
Chapter 7 The Heisenberg Uncertainty Relations

Werner Heisenberg, after studying under Sommerfeld, Born, and Bohr, originated
matrix mechanics in 1925. He is most well know for the uncertainty principle to which
his name is often attached, developed in 1927. Notably, after Chadwick discovered the
neutron in 1932, Heisenberg was first to propose a nucleus composed of protons and
neutrons was preferable to the then reigning theory of the nucleus composed of protons
and electrons.

The form of the Heisenberg uncertainty principle with which we will be most interested con-
cerns canonically conjugate operators. Canonically conjugate commutators are of the form

[
A; B

]
= ih̄I = ih̄:

The Heisenberg uncertainty principle for canonically conjugate operators is

4A4B ≥
h̄

2
:

The primary purpose of this chapter is to develop this relation.

The General Uncertainty Relation

Consider the commutator of two arbitrary Hermitian operators A and B, where
[
A; B

]
= iC:

Is C Hermitian? The answer is yes, because

[
A; B

]†
=

(
A B − B A

)†
=

(
A B

)† −
(
B A

)†
= B†A† − A†B† = B A − AB = −

[
A; B

]
= −iC

so (
iC

)† = i†C† = −iC† = −iC ⇐⇒ C = C†; (7 − 1)

and C is Hermitian. We will use this result momentarily.

Recalling equation (5–19) from chapter 5,

4Aˆ = 〈ˆ|
(
A − 〈A〉I

)2
|ˆ〉1=2; (7 − 2)

with which we can calculate standard deviation. We define Â = A − 〈A〉I just to keep the
notation clean.

The commutator [
Â; B̂

]
=

[
A; B

]
: (7 − 3)
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Example 7–1: Prove equation (7–3).

Remember expectation value is a scalar so commutes with everything, and the identity oper-
ator also commutes with everything. The commutator is

[
Â; B̂

]
= Â B̂ − B̂ Â =

(
A − 〈A〉I

)(
B − 〈B〉I

)
−

(
B − 〈B〉I

)(
A − 〈A〉I

)

= A B − A〈B〉I − 〈A〉I B + 〈A〉I〈B〉I − B A + B〈A〉I + 〈B〉IA − 〈B〉I〈A〉I

= A B − B A +
(
− 〈B〉IA + 〈B〉IA

)
+

(
− 〈A〉I B + 〈A〉IB

)
+

(
〈A〉〈B〉I2 − 〈A〉〈B〉I2

)

where all the grouped terms sum to zero, so

[
Â; B̂

]
= A B − B A =

[
A; B

]
:

Consider the product

(
4A

)2(4B
)2

= 〈ˆ|
(
A − 〈A〉I

)2
|ˆ〉 〈ˆ|

(
B − 〈B〉I

)2
|ˆ〉

= 〈ˆ|Â 2|ˆ〉 〈ˆ|B̂ 2|ˆ〉

= 〈Â †ˆ |Âˆ〉 〈B̂ †ˆ| B̂ ˆ〉

= 〈Âˆ |Âˆ〉 〈B̂ ˆ| B̂ ˆ〉

where the last step uses the fact the operators are given to be Hermitian. This can be written

(
4A

)2(4B
)2 =

∣∣∣ |Âˆ〉
∣∣∣
2∣∣∣ |B̂ ˆ〉

∣∣∣
2

(7 − 4)

Example 7–2: Prove that if A is Hermitian, Â is Hermitian.

The definition is
Â = A − 〈A〉I

⇒ Â† =
(
A − 〈A〉I

)†
= A† − 〈A〉∗I†:

Now I† = I because of the nature of the identity, and A† = A because it is given to be
Hermitian. The expectation value 〈A〉 is an expectation value of a Hermitian operator so must
be a real number. The complex conjugate of a real number is the same real number, that is
〈A〉∗ = 〈A〉, so

A† − 〈A〉∗I† = A − 〈A〉I = Â;

therefore
Â† = Â

and Â is Hermitian.
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We want to use the Schwarz Inequality2, which is

∣∣v1
∣∣2∣∣v2

∣∣2 ≥
∣∣ <v1|v2>

∣∣2:

The equality is saturated if and only if the two vectors are proportional, that is |v1> = c |v2>.
Applying the Schwarz Inequality, equation (7–4) means

(
4A

)2(4B
)2

=
∣∣∣ |Â ˆ〉

∣∣∣
2∣∣∣ |B̂ ˆ〉

∣∣∣
2

≥
∣∣∣〈ˆ| Â B̂ |ˆ〉

∣∣∣
2
: (7 − 5)

We also want to use the anti–commutator defined
[
A; B

]
+ = AB + B A:

We can express the operator product in the last term of equation (7–5) as a sum of an anti–
commutator and commutator by “adding zero,” or

Â B̂ =
1
2
Â B̂ +

1
2
Â B̂ +

1
2
B̂ Â −

1
2
B̂ Â

=
1
2

(
Â B̂ + B̂ Â

)
+

1
2

(
Â B̂ − B̂ Â

)

=
1
2
[
Â; B̂

]
+ +

1
2
[
Â; B̂

]
:

The inequality of relation (7–5) is

(
4A

)2(4B
)2 ≥

∣∣∣〈ˆ|1
2
[
Â; B̂

]
+ +

1
2
[
Â; B̂

]
|ˆ〉

∣∣∣
2

⇒
(
4A

)2(4B
)2 ≥ 1

4

∣∣∣〈ˆ|
[
Â; B̂

]
+ +

[
Â; B̂

]
|ˆ〉

∣∣∣
2
: (7 − 6)

Now the anti–commutator portion is Hermitian, i.e.

[
Â; B̂

]†
+ =

(
Â B̂ + B̂ Â

)†

=
(
Â B̂

)†
+

(
B̂ Â

)†

= B̂†Â† + Â†B̂†

= B̂Â + ÂB̂

because the operators are Hermitian, so

[
Â; B̂

]†
+ = B̂Â + ÂB̂ = ÂB̂ + B̂Â =

[
Â; B̂

]
+;

therefore the anti–commutator is Hermitian. A Hermitian operator is analogous to a real number.
We assume the commutator portion of the Hermitian operators is of the form

[
A; B

]
= iC: And

2 Byron and Fuller Mathematics of Classical and Quantum Physics (Dover Publications, New
York, 1970), pp. 146–148.
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from the first calculation of this section, since C is Hermitian, also analogous to a real number;
equation (7–6) is analogous to a complex number of the form a+ ib. Equation (7–6) concerns the
magnitude of a quantity analogous to a complex number. The magnitude of a complex number is∣∣a + ib

∣∣2 = a2 + b2 = a2 − (i)2b. Extending this plausibility argument to equation (7–6), we have
(
4A

)2(4B
)2 ≥ 1

4
〈ˆ|

[
Â; B̂

]
+|ˆ〉2 − 1

4
〈ˆ|

[
Â; B̂

]
|ˆ〉2;

where we have used a negative sign preceeding the last term. If
[
A; B

]
= iC, consistent with the

assumptions, we want the last equation to reflect the form
∣∣a + ib

∣∣2 = a2 − (i)2b. From equation
(7–3), we can remove the hats, so

(
4A

)2(4B
)2 ≥

1
4
〈ˆ|

[
A; B

]
+|ˆ〉2 −

1
4
〈ˆ|

[
A; B

]
|ˆ〉2; (7 − 7)

which is the General Uncertainty Relation.

Uncertainty Relations for Canonically Conjugate
Operators

If we consider canonically conjugate operators, operators such that
[
A; B

]
= ih̄ = ih̄I;

we have a special case applicable to equation (7–7). In fact we have a case where
[
A; B

]
= iC,

where C = h̄I. Equation (7–7) becomes
(
4A

)2(4B
)2 ≥

1
4
〈ˆ|

[
A; B

]
+|ˆ〉2 −

1
4
〈ˆ| ih̄I |ˆ〉2: (7 − 8)

The first term on the right side of the inequality is Hermitian, so its magnitude is real, and we can
conclude it is greater than or equal to zero, i.e.,

1
4
〈ˆ|

[
A; B

]
+|ˆ〉2 ≥ 0

⇒
(
4A

)2(4B
)2 ≥ −

1
4
〈ˆ| ih̄I |ˆ〉2

⇒
(
4A

)2(4B
)2 ≥ −

1
4

(
ih̄

)2
〈ˆ| I |ˆ〉2

⇒
(
4A

)2(4B
)2 ≥

1
4
h̄2〈ˆ|ˆ〉2

⇒
(
4A

)2(4B
)2 ≥

1
4
h̄2;

where we have assumed the basis is orthonormal so <ˆ|ˆ> = 1, in the last step. A square root
of both sides yields

(
4A

)(
4B

)
≥

1
2
h̄; (7 − 9)

for canonically conjugate commutators for any |ˆ> in an orthonormal basis.

The most common application of equation (7–9) is to the fundamental canonical commutator,
equation (9–3), [

X ; P
]

= ih̄;

so (
4X

)(
4P

)
≥

1
2
h̄:
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