
Consider a particle moving in the infinitely deep square well (remember that our square
wells go from −L to +L), which initially has the state vector

| ˆ(0)> = A ( | 1> + | 2> ):

(a) First, calculate the normalization constant A. Then, express the normalized time-
dependent state vector | ˆ(t) > in terms of the energy eigenkets. Finally, express the
position-space time-dependent wavefunction ˆ(x; t) = < x | ˆ(t) > in terms of the
energy eigenfunctions in position space.

(b) Calculate the time-dependent expectation value of the position of the particle in the
well <x(t)>.

Hint: Remember how to integrate the products of even and odd functions over symmetric
limits! Also, you might find the following wavefunctions and definite integral helpful:
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(c) Sketch the ground state wavefunction ˆ0(x) and the first excited state wavefunction
ˆ1(x) inside the well. Then explain how the sum of these two functions (times their
respective time-dependent phase factors) produce the time-dependent motion of the
particle in the well. Make a qualitative sketch of the shape of the probability distri-
bution at three times: when the particle has its maximum and minimum expectation
values <x> = ± 32L=9…2, and when it has an expectation value of zero, <x> = 0.
Explain how your sketches agree qualitatively with your answer to part b.

(d) If the position is measured at time t, what results can be found, and with what proba-
bilities will these results be found?

(e) If the energy is measured at time t, what results can be found, and with what proba-
bilities will these results be found?

(f) Calculate the expectation value of the energy <E > and the standard deviation of the
energy ∆E. Then sketch P (E) versus E and show your values of < E > and ∆E on
your sketch.


