

∣∣A
∣∣2 = 1

⇒ A =
1√
10

⇒
∣∣ˆ(0)> =

1√
10

(
1
3

)
=

1√
10

(∣∣2; 1> +3
∣∣1; −1>

)
:

Example 9–17: What are the possibilities and probabilities of a measurement of L2?

The possibilities are the eigenvalues. There are two eigenstates, each with its own eigenvalue.
If we measure and put the system into the first eigenstate, we measure the state corresponding
to the quantum number l = 2, which has the eigenvalue h̄2 l(l + 1) = h̄2 2(2 + 1) = 6h̄2. If
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we measure and place the state vector into the second eigenstate corresponding to the quantum
number l = 1, the eigenvalue measured is h̄2 l(l + 1) = h̄2 1(1 + 1) = 2h̄2.

Since the state function is normalized,

P
(
L2 = 6h̄2) =

∣∣ <ˆ
∣∣ˆi>

∣∣2 =
∣∣∣∣

1√
10

(
1; 3

)(
1
0

)∣∣∣∣
2

=
1
10

|1 + 0|2 =
1
10

:

P
(
L2 = 2h̄2) =

∣∣ <ˆ
∣∣ˆi>

∣∣2 =
∣∣∣∣

1√
10

(
1; 3

)(
0
1

)∣∣∣∣
2

=
1
10

|0 + 3|2 =
9
10

:

Example 9–18: What are the possibilities and probabilities of a measurement of Lz?

For exactly the same reasons, the possible results of a measurement are m = 1 ⇒ h̄ is the
first eigenvalue and m = −1 ⇒ −h̄ is the second possible eigenvalue. Using exactly the same
math,

P
(
Lz = h̄

)
=

1
10

; P
(
Lz = −h̄

)
=

9
10

:

Example 9–19: What is the expectation value of L2?

<L2> =
∑

P (fii)fii =
1
10

6h̄2 +
9
10

2h̄2 =
6
10

h̄2 +
18
10

h̄2 =
24
10

h̄2 = 2:4h̄2:

Example 9–20: What is the uncertainty of L2?

4L2 =
√∑

P (fii)
(
fii− <L2>

)2 =
[

1
10

(
6h̄2 − 2:4h̄2)2 +

9
10

(
2h̄2 − 2:4h̄2)2

]1=2

= h̄2
[

1
10

(
3:6

)2 +
9
10

(
− 0:4

)2
]1=2

= h̄2[1:296 + 0:144
]1=2 = h̄2√1:44

= 1:2h̄2:

Example 9–21: What is the time dependent state vector?

∣∣ˆ(t)> =
∑

|j><j|ˆ(0)> e−iEjt=h̄

=
(

1
0

)(
1; 0

) 1√
10

(
1
3

)
e−iE1t=h̄ +

(
0
1

)(
0; 1

) 1√
10

(
1
3

)
e−iE2t=h̄

=
1√
10

(
1
0

)
e−iE1t=h̄ +

3√
10

(
0
1

)
e−iE2t=h̄

=
1√
10

∣∣2; 1> e−iE1t=h̄ +
3√
10

∣∣1; −1> e−iE2t=h̄

which is as far as we can go with the given information. We need a specific system and an energy
operator, a Hamiltonian, to attain specific Ei.
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Angular Momentum Operators in Spherical
Coordinates

The conservation of angular momentum, or rotational invariance, implies circular or spherical
symmetry. We want to examine spherical symmetry, because spherical symmetry is often a rea-
sonable assumption for simple physical systems. We will assume a hydrogen atom is spherically
symmetric, for instance. Remember in spherical coordinates,

x = r sin µ cos `; r =
(
x2 + y2 + z2

)1=2

y = r sin µ sin`; µ = tan−1
(√

x2 + y2=z
)

z = r cos µ; ` = tan−1 (y=x) :

From these it follows that position space representations in spherical coordinates are

Lx = ih̄

(
sin`

@

@µ
+ cos ` cot µ

@

@`

)
;

Ly = ih̄

(
− cos `

@

@µ
+ sin ` cot µ

@

@`

)
;

Lz = −ih̄
@

@`
; (9 − 32)

L2 = −h̄2
(

@2

@µ2 +
1

tan µ

@

@µ
+

1
sin2 µ

@2

@`2

)
; (9 − 33)

L± = ±h̄ e±i`

(
@

@µ
± i cot µ

@

@`

)
: (9 − 34)

Example 9–22: Derive equation (9–32).

From equation (9–2),

Lz = ih̄

(
−x

@

@y
+ y

@

@x

)
:

We can develop the desired partial differentials from the relation between azimuthal angle and
position coordinates, or

` = tan−1 (y=x) ⇒ y = x tan `

⇒
@y

@`
= x @

(
tan`

)
= x sec2 ` =

x

cos2 `

⇒ @y =
x@`

cos2 `
:

The same relation gives us

x =
y

tan`
= y

cos `

sin`
= y cos ` sin−1 `

⇒
@x

@`
= y

(
− sin` sin−1 ` + cos ` (−1) sin−2 ` cos `

)
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= −y

(
1 +

cos2 `

sin2 `

)
= −y

(
sin2 ` + cos2 `

sin2 `

)
= −

y

sin2 `

⇒ @x = −
y @`

sin2 `
:

Using the partial differentials in the Cartesian formulation for the z component of angular
momentum,

Lz = ih̄

(
−x cos2

@

x @`
+ y

(
− sin2 `

@x

y@`

))

= −ih̄
(
cos2 ` + sin2 `

) @

@`

= −ih̄
@

@`
:

Example 9–23: Given the spherical coordinate representations of Lx and Ly, show equation
(9–34) is true for L+.

L+ = Lx + iLy

= ih̄

(
sin`

@

@µ
+ cos ` cot µ

@

@`

)
+ i

[
ih̄

(
− cos `

@

@µ
+ sin` cot µ

@

@`

)]

= h̄

[
i sin `

@

@µ
+ i cos ` cot µ

@

@`
+ cos `

@

@µ
− sin` cot µ

@

@`

]

= h̄

[
(cos ` + i sin`)

@

@µ
+ (i cos ` − sin`) cot µ

@

@`

]

= h̄

[
(cos ` + i sin`)

@

@µ
+ i (cos ` + i sin`) cot µ

@

@`

]

= h̄

[(
ei`

) @

@µ
+ i

(
ei`

)
cot µ

@

@`

]

= h̄2 ei`

(
@

@µ
+ i cot µ

@

@`

)
:

An outline of the derivations of the all components and square of angular momentum in spher-
ical coordinates is included in Ziock5. These calculations can be “messy” by practical standards.

Special Functions Used for the Hydrogen Atom
Two special functions are particularly useful in describing a hydrogen atom assumed to have

spherical symmetry. These are spherical harmonics and Associated Laguerre functions. The
plan will be to separate the Schrodinger equation into radial and angular equations. The solutions
to the radial equation can be expressed in terms of associated Laguerre polynomials, which we will
examine in the next chapter. The solutions to the angular equation can be expressed in terms of
spherical harmonic functions, which we will examine in the next section. Spherical harmonics are
closely related to a third special function, Legendre functions. They are so closely related, the
spherical harmonics can be expressed in terms of associated Legendre polynomials.

5 Ziock Basic Quantum Mechanics (John Wiley & Sons, New York, 1969), pp. 91–94

322



The name spherical harmonic comes from the
geometry the functions naturally describe, spheri-
cal, and the fact any solution of Laplace’s equation
is known as harmonic. Picture a ball. The surface
may be smooth, which is likely the first picture
you form. Put a rubber band around the center,
and you get a minima at the center and bulges,
or maxima, in the top and bottom half. Put rub-
ber bands on the circumference, like lines of lon-
gitude, and you get a different pattern of maxima
and minima. We could imagine other, more com-
plex patterns of maxima and minima. When these
maxima and minima are symmetric with respect
to an origin, the center of the ball, Legendre func-
tions, associated Legendre functions, and spherical
harmonics provide useful descriptions.

Properties that makes these special functions particularly useful is they are orthogonal and
complete. Any set that is orthogonal can be made orthonormal. We have used orthonormality in
a number of calculations, and the property of orthonormality continues to be a practical necessity.
They are also complete in the sense any phenomenon can be described by an appropriate linear
combination. Other complete sets of orthonormal functions we have encountered are sines and
cosines for the square well, and Hermite polynomials for the SHO. A set of complete, orthonormal
functions is equivalent to a linear vector space; these special functions are different manifestations
of a complex linear vector space.

Spherical Harmonics
The ket

∣∣l; m> is an eigenstate of the commuting operators L2 and Lz, but it is an
abstract eigenstate. That

∣∣l; m> is abstract is irrelevant for the eigenvalues, since eigenvalues
are properties of the operators. We would, however, like a representation useful for description for
the eigenvectors. Per chapter 4, we can form an inner product with an abstract vector to attain
a representation. Using a guided choice, the angles of spherical coordinate system will yield an
appropriate representation. Just as <x|g> = g(x), we will write

<µ; `
∣∣l; m> = Yl;m(µ; `):

The functions of polar and azimuthal angles, Yl;m(µ; `), are the spherical harmonics.

The spherical harmonics are related so strongly to the geometry of the current problem, they
can be derived from the spherical coordinate form of the eigenvalue/eigenvector equation (9–29),
Lz

∣∣l; m> = mh̄
∣∣l; m>, and use of the raising/lowering operator equation (9–31).

Using the spherical coordinate system form of the operator and the functional forms of the
eigenstates, equation (9–29) is

−ih̄
@

@`
Yl;m(µ; `) = mh̄ Yl;m(µ; `):

We are going to assume the spherical harmonics are separable, that they can be expressed as a
product of a function of µ and a second function of `, or

Yl;m(µ; `) = fl;m(µ) gl;m(`):
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Using this in the differential equation,

−ih̄
@

@`
fl;m(µ) gl;m(`) = mh̄ fl;m(µ) gl;m(`)

⇒ −i fl;m(µ)
@

@`
gl;m(`) = mfl;m(µ) gl;m(`)

⇒ −i
@

@`
gl;m(`) = mgl;m(`)

⇒
@gl;m(`)
gl;m(`)

= im @`

⇒ ln gl;m(`) = im`

⇒ gl;m(`) = eim`:

Notice the exponential has no dependence on l, so we can write

gm(`) = eim`; (9 − 35)

which is the azimuthal dependence.

Remember that there is a top and bottom to the ladder for a given l. The top of the ladder
is at m = l. If we act on an eigenstate on the top of the ladder, we get zero, meaning

L+
∣∣l; l> = 0;

Using the spherical coordinate forms of the raising operator and separated eigenstate including
equation (9–35), this is

h̄ ei`

[
@

@µ
+ i cot µ

@

@`

]
fl;l(µ) eil` = 0

⇒ eil` @

@µ
fl;l(µ) + i fl;l(µ) cot µ

(
il
)
eil` = 0

⇒
@

@µ
fl;l(µ) − l fl;l(µ) cot µ = 0:

The solution to this is fl;l(µ) = A
(
sin µ

)l
. To see that it is a solution,

@

@µ
fl;l(µ) =

@

@µ
A

(
sin µ

)l
= A l

(
sin µ

)l−1
cos µ;

and substituting this in the differential equation,

A l
(
sin µ

)l−1 cos µ − l
[
A

(
sin µ

)l
] cos µ

sin µ
= A l

(
sin µ

)l−1
[
cos µ − sin µ

cos µ

sin µ

]
= 0:

So the unnormalized form of the m = l spherical harmonics is

Yl;m(µ; `) = A
(
sin µ

)l
eim`: (9 − 36)

Example 9–24 derives Y1;1(µ; `) starting with equation (9–36).
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So how do we get the spherical harmonics for which m 6= l? The answer is to attain a
Yl;l(µ; `) and operate on it with the lowering operator. Example 9–25 derives Y1;0(µ; `) in this
manner.

One comment before we proceed. The spherical harmonics of equation (9–36) can be made
orthonormal, so we need to calculate the normalization constants, A for each Yl;m(µ; `). Having
selected a representation, this is most easily approached by the appropriate form of integration. The
appropriate form of integration for spherical angles is with respect to solid angle, dΩ = sin µdµd`,
or ∫

Y ∗
l;m(µ; `)Yl;m(µ; `) dΩ =

∫ 2…

0
d`

∫ …

0
dµ sin µ

∣∣Yl;m(µ; `)
∣∣2 = 1;

which will also be illustrated in examples 9–24 and 9–25. These and other special functions are
addressed in most mathematical physics texts including Arken6 and Mathews and Walker7.

A list of the first few spherical harmonics is

Y0;0(µ; `) =
1
4…

Y2;0(µ; `) =

√
5

16…

(
3 cos2 µ − 1

)

Y1;±1(µ; `) =

√
3
8…

sin µ e±i` Y3;±3(µ; `) =

√
35
64…

sin3 µ e±3i`

Y1;0(µ; `) =

√
3
4…

cos µ Y3;±2(µ; `) =

√
105
32…

sin2 µ cos µ e±2i`

Y2;±2(µ; `) =

√
15
32…

sin2 µ e±2i` Y3;±1(µ; `) =

√
21
64…

sin µ
(
5 cos2 µ − 1

)
e±i`

Y2;±1(µ; `) =

√
15
8…

sin µ cos µ e±i` Y3;0(µ; `) =

√
7

16…

(
5 cos3 µ − 3 cos µ

)

Table 9 − 1: The First Sixteen Spherical Harmonic Functions:

A few comments about the list are appropriate. First, notice the symmetry about m = 0.
For example, Y2;1 and Y2;−1 are exactly the same except for the sign of the argument of the
exponential. Second, notice the Yl;0 are independent of `. When m = 0, the spherical harmonic
functions are constant with respect to azimuthal angle. Next, per the previous sentences, it is
common to refer to spherical harmonic functions without explicitly indicating that the arguments
are polar and azimuthal angles. Finally, and most significantly, some texts will use a negative sign
leading the spherical harmonic functions for which m < 0. This is a different choice of phase.
We will use the convention denoted in table 9–1, where all spherical harmonics are positive. Used
consistently, either choice is reasonable and both choices have advantages and disadvantages.

Figure 9–2 illustrates the functional form of the first 16 spherical harmonic functions. Note
that the radial coordinate has not yet been addressed. Angular distribution is all that is being

6 Arfken Mathematical Methods for Physicists (Academic Press, New York, 1970), 2nd ed.,
chapters 9–13.

7 Mathews and Walker Mathematical Methods of Physics (The Benjamin/Cummings Publishing
Co., Menlo Park, California, 1970), 2nd ed., chapter 7.
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illustrated. The radial coordinate will be examined in the next chapter. The size of any of the
individual pictures in figure 9–2 is arbitrary; they could be very large or very small. We assume
a radius of one unit to draw the sketches. In other words, you can look at the smooth sphere of
Y0;0 as having radius one unit, and the relative sizes of other spherical harmonic functions are
comparable on the same radial scale.

Figure 9 − 2: Illustrations of the First Sixteen Spherical Harmonic Functions:
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There is a technique here we want to exploit when we address radial functions. The spher-
ical harmonics are orthonormal so are normalized. The figures represent spherical harmonics of
magnitude one, multiplied by one, so remain orthonormal. We want the radial functions to be
orthonormal, or individually to have magnitude one. Just as we have assumed a one unit radius
to draw the figures here, if we multiply two quantities of magnitude one, we attain a product
of magnitude one. If the angular function and radial function are individually normalized, the
product function will be normalized as well.

Example 9–24: Show Yl;l = A
(
sin µ

)l
eim` yields the normalized Y1;1 of table 9–1.

Y1;1 = A
(
sin µ

)1
ei(1)` = A sin µ ei`:

To normalize this,

1 =
∫

(Y1;1)
∗
Y1;1 dΩ =

∫
A∗ sin µ e−i` A sin µ ei` dΩ

=
∣∣A

∣∣2
∫

sin2 µ e0 dΩ =
∣∣A

∣∣2
∫ 2…

0
d`

∫ …

0
dµ sin2 µ sin µ

=
∣∣A

∣∣2
∫ …

0
dµ sin3 µ

∫ 2…

0
d` = 2…

∣∣A
∣∣2

∫ …

0
dµ sin3 µ

= 2…
∣∣A

∣∣2
[
−1

3
cos µ

(
sin2 µ + 2

)]…

0
=

2…

3

∣∣A
∣∣2

[
cos µ

(
sin2 µ + 2

)]0

…

=
2…

3

∣∣A
∣∣2

[
cos(0)

(
sin2(0)
/

+ 2
)

− cos(…)
(

sin2(…)
/

+ 2
)]

=
2…

3

∣∣A
∣∣2

[
(1)(2) − (−1)(2)

]
=

2…

3

∣∣A
∣∣2[4

]

⇒
8…
3

∣∣A
∣∣2 = 1 ⇒ A =

√
3
8…

⇒ Y1;1 =

√
3
8…

sin µ ei`;

which is identical to Y1;1 in table 9–1.

Example 9–25: Derive Y1;0 from the result of the previous example using the lowering operator.

A lowering operator acting on an abstract eigenstate is L−
∣∣l; m> = B

∣∣l; m − 1>, where
B is a proportionality constant. Using the spherical angle representation on the eigenstate Y1;1,
this eigenvalue/eigenvector equation is

−h̄ e−i`

(
@

@µ
− i cot µ

@

@`

)
Y1;1 = B Y1;0;

where B is the eigenvalue. Using the unnormalized form of Y1;1, we have

B Y1;0 = −h̄ e−i`

(
@

@µ
− i cot µ

@

@`

)
A sin µ ei`

= −Ah̄ e−i`

(
ei` @

@µ
sin µ − i cot µ sin µ

@

@`
ei`

)

= −Ah̄ e−i`

(
ei` cos µ − i

cos µ

sin µ
sin µ(i)ei`

)

= −Ah̄
(
cos µ + cos µ

)
= −2Ah̄

(
cos µ

)
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⇒ Y1;0 = C cos µ;

where all constants have been combined to form C, which becomes simply a normalization
constant. We normalize this using the same procedure as the previous example,

1 =
∫

C∗ cos µ C cos µ dΩ =
∣∣C

∣∣2
∫ 2…

0
d`

∫ …

0
dµ cos2 µ sin µ

= 2…
∣∣C

∣∣2
∫ …

0
dµ cos2 µ sin µ = 2…

∣∣C
∣∣2

[
−

cos3 µ

3

]…

0
=

2…

3

∣∣C
∣∣2

[
cos3 µ

]0

…

=
2…

3

∣∣C
∣∣2

[
cos3(0) − cos3(…)

]
=

2…

3

∣∣C
∣∣2

[
1 − (−1)

]
=

2…

3

∣∣C
∣∣2[2

]

⇒
4…

3

∣∣C
∣∣2 = 1 ⇒ C =

√
3
4…

⇒ Y1;0 =

√
3
4…

cos µ;

which is identical to Y1;0 as listed in table 9–1.

Generating Function for Spherical Harmonics
A generating functions for higher index spherical harmonics is

Yl;m(µ; `) = (−1)m

√
(2l + 1)(l − m)!

4…(l + m)!
Pl;m(cos µ) eim`; m ≥ 0;

and
Yl;−m(µ; `) = Y ∗

l;m(µ; `); m < 0;

where the Pl;m(cos µ) are associated Legendre polynomials. Associated Legendre polynomials
can be generated from Legendre polynomials using

Pl;m(u) = (−1)m
√

(1 − u2)m
dm

dum
Pl(u);

where the Pl(u) are Legendre polynomials. Legendre polynomials can be generated using

Pl(u) =
(−1)l

2ll!
dl

dul
(1 − u2)l:

Notice the generating function for spherical harmonics contains the restriction m ≥ 0. Our
strategy to attain spherical harmonics with m < 0 will be to form them from the adjoint of the
corresponding spherical harmonic with m > 0 as indicated. The advantage of this strategy is we
do not need to consider associated Legendre polynomials with m < 0, though those also have
meaning and can be attained using

Pl;−m(u) =
(l − m)!
(l + m)!

Pl;m(u);

in our phase scheme.
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Example 9–26: Derive Y2;1 and Y2;−1 using the generating functions.

P2(u) =
(−1)2

22 · 2!
d2

du2 (1 − u2)2 =
1

4 · 2
d

du

[
2(1 − u2)(−2u)

]
=

1
2

d

du
(u3 − u) =

1
2
(3u2 − 1);

is the appropriate Legendre polynomial. The appropriate associated Legendre polynomial is

P2;1(u) = (−1)1
√

(1 − u2)1
d1

du1 P2(u) = −
√

(1 − u2)
d

du

1
2
(3u2 − 1)

= −
1
2

√
(1 − u2)(6u) = −3u

√
(1 − u2):

The spherical harmonic in terms of this associated Legendre polynomial is

Y2;1(µ; `) = (−1)1
√

(2 · 2 + 1)(2 − 1)!
4…(2 + 1)!

P2;1(cos µ) ei(1)`

= −

√
(5)(1)!
4…(3)!

(
− 3 cos µ

√
(1 − cos2 µ)

)
ei`

= 3

√
5

4… · 3 · 2
cos µ sin µ ei` =

√
32 · 5

4… · 3 · 2
cos µ sin µ ei`

=

√
15
8…

cos µ sin µ ei`;

which is identical to Y2;1 in table 9–1. Then,

Y2;−1(µ; `) = Y ∗
2;1(µ; `) ⇒ Y2;−1(µ; `) =

√
15
8…

cos µ sin µ e−i`;

also identical to the listing in table 9–1.
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