
An up scale restaurant with a messenger dressing in concrete hues to match his granite dis-
position and a mansion that Gatsby couldn’t imagine complete with provocative servants. Now a
posh men’s store with attendants whose names were “Pierre” and “Armin.” He found himself look-
ing at a rack of $2200 suits. When “Armin” asks if he can assist my selection, maybe I’ll suggest
that my wardrobe requires a replacement rubberized overcoat: : : Before Armin could intervene,
a gentleman wearing a white jacket with a red carnation in the lapel approached. He offered
the greeting “How ’bout dem Bums?” to parry the gentleman’s fixed attention. The gentleman
responded by handing him a ticket to a Mets, Dodgers game and added the even but unexpected
comment “Fourier found a need to dress warmly and should have been more cautious of stairs : : : ”

The Mathematics of Quantum Mechanics, Part 3
In the last two parts, calculations using small dimensional, discrete systems are featured. We

will continue to illustrate calculations in small dimensional systems to provide a picture of the
mathematical mechanics. These calculations are useful when working in a small dimensional sub-
space. They are also useful in generalizing to larger dimensional and even infinite dimensional
systems. The generalization is essential because infinite dimensional systems model physical real-
ism. Part 3 emphasizes the generalization to infinite dimensions.

Projection operators and the completeness relation depend upon an understanding
of the outer product. You should have the a grasp on the rudiments of the notation quantum
mechanics routinely uses to describe infinite dimensional systems in position space, momentum
space, and energy space. The Dirac delta function and its derivative are used to express the
second postulate of quantum mechanics. You need to understand its use within integrals and
some of its properties. The theta function is the integral of the Dirac delta function. An
infinite dimensional vector is equivalent to a continuous function. Calculations concerning infinite
dimensional vectors expressed as functions are calculus problems. Any continuous function can be
expressed as a Fourier series. Fourier series are precursors to Fourier integrals and Fourier
transforms A Fourier transform is used to change the domain or the basis of a continuous function.
For instance, a quantum mechanical Fourier transform is used change a state function from the
position basis to the momentum basis or vice versa.

1. Given that | v> =
(

1
2

)
and <w | =

(
3; 4

)
; find | v><w | .

The object | v><w | is an outer product. If | v> =




v1
v2
v3
...


 and <w | =

(
w1; w2; w3; · · ·

)
,

then | v><w | =




v1
v2
v3
...




(
w1; w2; w3; · · ·

)
=




v1w1 v1w2 v1w3 · · ·
v2w1 v2w2 v2w3 · · ·
v3w1 v3w2 v3w3 · · ·

...
...

...
. . .


 :

is the outer product. The outer product of two vectors is an operator.
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| v><w | =
(

1
2

) (
3; 4

)
=

(
1 · 3 1 · 4
2 · 3 2 · 4

)
=

(
3 4
6 8

)

2. (a) Find the projection operator for the ket | 2> in the basis of unit vectors where | 1> is the
first unit vector.

(b) Apply this projection operator to an arbitrary ket.

(c) Apply this projection operator to an arbitrary bra.

The projection operator is defined Pi = | i><i | for the ket | i> ; where | i> and <i | are

corresponding unit vectors. Here, | 2> =




0
1
0
...


. Use | v> =




v1
v2
v3
...


 as the arbitrary ket.

(a) | 2><2 | =




0
1
0
...




(
0; 1; 0; · · ·

)
=




0 0 0 · · ·
0 1 0 · · ·
0 0 0 · · ·
...

...
...

. . .


 :

(b) | 2><2 | v> =




0 0 0 · · ·
0 1 0 · · ·
0 0 0 · · ·
...

...
...

. . .







v1
v2
v3
...


 =




0
v2
0
...


 :

(c) <v | 2><2 | =
(
v1; v2; v3; · · ·

)



0 0 0 · · ·
0 1 0 · · ·
0 0 0 · · ·
...

...
...

. . .


 =

(
0; v2; 0; · · ·

)
:

Postscript: The projection operator | 2 >< 2 | selects the second component from any ket or
bra. It “projects” the second component from the original vector. The result of operation with the
projection operator | 2><2 | is a vector of the original type with the original second component
and all other components zero. Similarly, P4 will project the fourth component from any vector,
and Pi will project the ith component from any vector.

3. What is the meaning of the consecutive projection operators Pi Pj ?

Assume that the operator Pi Pj acts on a ket to the right, for instance, Pi Pj | v> : Then Pj

selects the jth component, and all other components are zero. So Pi operates on a vector with
one non-zero component. If the non-zero component is in the ith place in the vector, the operation
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with Pi will return the same ket with one non-zero component. If the non-zero component is in
other than the ith place in the vector, the operation with Pi will return the zero vector. See if
you can express these ideas symbolically using Dirac notation and the Kronecker delta.

Pi Pj = | i><i | j><j | = | i> –ij <j | = | i><j | –ij = | i><i | = Pi :

Postscript: Notice that < j | –ij = < i | . It says that the only condition under which this
product is non-zero is when i = j . A state vector that is zero indicates the absence of a system.
Quantum mechanics is not interested in the absence of systems so cases that are zero are usually
ignored.

You could finish the problem | i> –ij <j | = | j><j | = Pj if that suits your purpose.

4. Express the completeness relation in three dimensions.

In any given space, there are as many projection operators as the dimension of the space. Add
them all to attain an identity operator, that is

∑

i

Pi =
∑

i

| i><i | = I :

This is known as the completeness relation. It is a resolution of the identity, or another
way to express an identity operator. It may be the most useful form of the identity for quantum
mechanical calculations. This problem should illustrate the concept. Of course, the completeness
relation can be expressed in arbitrary or infinite dimensions.

3∑

i=1

Pi =
3∑

i=1

| i><i | =




1
0
0


(

1; 0; 0
)

+




0
1
0


 (

0; 1; 0
)
+




0
0
1


 (

0; 0; 1
)

=




1 0 0
0 0 0
0 0 0


 +




0 0 0
0 1 0
0 0 0


 +




0 0 0
0 0 0
0 0 1


 =




1 0 0
0 1 0
0 0 1


 = I :

5. Show how the unitary transformation U†A U determines the transformation of vectors.

This problem is intended to amplify the concept of coordinate independence. It should also amplify
some of the notation. In particular, one of the characteristics of Dirac notation is that it is
independent of basis. Said another way, Dirac notation is coordinate independent.

An inner product is a scalar. An operator acting on a vector, such as A | v > is a vector,
A | v> = | v′ > for instance. Since < w | A | v > = < w | v′ > ; it follow that < w |A | v > is a
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scalar because <w | v′> is a scalar. We will encounter numerous brakets where a bra and a ket
sandwich an operator. This type of braket is a scalar, just as an inner product is a scalar.

When conducting a unitary transformation on an operator, any associated bras and kets also
require transformation. Insert the identity in the braket <w |A | v> to the immediate left and
right of A , use the fact that the identity can be expressed U U† = I, and examine pieces.

<w |A | v> = <w | I AI | v>

= <w | U U† A U U† | v>

=
(

<w | U
)

︸ ︷︷ ︸
transform bras

transform operators︷ ︸︸ ︷(
U† A U

) (
U† | v>

)

︸ ︷︷ ︸
transform kets

:

The object in the center set of parenthesis is our unitary transformation. For general <w | and
| v>, the last equation says we must transform a bra as < w | U and a ket as U† | v > to be
consistent with the form of the unitary transformation we have chosen.

Postscript: Notice that if we had chosen U AU† as our unitary transformation, <w | U† would
be the correct method to transform a bra and U | v> would be the manner to transform a ket.

6. Given that | f > =




1
2
3


 and | g> =




4
5
6


, show that <f | g> is invariant under a

unitary transformation where U =




1=2 1=
√

2 1=2
−1=

√
2 0 1=

√
2

1=2 −1=
√

2 1=2


.

This numerical example is intended to illustrate the procedures and a portion of the meaning of
the coordinate independence addressed in the last problem. First find < f | g > . Then find
<f | U = <f ′ | and U† | g > = | g′> . You will find that <f | g> = <f ′ | g′> . The unitary
operator given is from problem 24 in part 2. Of course, the inner product must be the same for
any unitary transformation.

<f | g> =
(
1; 2; 3

)



4
5
6


 = 4 + 10 + 18 = 32 :

U =




1=2 1=
√

2 1=2
−1=

√
2 0 1=

√
2

1=2 −1=
√

2 1=2


 ⇒ U† =




1=2 −1=
√

2 1=2
1=

√
2 0 −1=

√
2

1=2 1=
√

2 1=2
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<f | U =
(
1; 2; 3

)



1=2 1=
√

2 1=2
−1=

√
2 0 1=

√
2

1=2 −1=
√

2 1=2




=
(

1
2

−
2√
2

+
3
2
;

1√
2

−
3√
2

;
1
2

+
2√
2

+
3
2

)
=

(
2 −

√
2 ; −

√
2 ; 2 +

√
2

)
= <f ′ |

U† | g> =




1=2 −1=
√

2 1=2
1=

√
2 0 −1=

√
2

1=2 1=
√

2 1=2







4
5
6


 =




2 − 5=
√

2 + 3
4=

√
2 − 6=

√
2

2 + 5=
√

2 + 3


 =




5 − 5=
√

2
−

√
2

5 + 5=
√

2


 = | g′> :

<f ′ | g′> =
(
2 −

√
2 ; −

√
2 ; 2 +

√
2

)



5 − 5=
√

2
−

√
2

5 + 5=
√

2




= 10 − 10√
2

− 5
√

2 + 5 + 2 + 10 +
10√

2
+ 5

√
2 + 5 = 32 :

Postscript: The focal concept is basis independence. A vector expressed in Cartesian coordinates
has different components than the same vector expressed in spherical coordinates. Similarly, the
vectors <f | and <f ′ | ; and | g > and | g′> , are the same vectors represented in different
bases. The basis of <f | and | g > is Cartesian. The basis for <f ′ | and | g′> is the basis
of eigenvectors of the operator B of problem 24 in part 2.

7. Provide an informal argument that a vector of infinite dimension can contain the same infor-
mation as a continuous function.

The concept in this problem is essential to understanding the physics that follows. A proof is
beyond the scope of this book. We explain the primary difficulty in the postscript. You may
never have the formal math background to fully comprehend the proof, but you can and must
comprehend the concept.

You should carefully read the following comments now and try to recreate the critical steps
after you have absorbed the content.

Consider a curve segment with boundaries 0 and a . A function f (x) could be used to describe
this curve segment. If 20 points are thought to adequately describe this curve segment, then

f (x) = f (x1)




1
0
0
...
0




+ f (x2)




0
1
0
...
0




+ f (x3)




0
0
1
...
0




+ · · · + f (x19)




0
...
0
1
0




+ f (x20)




0
...
0
0
1
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=




f (x1)
f (x2)
f (x3)

...
f (x20)




=
20∑

i=1

f (xi) | i> ;

Figure 1-3-1.

where | i> are unit vectors having 20 components with 1 as the ith component, and the xi are
the positions of the ith unit vectors on the x-axis. Though it is likely a better representation than
a description using just 5 points or 10 points, 20 points cannot adequately describe a continuous
function. If an arbitrarily large number, say n, is thought to adequately describe the given curve
segment,

f (x) = f (x1)




1
0
0
...
0




+ f (x2)




0
1
0
...
0




+ f (x3)




0
0
1
...
0




+ · · · + f (xn−1)




0
...
0
1
0




+ f (xn)




0
...
0
0
1




=




f (x1)
f (x2)
f (x3)

...
f (xn)




=
n∑

i=1

f (xi) | i> ;

where | i> are unit vectors having n components and the 1 is the ith component, and the xi are
the positions of the ith unit vectors on the x-axis. This is an adequate representation of a curve
segment for most macroscopic purposes for adequately large n. Of course, for mathematical or
quantum mechanical purposes, any finite number of f (xi) cannot describe a continuous function.
Given two successive points on the x-axis, say xj and xk , the point midway between them is
excluded so the curve segment cannot be continuous. But in the limit of n → ∞ , or equivalently,
as the interval between successive points on the x-axis ∆ x → 0 ,

f (x) = f (x1)




1
0
0
...


 + f (x2)




0
1
0
...


 + f (x3)




0
0
1
...


 + · · · =




f (x1)
f (x2)
f (x3)

...


 =

∞∑

i=1

f (xi) | i> ; (1)

where | i> are unit vectors having infinite components where the 1 is the ith component, and the
xi are the positions of the ith unit vectors on the x-axis.

Postscript: This procedure is related to numerous applications. A beginning student of algebra
will choose a finite number of points to manually graph a function. Make ∆x adequately small
and the eye cannot distinguish the space between the points on a curve segment. This fact is used
by computer monitors, printers, digital cameras, and scanners to name just a few applications.
The difference is that neither a student doing paper and pencil graphing nor a computer graphing
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application place the functional values in a column vector. An infinity of functional values can be
placed into a column vector and that is the key point in the argument that a continuous function
and a vector of infinite dimension are equivalent.

The difficult question is when do the function and the vector of infinite dimension converge?
This question is addressed by the field of functional analysis. We do not address the question
of convergence. However, the concept of the equivalence of continuous functions and vectors of
infinite dimension introduced here informally is essential to many of the developments that are
encountered in the study of quantum mechanics.

The unit vectors in this problem correspond to infinitesimally small increments in position.
We are, therefore, using the position basis in position space. If the unit vectors represent
infinitesimally small increments in momentum, i.e., if the independent variable is momentum, the
same paradigm applies except that it is using the momentum basis in momentum space. If this
paradigm is used when energy is the independent variable, the unit vectors represent infinitesimally
small increments in energy and the description is using the energy basis in energy space.

8. Write an infinite dimensional vector that is equivalent to a continuous function f (p) in mo-
mentum space.

This is the same as the last problem with the exception that momentum is the independent variable.
Parallel equation (1) from problem 7 using the momentum basis.

f (p) = f (p1)




1
0
0
...


 + f (p2)




0
1
0
...


 + f (p3)




0
0
1
...


 + · · · =




f (p1)
f (p2)
f (p3)

...


 =

∞∑

i=1

f (pi) | i> :

9. Provide an informal explanation of the relations

<x | g> = g (x) ; <p | g> = g (p) ; and <E | g> = g (E) :

The relations introduced in this problem are fundamental. Your ability to use these relations will
likely be significantly enhanced if they have meaning beyond rote memorization.

Like problem 7, study the following comments and then try to recreate the critical steps. You
will encounter two new objects. Also, realize that the following argument depends directly on the
fact that an infinite dimensional vector can contain the same information as a continuous function.

To this point, components of bras and kets have been scalars. Consider <x | which is not a typical
bra, but a bra of unit ket vectors in position space, i.e.,

<x | =







1
0
0
...


 ;




0
1
0
...


 ;




0
0
1
...


 ; · · ·


 :
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In words, <x | is a bra that represents the position basis. Also consider | g> ; an arbitrary vector,

| g> =




g1
g2
g3
...


 :

Notice that no independent variable is specified for the ket | g> or the components of | g> . This
is because | g > is completely abstract. This is another new object. It is an abstract vector with
abstract components, and we know that the components exist, but we do not know what they are.
We know only that the vector exists and it has a first component, a second component, and so on,
ad infinitum. The abstract vector | g> is independent of basis. Independence from basis is one of
the primary features of Dirac notation. Were we to form an inner product with <x | , we attain

<x | g> = g1




1
0
0
...


 + g2




0
1
0
...


 + g3




0
0
1
...


 + · · ·

where we have fixed the location of the first component of | g> as that associated with




1
0
0
...


, so

this is the first x coordinate for | g> ; or equivalently, the first coordinate for | g> is at x1 . The

location of the second component of | g > is that associated with




0
1
0
...


 ; so this is the second

x coordinate for | g > ; or the second coordinate for | g > is at x2 , and so on, ad infinitum. We
have fixed each component of | g > at a specific location in the position basis. In other words, it
is the same as

<x | g> = g (x1)




1
0
0
...


 + g (x2)




0
1
0
...


 + g (x3)




0
0
1
...


 + · · · =




g (x1)
g (x2)
g (x3)

...


 = g (x) :

In short <x | g > = g (x) ; the inner product of an abstract ket with the bra that describes the
position basis is equivalent to a function of position.

There exists a bra of unit ket vectors that describes the momentum basis, and another bra of
unit kets that describes the energy basis. The arguments in momentum space and energy space
are only cosmetically different than that for position space. The inner product of an abstract ket
with the bra of unit ket vectors that describes the momentum basis is equivalent to a function of
momentum, and the inner product of an abstract ket with the bra of unit ket vectors that describes
the energy basis is equivalent to a function of energy. This means that < p | g > = g (p) and
<E | g> = g (E) .
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Postscript: These three relations are known as representations of the abstract vector | g > .
The last two relations are refined < p | g > = ĝ (p) and < E | g > = g̃ (E) , using a hat for
a quantity in momentum space and a tilde for a quantity in energy space to clearly denote the
momentum or energy basis.

The first postulate of quantum mechanics indicates that a state vector |ˆ > describes a
system that we know to exist. Like | g > in this problem, the abstract ket |ˆ > is a function
without an argument. The functional argument is present in the basis chosen. The concept
is that | ˆ > exists and is expressible in any appropriate basis. A bra of unit kets is used to
attain a functional form ˆ (x) , or ̂̂(p) , or ˜̂ (E) , like < x |ˆ > = ˆ (x) for instance. You
cannot calculate abstract components of gi or ˆi without reference to a basis just the same as
you cannot express the components of a two-dimensional vector without reference to Cartesian or
polar or another coordinate system. You may want to calculate g (xi) or ̂̂ (pi) after the ket is
represented. Representations are often used to transition from Dirac notation and the language of
linear algebra to the language of calculus.

The symbol between the slashes and the angles for the bras are boldfaced in this problem
to distinguish the new object. Most authors require the reader make the distinction between the
bra of unit kets and a bra whose components are scalars. We will use the conventional notation
<x | g> = g (x) ; <p | g> = g (p) ; and <E | g> = g (E) , following the introduction presented
in this and the next problems.

10. Provide an informal explanation of the representation relations in the dual spaces, i.e.,

<g | x> = g∗ (x) ; <g | p> = ĝ∗ (p) ; and <g | E > = g̃∗ (E) :

This problem extends the concept provided in problem 9 to the dual space. It also exposes pertinent
notation and its meaning. Again, you are likely to have more utility with these relations if you
have an idea of their meaning.

This problem parallels problem 9. The ket | x> represents the entire basis in the dual space.
It is a ket of unit bras. You need only to develop the argument in position space and state that the
development of the momentum space and energy space cases are identical except that the different
bases result in different functional arguments. Remember that the components of a ket that is the
dual to a given bra has components that are conjugates of the given bra.

|x> =




(1; 0; 0; · · ·)
(0; 1; 0; · · ·)
(0; 0; 1; · · ·)

...


 ⇒ <g |x> =

(
g1; g2; g3; · · ·

)



(1; 0; 0; · · ·)
(0; 1; 0; · · ·)
(0; 0; 1; · · ·)

...




= g1
(
1; 0; 0; · · ·

)
+ g2

(
0; 1; 0; · · ·

)
+ g3

(
0; 0; 1; · · ·

)
+ · · ·

=
(
g (x1); 0; 0; · · ·

)
+

(
0; g (x2); 0; · · ·

)
+

(
0; 0; g (x3); · · ·

)
+ · · ·

=
(
g (x1); g (x2); g (x3); · · ·

)
=




g∗ (x1)
g∗ (x2)
g∗ (x3)

...


 = g∗ (x) :
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The inner product of <g | with the ket of unit bras that represents the momentum basis fixes the
components of <g | in momentum space so <g |p> = ĝ∗ (p) . The inner product of <g | with
the ket of unit bras that represents the energy basis fixes the components of <g | in energy space
so <g | E > = g̃∗ (E) .

11. Evaluate

(a) 2
∫ …

−…

cos (2µ) – (µ) dµ;

(b)
∫ ∞

0
A cos (x) ex2

– (x + 1) dx;

(c)
∫

cos
(n…x

l

)
sin

(n…x

l

)
– (x − l) dx; n = 1; 2; 3; : : :

(d)
∫ 1

0
dr

∫ ∞

−∞
dµ

1
r2 sin (µ) – (r − a) –

(
µ − …

4

)
; 0 < a < 1 :

This problem introduces the procedures to evaluate integrals that contain Dirac delta functions,
often called just delta functions or – functions. The Dirac delta function is defined

∫ ∞

−∞
– (x) dx =

{
1 if x = 0;
0 if x 6= 0

To get a picture for a delta function, consider a normalized function of
the real variable x that vanishes everywhere except inside a domain of
length † . The integral over this domain is unity because it is given to be
normalized. If we diminish the domain, the function must become “taller”
to remain normalized. In the limit of † → 0 , the functional value goes to
∞ . The delta function is an idealization of an infinitely high, infinitely
thin spike that is normalized. We refer you to Boas1, Arfken2, or your
favorite text on mathematical physics for greater depth.

Following Dirac, the most important property of – (x) is
∫ ∞

−∞
f (x) – (x) dx = f (0) :

Informally, you can picture the value of – (x) being zero everywhere except at the origin, so zero
is the only location at which the product of the function f (x) and the delta function is non-zero.
The value of the function at the origin is f (x)

∣∣
x=0 = f (0) , which is a constant, so can be moved

outside of the integral. The result is the constant f (0) times the defining integral which has a
value of 1, or f (0) · 1 = f (0) . The Dirac delta function in an integrand “picks out” the value of
the function evaluated at the origin. If we “shift” the origin to x = a , the last equation becomes

∫ ∞

−∞
f (x) – (x − a) dx = f (a) :

1Boas, Mathematical Methods in the Physical Sciences (John Wiley & Sons, New York, 1983),
2nd ed., pp. 665-670.

2Arfken, Mathematical Methods for Physicists (Academic Press, New York, 1970), 2nd ed.,
pp. 413-415.
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If the value that makes the argument of a delta function zero is not between the limits of integration,
the integral of that delta function is zero on that interval, thus the product is zero everywhere,
and therefore the original integral is zero. For example, if f (x) = Aex2

, then
∫ ∞

−∞
A ex2

– (x) dx =
(
Aex2

∣∣∣
x=0

)∫ ∞

−∞
– (x) dx = Ae0 (1) = A :

∫ ∞

−∞
Aex2

– (x − a) dx =
(
Aex2

∣∣∣
x=a

) ∫ ∞

−∞
– (x − a) dx = A ea2

(1) = A ea2
:

∫ 0

−∞
Aex2

– (x − 1) dx = 0 because 1 is not between the limits of integration:

One of the four integrals is zero because the value that makes the argument of the delta
function zero is not between the limits of integration. The integral for part (c) has no limits. It
is common to suppress the limits −∞ and ∞ , particularly when these limits are encountered
repetitively. Part (d) has two variables so you must address each coordinate independently.

(a) The argument of the delta function is zero at µ = 0 , so

2
∫ …

−…

cos (2µ) – (µ) dµ = 2 cos (2µ)
∣∣∣∣
µ=0

= 2 cos (0) = 2 · 1 = 2 :

(b) The argument of the delta function is zero at x + 1 = 0 ⇒ x = −1 ; which is not within
the limits of integration, therefore

∫ ∞

0
A cos (x) ex2

– (x + 1) dx = 0 :

(c) The argument of the delta function is zero at x − l = 0 ⇒ x = l ; so
∫ ∞

−∞
cos

(n…x

l

)
sin

(n…x

l

)
– (x − l) dx = cos

(n…x

l

)
sin

(n…x

l

) ∣∣∣∣
x= l

= cos (n…) sin (n…) = cos (n…) (0) = 0 for all n :

(d) The argument of the angular delta function is zero at x = …=4 and the argument of the radial
delta function is zero at r = a , so addressed in the order of integration,

∫ 1

0
dr

∫ ∞

−∞
dµ

1
r2 sin (µ) – (r − a) –

(
µ − …

4

)
=

∫ 1

0
dr

1
r2

([
sin (µ)

]

µ =…=4

)
– (r − a)

=
∫ 1

0
dr

1
r2

√
2

2
– (r − a) =

√
2

2

∫ 1

0
dr

1
r2 – (r − a) =

√
2

2
1
r2

∣∣∣∣
r =a

=
√

2
2a2 assuming 0 < a < 1 :

Postscript: The Dirac delta function is a generalization of the Kronecker delta. It is usually
considered a generalized function3 or distribution, though Dirac, the originator, considered it an

3 Lighthill, An Introduction to Fourier Analysis and Generalised Functions (Cambridge Univer-
sity Press, Cambridge, England, 1958).
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improper function. Some authors will use it only as a factor in an integrand. Even Dirac says
“: : : it will be something which is to be used ultimately in an integrand.” Nevertheless, delta
functions commonly appear outside an integral in modern literature. The Dirac delta function is
an idealization, much the same way as a mathematical point will model the location of a classical
particle. Dirac indicates it is “: : : merely a convenient notation, enabling us to express in a concise
form certain relations which we could, if necessary, rewrite in a form not involving improper
functions, but only in a cumbersome way which would tend to obscure the argument.”4 If the
system is discrete, use of the Kronecker delta is appropriate to model an “all or none” quantity. If
the system is continuous, use of the Dirac delta function is appropriate to model an “all or none”
situation.

The Dirac delta function is an even function. A function is even if f (−x) = f (x) , like a
cosine, and a function is odd if f (−x) = −f (x) , like a sine. The graph of an even function is
symmetric about the vertical axis. If the graph of an even function is folded on the vertical axis,
the two half curves overlap. Notice that figure 1–3–2 is symmetric about the vertical axis. The
graph of an odd function is symmetric about the origin. If the graph of an odd function is rotated
180 degrees around the origin, the two half curves overlap. Most functions do not have any central
symmetry so are neither even nor odd. For instance, f (x) = x + 1 is neither even nor odd. The
fact that the Dirac delta function is even is often expressed

– (−x) = – (x) and – (x − x′) = – (x′ − x) :

This notation requires explanation because a delta function is “something which is to used ulti-
mately in an integrand.” A function and integral with the limits −∞ and ∞ are implicit, i.e.,

– (x − x′) = – (x′ − x) ⇒
∫ ∞

−∞
f (x) – (x − x′) dx =

∫ ∞

−∞
f (x) – (x′ − x) dx :

The function, integral, and limits often provide only clutter. These can be attached to complete
the meaning of relationships involving “naked” delta functions, as seen in the next problem.

12. Show that – (ax) =
– (x)
|a |

; a 6= 0 :

The second postulate of quantum mechanics is often stated using a delta function and its derivative.
Some ability to use delta functions is necessary. Problems 12 to 17 are oriented toward building
dexterity and exposing some of properties of the delta function, its integral, and its derivative.

Approach this problem by changing variables. Let

y = ax ⇒ x =
y

a
⇒ dx =

dy

a
: Change the variables in

∫ ∞

−∞
f (x) – (ax) dx

for an arbitrary f (x) . There are two cases, a > 0 and a < 0 . Pay attention to the limits of
integration to get the absolute value of a to emerge. You want to show that

∫ ∞

−∞
f (x) – (ax) dx =

∫ ∞

−∞
f (x)

– (x)
|a |

dx;

4 Dirac, The Principles of Quantum Mechanics (Clarendon Press, Oxford, England, 1958), 4th
ed., pp. 58-59.
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and that is the explicit meaning of the statement – (ax) =
– (x)
| a |

:

y = ax ⇒ x =
y

a
⇒ dx =

dy

a
: Consider

∫ ∞

−∞
f (x) – (ax) dx

for an arbitrary f (x) : There are two cases. Case I. a > 0 ⇒ ∞ → ∞ and −∞ → −∞ , so

∫ ∞

−∞
f (x) – (ax) dx =

∫ ∞

−∞
f

( y

a

)
– (y)

dy

a
=

1
a

∫ ∞

−∞
f

( y

a

)
– (y) dy =

f (0)
a

=
f (0)
|a |

since a = |a | . Case II. a < 0 ⇒ ∞ → −∞ and −∞ → ∞ , so

∫ ∞

−∞
f (x) – (ax) dx =

∫ −∞

∞
f

( y

a

)
– (y)

dy

a
= −

1
a

∫ ∞

−∞
f

( y

a

)
– (y) dy = −

f (0)
a

=
f (0)
|a |

since a < 0. Combining cases I and II for a general constant a ,

∫ ∞

−∞
f (x) – (ax) dx =

f (0)
| a |

=
∫ ∞

−∞
f (x)

– (x)
|a |

dx ; therefore; – (ax) =
– (x)
|a |

: Q:E:D:

Postscript: The motivation to change variables is to attain a delta function with a single variable
in the argument, like – (x) or – (r) . The meaning as part of an integrand is then clear.

13. Show that –
(
f (x)

)
=

n∑

i

– (xi − x)∣∣ f ′ (xi)
∣∣ where the xi are the zeros of f (x) :

The integral
∫

–
(
f (x)

)
g (x) dx will have a non-zero value where the argument of the delta

function is zero, i.e., where f (x) = 0 . To find the zeros, expand f (x) in a Taylor series. Near
each zero,

f (x) ' (x − xi) f ′ (xi); where f (xi) = 0

and quadratic and higher order terms are negligible, so only terms with first derivatives remain.
Substitute each (x − xi) f ′ (xi) , into the argument of the delta function. You then have a series
of integrals containing delta functions. Each delta function has an argument that is a product of
a difference and a first derivative evaluated at a point. The first derivative evaluated at a point is
a scalar so you can use the result of problem 12. You need to use the fact that the delta function
is even to attain the order of the argument that is specified in the problem. Express the result as
a summation. The meaning of the premise is

∫ ∞

−∞
–
(
f (x)

)
g (x) dx =

∫ ∞

−∞

n∑

i

– (xi − x)∣∣ f ′ (xi)
∣∣ g (x) dx :

13



Consider f (x) which is a continuous, analytic function on the interval −∞ < x < ∞ . Then
f (x) may be expanded in a Taylor series

f (x) = f (xi) + (x − xi) f ′ (xi) +
(x − xi)2

2!
f ′′ (xi) +

(x − xi)3

3!
f ′′′ (xi) + · · ·

Each xi is a zero of f (x) ⇒ f (x) ' (x−xi) f ′ (xi) at points near xi , where f (xi) = 0 , and
quadratic and higher order terms are negligible near zeros. Under these conditions the integral is
∫ ∞

−∞
–
(
f (x)

)
g (x) dx '

∫ ∞

−∞
–
(
(x−x1) f ′ (x1)

)
g (x) dx

+
∫ ∞

−∞
–
(
(x−x2) f ′ (x2)

)
g (x) dx+

∫ ∞

−∞
–
(
(x−x3) f ′ (x3)

)
g (x) dx+ · · ·

=
∫ ∞

−∞

– (x − x1)
| f ′ (x1) |

g (x) dx +
∫ ∞

−∞

– (x − x2)
| f ′ (x2) |

g (x) dx +
∫ ∞

−∞

– (x − x3)
| f ′ (x3) |

g (x) dx + · · ·

using the result of the problem 12. Expressing the series in terms of a summation and using the
fact that the Dirac delta function is even,

∫ ∞

−∞
–
(
f (x)

)
g (x) dx =

n∑

i

∫ ∞

−∞

– (x − xi)∣∣ f ′ (xi)
∣∣ g (x) dx =

n∑

i

∫ ∞

−∞

– (xi − x)∣∣ f ′ (xi)
∣∣ g (x) dx :

The last expression is the same as the integral of the sum, essentially reversing the direction of∫ (
h (x) + j (x)

)
dx =

∫
h (x) dx +

∫
j (x) dx , so can be written

∫ ∞

−∞
–
(
f (x)

)
g (x) dx =

∫ ∞

−∞

∑

i

– (xi − x)∣∣ f ′ (xi)
∣∣ g (x) dx ; ⇒ –

(
f (x)

)
=

∑

i

– (xi − x)∣∣f ′ (xi)
∣∣ : Q:E:D

14. Show that
∫

– (x) dx = Θ(x) :

This problem introduces the theta function. The delta function is the derivative of the theta
function, as this problem demonstrates in integral form. The theta function is useful in establishing
some of the properties of the delta function and in problems involving discontinuities.

The theta function, also known as the step function
or the Heaviside step function, is defined

Θ (x) =
{

1 ; if x > 0 ,
0 ; if x < 0 :

If we “shift” the origin to x = x′ ,

Θ (x − x′) =
{

1 ; if x > x′ ,
0 ; if x < x′ :

14



The last equation is illustrated in the figure. Notice that it is not defined at x = 0 , and it is
not continuous at x = 0 . Like the delta function, the theta function is another “improper” or
“pathological” function. It does not possess the properties of continuity and differentiability at
the location where the argument is equal to zero.

As usual, assume the limits of integration are −∞ and ∞ when a proper integral is anticipated
and limits are not stated. Limits are the key to the meaning of the premise. Break the integral
into two integrals at an arbitrarily small † < 0 . This means the limits on the first integral are
−∞ to −† and the limits on the second integral are −† to ∞ . Examine the behavior of both
integrals in the limit † → 0 .

∫ ∞

−∞
– (x) dx =

∫ −†

−∞
– (x) dx +

∫ ∞

−†

– (x) dx;

where † is an arbitrarily small number. There are two cases, either x > 0 or x < 0 . If x > 0 ,

∫ −†

−∞
– (x) dx +

∫ ∞

−†

– (x) dx = 0 + 1 = 1 ;

where the first integral is zero because values of x > 0 are not within the limits of the integral,
and the second integral is 1 per the definition of the Dirac delta function. If x < 0 , then

∫ −†

−∞
– (x) dx +

∫ ∞

−†

– (x) dx = 0 + 0 = 0 ;

where the first integral is zero because the argument of the delta function cannot assume the value
of x = 0 within limits that are both less than zero. The second integral is zero because the values
x < 0 are not within the limits of the integral. If the circumstance −† < x < 0 were to occur,
the second integral would be 1, but picking another † such that x < −† restores the situation in
which both integrals vanish. Therefore, in the limit that † → 0 ,

∫
– (x) dx =

{
1 ; if x > 0 ,
0 ; if x < 0 :

= Θ (x) :

Postscript: The differential form of this relationship is
d Θ(x)

dx
= – (x) . The integral form is

often more useful for calculation because of sensitivity to limits.

properties of delta parts, I know of no book that actually has an problem 17 may be unique
in modern literature. By the way, since I confirm this procedure through any of the research that
I have done, I hope that both

15. Use integration by parts to show that
∫ c

a

f (x) – (x − b) dx = f (b) ; a < b < c .
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As Dirac indicates, the fact that
∫

f (x) – (x) dx = f (0) , is a property. Establishing properties

and understanding the methods by which they are established is more useful than rote memoriza-
tion. Many of the properties of delta functions are established using integration by parts. For a
definite integral, integration by parts means

∫ c

a

u dv = uv
∣∣∣
c

a
−

∫ c

a

v du :

You need the result of the last problem to apply this formula. You also need to use the technique

of breaking the resulting
∫ c

a

v du into two integrals as demonstrated in the last problem. Use †

slightly less than b . You need the definition of the theta function to evaluate every term following
the integration by parts. Finally, taking the limit † → 0 establishes the premise.

Given
∫ c

a

f (x) – (x − b) dx; and using
u = f (x) ⇒ du = f ′ (x) dx
dv = – (x − b) dx ⇒ v = Θ (x − b)

⇒
∫ c

a

f (x) – (x − b) dx = f (x)Θ (x − b)
∣∣∣
c

a
−

∫ c

a

Θ(x − b) f ′ (x) dx

= f (c) Θ (c − b) − f (a)Θ (a − b) −
∫ b−†

a

Θ(x − b) f ′ (x) dx −
∫ c

b−†

Θ(x − b) f ′ (x) dx (1)

where † is arbitrarily close to zero. The condition a < b < c determines the first two Θ functions
in equation (1) as Θ (c − b) = 1 ; since c > b and Θ (a − b) = 0 since a < b : Further;

∫ b−†

a

Θ (x − b) f ′ (x) dx = 0

since Θ (x − b) = 0 because x < b for all possible values of x within the range of integration.
Similarly, ∫ c

b−†

Θ(x − b) f ′ (x) dx =
∫ c

b−†

f ′ (x) dx

since Θ (x − b) = 1 for all possible values of x within that range of integration because x > b .
Using all these in equation (1),

∫ c

a

f (x) – (x − b) dx = f (c) · 1 − f (a) · 0 − 0 −
∫ c

b−†

f ′ (x) dx

= f (c) − f (x)
∣∣∣
c

b−†

= f (c) − f (c) + f (b − †) = f (b − †) :

In the limit of † → 0, f (b − †) → f (b) , and the integral is

∫ c

a

f (x) – (x − b) dx = f (b) :
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Postscript: The argument for infinite limits is the same except a = −∞ and c = ∞ .

16. Evaluate

(a)
∫

V0

(a

x
−

x

a

)2
–′ (x − a) dx , and

(b)
∫

V0

(a

x
− x

a

)2
–′ (x − b) dx :

This problem introduces derivatives of delta functions. Like delta functions, derivatives of delta
functions are always intended to be used as a portion of an integrand though they will frequently
appear without an integral or companion function for reasons of notational economy. The derivative
of the Dirac delta function is the negative of the derivative of the companion function evaluated
at the point that makes the argument of –′ zero. Symbolically,

∫
–′ (x − a) f (x) dx = −f ′ (a) :

For f (x) = x2; f ′ (x) = 2x , so
∫

–′ (x − a)x2 dx = −2a , for instance. A second example

is f (x) = Ae−x2 ⇒ f ′ (x) = Ae−x2
(−2x) = −2A xex2

, so
∫

–′ (x − b)Aex2
dx = 2Abeb2 .

We could attach the limits understood to be −∞ and ∞ but they add only clutter here so have
been suppressed. The potential given in this problem is realistic and is sometimes used to model
an assymetric potential well in radial coordinates (i.e., x → r and r > 0 ).

(a) The derivative of the function is

V0
d

dx

(
ax−1 −

x

a

)2
= V0 2

( a

x
−

x

a

) (
−ax−2 −

1
a

)
= −2V0

( a

x
−

x

a

) (
a

x2 +
1
a

)

⇒
∫

V0

( a

x
−

x

a

)2
–′ (x − a) dx = −

[
−2V0

( a

x
−

x

a

) (
a

x2 +
1
a

)]

x=a

= 2 V0

( a

a
− a

a

)(
a

a2 +
1
a

)
= 2V0 (0)

(
2
a

)
= 0 :

(b) Having calculated the derivative for part (a),

∫
V0

( a

x
−

x

a

)2
–′ (x − b) dx = −

[
−2 V0

( a

x
−

x

a

)(
a

x2 +
1
a

)]

x= b

= 2V0

(
a

b
− b

a

) (
a

b2 +
1
a

)
= 2V0

(
a2

b3
+

1
b

− 1
b

− b

a2

)

= 2V0

(
a2

b3
−

b

a2

)
:
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17. Show that
∫

–′ (x − a) f (x) dx = −f ′ (a) using integration by parts.

This problem is meant to further develop your appreciation of the Dirac delta function and its
derivative. It also further illustrates the process of integration by parts that is consistently refer-
enced but rarely demonstrated in discussions of the Dirac delta function.

Consider
∫ c

a

–′ (x − b) f (x) dx for a < b < c . Integration by parts is reviewed in problem

15. You are left with two terms that have delta functions that are not part of an integrand following
the integration by parts. Both terms vanish because the arguments of the delta functions cannot
be zero. The rest is straightforward.

Given
∫ c

a

f (x) –′ (x − b) dx ; let u = f (x) ⇒ du = f ′ (x) dx
dv = –′ (x − b) dx ⇒ v = – (x − b)

⇒
∫ c

a

–′ (x − b) f (x) dx = f (x) – (x − b)
∣∣∣∣
c

a

−
∫ c

a

– (x − b) f ′ (x) dx :

The term f (x) – (x−b)
∣∣∣∣
c

a

= f (c) – (c−b)−f (a) – (a−b) = 0 because c−b 6= 0 , and a−b 6= 0 ,

so the argument of neither delta function can be zero, therefore, the integrals with respect to any
variable of integration is necessarily zero. More formally,

∫
dc

(∫ c

a

–′ (x − b) f (x) dx

)
=

∫
f (c) – (c − b) dc

+
∫

dc

(
−f (a) – (a − b) −

∫ c

a

– (x − b) f ′ (x) dx

)

= 0 +
∫

dc

(
−f (a) – (a − b) −

∫ c

a

– (x − b) f ′ (x) dx

)

⇒
∫ c

a

–′ (x − b) f (x) dx = −f (a) – (a − b) −
∫ c

a

– (x − b) f ′ (x) dx ;

and then repeat the process with respect to a . In either event,

∫ c

a

–′ (x − b) f (x) dx = −
∫ c

a

– (x − b) f ′ (x) dx = −f ′ (b) since a < b < c :

to you, (it looks on the page.

18. Establish relations applicable to continuous systems in position space, momentum space, and
energy space, for

(a) the orthonormality condition and

(b) the completeness relation.
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Infinities are inherent in descriptions of systems that are continuous. The infinite dimensional
vector that contains the same information as a continuous function is but one example. Though
not mathematically rigorous, physicists frequently reason using finite dimensional analogs treating
the infinite as a generalization5. This seems a practical if not a mathematical necessity.

There is enough new notation in this problem that we recommend that you simply read the
discussion carefully. If you prefer to venture an effort, realize that in position space, for instance,

i or xi −→ x ; –ij −→ – (x − x′) ; and
∑

i

−→
∫

dx ;

when generalizing from the discrete to the continuous. Suppress the limits of −∞ and ∞ to keep
the notation clean.

(a) The orthonormality condition is denoted <i | j> = –ij in general. If specifically in position
space, it can be written <xi | xj> = –ij where xi and xj denote unit vectors that corresponded
to the ith and jth positions on the x-axis. If i = j , then < xi |xj > = 1 . Let the distance
between unit vectors approaches zero, modelling a continuous system. The discrete xi and xj

become indistinguishable as the distance between them approaches zero, so are superceded by x
and x′ for continuous systems. Symbology that describes coincidence or non-coincidence is then,

<xi |xj> = –ij −→ <x | x′> = – (x − x′) for a continuous system in position space:

If the argument is made in momentum space; <pi | pj> = –ij −→ <p | p′> = – (p − p′) :

If the argument is made in energy space; <Ei |Ej> = –ij −→ <E |E′> = – (E − E′) :

(b) The completeness relation is
n∑

i=1

| i><i | = I or
n∑

i=1

| xi><xi | = I for position space. In

the limit as n → ∞ ; | xi> → | x> and
∑

i

→
∫

dx in position space, so

n∑

i=1

|xi><xi | = I −→
∫

| x><x | dx = I for position space;

n∑

i=1

| pi><pi | = I −→
∫

| p><p | dp = I for momentum space, and

n∑

i=1

| Ei><Ei | = I −→
∫

|E><E | dE = I for energy space :

Postscript: The relations established in this problem should be viewed as definitions because

of the question of convergence. The extension
∑

i

→
∫

dx is subject to the question of

5 Cohen-Tannoudji, Diu, & Laloe, Quantum Mechanics (John Wiley & Sons, New York, 1977),
4th ed., pp. 94.
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convergence but is more fundamentally a redefinition. The development of a Riemann integral

often concerns the area under a curve where the area is approximated by
n∑

i

f (xi)∆ x . Then as

n → ∞ ; ∆ x → 0 : The ∆ x in this development is the distance between the infinite dimensional

unit vectors, so ∆ x is implicit in the index i for the extension
∑

i

→
∫

dx .

19. Use the technique of insertion of the identity to establish expressions applicable to continuous
systems in position space, momentum space, and energy space, for an inner product.

This problem establishes a fundamental tenet while applying representations. It should start
to convince you of the economy and convenience inherent in Dirac notation. Each of the three
solutions require only about one line.

Start with an inner product of two abstract vectors, say < f | g > . Insert the identity
to get < f | I | g > . Use the completeness relation for a continuous system from problem 18
appropriate to each space, then find the representations of problems 9 and 10. You should find

<f | g> =
∫

f∗ (x) g (x) dx for position space, for instance.

<f | g> = <f | I | g> = <f |
( ∫

|x><x | dx

)
| g> =

∫
<f |x><x | g> dx =

∫
f∗ (x) g (x) dx :

<f | g> = <f | I | g> = <f |
( ∫

| p><p | dp

)
| g> =

∫
<f | p><p | g> dp =

∫
f̂∗ (p) ĝ (p) dp :

<f | g> = <f | I | g> = <f |
( ∫

| E><E | dE

)
| g>

=
∫

<f |E><E | g> dE =
∫

f̃ ∗ (E) g̃ (E) dE :

Postscript: See problem 41 for a comment concerning the validity of moving the bra and ket
inside the integrand.

20. (a) Use the result of problem 19 to establish an expression of the normalization condition in
position space.

(b) Normalize f (x) = A e−Bx2
.

This is a practical problem. First, you know the representation of <f | g> in position space, so
the what is the representation of <f | f > ? Transition to a representation such as position space
is often accompanied by a transition to calculus based arguments. You may find form 3.323.2 from
Gradshteyn and Ryzhik useful. It is

∫ ∞

−∞
exp (−p2x2 ± qx) dx = exp

(
q2

4p2

) √
…

p
; p > 0 :
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(a) The normalization condition is <f | f> = 1 ⇒
∫

f∗ (x) f (x) dx = 1 in position space:

(b) <f | f> = 1 ⇒
∫ ∞

−∞

(
A e−Bx2

)∗ (
A e−Bx2

)
dx = 1 ⇒

∣∣ A
∣∣2

∫ ∞

−∞
e−2Bx2

dx = 1 :

Using form 3.323.2 from Gradshteyn and Ryzhik, our integral has p2 = 2B ; q = 0 , therefore

∣∣ A
∣∣2 e0

√
…

2B
= 1 ⇒

∣∣ A
∣∣2

√
…

2B
= 1 ⇒ A =

(
2B
…

)1=4

⇒ f (x) =
(

2B
…

)1=4

e−Bx2
:

21. (a) Show that

ˆn(x) = cos
(n…x

l

)
and ˆm(x) = sin

(m…x

l

)
are orthogonal on the interval − l < x < l :

(b) Orthonormalize ˆn(x) and ˆm(x) .

There are many reasons for this problem at this point. Part (a) is an application of an inner product
in position space. Cosines, sines, and orthogonality are intrinsic to the discussion of Fourier series
that follows. Finally, we will see these wave functions again when discussing the infinite square
well, meaning that they are realistic enough to be useful. A substantial portion of the reason that
they are useful is the property of orthonormality addressed in part (b).

To show orthogonality for part (a), you must find that the inner product of each wavefunction
with itself is non-zero, i.e., <ˆn |ˆn> 6= 0 and <ˆm | ˆm> 6= 0. Then you must show that

<ˆni | ˆnj > = <ˆmi |ˆmj > = <ˆn | ˆm> = 0:

Here are some indefinite integrals taken from the 30th edition of CRC Standard Mathematical
Tables and Formulae that you should find useful.

∫
cos2 axdx =

x

2
+

1
4a

sin 2ax ;

∫
sin2 axdx =

x

2
−

1
4a

sin 2ax ;

∫
(sin ax) (cos ax) dx =

1
2a

sin2 ax ;

and some others from Gradshteyn and Ryzhik,
∫

(cos ax) (cos bx) dx =
sin (a − b) x

2 (a − b)
+

sin (a + b)x

2 (a + b)
; a2 6= b2 ;

∫
(sin ax) (sin bx) dx =

sin (a − b)x

2 (a − b)
− sin (a + b) x

2 (a + b)
; a2 6= b2 ;

∫
(sin ax) (cos bx) dx = −

cos (a − b)x

2 (a − b)
−

cos (a + b)x

2 (a + b)
; a2 6= b2 :
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The appropriate limits on these integrals are −l and l . Indices are used only to enumerate
eigenstates, thus, all n and m are positive integers. Also remember that cosine is an even
function and sine is an odd function.

<ˆn | ˆn> =
∫ l

−l

(
cos

(n…x

l

))∗ (
cos

(n…x

l

))
dx =

∫ l

−l

cos2
(n…x

l

)
dx

=
[
x

2
+

l

4n…
sin

2n…x

l

]l

−l

=
l

2
−

−l

2
+

l

4n…
sin

2n…l

l
−

l

4n…
sin

−2n…l

l

= l +
l

4n…

(
sin 2n… + sin 2n…

)
= l +

l

2n…
sin 2n…

/
= l 6= 0 ;

where the sine is struck because the sine of any integral multiple of … is zero. Similarly

<ˆm |ˆm> =
∫ l

−l

(
sin

(m…x

l

))∗ (
sin

(m…x

l

))
dx =

∫ l

−l

sin2
(m…x

l

)
dx

=
[
x

2
−

l

4m…
sin

2m…x

l

]l

−l

=
l

2
−

−l

2
−

l

4m…
sin

2m…l

l
+

l

4m…
sin

−2m…l

l

= l − l

4m…

(
sin 2m… + sin 2m…

)
= l − l

2m…
sin 2m…

/
= l 6= 0 :

Conjugation is cosmetic when functions are real so is hereafter suppressed. Then

<ˆni | ˆnj > =
∫ l

−l

(
cos

ni…x

l

) (
cos

nj…x

l

)
dx

=




sin
(ni…x

l
−

nj…x

l

)

2
(ni…

l
−

nj…

l

) +
sin

(ni…x

l
+

nj…x

l

)

2
(ni…

l
+

nj…

l

)




l

−l

=
l

2…

sin (ni − nj ) …

(ni − nj )
− l

2…

sin (−ni + nj )…

(ni − nj )
+

l

2…

sin (ni + nj )…

(ni + nj )
− l

2…

sin (−ni − nj )…

(ni + nj )
:

Remember that ni 6= nj , because the case ni = nj = n is covered by <ˆn | ˆn> . The arguments
of all the sine functions are sums and differences of integers times … , so are integral multiples of
… . The numerators of all terms are therefore zero, so <ˆni | ˆnj > = 0 : Next

<ˆmi |ˆmj > =
∫ l

−l

(
sin

mi…x

l

)(
sin

mj…x

l

)
dx

=




sin
(mi…x

l
−

mj…x

l

)

2
(mi…

l
−

mj…

l

) −
sin

(mi…x

l
+

mj…x

l

)

2
(mi…

l
+

mj…

l

)




l

−l

=
l

2…

sin (mi − mj )…

(mi − mj )
−

l

2…

sin (−mi + mj )…

(mi − mj )
−

l

2…

sin (mi + mj ) …

(mi + mj )
+

l

2…

sin (−mi − mj ) …

(mi + mj )
:
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Again, mi 6= mj , because the case mi = mj = m is addressed by < ˆm |ˆm > . Again, the
arguments of all the sine functions are sums and differences of integers times … , so are integral
multiples of … . The numerators of all terms are again zero, so <ˆmi |ˆmj > = 0 . Then

<ˆm | ˆn> =
∫ l

−l

(
sin

m…x

l

)(
cos

n…x

l

)
dx

=


−

cos
(m…x

l
−

n…x

l

)

2
(m…

l
−

n…

l

) −
cos

(m…x

l
+

n…x

l

)

2
(m…

l
+

n…

l

)




l

−l

= −
l

2…
cos (m − n) …

(m − n)
+

l

2…

cos (−m + n)…

(m − n)
−

l

2…

cos (m + n)…

(m + n)
+

l

2…

cos (−m − n)…

(m + n)
:

The cosine is an even function, so cos (−m + n) … = cos (m − n) … and cos (−m − n)… =
cos (m + n)… . Substituting in the last line,

<ˆm |ˆn> = −
l

2…

cos (m − n) …

(m − n)
+

l

2…

cos (m − n) …

(m − n)
−

l

2…

cos (m + n)…

(m + n)
+

l

2…

cos (m + n)…

(m + n)
;

and the first and second terms are identical except they have opposite signs so sum to zero,
similarly, the third and fourth terms sum to zero, so we conclude <ˆm | ˆn> = 0; m 6= n : The
qualification m 6= n applies to the last calculation because m = n is not covered by any previous
case. Since both indices are equal for this calculation, let m = n = k

<ˆk |ˆk> =
∫ l

−l

(
sin

k…x

l

) (
cos

k…x

l

)
dx =

l

2k…
sin2 k…x

l

∣∣∣∣
l

−l

=
l

2k…

(
sin2 k… − sin2 (−k…)

)
=

l

2k…

(
sin2 k… − sin2 k…

)
= 0

since sin2 is an even function. Also, the sine of an integral multiple of … is zero so the squares
of integral multiples of … are zero. This exhausts all possibilities for indices that are positive
integers. Therefore,

ˆn (x) = cos
(n…x

l

)
and ˆm(x) = sin

(m…x

l

)
are orthogonal on the interval − l < x < l:

(b) In the first two calculations we found <ˆn | ˆn> = <ˆm | ˆm> = l , so

<ˆn |A∗ A |ˆn> =
∣∣ A

∣∣2 <ˆn |ˆn> =
∣∣ A

∣∣2 l = 1 ⇒ A =
1√
l

⇒ ˆn(x) =
1√
l

cos
(n…x

l

)
and ˆm(x) =

1√
l

sin
(n…x

l

)

are orthonormal on the interval −l < x < l .

22. (a) Show that if indices of n < 0 where to apply, a−n = an , and that a0 =
1
l

∫ l

−l

f (x) dx

for a basic Fourier series.
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(b) Show that if indices of n < 0 where to apply, b−n = −bn , and that b0 = 0 for a basic Fourier
series.

(c) Express the cn that are the coefficients of the exponential format of the Fourier series in terms
of the basic Fourier coefficients an and bn , and show that c0 = a0=2 .

(d) Demonstrate the equivalence of the basic Fourier series and the exponential format of the
Fourier series.

the same period? A Fourier series is a representation of a periodic function as a linear
combination of all cosine and sine functions that have the same period. The periodic function
f (x) = f (x + 2l) , has a period of 2l , or repeats itself every 2l . In a basic Fourier series,

f (x) =
a0

2
+

∞∑

n=1

an cos
(n…x

l

)
+

∞∑

n=1

bn sin
(n…x

l

)
;

where the coefficients are

an =
1
l

∫ l

−l

f (x) cos
(n…x

l

)
dx; and bn =

1
l

∫ l

−l

f (x) sin
(n…x

l

)
dx ;

given that the period is 2l . The Fourier series in a exponential format for a function that is
periodic over the length 2l is

f (x) =
∞∑

−∞
cn ein…x=l; where cn =

1
2l

∫ l

−l

f (x) e−in…x=l dx :

Use the defining integrals for an , bn , and cn , for parts (a), (b), and (c). Cosines are even
functions and sines are odd functions. Substituting these results into the summation that defines
the exponential form yields the basic Fourier series required for part (d). It is wise to divide the
summation into three parts that coincide with the three cases, namely: n < 0 implies a summation
from −∞ to −1 , n = 0 is one term of the summation, and n > 0 implies a summation from 1
to ∞ . The tricky part is switching the indices on the summation from −∞ to −1 . It may require
some reflection, but realize that

−1∑

−∞

1
2

(an − ibn) ein…x=l =
∞∑

1

1
2

(an + ibn) e−in…x=l :

(a) a−n =
1
l

∫ l

−l

f (x) cos
(

−n…x

l

)
dx =

1
l

∫ l

−l

f (x) cos
(n…x

l

)
dx = an ;

and a0 =
1
l

∫ l

−l

f (x) cos (0) dx =
1
l

∫ l

−l

f (x) dx :

(b) b−n =
1
l

∫ l

−l

f (x) sin
(

−n…x

l

)
dx = −

1
l

∫ l

−l

f (x) sin
(n…x

l

)
dx = −bn ;
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and b0 =
1
l

∫ l

−l

f (x) sin (0) dx = 0 :

(c) cn =
1
2l

∫ l

−l

f (x) e−in…x=l dx =
1
2l

∫ l

−l

f (x)
[
cos

(n…x

l

)
− i sin

(n…x

l

)]
dx

=
1
2l

∫ l

−l

f (x) cos
(n…x

l

)
dx −

i

2l

∫ l

−l

f (x) sin
(n…x

l

)
dx =

1
2

(an − ibn) :

When n = 0, the argument of the exponential is zero, so

c0 =
1
2l

∫ l

−l

f (x) e0 dx =
1
2l

∫ l

−l

f (x) dx =
1
2

a0 :

(d) For convenience, let µ = …x=l . The summation is

f (x) =
∞∑

−∞
cn einµ =

−1∑

−∞

1
2

(an − ibn) einµ +
1
2

a0 +
∞∑

1

1
2

(an − ibn) einµ

=
1
2

a0 +
∞∑

1

(
an

2
+

ibn

2

)
e−inµ +

∞∑

1

(
an

2
−

ibn

2

)
einµ (1)

=
1
2

a0 +
∞∑

1

(
an

2
e−inµ +

ibn

2
e−inµ +

an

2
einµ − ibn

2
einµ

)

=
1
2

a0 +
∞∑

1

(an

2
cos nµ −

an

2
i sinnµ

/
+

ibn

2
cos nµ

/
+

bn

2
sinnµ

+
an

2
cos nµ +

an

2
i sin nµ

/
−

ibn

2
cos nµ

/
+

bn

2
sinnµ

)
(2)

=
1
2

a0 +
∞∑

1

(an cos nµ + bn sinnµ)

which is identical to the basic Fourier series upon the substitution of µ = …x=l . We have used the
results of parts (a) and (b) in equation (1). The sign of the argument of the first exponential in
equation (1) changes because we have changed the sign of the index of the summation. The signs
of the fourth and eighth terms in the summation of equation (2) are correct because both include
factors of i · i = −1.

Postscript: The cosine and sine functions are orthogonal over a finite interval, say −l < x < l ,
and can be made orthonormal on that interval as demonstrated in problem 21. Orthonormal
vectors or orthonormal functions constitute a basis. Any function can be expressed in terms of a
linear combination of the vectors, or in this case, the functions that constitute the basis.

The infinite square well, also known as a particle in a box, uses the orthogonal cosine and sine
functions as a basis.

The exponential format of the Fourier series is often called complex Fourier series. We are
interested in the complex Fourier series because it is the form that is most easily generalized to
the Fourier integral.
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23. Sketch the graphs of the following functions and their the Fourier transforms.

(a) f (x) =
{

1 ; −a < x < a ,
0 ; elsewhere, and (b) f1 (x) =

{
1=2 ; −b < x < b ,
0 ; elsewhere,

where b = 2a :

Fourier integrals are generalizations of Fourier series. A Fourier integral is a representation
of a non-periodic function that may be regarded as the limit of the Fourier series as the period
approaches infinity. Two Fourier transforms compose the Fourier integral. Fourier transforms
are the objects that we want to develop further for quantum mechanical calculation. We refer the
reader to Byron and Fuller6, or your favorite text on mathematical physics for greater depth. In
the limit of l → ∞ ; the complex Fourier series becomes

f (x) =
1√
2…

∫ ∞

−∞
g (k) eikx dk ; g (k) =

1√
2…

∫ ∞

−∞
f (x) e−ikx dx :

The function f (x) is the Fourier transform of g (k) ; and g (k) is the Fourier transform of f (x) .
Substitution of one transform into the other expressing the combination as one relation, i.e.,

f (x ) =
1√
2…

∫ ∞

−∞

(
1√
2…

∫ ∞

−∞
f (x′) e−ikx′

dx′
)

eikx dk

=
1
2…

∫ ∞

−∞
dk

∫ ∞

−∞
f (x′) eik(x−x′ ) dx′ is the Fourier integral:

The functions given for parts (a) and (b) are constants for specified intervals and zero elsewhere
which means that you can find g (k) and g1 (k) by integrating between −a and a , and −b and
b instead of using infinite limits. Express your answer for part (b) in terms of the constant a and
look for relations between the graphs of parts (a) and (b). This problem uses constant functions
which are among the easiest functions to integrate both as an appropriate place to start and to
highlight relations between parts (a) and (b) for which we provide comment in the postscript.

(a) g (k) =
1√
2…

∫ ∞

−∞
f (x) e−ikx dx =

1√
2…

∫ a

−a

f (x) e−ikx dx

=
1√
2…

1
(−ik)

e−ikx
∣∣∣
a

−a
=

1√
2…

e−ika − eika

−ik

=
2√
2… k

e−ika − eika

−2i
=

2√
2… k

eika − e−ika

2i
=

2√
2…

sin (ka)
k

:

The graphs of f (x) and g (k) , are

6 Byron and Fuller, Mathematics of Classical and Quantum Physics (Dover Publications, Inc.,
New York, 1970), pp. 239–253, 566–570.
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Graph of f (x) Graph of g (k)

(b) The Fourier transform of the given function where b = 2a , double the width and half the
height, so that the area under the curve is equal for both f (x) and f1 (x) ; is

g1 (k) =
1√
2…

sin (kb)
k

=
1√
2…

sin (2ka)
k

:

Graph of f1 (x) Graph of g1 (k)

Postscript: The graph of f1 (x) is broader than the graph of f (x) ; but the graph of g1 (k) is
sharper than the graph of g (k) . If one of the Fourier transforms is distributed and broad, the
other will be localized and sharp. This phenomena is a precursor of the Heisenberg uncertainty
relations.

While fi (x) has a limited domain, the domain of gi (k) is infinite. This is another general
feature of Fourier transforms.

24. Derive the Fourier transforms from the complex Fourier series.

The basic Fourier series is useful for introductions and many applications, but the complex Fourier
series is the form from which Fourier transforms are most easily attained. This is a challenging
problem but provides an opportunity to deepen your understanding of Fourier transforms.

Start with the notation

F (y) =
∞∑

−∞
cn ein…y=l; where cn =

1
2l

∫ l

−l

F (y) e−in…y=l dy :

Substitute the integral form of cn into the summation. Symmetrize the factor of 1=2l . This
means to rearrange the summation so a factor of 1=

√
2l is in both the F (y) and the cn . You

now have F (y) and cn that are different than originally defined. Change variables by letting

x =
√

…

l
y . Also, let kn = n

√
…

l
. You can now find that ∆kn =

√
…

l
and

n…y

l
= knx :

Redefine F

(√
l

…
x

)
= f (x) . Introduce a new symbol for the coefficients that indicates the

index kn replaces n , so cn → gkn . Finally, let l → ∞ , so that the Fourier transforms

f (x) =
1√
2…

∫ ∞

−∞
g (k) eikx dk and g (k) =

1√
2…

∫ ∞

−∞
f (x) e−ikx dx are exposed:
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F (y) =
∞∑

n= −∞

(
1
2l

∫ l

−l

F (y) e−in…y=l dy

)
ein…y=l =

∞∑

n = −∞

(
1√
2l

∫ l

−l

F (y) e−in…y=l dy

)
1√
2l

ein…y=l :

We can now identify a symmetrized function and coefficient as

F (y) =
∞∑

n = −∞
cn

1√
2l

ein…y=l and cn =
1√
2l

∫ l

−l

F (y) e−in…y=l dy : (1)

We are going to change variables to
√

…

l
y = x ⇒ y =

√
l

…
x ⇒ dy =

√
l

…
dx : We

are also going to use kn = n

√
…

l
⇒ ∆kn = kn+1 − kn = (n + 1)

√
…

l
− n

√
…

l
=

√
…

l
:

These substitutions allow us to rewrite a portion of the argument of the exponentials,
n…y

l
= n

√
…

l

√
…

l
y = knx : The difference in the new index is ∆kn =

√
…

l
⇒ ∆kn√

2…
=

1√
2l

:

The limits of the integral become y = l ⇒ x =
√

…

l
l =

√
…l ; and y = −l ⇒ x = −

√
…l :

We finally introduce a new symbol for the coefficients that indicates the index is now kn vice n
so cn → gkn . Using these substitutions and developments in equation (1),

F (y) = F

(√
l

…
x

)
=

∞∑

kn = −∞
gkn

1√
2…

eiknx ∆kn =
1√
2…

∞∑

kn = −∞
gkn eiknx ∆kn

and gkn =
1√
2l

∫ √
…l

−
√

…l

F

(√
l

…
x

)
e−iknx

√
l

…
dx =

1√
2…

∫ √
…l

−
√

…l

F

(√
l

…
x

)
e−iknx dx

Redefine F

(√
l

…
x

)
= f (x) : Now, let the period l → ∞ ⇒ ∆kn =

√
…

l
→ 0 . The

difference between successive kn → 0 so that kn assumes all real values and thus becomes a
continuous variable. The summation over discrete kn becomes an integral over the continuous
variable k , the coefficient gkn becomes a continuous function g (k) , the difference ∆kn becomes
the differential dk , and

f (x) =
1√
2…

∫ ∞

−∞
g (k) eikx dk and g (k) =

1√
2…

∫ ∞

−∞
f (x) e−ikx dx :

Postscript: The factor of 1=2… must be in the Fourier integral but it does not need to be
symmetrized in the Fourier transforms. Some authors and tables place the entire factor 1=2…
with one integral so that there is no coefficient in front of the other integral. Also, some authors
and tables will change the signs of the exponentials from what we have presented. Asymmetric
treatment of the factor of 1=2… and/or use of a different sign convention result in slightly different
functional forms for resulting Fourier transforms.
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25. Find the momentum space wavefunction corresponding to a position space wavefunction that
is Gaussian.

Gaussian wavefunctions are foundational as you will find in chapter 3 and elsewhere. But first,
what does it mean to change a wavefunction in position space to a wavefunction in momentum
space? It means find the description of a system using an unknown function of the continuous
variable momentum starting with the description of the system that is a known function of the
continuous variable position. It is a change of basis in the realm of continuous variables. Quantum
mechanical Fourier transforms are the means to change from position space to momentum space
and vice versa for continuous variables.

The de Broglie relation associates wavelength or wavenumber, and momentum,

‚ =
h

p
⇒ 2…

k
=

h

p
⇒ k =

p

h̄
:

Substitute p=h̄ for k in both Fourier transforms. This means the differential dk = dp=h̄ in the
integral for f (x) . Symmetrize the 1=h̄ from this differential by placing a factor 1=

√
h̄ in both

integrals, and the result is the quantum mechanical form of the Fourier transforms,

f (x) =
1√
2…h̄

∫ ∞

−∞
ĝ (p) eipx=h̄ dp; ĝ (p) =

1√
2…h̄

∫ ∞

−∞
f (x) e−ipx=h̄ dx :

The usual use of these relations is to transform a wave function in position space to momentum
space (or vice versa), so will be applied

ˆ (x) =
1√
2…h̄

∫ ∞

−∞
̂̂ (p) eipx=h̄ dp; ̂̂ (p) =

1√
2…h̄

∫ ∞

−∞
ˆ (x) e−ipx=h̄ dx :

There are a number of subtleties associated with the quantum mechanical analog of the Fourier
transforms, so our heuristic argument should be regarded as nothing more than a useful mnemonic.

Use ˆ (x) = Ae−bx2
; b > 0 ; as your position space wavefunction that is Gaussian. Form

3.323.2 from Gradshteyn and Ryzhik,
∫ ∞

−∞
e−fi2x2−flx dx =

√
…

fi
efl2=4fi2

;

should be useful. Do you recognize the functional form of the momentum space wavefunction?

̂̂ (p) =
1√
2…h̄

∫ ∞

−∞
ˆ (x) e−ipx=h̄ dx =

1√
2…h̄

∫ ∞

−∞
Ae−bx2

e−ipx=h̄ dx

=
A√
2…h̄

∫ ∞

−∞
e−bx2−ipx=h̄ dx :

Using fi =
√

b , and fl = ip=h̄ , our integral is

̂̂ (p) =
A√
2…h̄

√
…√
b

exp
(

(ip=h̄)2

4 (
√

b )2

)
=

A√
2h̄b

e−p2=4bh̄2
:
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Postscript: Notice that ̂̂ (p) is also an exponential function with a negative argument that is a
constant times the independent variable squared. In fact, ̂̂(p) is also a Gaussian wavefunction.
The Fourier transform of a Gaussian function is another Gaussian function.

21. (a) Show that

ˆn(x) = cos
(n…x

l

)
and ˆm(x) = sin

(m…x

l

)
are orthogonal on the interval − l < x < l :

(b) Orthonormalize ˆn(x) and ˆm(x) .

There are many reasons for this problem at this point. Part (a) is an application of an inner product
in position space. Cosines, sines, and orthogonality are intrinsic to the discussion of Fourier series
that follows. Finally, we will see these wave functions again when discussing the infinite square
well, meaning that they are realistic enough to be useful. A substantial portion of the reason that
they are useful is the property of orthonormality addressed in part (b).

To show orthogonality for part (a), you must find that the inner product of each wavefunction
with itself is non-zero, i.e., <ˆn |ˆn> 6= 0 and <ˆm | ˆm> 6= 0. Then you must show that

<ˆni | ˆnj > = <ˆmi |ˆmj > = <ˆn | ˆm> = 0:

Here are some indefinite integrals taken from the 30th edition of CRC Standard Mathematical
Tables and Formulae that you should find useful.

∫
cos2 axdx =

x

2
+

1
4a

sin 2ax ;

∫
sin2 axdx =

x

2
−

1
4a

sin 2ax ;

∫
(sin ax) (cos ax) dx =

1
2a

sin2 ax ;

and some others from Gradshteyn and Ryzhik,

∫
(cos ax) (cos bx) dx =

sin (a − b) x

2 (a − b)
+

sin (a + b)x

2 (a + b)
; a2 6= b2 ;

∫
(sin ax) (sin bx) dx =

sin (a − b)x

2 (a − b)
−

sin (a + b) x

2 (a + b)
; a2 6= b2 ;

∫
(sin ax) (cos bx) dx = −

cos (a − b)x

2 (a − b)
−

cos (a + b)x

2 (a + b)
; a2 6= b2 :

The appropriate limits on these integrals are −l and l . Indices are used only to enumerate
eigenstates, thus, all n and m are positive integers. Also remember that cosine is an even
function and sine is an odd function.
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<ˆn | ˆn> =
∫ l

−l

(
cos

(n…x

l

))∗ (
cos

(n…x

l

))
dx =

∫ l

−l

cos2
(n…x

l

)
dx

=
[
x

2
+

l

4n…
sin

2n…x

l

]l

−l

=
l

2
− −l

2
+

l

4n…
sin

2n…l

l
− l

4n…
sin

−2n…l

l

= l +
l

4n…

(
sin 2n… + sin 2n…

)
= l +

l

2n…
sin 2n…

/
= l 6= 0 ;

where the sine is struck because the sine of any integral multiple of … is zero. Similarly

<ˆm |ˆm> =
∫ l

−l

(
sin

(m…x

l

))∗ (
sin

(m…x

l

))
dx =

∫ l

−l

sin2
(m…x

l

)
dx

=
[
x

2
−

l

4m…
sin

2m…x

l

]l

−l

=
l

2
−

−l

2
−

l

4m…
sin

2m…l

l
+

l

4m…
sin

−2m…l

l

= l −
l

4m…

(
sin 2m… + sin 2m…

)
= l −

l

2m…
sin 2m…

/
= l 6= 0 :

Conjugation is cosmetic when functions are real so is hereafter suppressed. Then

<ˆni | ˆnj > =
∫ l

−l

(
cos

ni…x

l

) (
cos

nj…x

l

)
dx

=




sin
(ni…x

l
−

nj…x

l

)

2
(ni…

l
− nj…

l

) +
sin

(ni…x

l
+

nj…x

l

)

2
(ni…

l
+

nj…

l

)




l

−l

=
l

2…

sin (ni − nj ) …

(ni − nj )
−

l

2…

sin (−ni + nj )…

(ni − nj )
+

l

2…

sin (ni + nj )…

(ni + nj )
−

l

2…

sin (−ni − nj )…

(ni + nj )
:

Remember that ni 6= nj , because the case ni = nj = n is covered by <ˆn | ˆn> . The arguments
of all the sine functions are sums and differences of integers times … , so are integral multiples of
… . The numerators of all terms are therefore zero, so <ˆni | ˆnj > = 0 : Next

<ˆmi |ˆmj > =
∫ l

−l

(
sin

mi…x

l

)(
sin

mj…x

l

)
dx

=




sin
(mi…x

l
− mj…x

l

)

2
(mi…

l
− mj…

l

) −
sin

(mi…x

l
+

mj…x

l

)

2
(mi…

l
+

mj…

l

)




l

−l

=
l

2…

sin (mi − mj )…

(mi − mj )
−

l

2…

sin (−mi + mj )…

(mi − mj )
−

l

2…

sin (mi + mj ) …

(mi + mj )
+

l

2…

sin (−mi − mj ) …

(mi + mj )
:

Again, mi 6= mj , because the case mi = mj = m is addressed by < ˆm |ˆm > . Again, the
arguments of all the sine functions are sums and differences of integers times … , so are integral

31



multiples of … . The numerators of all terms are again zero, so <ˆmi |ˆmj > = 0 . Then

<ˆm | ˆn> =
∫ l

−l

(
sin

m…x

l

)(
cos

n…x

l

)
dx

=


−

cos
(m…x

l
−

n…x

l

)

2
(m…

l
− n…

l

) −
cos

(m…x

l
+

n…x

l

)

2
(m…

l
+

n…

l

)




l

−l

= − l

2…
cos (m − n) …

(m − n)
+

l

2…

cos (−m + n)…

(m − n)
− l

2…

cos (m + n)…

(m + n)
+

l

2…

cos (−m − n)…

(m + n)
:

The cosine is an even function, so cos (−m + n) … = cos (m − n) … and cos (−m − n)… =
cos (m + n)… . Substituting in the last line,

<ˆm |ˆn> = −
l

2…

cos (m − n) …

(m − n)
+

l

2…

cos (m − n) …

(m − n)
−

l

2…

cos (m + n)…

(m + n)
+

l

2…

cos (m + n)…

(m + n)
;

and the first and second terms are identical except they have opposite signs so sum to zero,
similarly, the third and fourth terms sum to zero, so we conclude <ˆm | ˆn> = 0; m 6= n : The
qualification m 6= n applies to the last calculation because m = n is not covered by any previous
case. Since both indices are equal for this calculation, let m = n = k

<ˆk |ˆk> =
∫ l

−l

(
sin

k…x

l

) (
cos

k…x

l

)
dx =

l

2k…
sin2 k…x

l

∣∣∣∣
l

−l

=
l

2k…

(
sin2 k… − sin2 (−k…)

)
=

l

2k…

(
sin2 k… − sin2 k…

)
= 0

since sin2 is an even function. Also, the sine of an integral multiple of … is zero so the squares
of integral multiples of … are zero. This exhausts all possibilities for indices that are positive
integers. Therefore,

ˆn (x) = cos
(n…x

l

)
and ˆm(x) = sin

(m…x

l

)
are orthogonal on the interval − l < x < l:

(b) In the first two calculations we found <ˆn | ˆn> = <ˆm | ˆm> = l , so

<ˆn |A∗ A |ˆn> =
∣∣ A

∣∣2 <ˆn |ˆn> =
∣∣ A

∣∣2 l = 1 ⇒ A =
1√
l

⇒ ˆn(x) =
1√
l

cos
(n…x

l

)
and ˆm(x) =

1√
l

sin
(n…x

l

)

are orthonormal on the interval −l < x < l .

22. (a) Show that if indices of n < 0 where to apply, a−n = an , and that a0 =
1
l

∫ l

−l

f (x) dx

for a basic Fourier series.
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(b) Show that if indices of n < 0 where to apply, b−n = −bn , and that b0 = 0 for a basic Fourier
series.

(c) Express the cn that are the coefficients of the exponential format of the Fourier series in terms
of the basic Fourier coefficients an and bn , and show that c0 = a0=2 .

(d) Demonstrate the equivalence of the basic Fourier series and the exponential format of the
Fourier series.

the same period? A Fourier series is a representation of a periodic function as a linear
combination of all cosine and sine functions that have the same period. The periodic function
f (x) = f (x + 2l) , has a period of 2l , or repeats itself every 2l . In a basic Fourier series,

f (x) =
a0

2
+

∞∑

n=1

an cos
(n…x

l

)
+

∞∑

n=1

bn sin
(n…x

l

)
;

where the coefficients are

an =
1
l

∫ l

−l

f (x) cos
(n…x

l

)
dx; and bn =

1
l

∫ l

−l

f (x) sin
(n…x

l

)
dx ;

given that the period is 2l . The Fourier series in a exponential format for a function that is
periodic over the length 2l is

f (x) =
∞∑

−∞
cn ein…x=l; where cn =

1
2l

∫ l

−l

f (x) e−in…x=l dx :

Use the defining integrals for an , bn , and cn , for parts (a), (b), and (c). Cosines are even
functions and sines are odd functions. Substituting these results into the summation that defines
the exponential form yields the basic Fourier series required for part (d). It is wise to divide the
summation into three parts that coincide with the three cases, namely: n < 0 implies a summation
from −∞ to −1 , n = 0 is one term of the summation, and n > 0 implies a summation from 1
to ∞ . The tricky part is switching the indices on the summation from −∞ to −1 . It may require
some reflection, but realize that

−1∑

−∞

1
2

(an − ibn) ein…x=l =
∞∑

1

1
2

(an + ibn) e−in…x=l :

(a) a−n =
1
l

∫ l

−l

f (x) cos
(

−n…x

l

)
dx =

1
l

∫ l

−l

f (x) cos
(n…x

l

)
dx = an ;

and a0 =
1
l

∫ l

−l

f (x) cos (0) dx =
1
l

∫ l

−l

f (x) dx :

(b) b−n =
1
l

∫ l

−l

f (x) sin
(

−n…x

l

)
dx = −

1
l

∫ l

−l

f (x) sin
(n…x

l

)
dx = −bn ;
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and b0 =
1
l

∫ l

−l

f (x) sin (0) dx = 0 :

(c) cn =
1
2l

∫ l

−l

f (x) e−in…x=l dx =
1
2l

∫ l

−l

f (x)
[
cos

(n…x

l

)
− i sin

(n…x

l

)]
dx

=
1
2l

∫ l

−l

f (x) cos
(n…x

l

)
dx −

i

2l

∫ l

−l

f (x) sin
(n…x

l

)
dx =

1
2

(an − ibn) :

When n = 0, the argument of the exponential is zero, so

c0 =
1
2l

∫ l

−l

f (x) e0 dx =
1
2l

∫ l

−l

f (x) dx =
1
2

a0 :

(d) For convenience, let µ = …x=l . The summation is

f (x) =
∞∑

−∞
cn einµ =

−1∑

−∞

1
2

(an − ibn) einµ +
1
2

a0 +
∞∑

1

1
2

(an − ibn) einµ

=
1
2

a0 +
∞∑

1

(
an

2
+

ibn

2

)
e−inµ +

∞∑

1

(
an

2
−

ibn

2

)
einµ (1)

=
1
2

a0 +
∞∑

1

(
an

2
e−inµ +

ibn

2
e−inµ +

an

2
einµ − ibn

2
einµ

)

=
1
2

a0 +
∞∑

1

(an

2
cos nµ −

an

2
i sinnµ

/
+

ibn

2
cos nµ

/
+

bn

2
sinnµ

+
an

2
cos nµ +

an

2
i sin nµ

/
−

ibn

2
cos nµ

/
+

bn

2
sinnµ

)
(2)

=
1
2

a0 +
∞∑

1

(an cos nµ + bn sinnµ)

which is identical to the basic Fourier series upon the substitution of µ = …x=l . We have used the
results of parts (a) and (b) in equation (1). The sign of the argument of the first exponential in
equation (1) changes because we have changed the sign of the index of the summation. The signs
of the fourth and eighth terms in the summation of equation (2) are correct because both include
factors of i · i = −1.

Postscript: The cosine and sine functions are orthogonal over a finite interval, say −l < x < l ,
and can be made orthonormal on that interval as demonstrated in problem 21. Orthonormal
vectors or orthonormal functions constitute a basis. Any function can be expressed in terms of a
linear combination of the vectors, or in this case, the functions that constitute the basis.

The infinite square well, also known as a particle in a box, uses the orthogonal cosine and sine
functions as a basis.

The exponential format of the Fourier series is often called complex Fourier series. We are
interested in the complex Fourier series because it is the form that is most easily generalized to
the Fourier integral.
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23. Sketch the graphs of the following functions and their the Fourier transforms.

(a) f (x) =
{

1 ; −a < x < a ,
0 ; elsewhere, and (b) f1 (x) =

{
1=2 ; −b < x < b ,
0 ; elsewhere,

where b = 2a :

Fourier integrals are generalizations of Fourier series. A Fourier integral is a representation
of a non-periodic function that may be regarded as the limit of the Fourier series as the period
approaches infinity. Two Fourier transforms compose the Fourier integral. Fourier transforms
are the objects that we want to develop further for quantum mechanical calculation. We refer the
reader to Byron and Fuller6, or your favorite text on mathematical physics for greater depth. In
the limit of l → ∞ ; the complex Fourier series becomes

f (x) =
1√
2…

∫ ∞

−∞
g (k) eikx dk ; g (k) =

1√
2…

∫ ∞

−∞
f (x) e−ikx dx :

The function f (x) is the Fourier transform of g (k) ; and g (k) is the Fourier transform of f (x) .
Substitution of one transform into the other expressing the combination as one relation, i.e.,

f (x ) =
1√
2…

∫ ∞

−∞

(
1√
2…

∫ ∞

−∞
f (x′) e−ikx′

dx′
)

eikx dk

=
1
2…

∫ ∞

−∞
dk

∫ ∞

−∞
f (x′) eik(x−x′ ) dx′ is the Fourier integral:

The functions given for parts (a) and (b) are constants for specified intervals and zero elsewhere
which means that you can find g (k) and g1 (k) by integrating between −a and a , and −b and
b instead of using infinite limits. Express your answer for part (b) in terms of the constant a and
look for relations between the graphs of parts (a) and (b). This problem uses constant functions
which are among the easiest functions to integrate both as an appropriate place to start and to
highlight relations between parts (a) and (b) for which we provide comment in the postscript.

(a) g (k) =
1√
2…

∫ ∞

−∞
f (x) e−ikx dx =

1√
2…

∫ a

−a

f (x) e−ikx dx

=
1√
2…

1
(−ik)

e−ikx
∣∣∣
a

−a
=

1√
2…

e−ika − eika

−ik

=
2√
2… k

e−ika − eika

−2i
=

2√
2… k

eika − e−ika

2i
=

2√
2…

sin (ka)
k

:

The graphs of f (x) and g (k) , are

6 Byron and Fuller, Mathematics of Classical and Quantum Physics (Dover Publications, Inc.,
New York, 1970), pp. 239–253, 566–570.
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Graph of f (x) Graph of g (k)

(b) The Fourier transform of the given function where b = 2a , double the width and half the
height, so that the area under the curve is equal for both f (x) and f1 (x) ; is

g1 (k) =
1√
2…

sin (kb)
k

=
1√
2…

sin (2ka)
k

:

Graph of f1 (x) Graph of g1 (k)

Postscript: The graph of f1 (x) is broader than the graph of f (x) ; but the graph of g1 (k) is
sharper than the graph of g (k) . If one of the Fourier transforms is distributed and broad, the
other will be localized and sharp. This phenomena is a precursor of the Heisenberg uncertainty
relations.

While fi (x) has a limited domain, the domain of gi (k) is infinite. This is another general
feature of Fourier transforms.

24. Derive the Fourier transforms from the complex Fourier series.

The basic Fourier series is useful for introductions and many applications, but the complex Fourier
series is the form from which Fourier transforms are most easily attained. This is a challenging
problem but provides an opportunity to deepen your understanding of Fourier transforms.

Start with the notation

F (y) =
∞∑

−∞
cn ein…y=l; where cn =

1
2l

∫ l

−l

F (y) e−in…y=l dy :

Substitute the integral form of cn into the summation. Symmetrize the factor of 1=2l . This
means to rearrange the summation so a factor of 1=

√
2l is in both the F (y) and the cn . You

now have F (y) and cn that are different than originally defined. Change variables by letting

x =
√

…

l
y . Also, let kn = n

√
…

l
. You can now find that ∆kn =

√
…

l
and

n…y

l
= knx :

Redefine F

(√
l

…
x

)
= f (x) . Introduce a new symbol for the coefficients that indicates the

index kn replaces n , so cn → gkn . Finally, let l → ∞ , so that the Fourier transforms

f (x) =
1√
2…

∫ ∞

−∞
g (k) eikx dk and g (k) =

1√
2…

∫ ∞

−∞
f (x) e−ikx dx are exposed:
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F (y) =
∞∑

n= −∞

(
1
2l

∫ l

−l

F (y) e−in…y=l dy

)
ein…y=l =

∞∑

n = −∞

(
1√
2l

∫ l

−l

F (y) e−in…y=l dy

)
1√
2l

ein…y=l :

We can now identify a symmetrized function and coefficient as

F (y) =
∞∑

n = −∞
cn

1√
2l

ein…y=l and cn =
1√
2l

∫ l

−l

F (y) e−in…y=l dy : (1)

We are going to change variables to
√

…

l
y = x ⇒ y =

√
l

…
x ⇒ dy =

√
l

…
dx : We

are also going to use kn = n

√
…

l
⇒ ∆kn = kn+1 − kn = (n + 1)

√
…

l
− n

√
…

l
=

√
…

l
:

These substitutions allow us to rewrite a portion of the argument of the exponentials,
n…y

l
= n

√
…

l

√
…

l
y = knx : The difference in the new index is ∆kn =

√
…

l
⇒ ∆kn√

2…
=

1√
2l

:

The limits of the integral become y = l ⇒ x =
√

…

l
l =

√
…l ; and y = −l ⇒ x = −

√
…l :

We finally introduce a new symbol for the coefficients that indicates the index is now kn vice n
so cn → gkn . Using these substitutions and developments in equation (1),

F (y) = F

(√
l

…
x

)
=

∞∑

kn = −∞
gkn

1√
2…

eiknx ∆kn =
1√
2…

∞∑

kn = −∞
gkn eiknx ∆kn

and gkn =
1√
2l

∫ √
…l

−
√

…l

F

(√
l

…
x

)
e−iknx

√
l

…
dx =

1√
2…

∫ √
…l

−
√

…l

F

(√
l

…
x

)
e−iknx dx

Redefine F

(√
l

…
x

)
= f (x) : Now, let the period l → ∞ ⇒ ∆kn =

√
…

l
→ 0 . The

difference between successive kn → 0 so that kn assumes all real values and thus becomes a
continuous variable. The summation over discrete kn becomes an integral over the continuous
variable k , the coefficient gkn becomes a continuous function g (k) , the difference ∆kn becomes
the differential dk , and

f (x) =
1√
2…

∫ ∞

−∞
g (k) eikx dk and g (k) =

1√
2…

∫ ∞

−∞
f (x) e−ikx dx :

Postscript: The factor of 1=2… must be in the Fourier integral but it does not need to be
symmetrized in the Fourier transforms. Some authors and tables place the entire factor 1=2…
with one integral so that there is no coefficient in front of the other integral. Also, some authors
and tables will change the signs of the exponentials from what we have presented. Asymmetric
treatment of the factor of 1=2… and/or use of a different sign convention result in slightly different
functional forms for resulting Fourier transforms.
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25. Find the momentum space wavefunction corresponding to a position space wavefunction that
is Gaussian.

Gaussian wavefunctions are foundational as you will find in chapter 3 and elsewhere. But first,
what does it mean to change a wavefunction in position space to a wavefunction in momentum
space? It means find the description of a system using an unknown function of the continuous
variable momentum starting with the description of the system that is a known function of the
continuous variable position. It is a change of basis in the realm of continuous variables. Quantum
mechanical Fourier transforms are the means to change from position space to momentum space
and vice versa for continuous variables.

The de Broglie relation associates wavelength or wavenumber, and momentum,

‚ =
h

p
⇒ 2…

k
=

h

p
⇒ k =

p

h̄
:

Substitute p=h̄ for k in both Fourier transforms. This means the differential dk = dp=h̄ in the
integral for f (x) . Symmetrize the 1=h̄ from this differential by placing a factor 1=

√
h̄ in both

integrals, and the result is the quantum mechanical form of the Fourier transforms,

f (x) =
1√
2…h̄

∫ ∞

−∞
ĝ (p) eipx=h̄ dp; ĝ (p) =

1√
2…h̄

∫ ∞

−∞
f (x) e−ipx=h̄ dx :

The usual use of these relations is to transform a wave function in position space to momentum
space (or vice versa), so will be applied

ˆ (x) =
1√
2…h̄

∫ ∞

−∞
̂̂ (p) eipx=h̄ dp; ̂̂ (p) =

1√
2…h̄

∫ ∞

−∞
ˆ (x) e−ipx=h̄ dx :

There are a number of subtleties associated with the quantum mechanical analog of the Fourier
transforms, so our heuristic argument should be regarded as nothing more than a useful mnemonic.

Use ˆ (x) = Ae−bx2
; b > 0 ; as your position space wavefunction that is Gaussian. Form

3.323.2 from Gradshteyn and Ryzhik,
∫ ∞

−∞
e−fi2x2−flx dx =

√
…

fi
efl2=4fi2

;

should be useful. Do you recognize the functional form of the momentum space wavefunction?

̂̂ (p) =
1√
2…h̄

∫ ∞

−∞
ˆ (x) e−ipx=h̄ dx =

1√
2…h̄

∫ ∞

−∞
Ae−bx2

e−ipx=h̄ dx

=
A√
2…h̄

∫ ∞

−∞
e−bx2−ipx=h̄ dx :

Using fi =
√

b , and fl = ip=h̄ , our integral is

̂̂ (p) =
A√
2…h̄

√
…√
b

exp
(

(ip=h̄)2

4 (
√

b )2

)
=

A√
2h̄b

e−p2=4bh̄2
:
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Postscript: Notice that ̂̂ (p) is also an exponential function with a negative argument that is a
constant times the independent variable squared. In fact, ̂̂(p) is also a Gaussian wavefunction.
The Fourier transform of a Gaussian function is another Gaussian function.

26. Given | ˆ> such that <x | ˆ> = ˆ (x) = A eik0x; −4…

k0
< x <

4…
k0

; and 0 otherwise,

(a) normalize ˆ (x) ,

(b) find ̂̂(p) ; and

(c) sketch ˆ (x) and ̂̂ (p) .

The physical system described by |ˆ > is a plane wave confined to a one dimensional “box,”
also known as a one-dimensional infinite square well. Part (a) means to solve for the constant A
using the normalization condition on the interval to which the system is confined. In other words,
the confinement allows you to use −4…=k0 and 4…=k0 as the limits of integration. Of course,
an unconfined plane wave cannot be normalized. Again, you need only to integrate between the
limits of −4…=k0 and 4…=k0 for part (b). “Sketch” means to understand the shape of the curves.
Draw or plot only the real part of ˆ (x) : Set the normalization constants, k0, and h̄ equal to 1
to get the shapes of ˆ (x) and ̂̂ (p) : You should find that the real part of ˆ (x) is an evenly
distributed cosine curve but that ̂̂ (p) is distinctly peaked.

(a) The calculus-based form of the normalization condition on the interval given is

1 =
∫ 4…=k0

−4…=k0

A∗ e−ik0x A eik0x dx = | A |2
∫ 4…=k0

−4…=k0

e0 dx = | A |2
∫ 4…=k0

−4…=k0

dx

= | A |2
(

x

∣∣∣∣
4…=k0

−4…=k0

)
= | A |2

(
4…
k0

− −
4…

k0

)
= |A |2

8…

k0
⇒ A =

√
k0

8…

⇒ ˆ (x) =

√
k0

8…
eik0x =

1
2

√
k0

2…
eik0x :

(b) ̂̂(p) =
1√
2…h̄

∫ ∞

−∞
ˆ (x) e−ipx=h̄ dx =

1√
2…h̄

1
2

√
k0

2…

∫ 4…=k0

−4…=k0

eik0x e−ipx=h̄ dx
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after substituting the results of part (a). So

̂̂(p) =
1
4…

√
k0

h̄

∫ 4…=k0

−4…=k0

ei(k0−p=h̄)x dx =
1
4…

√
k0

h̄

1
i (k0 − p=h̄)

ei(k0−p=h̄)x

∣∣∣∣
4…=k0

−4…=k0

=
1
4…

√
k0

h̄

1
i (k0 − p=h̄)

(
ei(k0−p=h̄)(4…=k0) − ei(k0−p=h̄)(−4…=k0 )

)

=
1
2…

√
k0

h̄

1
2i (k0 − p=h̄)

(
ei4…(1−p=k0h̄) − e−i4…(1−p=k0h̄)

)

=
1
2…

√
1

k0h̄

1
(1 − p=k0h̄)

ei4…(1−p=k0h̄) − e−i4…(1−p=k0h̄)

2i

=
1
2…

√
1

k0h̄

sin 4… (1 − p=k0h̄)
(1 − p=k0h̄)

⇒ ̂̂(p) = 2
√

1
k0h̄

sin
(

4… −
4…p

k0h̄

)

(
4… − 4…p

k0h̄

) :

The region of confinement is −∞ < p < ∞ in momentum space.

(c)

Sketch of ˆ (x) Sketch of ̂̂(p)

Postscript: The advantage of casting ̂̂ (p) in this form is that a sine divided by the argument
of the sine is a sinc function, which is used to model numerous systems.

27. Given | ˆ> such that <p | ˆ> = ̂̂ (p) =
h̄ sin

(ap

h̄

)

p
; a ∈ R ;

(a) normalize ̂̂ (p) ,

(b) find ˆ (x) ; and

(c) sketch ̂̂ (p) and ˆ (x) .

The only real difference in this problem from the last is that it emphasizes momentum space.
Though most of the developments that you will encounter in this and other books are in position
space, momentum space can be a preferred environment.
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It is useful to recognize even or odd functions and composite functions. Again, a function such
that f (x) = f (−x) , like a cosine, is said to be even. A function such that f (x) = −f (−x) , like
a sine, is said to be odd. An even function times another even function, or an odd function times
another odd function is an even composite function. An even function times an odd function is
an odd composite function. Most functions and composite functions are neither even nor odd, for
instance, ex is neither even nor odd. However, when this even/odd type of symmetry does exist,
there are some useful techniques that are applicable. For instance, the integral of an odd function
between symmetric limits is zero. Also, the integral of an even function between symmetric limits
is twice the same integral between the limits of zero and the upper limit.

Two integrals are of interest. Form 611 from the 30th edition of the CRC tables,

∫ ∞

0

sin (ax)
x2 dx =

… |a |
2

for part (a). Assume that a > 0 so that you do not have to carry the absolute value symbols. If
you change variables to y =

ap

h̄
; you will find that the above integral is useful for application of

the normalization condition, given that you have used the even/odd function arguments correctly.
The second integral of interest is

∫ ∞

0

sin bx cos cx

x
dx =





0 ; c > b > 0 ,
…=2 ; b > c > 0 ,
…=4 ; b = c > 0 ,

from the 30th edition of the CRC tables, form 615. If you correctly apply the quantum mechanical
Fourier transform, the Euler equation eiµ = cos µ + i sin µ, and the even/odd function arguments
for the integrals, you should find

ˆ (x) =
1

…h̄

√
2
a

∫ ∞

0

sin
(ap

h̄

)
cos

(px

h̄

)

p=h̄
dp

which can be caste into the desired form by changing variables using y = p=h̄ .

(a) The normalization condition in momentum space is

1 =
∫ ∞

−∞
̂̂∗ (p)A∗ A ̂̂ (p) dp = | A |2

∫ ∞

−∞

h̄ sin
(ap

h̄

)

p

h̄ sin
(ap

h̄

)

p
dp

= |A |2
∫ ∞

−∞

h̄2 sin2
(ap

h̄

)

p2 dp = | A |2 a2
∫ ∞

−∞

sin2
(ap

h̄

)

a2p2

h̄2

dp :

Let y =
ap

h̄
⇒ dy =

a

h̄
dp ⇒ dp =

h̄

a
dy , and integral limits are identical,

⇒ 1 = | A |2 ah̄

∫ ∞

−∞

sin2 (y)
y2 dy = |A |2 2ah̄

∫ ∞

0

sin2 (y)
y2 dy = |A |2 2ah̄

…

2
⇒ A =

1√
a…h̄
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̂̂(p) =
1√
a…h̄

h̄ sin
(ap

h̄

)

p
:

(b) The wavefunction in position space is

ˆ (x) =
1√
2…h̄

1√
a…h̄

∫ ∞

−∞

h̄ sin
(ap

h̄

)

p
eipx=h̄ dp

=
1

…h̄

1√
2a

∫ ∞

−∞

sin
(ap

h̄

)

p=h̄

[
cos

(px

h̄

)
+ i sin

(px

h̄

)]
dp

=
1

…h̄

1√
2a

∫ ∞

−∞

sin
(ap

h̄

)
cos

(px

h̄

)

p=h̄
dp +

1
…h̄

1√
2a

∫ ∞

−∞

sin
(ap

h̄

)
sin

(px

h̄

)

p=h̄
dp

/

where the last integral is zero because the product of three odd functions is an odd function, both
sines and 1=p are odd functions, and the integral of an odd integrand between symmetric limits is
zero. The other integrand is the product of two odd and one even function so is an even function.
An even integrand between symmetric limits is twice the integral from zero to the upper limit so

ˆ (x) =
1

…h̄

2√
2a

∫ ∞

0

sin
(ap

h̄

)
cos

(px

h̄

)

p=h̄
dp :

Changing variables to y =
p

h̄
⇒ p = h̄y ⇒ dp = h̄ dy , so the limits are the same under

the change of variables. Then

ˆ (x) =
1

…h̄

2√
2a

∫ ∞

0

sin (ay) cos (xy)
y

h̄ dy =





0 ; x > a > 0 ,
1√
2a

; a > x > 0 ,

1
2
√

2a
; a = x > 0 .

(c) The constant a has the dimension of length because the argument of a sine is dimensionless,
which is pertinent to the graph of ˆ (x) . Graphs look like

Sketch of ̂̂ (p) Sketch of ˆ (x)

Postscript: Notice that the momentum space wavefunction given for problem 27 is a sinc function
(or can be caste in the form of a sinc function by multiplying top and bottom by a ). It shows
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that the Fourier transform of a sinc function is a constant function. Constants and sinc functions
are related by their Fourier transforms in general.

The position space wavefunction given in problem 26 is a plane wave. The only part that
survives the integral transform is the periodic cosine portion. The cosine function is closely enough
related to a constant function that its Fourier transform on a finite interval is also a sinc function.

Supplementary Problems

29. Form the outer product of

| v> =




1
2
3


 and <w | =

(
2; 3; 4

)
:

This problem is the mechanics of forming an outer product. See problem 1. Notice that an outer
product is an operator.

30. Show that P2
i = Pi using Dirac notation.

This problem should help familiarize you with both the projection operator and Dirac notation.
First, the meaning of P2

i is P2
i = Pi Pi . An operator with an exponent means to apply that

operator the exponent number of times consecutively. Secondly, a projection operator is an outer
product, so simply form the outer products in Dirac notation. Lastly, recognize the orthonormality
condition within the product that you have written. This “proof” is very short. The use of Dirac
notation is often simply an exercise in recognizing the meaning of the symbols.

31. Show that <f | g> is invariant under unitary transformation where

| f > =




i
0

1 + i


 and | g> =




1
1 − i
2i


 ;

and the unitary transformation is made from the operator Lx =




0 1 0
1 0 1
0 1 0


 :

Invariance is an important property. This problem should provide additional confidence that an
inner product is invariant. It should also provide practice in self-consistently transforming vectors
though the point of the problem is coordinate independence. This problem is the complex number
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analogy of problem 6. You should find that <f | g> = 2 + i . Problem 24 of part 2 provides the
eigenvectors of Lx which are

| −
√

2> =
1
2




1
−

√
2

1


 ; | 0> =

1√
2




1
0

−1


 ; and |

√
2> =

1
2




1√
2

1


 :

Form the unitary transformation and its adjoint using these eigenvectors. Then find
< f ′ | = < f | U and | g′ > = U† | g >. The inner product of these vectors is also 2 + i, so
<f ′ | g′ > = <f | g>.

32. Evaluate

(a)
∫ …

−…

sin (µ) –
(
µ −

…

6

)
dµ

(b) 2
∫ ∞

0
cos (x) e−x2

–
(
µ −

…

2

)
dx

(c)
∫

A
x2 + b2 – (x + 1) dx

(d)
∫

sin (p) cos (p)
p

–
(
p −

…

4

)
dp

Per problem 11, an integral containing a delta function is the value of the integrand evaluated at
the point that the argument of the delta function is equal to zero, provided that point is between
the limits of the integral. The value of the integral is zero if that point is not within the limits of
integration. The integral for parts (c) and (d) have no limits, but are not likely to be indefinite
integrals because they contain a delta function. The usual convention is the limits are −∞ and
∞ for a definite integral where the limits are not specified.

33. Show that
∫

f (x) –
(
ax + b(x − c)

)
dx =

1
a + b

f

(
bc

a + b

)
; a ; b > 0 .

This problem is an extension of problem 12. As before, the limits of the integral are negative
and positive infinity. Change variables to y = the argument of the delta function, and follow the
procedures of problem 12. The qualification that the multiplicative constants are greater than zero
means that you have only one case to consider.

There are basically two techniques that are applicable to delta functions—changing variables
and integration by parts. Changing variables to make the argument of the delta function a single
variable allows the definition and properties of the delta function to be clearly applied.

34. Show that – (x − a) – (x − b) = – (a − b) .
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This problem should extend your understanding delta functions. The technique used for this
problem is unusual. It is neither changing variables nor integrating by parts. It is posed partially
to motivate you to visit the realm of the originator of the Dirac delta function7.

The delta function is even so – (x − a) = – (a − x) , for instance. Operate on the integral
with

∫
f (a) da . Switch the order of integration so that you can do the integration over da which

will yield an integral over dx . The resulting integral over dx can be true if and only if x = a ,
which is equivalent to integrating over a instead of x , so replace x with a . Compare this with
the double integral formed by operating with

∫
f (a) da and the result should emerge. It may be

best to see the reference given in footnote 7.

35. Find
∫

V0

(
e−2fix − 2e−fix

)
–′ (x − a) dx :

This problem includes the derivative of a delta function. This potential is realistic and is used
to model diatomic molecules where x = (r − r0)=r0 , where r0 will depend upon the diatomic
molecule being modeled. It is known as the Morse potential. Calculate the derivative of the
function. The integral is the negative of this derivative evaluated at the point where the argument
of –′ is zero. You should find that the value of this integral is 2V0 fi

(
e−2fia − e−fia

)
.

36. Show that

B | aj> =
3∑

i

| ai> bj –ij ⇒ B |aj> = bj |aj> using explicit addition:

This problem should increase your familiarity with Dirac notation and convey the fact that a
Kronecker delta within a summation has the capability to make a summation “disappear.” This
technique is used frequently where Dirac notation is employed. Expand the finite summation. The
index j can be 1, 2, or 3 in this three dimensional problem. The condition –ij = 1 only when
i = j forces all but one of the three possibilities to be zero for each value of j .

37. Show that

2∑

i

2∑

j

| ai><ai | B | aj><aj | –ij =
2∑

i

| ai>< ai | B |ai><ai | using explicit addition:

This is a toy problem intended to provide insight into how a summation that includes a Kronecker
delta is simplified. It is similar to the previous problem. Explicit addition means to write out the
terms of the finite sum. This problem may be easier than the last problem because both indices,
i and j , are explicitly indicated in the summations so are explicitly indicated in the expansion.
If you recognize that <ai | B | aj> is a scalar, you can simplify the notation.

7 Dirac, The Principles of Quantum Mechanics (Clarendon Press, Oxford, England, 1958), 4th
ed., pp. 60.
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38. Show that if |ˆ> is normalized, so is |ˆ′> = ei` |ˆ> .

This problem reinforces the meaning of normalization but also introduces the concept of phase.
The factor ei` is the phase and the scalar ` is the phase angle, though at times the scalar `
is called the phase because it is the only portion of the exponential that can vary. You are given
<ˆ |ˆ> = 1 to show that <ˆ′ |ˆ′> = 1 . Form the bra <ˆ′ | and then the braket <ˆ′ |ˆ′>
and you should see that the tenet is true.

39. Normalize ˆ (x) =
A

x2 + b2 .

This problem is practice in the mechanics of normalization. The function is known as a Lorentzian
function and has numerous applications. Use the normalization condition where A is a normal-
ization constant. Form 3.249.1 on page 294 of Gradshteyn and Ryzhik is

∫ ∞

0

dx

(x2 + a2)n
=

(2n − 3s)!!
2 (2n − 2)!!

…

a2n−1 :

You need to recognize the even integrand between symmetric limits to use this integral. The double
factorial is similar to a single factorial except the factors are reduced by two, that is

(2n)!! = (2n)(2n − 2)(2n − 4):::6 · 4 · 2; or (2n + 1)!! = (2n + 1)(2n − 1)(2n − 3):::5 · 3 · 1 :

The fact that factorials have precedence over multiplication may help with the reduction. You

should find that ˆ (x) =
(

2b3

…

)1=2 1
x2 + b2 :

40. Show that

(a) ˆn (`) = ein` and ˆm (`) = eim` are orthogonal on the interval −… < ` < … where n
and m are integers.

(b) Orthormalize ˆn (`) and ˆm (`) .

The intent of this problem is similar to problem 21. You will likely find the exponentials easier
than the sines and cosines. You need to show that <ˆn |ˆn> 6= 0 and <ˆm |ˆm> 6= 0 . You
also need to establish that <ˆn | ˆm> = 0 for all integral n and m . Convert the inner products
to integrals for the actual calculation since you have functional forms. The limits of the integration
are −… and … , because that is the region specified. Euler’s equation is eix = cos x+ i sin x , and
if you subtract the same relation for the opposite argument e−ix = cos x − i sin x , and divide by

2i you attain sin x =
eix − e−ix

2i
, which is an identity that should be useful.

41. Given <f | =
(
1; 2; 3

)
and <g | =

(
4; 5; 6

)
; show that <f | g> = 32 after insertion of

the identity two ways.
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(a) Show that <f |

(
3∑

1

| i><i |

)
| g> = 32 , and then

(b) show that
3∑

1

<f | i><i | g> = 32 .

This problem is a discrete space analog intended to persuade that bras and kets can be moved
into or out of an integral as done in problem 18. Part (a) means to assemble the identity operator
before multiplying by the vectors. Part (b) means to multiply each of the unit vectors that would
compose the outer product in part (a) and sum the terms after multiplication is complete. After
understanding the process in a three-dimensional space, imagine the same process in an infinite
dimensional space where an integral instead of a summation is appropriate. Does the process
change because the dimension of the space changes?
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