
Tapestries from India, oriental vases, paintings by Dali, is that a Fabrege egg? Cases and
stands made of ebony that matched the woodwork of the door frames, all intricately carved and
highly polished. Is this a house or a gallery? He did not recognize most of the other guests; he
did recognize a couple of ball players, a judge, and that beautiful lady who was a news reporter on
channel 9. The guest list appeared to be affluent business people, successful entertainers, elected
officials, appointed dignitaries...and a private eye who felt like a pair of unmatched socks in the
silver drawer. Where can I get a beer? A petite maid in a black and white uniform appeared holding
a tray of wine glasses and asked “Champagne?” Will have to do until I can find a beer...“Thank
you.” She added while turning toward adjacent guests, “The real values are those of Hermite.”

The Mathematics of Quantum Mechanics, Part 2
Operators dominate part 2. When you finish part 2, you should understand the meaning of a

linear operator, the identity operator, inverse operators, Hermitian operators, unitary
operators, the commutator, a diagonal operator, and the determinant of an operator. You
need to understand the meaning of eigenvalues and eigenvectors. You need to know how to
solve the eigenvalue/eigenvector problem. You want to know how to diagonalize an operator.
You want to know how to simultaneously diagonalize two operators. You want to understand
the meaning of degenerate operators. The reason to understand simultaneous diagonalization
is degenerate operators.

1. Show that Ly =




0 −i 0
i 0 −i
0 i 0


 is linear:

A state vector, or wave function, will describe a quantum mechanical system. An observable
quantity, or simply an observable is described by an operator. Examples of observable quantities
are energy, momentum, and position. All the information about the possible outcomes we could
observe is contained in the operator, without reference to a specific state vector or system.

Quantum mechanics appears to be a linear theory. In particular, we will informally state that
quantum mechanics is dominated by linear operators. Specifically, a linear operator commutes
with scalars, and will distribute over vectors. Symbolically this means

Ω
[
fi | v>

]
= fiΩ | v> ; (1)

Ω
[
fi | v1> +fl | v2>

]
= fi Ω | v1> +fl Ω | v2> ; (2)

where the last equation is focal because it includes the operation described in the first equation.

Show that Ly satisfies these two equations. Since Ly is a three dimensional operator, pick
generic three dimensional vectors like

| v1 > =




a1
b1
c1


 and | v2> =




a2
b2
c2


 ;

and do the appropriate multiplications and additions to show that equations (1) and (2) are true.
It may be wise to start on both ends and meet in the middle, which is how most proofs are actually
completed.
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Ly

[
fi | v>

]
=




0 −i 0
i 0 −i
0 i 0





fi




a
b
c





 =




0 −i 0
i 0 −i
0 i 0







fia
fib
fic


 =




−ifib
ifia − ific

ifib




=




fi(−ib)
fi(ia) + fi(−ic)

fi(ib)


 = fi




−ib
ia − ic

ib


 = fi




0 −i 0
i 0 −i
0 i 0







a
b
c


 = fiLy | v> ;

so Ly satisfies equation (1). Seeing a three dimensional matrix in a vector to arrive at the next
to last step is somewhat subtle, and is why we advised you to start at both ends. Equation (2) is

Ly

[
fi | v1 > + fl | v2>

]
=




0 −i 0
i 0 −i
0 i 0





 fi




a1
b1
c1


 + fl




a2
b2
c2







=




0 −i 0
i 0 −i
0 i 0









fia1
fib1
fic1


 +




fla2
flb2
flc2





 =




0 −i 0
i 0 −i
0 i 0







fia1
fib1
fic1


 +




0 −i 0
i 0 −i
0 i 0







fla2
flb2
flc2




and this is apparently two applications of the reduction for equation (1). We will continue for
the purpose of completeness, but realize that the rest of this reduction duplicates the reduction of
equation (1) twice. Proceeding,

Ly

[
fi | v1 > + fl | v2 >

]
=




−ifib1

ifia1 − ific1
ifib1


+




−iflb2

ifla2 − iflc2
iflb2




=




fi(−ib1)
fi(ia1) + fi(−ic1)

fi(ib1)


 +




fl(−ib2)
fl(ia2) + fl (−ic2)

fl (ib2)


 = fi




−ib1
ia1 − ic1

ib1


 + fl




−ib2
ia2 − ic2

ib2




= fi




0 −i 0
i 0 −i
0 i 0







a1
b1
c1


 + fl




0 −i 0
i 0 −i
0 i 0







a2
b2
c2


 = fi Ly | v1 > + fl Ly | v2 > :

2. Show by explicit multiplication in C3 that an identity operator multiplying

(a) a ket,

(b) a bra,

(c) a matrix operator from the left, and

(d) a matrix operator from the right result in the original ket, bra, or matrix operator.

The identity operator is the analogy of “1” in the real number system. One times a number is the
original number. This problem introduces the identity operator but also intends to persuade you
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that any legitimate multiplication by the identity operator results in the original object. In C3

the identity operator is

I =




1 0 0
0 1 0
0 0 1


 :

An identity operator is a matrix with 1’s on the principal diagonal and zeros elsewhere. Assume
arbitrary objects like

| v> =




b1
b2
b3


 and A =




a11 a12 a13
a21 a22 a23
a31 a32 a33


 :

You will find that I | v> = | v> ; <v | I = <v | ; I A = A , and AI = A .

(a) I | v> =




1 0 0
0 1 0
0 0 1







b1
b2
b3


 =




b1 + 0 + 0
0 + b2 + 0
0 + 0 + b3


 =




b1
b2
b3


 = | v> :

(b) <v | I =
(
b1; b2; b3

)



1 0 0
0 1 0
0 0 1


 =

(
b1+0+0; 0+b2+0; 0+0+b3

)
=

(
b1; b2; b3

)
= <v | :

(c) I A =




1 0 0
0 1 0
0 0 1







a11 a12 a13
a21 a22 a23
a31 a32 a33




=




a11 + 0 + 0 a12 + 0 + 0 a13 + 0 + 0
0 + a21 + 0 0 + a22 + 0 0 + a23 + 0
0 + 0 + a31 0 + 0 + a32 0 + 0 + a33


 =




a11 a12 a13
a21 a22 a23
a31 a32 a33


 = A :

(d) AI =




a11 a12 a13
a21 a22 a23
a31 a32 a33







1 0 0
0 1 0
0 0 1




=




a11 + 0 + 0 0 + a12 + 0 0 + 0 + a13
a21 + 0 + 0 0 + a22 + 0 0 + 0 + a23
a31 + 0 + 0 0 + a32 + 0 0 + 0 + a33


 =




a11 a12 a13
a21 a22 a23
a31 a32 a33


 = A :

Postscript: A scalar times an operator, from either side, is another operator. Symbolically,

fi I = fi




1 0 0
0 1 0
0 0 1


 =




fi 0 0
0 fi 0
0 0 fi


 ;

the product is an operator with the scalar on the principal diagonal and zeros elsewhere. Operating
on a vector or operator with this yields the same result as multiplication of the vector or operator
by the scalar.
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The scalar times the identity operator is what is intended when an author sets a scalar equal
to an operator. For instance,

AB = fi means AB = fi I :

3. Calculate the determinants of

(a) A =
(

1 − 2i 2 + 3i
3 − i 4 + 2i

)
; and (b) C =




2 −4 7
8 −3 −5

−4 9 1


 :

An integral with limits is a scalar, (though it may take considerable effort to calculate that scalar).
Similarly, a determinant is a scalar. detA is a scalar associated with a matrix operator. A
determinant is a scalar associated with a square matrix. Specifically,

a determinant is a function of a matrix that is the sum of the products of the elements of any
row or column and their respective cofactors.

Symbolically A =
(

a11 a12
a21 a22

)
⇒ detA =

∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ = a11a22 − a21a12; and

A =




a11 a12 a13
a21 a22 a23
a31 a32 a33


 ⇒ detA =

∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

= a11

∣∣∣∣
a22 a23
a32 a33

∣∣∣∣ − a21

∣∣∣∣
a12 a13
a32 a33

∣∣∣∣ + a31

∣∣∣∣
a12 a13
a22 a23

∣∣∣∣

= a11
(
a22a33 − a32a23

)
− a21

(
a12a33 − a32a13

)
+ a31

(
a12a23 − a22a13

)

= a11a22a33 − a11a32a23 + a21a32a13 − a21a12a33 + a31a12a23 − a31a22a13:

This can be extended to arbitrary or infinite dimension. For evaluation of determinants beyond
dimension 3, refer to Arfken1, Boas2, or your favorite linear algebra text.

(a) A =
(

1 − 2i 2 + 3i
3 − i 4 + 2i

)
⇒ detA =

∣∣∣∣
1 − 2i 2 + 3i
3 − i 4 + 2i

∣∣∣∣ = (1−2i)(4+2i)− (3− i)(2+3i)

= 4 + 2i − 8i + 4 − (6 + 9i − 2i + 3) = 8 − 6i − 6 − 9i + 2i − 3 = −1 − 13i ;

which is a scalar in C2.

(b) C =




2 −4 7
8 −3 −5

−4 9 1


 ⇒ det C =

∣∣∣∣∣∣

2 −4 7
8 −3 −5

−4 9 1

∣∣∣∣∣∣

1 Arfken Mathematical Methods for Physicists, Academic Press, 19–, chap 4.
2 Boas Mathematical Methods in the Physical Sciences, John Wiley & Sons, 1983, pp. 87–94.
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= (2)(−3)(1) − (2)(9)(−5) + (8)(9)(7) − (8)(−4)(1) + (−4)(−4)(−5) − (−4)(−3)(7)

= −6 + 90 + 504 + 32 − 80 − 84 = 456 which is a scalar in R3:

Postscript: A determinant is a scalar associated only with a square matrix. A determinant is
not defined for a matrix that does not have an equal number of rows and columns.

A singular matrix is one for which det A = 0. A singular operator does not have an inverse
operator. We will address inverse operators directly.

Evaluating determinants is a skill that is central to solving the eigenvalue/eigenvector problem.

4. For an arbitrary matrix operator in C2 ;

(a) Show that detAT = detA .

(b) Show that det
(
AA

)
= detA detA .

(c) Show that det
(
B† )

=
(
det BT

)∗
using explicitly complex matrix elements.

This problem is designed to increase your familiarity with determinants and some of their prop-

erties. Use a two-dimensional matrix like A =
(

fi fl
° –

)
. The condition ∈ C2 means

that fi, fl, °, and – are arbitrary complex numbers. For parts (a) and (b), just calculate
the necessary operators and their determinants. In part (c), explicitly complex elements means

B =
(

fi + ia fl + ib
° + ic – + id

)
, for instance. Part (c) is straightforward using matrix elements with real

and imaginary parts; it may be less accessible using implicitly complex operator elements.

(a) detA = det
(

fi fl
° –

)
= fi– − fl° and det AT = det

(
fi °
fl –

)
= fi– − °fl = fi– − fl°

therefore; detAT = detA :

(b) AA =
(

fi fl
° –

)(
fi fl
° –

)
=

(
fi2 + fl° fifl + fl–
fi° + °– fl° + –2

)

det
(
AA

)
= (fi2 + fl°)(fl° + –2) − (fifl + fl–)(fi° + °–)

= fi2fl°

/
+ fi2–2 + fl2°2 + fl°–2

/
− fi2fl°

/
− fifl°– − fifl°– − fl°–2

/

= fi2–2 + fl2°2 − 2fifl°– :

Then detA det A = (fi– − fl°)(fi– − fl°)

= fi2–2 − fifl°– − fifl°– + fl2°2

= fi2–2 + fl2°2 − 2fifl°– ;

therefore; det
(
AA

)
= det AdetA : In general; det (AB ) = detA detB :
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(c) B =
(

fi + ia fl + ib
° + ic – + id

)
⇒ BT =

(
fi + ia ° + ic
fl + ib – + id

)

so detBT = (fi + ia)(– + id) − (° + ic)(fl + ib)
= fi– + ifid + ia– − ad − fl° − ib° − iflc + bc

= fi– − ad − fl° + bc + i(fid + a– − b° − flc)

⇒ (det BT )∗ = fi– − ad − fl° + bc − i(fid + a– − b° − flc) :

det B
†

= det
(

fi − ia ° − ic
fl − ib – − id

)

= (fi − ia)(– − id) − (° − ic)(fl − ib)
= fi– − ifid − ia– − ad − fl° + ib° + iflc + bc

= fi– − ad − fl° + bc − i(fid + a– − b° − flc) ; so detB
†
= (detBT )∗ :

Postscript: A determinant is a scalar so has the properties of scalar. For instance, determinants
commute because scalars commute.

You have demonstrated that the determinant of an operator and its transpose are the same,
that the determinant of a product is the same as the product of the determinants, and that the
determinant of an adjoint is the conjugate of the determinant of the transpose. Parts (a) and (c)

together imply that det
(
B† )

=
(
detB

)∗
, the determinant of the adjoint is the same as the

conjugate of the determinant. These are not central results, but they can be useful (see problem
13). Note that these results can be extended to operators of dimension larger than 2 × 2 .

5. Find the inverse of D =
(

1 −2
4 −2

)
; and then find D D−1 and D−1 D to verify your result.

The product of an operator and its inverse is the identity operator. Symbolically, the inverse
operator of A is denoted A−1 ; and

A A−1 = A−1 A = I :

Multiplication by an inverse is analogous to division. Calculating an inverse is an exercise in solving

simultaneous equations. For example, if A =
(

5 4
2 2

)
; to find A−1 ;

(
5 4
2 2

)(
a b
c d

)
=

(
1 0
0 1

)
⇒

5a + 4c = 1
2a + 2c = 0

and
5b + 4d = 0
2b + 2d = 1

⇒

⇒

5a + 4c = 1
−4a − 4c = 0

5b + 4d = 0
−4b − 4d = −2

⇒

⇒

a = 1

b = −2

and substituting these into the second and fourth equations,

a = 1 ⇒ 2(1) + 2c = 0 ⇒ c = −1 ;
b = −2 ⇒ 2(−2) + 2d = 1 ⇒ d = 5=2 ;

⇒ A−1 =
(

1 −2
−1 5=2

)
:
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To verify this result,

A A−1 =
(

5 4
2 2

)(
1 −2

−1 5=2

)
=

(
5 − 4 −10 + 10
2 − 2 −4 + 5

)
=

(
1 0
0 1

)
= I ;

A−1 A =
(

1 −2
−1 5=2

) (
5 4
2 2

)
=

(
5 − 4 4 − 4

−5 + 5 −4 + 5

)
=

(
1 0
0 1

)
= I :

(
1 −2
4 −2

) (
a b
c d

)
=

(
1 0
0 1

)
⇒

a − 2c = 1
4a − 2c = 0

and
b − 2d = 0
4b − 2d = 1

⇒

⇒

a − 2c = 1
−4a + 2c = 0

−b + 2d = 0
4b − 2d = 1

⇒

⇒

a = −
1
3

b =
1
3

and substituting these into the first and third equations,

a = −
1
3

⇒ −
1
3

− 2c = 1 ⇒ c = −
2
3

;

b =
1
3

⇒ 1
3

− 2d = 0 ⇒ d =
1
6

;

⇒ D−1 =
(

−1=3 1=3
−2=3 1=6

)
:

To verify this result,

D D−1 =
(

1 −2
4 −2

) (
−1=3 1=3
−2=3 1=6

)
=

(
−1=3 + 4=3 1=3 − 1=3
−4=3 + 4=3 4=3 − 1=3

)
=

(
1 0
0 1

)
= I ;

D−1 D =
(

−1=3 1=3
−2=3 1=6

) (
1 −2
4 −2

)
=

(
−1=3 + 4=3 2=3 − 2=3
−2=3 + 2=3 4=3 − 1=3

)
=

(
1 0
0 1

)
= I :

Postscript: The fact that you want to retain from this problem is A A−1 = A−1 A = I : We will
use this fact frequently. The numerical examples of this problem are intended to be illustrative,
but they are not important. We will never explicitly calculate the inverse of a matrix operator.

If an operator is singular, i.e., if detA = 0 , the operator does not have an inverse. The
products AA−1 and A−1 A are, therefore, undefined. This condition is equivalent to prohibiting
the division by zero in the real number system. We will employ inverse operators without explicitly
determining that the operator is non-singular. In other words, we will consistently assume that an
inverse of an operator exists. We make this assumption because the classes of operators common
to quantum mechanics are typically non-singular.

6. Show that two dimensional matrix operators are associative.

Associativity is an often overlooked but frequently invoked property of matrix operators which
says they can be grouped in any manner as long as the order does not change. Symbolically,

A
(
B C

)
=

(
A B

)
C :
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By the way, A (B C ) has the same meaning as A B C . Likely the simplest and clearest method of
demonstrating associativity is using explicit forms of A ; B , and C , do the matrix multiplications
and show that they are the same. An explicit form of A means

A =
(

a11 a12
a21 a22

)
;

for instance. This problem is limited to two dimensions for reasons of simplicity. Your proof could
be extended to any including infinite dimension.

We want to show
A

(
B C

)
=

(
A B

)
C : (1)

The left side of the equation (1) is

A
(
B C

)
=

(
a11 a12
a21 a22

)[(
b11 b12
b21 b22

)(
c11 c12
c21 c22

)]

=
(

a11 a12
a21 a22

)(
b11c11 + b12c21 b11c12 + b12c22
b21c11 + b22c21 b21c12 + b22c22

)

=
(

a11b11c11 + a11b12c21 + a12b21c11 + a12b22c21 a11b11c12 + a11b12c22 + a12b21c12 + a12b22c22
a21b11c11 + a21b12c21 + a22b21c11 + a22b22c21 a21b11c12 + a21b12c22 + a22b21c12 + a22b22c22

)

The right side of equation (1) is

(
AB

)
C =

[(
a11 a12
a21 a22

)(
b11 b12
b21 b22

)](
c11 c12
c21 c22

)

=
(

a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

) (
c11 c12
c21 c22

)

=
(

a11b11c11 + a12b21c11 + a11b12c21 + a12b22c21 a11b11c12 + a12b21c12 + a11b12c22 + a12b22c22
a21b11c11 + a22b21c11 + a21b12c21 + a22b22c21 a21b11c12 + a22b21c12 + a21b12c22 + a22b22c22

)

=
(

a11b11c11 + a11b12c21 + a12b21c11 + a12b22c21 a11b11c12 + a11b12c22 + a12b21c12 + a12b22c22
a21b11c11 + a21b12c21 + a22b21c11 + a22b22c21 a21b11c12 + a21b12c22 + a22b21c12 + a22b22c22

)

when the second and third terms of each element are interchanged. This is the same as the first
expansion. Since the two expansions equal the same thing, they must themselves be equal, or

A
(
B C

)
=

(
AB

)
C ; and two dimensional matrix operators are associative:

7. Show that
(
A B

)−1 = B−1 A−1 :

This problem establishes the fact that the inverse of the product of two operators is the reverse
order of the product of the inverses. It also introduces a technique known as insertion of the
identity that is vital to many of the calculations of quantum mechanics. The identity operator is
so named because anything upon which it operates remains identical. Use of the identity operator
is analogous to multiplication by 1 in the real number system. The real utility of the identity
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operator (or any identity element including the number 1 in the real number system) is that it
has an infinite number of different forms, AA−1 and B B−1 to name just two forms that are
employed in this problem.

I = A A−1 statement of the identity

I = AI A−1 insertion of the identity

I = AB B−1 A−1 use of the form of the identity I = B B−1

I =
(
A B

)
B−1 A−1 associative property

(
AB

)−1 I =
(
AB

)−1 (
A B

)
B−1 A−1 operate on both sides with

(
AB

)−1

(
AB

)−1 I = I B−1 A−1 use of the form of the identity I =
(
AB

)−1 (
AB

)
(
AB

)−1
= B−1 A−1 operation by the identity

Postscript: A short comment on lines 5 and 6 may be helpful. Remember that the product of
two operators is another operator, so

(
AB

)
is an operator, and its inverse is denoted

(
AB

)−1
.

8. Show that the commutator of

A =
(

1 + i 0
0 1 − i

)
B =

(
−1 − i 0

0 −1 + i

)
is zero:

The order of the operators matters in matrix multiplication. Generally,

AB 6= B A ; or AB − B A 6= 0 :

The left side of the last equation is commonly denoted
[
A; B

]
= A B − B A :

The object [A; B ] is called a commutator. Most of the physics of quantum mechanics can be
generated using commutators. If [ A; B ] = 0 , the operators A and B are said to commute.
Operators that represent observable quantities and commute become particularly focal.

Do the indicated multiplcations and you will find that the difference of the products is “zero.”
It is actually the zero operator. If all of the elements are zero, the operator is said to be zero.

[
A; B

]
= AB − B A =

(
1 + i 0

0 1 − i

) (
−1 − i 0

0 −1 + i

)
−

(
−1 − i 0

0 −1 + i

) (
1 + i 0

0 1 − i

)

=
(

(1 + i)(−1 − i) + 0 0 + 0
0 + 0 0 + (1 − i)(−1 + i)

)
−

(
(−1 − i)(1 + i) + 0 0 + 0

0 + 0 0 + (−1 + i)(1 − i)

)

=
(

−1 − i − i + 1 0
0 −1 + i + i + 1

)
−

(
−1 − i − i + 1 0

0 −1 + i + i + 1

)

=
(

−2i 0
0 2i

)
−

(
−2i 0

0 2i

)
=

(
−2i + 2i 0

0 2i − 2i

)
=

(
0 0
0 0

)
:
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Postscript: A commutator is itself an operator. The product of two operators is another operator,
and the difference of two operators is an operator, so the difference of the products of two operators
is an operator.

The operators in this problem are diagonal operators. A diagonal operator is a matrix that
has non-zero elements only on the principal diagonal. The identity matrix is another example of
a diagonal operator. All diagonal operators commute.

9. Is the operator Ly =




0 −i 0
i 0 −i
0 i 0


 Hermitian?

A Hermitian operator is an operator that is identical to its adjoint, i.e.,

A = A† :

An adjoint is a transpose conjugate. Switch the rows and columns and conjugate all the elements.

The transpose of Ly is LT
y =




0 i 0
−i 0 i
0 −i 0


 ; and the conjugate of the transpose, or transpose

conjugate, is the adjoint, or LT ∗
y = L†

y =




0 −i 0
i 0 −i
0 i 0


 = Ly ; therefore, Ly is Hermitian.

Postscript: All observable quantities, such as energy, momentum, or position; are represented by
Hermitian operators. All observable quantities are represented by Hermitian operators.

The operator Ly in this problem is one of the three component angular momentum operators.

An anti-Hermitian operator is an operator that is identical to the negative of its adjoint,
i.e.,

A = −A† :

10. Is the operator R =
1√
2

(
1 −1
1 1

)
unitary?

A unitary operator is an operator whose product with its adjoint is the identity, i.e.,

U U† = U† U = I :

Multiplication by a unitary operator preserves the norm, or in geometric terms, the length of a
vector. A unitary operator is analogous to an identity operator with a rotation. Geometrically,
operation by the identity operator changes neither the direction nor the length. Operation by a
unitary operator does not change the length but does change the direction of a vector.
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The adjoint of R is the tranpose conjugate, so

RT =
1√
2

(
1 1

−1 1

)
⇒ RT ∗ =

(
1√
2

)∗ (
1∗ 1∗

−1∗ 1∗

)
=

1√
2

(
1 1

−1 1

)
= R†;

⇒ R R† =
1√
2

(
1 −1
1 1

)
1√
2

(
1 1

−1 1

)
=

1
2

(
1 + 1 1 − 1
1 − 1 1 + 1

)
=

1
2

(
2 0
0 2

)
=

(
1 0
0 1

)
= I ;

therefore R is unitary.

Postscript: If U U† = I ; then U† U = I : Similarly, U† U = I ⇒ U U† = I : The proof
is short and straightforward using techniques similar to problem 7. See problem 32.

The operator R in this problem rotates a vector clockwise through an angle …=4.

11. Show that if A and B are two-dimensional operators,
(
A B

)†
= B† A† .

This problem proves a useful result. Problem 12 is a more elegant reduction of this fact for unitary
operators using operator algebra. Use

A =
(

a11 a12
a21 a22

)
and B =

(
b11 b12
b21 b22

)
;

for instance. Simply form the matrix products of the left and right side of
(
A B

)†
= B† A†, the

adjoint of the product and the product of the adjoints in the reverse order, compare them, and
they will be the same. Again, this proof can be easily extended to higher dimension.

(
A B

)† =
[ (

a11 a12
a21 a22

) (
b11 b12
b21 b22

) ]†
=

[ (
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)]†

=
(

a∗
11b

∗
11 + a∗

12b
∗
21 a∗

21b
∗
11 + a∗

22b
∗
21

a∗
11b

∗
12 + a∗

12b
∗
22 a∗

21b
∗
12 + a∗

22b
∗
22

)
:

The product of the adjoints in the opposite order is

B† A† =
[ (

b11 b12
b21 b22

) ]† [(
a11 a12
a21 a22

)]†
=

(
b∗
11 b∗

21
b∗
12 b∗

22

) (
a∗
11 a∗

21
a∗
12 a∗

22

)

=
(

a∗
11b

∗
11 + a∗

12b
∗
21 a∗

21b
∗
11 + a∗

22b
∗
21

a∗
11b

∗
12 + a∗

12b
∗
22 a∗

21b
∗
12 + a∗

22b
∗
22

)
:

This is, in fact, the same as the first expansion, therefore
(
A B

)† = B† A† :

11



12. (a) Show that the adjoint of a non-singular unitary operator is equal to its inverse.

(b) Show that the product of unitary operators is unitary.

(c) Use operator algebra to show that if A and B are unitary,
(
A B

)† = B† A† .

This problem is intended to provide the opportunity to use operator algebra. All three parts are
intended to be completed without the use of an explicit matrix. You can operate on both sides of
an equation with the same operator if you operate from the same side. Operation must be from
the left on both sides or from the right on both sides because operators do not generally commute.
Operator algebra allows insertion of the operator I in any circumstance that is convenient.

Part (a) is an application of the definitions of unitary and inverse relations, AA† = I, and
AA−1 = I , for instance. To show that the product of any two unitary operators is unitary, start
with the product of two arbitrary unitary operators, say A B = C . Operate on both sides with

appropriate operators to show that C C† = I . Remember that you have
(
A B

)†
= B†A† from

problem 11. Part (c) is a more elegant determination of this fact for unitary operators. Start
with AA† = I and insert the identity between the two operators. It is likely B B† will be a
convenient form for this problem. You will likely need the result of part (b) to complete part (c).

(a) If A is unitary, A A† = I and A A−1 = I for all non-singular operators, so

A A† = AA−1 because both are equal to I

A−1 AA† = A−1 AA−1 operate from the left with A−1

I A† = I A−1 because A−1 A = I

A† = A−1 which is the desired result.

(b) If A and B are unitary, then AA† = B B† = I . Consider their product

A B = C the product of two operators is an operator

AB B† = C B† operate from the right with B†

A I = A = C B† because B B† = I

AA† = C B† A† operate from the right with A†

I = C B†A† because AA† = I

I = C
(
AB

)† use of
(
A B

)† = B†A†

I = C C† definition of C

or C C† = I , and therefore, the product of unitary operators is unitary.
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(c) Given that A and B are unitary,

AA† = I definition of unitary

A I A† = I insertion of the identity

A B B†A† = I use of the form I = B B†

( AB ) B†A† = I associative property

(A B )† (AB ) B† A† = (AB )† I operation from the left with ( AB )†

I B† A† = (AB )† because (A B )† (A B ) = I from part (b)

B† A† =
(
A B

)†
or

(
AB

)†
= B† A† :

13. Show that the determinant of any two-dimensional unitary matrix has unit modulus.

This problem establishes a property of unitary matrices just as problem 4 established three prop-
erties of determinants. This problem is fairly short and straightforward if you use the three results
of problem 4 appropriately.

Show that U U† = I implies det
(
U U† )

= 1 . Then show that det
(
U U† )

= detU detU∗ .
Realize that detU detU∗ is the product of a complex number and its conjugate. Finally, remember
that the modulus of a complex number is the square root of the product of the number and its
complex conjugate.

For a unitary matrix,

U U
†

= I ⇒ det
(
U U

†
) = det I = 1 ;

so using previously developed results, we have

det
(
U U† )

= det U detU† from part (b) of problem 4

= det U detUT∗ = detU
(
detUT

)∗ from part (c) of problem 4

= det U detU∗ = 1 ; from part (a) of problem 4

The determinant is generally a complex scalar, so let detU = a + ib ⇒ detU∗ = a − ib

⇒ detU detU∗ = (a + ib)(a − ib) = a2 + b2 = 1 = | detU |2 ;

⇒ detU =
√

a2 + b2 = 1 , therefore the determinant of a unitary matrix is of unit modulus.

14. Given the matrix operator
(

1 1
−2 4

)
;

(a) show that | 2> =
(

1
1

)
;

13



(b) and that | 3> =
(

1
2

)
:

(c) Interpret these facts geometrically.

This problem is a numerical introduction to eigenvalues and eigenvectors and the eigen-
value/eigenvector equation. It also attempts to familiarize you with some popular notation.

The product of an operator and a vector is another vector, A | v > = |w > : For every
operator, there are products of the operator and special vectors such that the new vector is a
product of a scalar and the original vector, i.e.,

A | vi> = fii | vi> :

This eigenvalue/eigenvector equation actually describes a family of equations, thus subscripts are
commonly used. There are as many matching scalars and vectors as the dimension of the space.
The scalars are known as eigenvalues and the vectors are known as eigenvectors. It is popular
to place the eigenvalue between the | and > that indicate the ket to identify the corresponding
eigenvector. Thus, part (a) asks you to show that

(
1 1

−2 4

) (
1
1

)
= 2

(
1
1

)
;

which is simply a numerical statement of the eigenvalue/eigenvector equation. Consider “length”
and “direction” of the vectors for part (c).

(a)
(

1 1
−2 4

) (
1
1

)
=

(
1 + 1

−2 + 4

)
=

(
2
2

)
= 2

(
1
1

)
; so for the operator A =

(
1 1

−2 4

)
;

2 is an eigenvalue; and | 2> =
(

1
1

)
is the corresponding eigenvector:

(b)
(

1 1
−2 4

)(
1
2

)
=

(
1 + 2

−2 + 8

)
=

(
3
6

)
= 3

(
1
2

)
; so for the operator A =

(
1 1

−2 4

)
;

3 is an eigenvalue; and | 3> =
(

1
2

)
is the corresponding eigenvector:

In a 2 dimensional space, we expect exactly two eigenvalues and two eigenvectors.

(c) In part (a), the effect of the operation is a vector twice as long and in exactly the same direction
as the original vector. In part (b), the effect of the operation is a vector three times as long as the
original vector and in exactly the same direction. An operator acting on an eigenvector results in
changing the length of the vector without rotating it. The length of the eigenvector is changed by
a factor equal to its eigenvalue.

Postscript: Physicists use numerous other methods of denoting eigenvectors other than by placing
the eigenvalue between the | and > that indicate the eigenvector or eigenket. For instance, | v1>
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or | 1> might identify the first eigenvector and | v2> or | 2> might denote the second eigenvector.
Quantum numbers are often placed between the | and > that indicate the eigenket.

Also, be aware that the eigenvalue/eigenvector equation always denotes a family of equations.
Subscripts are not always used. There are as many eigenvalues and eigenvectors as the dimension
of the operator under consideration.

15. (a) Interpret the operation of
(

1 1
−2 4

)
on the vector

(
−1

1

)
geometrically.

(b) Show that the result of the operation of
(

1 1
−2 4

)
on the vector

(
−1

1

)
can be expressed

as a linear combination of the eigenvectors given in problem 14.

An operator operating on an eigenvector results in an elongation or contraction of the vector. An
operator operating on a vector that is not an eigenvector also includes some sort of rotation. There
is generally an elongation or contraction unless the operator is unitary, but if the vector is not an
eigenvector, there will always be something equivalent to a rotation.

Part (a) is intended that you recognize these facts. For instance, you should recognize that
(

1 1
−2 4

) (
−1

1

)
= a

(
−1

1

)
+ b

(
0
6

)
;

and interpret the result in a Cartesian coordinate system. Part (b) intends for you to solve
(

0
6

)
= a

(
1
1

)
+ b

(
1
2

)
:

(a)
(

1 1
−2 4

)(
−1

1

)
=

(
−1 + 1

2 + 4

)
=

(
0
6

)

which cannot be arranged into a scalar times the original vector. The new vector can be arranged
(

0
6

)
=

(
−6

6

)
+

(
6
0

)
= 6

(
−1

1

)
+

(
6
0

)

which is a scalar times the original vector plus another vector. Given Cartesian coordinates, the
first vector represents an elongation by a factor of six in the original direction, and the second
vector represents 6 steps in the x direction which is a clockwise rotation around the origin.

(b)
(

0
6

)
= a

(
1
1

)
+ b

(
1
2

)
⇒ 0 = a + b

6 = a + 2b
:

The top equation says a = −b ; and using this in the bottom equation yields b = 6 so a = −6 ;
and (

0
6

)
= −6

(
1
1

)
+ 6

(
1
2

)
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is a linear combination of
(

0
6

)
in terms of the eigenvectors of the operator.

Postscript: Operation on an eigenvector is analogous to an elongation or contraction without a
rotation. Rotation is included as part of any operation on a vector that is not an eigenvector.

The linearly independent eigenvectors of this operator constitute a basis in R2. We will have
frequent occasion to use the eigenvectors of an operator as a basis.

16. Find the eigenvalues and normalized eigenvectors of




1 1 2
0 2 0
0 1 3


.

The eigenvalue/eigenvector problem is one of the preeminent calculations in quantum mechanics.

Here is a roadmap to solve an eigenvalue/eigenvector problem.
1) Set det

(
A − fiI

)
= 0 : This is known as the characteristic equation.

2) Solve the characteristic equation. The solutions are the eigenvalues.
3) Use the eigenvalue/eigenvector equation to solve for the eigenvectors.
4) Normalize the eigenvectors.

There are some conventions associated with the eigenvalue/eigenvector problem. We will
work from the eigenvalue of least magnitude to the eigenvalue of greatest magnitude. The simulta-
neous equations that result from the eigenvalue/eigenvector equation are generally indeterminate.
In this circumstance, we choose the first non-zero element of the eigenket to be positive and real,
most often 1. This is a convention that is popular but not universal3.

det
(

A − fiI
)

= det







1 1 2
0 2 0
0 1 3


 −




fi 0 0
0 fi 0
0 0 fi





 = det




1 − fi 1 2
0 2 − fi 0
0 1 3 − fi




= (1 − fi)(2 − fi)(3 − fi) + 0 + 0 − 0 − 0 − 0 = (1 − fi)(2 − fi)(3 − fi)

is the characteristic polynomial. The characteristic equation is formed by setting the charac-
teristic polynomial equal to zero, or

(1 − fi)(2 − fi)(3 − fi) = 0

which has the solutions fii = 1; 2, and 3 . These are the eigenvalues. For the eigenvalue of least
magnitude, fi1 = 1 , the eigenvalue/eigenvector equation is




1 1 2
0 2 0
0 1 3







a
b
c


 = 1




a
b
c


 ⇒

a + b + 2c = a
2b = b
b + 3c = c

3 Shankar, Principles of Quantum Mechanics (Plenum Press, New York, 1994), 2nd ed., p. 34.
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which is three equations in three unknowns. The middle equation implies b = 0. Using this in
the bottom equation implies c = 0 also. Using both of these in the top equation yields a = a,
which has an infinite number of solutions. This system is indeterminate. Following the convention
of choosing the top element of the eigenket positive and real, we choose a = 1, so the eigenket is

| 1> =




1
0
0


 for the eigenvalue fi1 = 1:

This choice also has the advantage that the eigenvector is already normalized. For fi1 = 2 ,



1 1 2
0 2 0
0 1 3







a
b
c


 = 2




a
b
c


 ⇒

a + b + 2c = 2a
2b = 2b
b + 3c = 2c

The middle equation implies b is anything we want, and bottom equation indicates b = −c.
Substituting b = −c in the top equation yields a = c. We choose a = 1, which determines
c = 1 and b = −1, so the eigenket is

| 2> = A




1
−1
1


 with a normalization constant attached: Normalizing

(
1; −1; 1

)
A∗ A




1
−1
1


 =

∣∣ A
∣∣2 (

1+1+1
)

= 3
∣∣A

∣∣2 = 1 ⇒ A =
1√
3

⇒ | 2> =
1√
3




1
−1
1




for the eigenvalue fi2 = 2 . For the third eigenvalue



1 1 2
0 2 0
0 1 3







a
b
c


 = 3




a
b
c


 ⇒

a + b + 2c = 3a
2b = 3b
b + 3c = 3c

The middle equation implies b = 0. Then the bottom equation implies c = anything. We would

like a = 1 ; which we can have if c = 1 : The third eigenket is | 3> = A




1
0
1


 : Normalizing;

(
1; 0; 1

)
A∗ A




1
0
1


 =

∣∣A
∣∣2(

1 + 0 + 1
)

= 2
∣∣ A

∣∣2 = 1 ⇒ A =
1√
2

⇒ | 3> =
1√
2




1
0
1


 :

17. What are the eigenvalues and eigenvectors for Ly =




0 −i 0
i 0 −i
0 i 0


?

Use the procedures introduced in problem 16. The operator in this problem contains imaginary
elements but is about the same degree of difficulty. There is another key difference that we will
address in the postscript.
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det
(
Ly−fiI

)
= det




−fi −i 0
i −fi −i
0 i −fi


 = (−fi)3−(−fi)(i)(−i)−(−i)(i)(−fi) = −fi3+fi+fi = 0

⇒ fi3 − 2fi = 0 ⇒ fi(fi2 − 2) = fi(fi −
√

2 )(fi +
√

2 ) = 0 ⇒ fi = −
√

2 ; 0;
√

2

so −
√

2 ; 0, and
√

2 are the eigenvalues. Calculating the eigenvectors starting with the smallest
eigenvalue,




0 −i 0
i 0 −i
0 i 0







a
b
c


 =

(
−

√
2

)



a
b
c


 ⇒

−bi = −
√

2 a
ai − ci = −

√
2 b

bi = −
√

2 c

Adding the top and bottom equation, we get −
√

2 a −
√

2 c = 0 ⇒ a = −c . Using this in the

middle equation, we get ai + ai = −
√

2 b ⇒ −
2ai√

2
= b ⇒ b = −

√
2 ai : If we choose a = 1 ;

then b = −
√

2 i ; and c = −1 ; so the eigenket is

|−
√

2 > = A




1
−

√
2i

−1


 ⇒ <−

√
2 |−

√
2 > =

(
1;

√
2 i; −1

)
A∗A




1
−

√
2 i

−1


 =

∣∣ A
∣∣2(1+2+1

)

= 4
∣∣ A

∣∣2 = 1 ⇒ | −
√

2 > =
1
2




1
−

√
2 i

−1


 for the eigenvalue −

√
2 :

To find the eigenvector corresponding to the next smallest eigenvalue 0 ,



0 −i 0
i 0 −i
0 i 0







a
b
c


 = 0




a
b
c


 ⇒

−bi = 0
ai − ci = 0

bi = 0

The top and bottom equation say b = 0 , and the middle equation says a = c , so by convention,
a = 1 ⇒ c = 1 , and the eigenket is

| 0> = A




1
0
1


 ⇒ <0 | 0> =

(
1; 0; 1

)
A∗A




1
0
1


 =

∣∣ A
∣∣2(1 + 0 + 1

)
= 2

∣∣ A
∣∣2 = 1

⇒ | 0> =
1√
2




1
0
1


 for the eigenvalue 0 :

For the eigenvector corresponding to the largest eigenvalue,



0 −i 0
i 0 −i
0 i 0







a
b
c


 =

√
2




a
b
c


 ⇒

−bi =
√

2 a
ai − ci =

√
2 b

bi =
√

2 c
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Adding the top and bottom equation, we get
√

2 a +
√

2 c = 0 ⇒ a = −c . Using this in the
middle equation, we get

ai + ai =
√

2 b ⇒ 2ai√
2

= b ⇒ b =
√

2 ai :

If we choose a = 1 , then b =
√

2 i, and c = −1 , the eigenket is

|
√

2 > = A




1√
2 i

−1


 ⇒ <

√
2 |

√
2 > =

(
1; −

√
2 i; −1

)
A∗A




1√
2 i

−1


 =

∣∣ A
∣∣2(1 + 2 + 1

)

= 4
∣∣ A

∣∣2 = 1 ⇒ |
√

2 > =
1
2




1√
2i

−1


 for the eigenvalue

√
2 :

Postscript: Notice that Ly in this problem is Hermitian, and that operator A of problem 16 is
not Hermitian. Hermitian operators have two particularly desirable properties.

(1) The eigenvalues of Hermitian operators are real numbers, and

(2) the eigenvectors of Hermitian operators are orthogonal,

thus can be made orthonormal by the process of normalization. Property (1) is a necessity because
any physical observable, for instance mass, charge, energy, momentum, or position, is quantified
using a real number. Measurements in the real world require real numbers as outcomes. Property
(2) is valuable because orthonormality is a necessity for a quantum mechanical basis. Use the
procedures of problem 15 from part 1 to show that the eigenvectors of Ly are orthogonal, (or
orthonormal if you include the normalization constants), if you want. Hermitian operators are
central to quantum mechanical calculation because Hermitian operators represent all physically
observable quantities.

18. What are the eigenvalues and eigenvectors for D =




2 0 0
0 3 0
0 0 4


?

The operator D is a diagonal operator. All non-zero elements are on the principal diagonal
and all elements that are not on the principal diagonal are zero. Diagonal operators have some
valuable properties. This problem intends to expose you to these properties. Solve the eigen-
value/eigenvector equation in the traditional way. You will find that the eigenvalues are the
elements on the principal diagonal and the eigenvectors are the unit vectors that correspond to
the position of the eigenvalue. And, since they are unit vectors, the eigenvectors are orthonormal
unit vectors that do not require normalization.

det
(
D − fiI

)
= det







2 0 0
0 3 0
0 0 4


 −




fi 0 0
0 fi 0
0 0 fi
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=




2 − fi 0 0
0 3 − fi 0
0 0 4 − fi


 = (2 − fi)(3 − fi)(4 − fi) + 0 + 0 − 0 − 0 − 0 = (2 − fi)(3 − fi)(4 − fi)

⇒ (2 − fi)(3 − fi)(4 − fi) = 0

is the characteristic equation, so the eigenvalues are fii = 2; 3, and 4. The eigenvectors are




2 0 0
0 3 0
0 0 4







a
b
c


 = 2




a
b
c


 ⇒

2a = 2a
3b = 2b
4c = 2c

The middle and bottom equations tell us b = c = 0. We choose a = 1, so the eigenket is

| 2> =




1
0
0


 for the eigenvalue fi1 = 2 :




2 0 0
0 3 0
0 0 4







a
b
c


 = 3




a
b
c


 ⇒

2a = 3a
3b = 3b
4c = 3c

The top and bottom equations tell us a = c = 0 . We choose b = 1 , so the eigenket is

| 3> =




0
1
0


 for the eigenvalue fi2 = 3 :




2 0 0
0 3 0
0 0 4







a
b
c


 = 4




a
b
c


 ⇒

2a = 4a
3b = 4b
4c = 4c

The top and middle equations tell us a = b = 0 . We choose c = 1 , so the eigenket is

| 4> =




0
0
1


 for the eigenvalue fi3 = 4 :

Postscript: The eigenvalues and eigenvectors of a diagonal operator are found by inspection.
Also, orthonormality of the eigenvectors is inherent. For instance,




−3 0 0
0 1 0
0 0 5


 ⇒ | − 3> =




1
0
0


 ; | 1> =




0
1
0


 ; and | 5> =




0
0
1


 ;

without calculation. We would clearly prefer to work with diagonal operators if we had the
opportunity. In fact, all Hermitian operators can be transformed into diagonal operators using
a unitary transformation.
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19. Diagonalize Ly =




0 −i 0
i 0 −i
0 i 0


.

Unitary operators were introduced because they are central to the process of diagonalization.
All Hermitian operators can be transformed into diagonal operators. Having the eigenvalues as
the elements on the diagonal and the unit vectors as eigenvectors can be a significant convenience.
The process of diagonalization can be accomplished using a unitary transformation. For an
appropriate choice of U , the transformation

U†A U = A′

yields an operator A′ that is diagonal. The appropriate unitary operator is constructed from
the eigenvectors of the operator to be diagonalized. There is, however, more than one way to
arrange the eigenvectors to attain a unitary operator that will diagonalize the original operator.
The convention that we will generally use is to keep the eigenvectors in columns, and place them
in a matrix from left to right in the order of the vector corresponding to the lowest eigenvalue to
the vector corresponding to the highest eigenvalue. For instance, given that the eigenvectors of
Ly are

| −
√

2 > =
1
2




1
−

√
2 i

−1


 ; | 0> =

1√
2




1
0
1


 ; and |

√
2 > =

1
2




1√
2 i

−1


 ;

the unitary operator of interest is

U =




1=2 1=
√

2 1=2
−i

√
2 =2 0 i

√
2 =2

−1=2 1=
√

2 −1=2


 :

U =




1=2 1=
√

2 1=2
−i

√
2 =2 0 i

√
2 =2

−1=2 1=
√

2 −1=2


 ⇒ U† =




1=2 i
√

2 =2 −1=2
1=

√
2 0 1=

√
2

1=2 −i
√

2 =2 −1=2




⇒ U†AU =




1=2 i
√

2 =2 −1=2
1=

√
2 0 1=

√
2

1=2 −i
√

2 =2 −1=2







0 −i 0
i 0 −i
0 i 0







1=2 1=
√

2 1=2
−i

√
2 =2 0 i

√
2 =2

−1=2 1=
√

2 −1=2




=




1=2 i
√

2 =2 −1=2
1=

√
2 0 1=

√
2

1=2 −i
√

2 =2 −1=2







−
√

2 =2 0
√

2 =2
i 0 i√

2 =2 0 −
√

2 =2




=




−
√

2 =4 −
√

2 =2 −
√

2 =4 0
√

2 =4 −
√

2 =2 +
√

2 =4
−1=2 + 1=2 0 1=2 − 1=2

−
√

2 =4 +
√

2 =2 −
√

2 =4 0
√

2 =4 +
√

2 =2 +
√

2 =4


 =




−
√

2 0 0
0 0 0
0 0

√
2
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where the eigenvalues are on the principal diagonal in order of the smallest at the upper left to the
largest at the lower right. The eigenvectors of this transformed operator are now the unit vectors,
i.e.,

| −
√

2 > =




1
0
0


 ; | 0> =




0
1
0


 ; and |

√
2 > =




0
0
1


 :

A unitary transformation is a change of basis. It is another expression of the same operator
in terms of a different set of linearly independent vectors. In a sense, our unitary transformation
“rotates” the eigenvectors to align with the unit vectors. The transformed operator contains the
same information as the original operator.

Of particular note is that every Hermitian operator may be diagonalized by a unitary change
of basis, which is a result we will use, but will rely on other texts, such as Shankar4, to support.

Our convention for forming a unitary operator is to keep the eigenvectors in columns, and place
them in a matrix from left to right in the order of the eigenvectors that correspond to ascending
eigenvalues. This convention aids organization and provides eigenvalues on the main diagonal in
ascending order. There are other ways to form a unitary matrix that will diagonalize an operator.
We will demonstrate an option in chapter 2.

20. Show that the eigenvalues of a matrix are invariant under a unitary transformation.

The postulates of quantum mechanics indicate that the eigenvalues of any operator are the only
possible result of any measurement. Eigenvalues, therefore, are of preeminent importance to quan-
tum mechanical measurement. This problem is intended to amplify and further legitimize the
unitary transformation of problem 19. “Rotating” the eigenvectors to align with unit vectors does
not affect the eigenvalues.

If you can show that Ω′ = U†Ω U and Ω have the same characteristic equation, then you are
essentially done since the respective eigenvalues are the roots of identical characteristic equations.
Start by letting Ω′ = U†Ω U , a statement that says only that an operator subject to a unitary
transformation is another operator. Work to justify Ω′ − ! I = U†(Ω −! I) U . We will insert an
identity of the form I = U†U and use some of the operator algebra developed previously to attain
this intermediate result. Remember that a determinant is a scalar, and that scalars commute with
anything. Part (b) of problem 4 is pertinent. Identity operators also commute with anything.
Conclude that det

(
Ω′ − ! I

)
= det

(
Ω − ! I

)
and reiterate that respective eigenvalues are the

roots of identical characteristic equations.

Consider Ω′ = U†Ω U where U is unitary. The characteristic equation is formed by setting the
determinant det (Ω′ − ! I ) = det (U†Ω U − ! I) equal to zero. Consider first

Ω′ − ! I = U†Ω U − ! I = U†Ω U − ! I I

= U†Ω U − ! I U†U = U†Ω U − U†! I U = U†(
Ω − ! I

)
U :

4 Shankar, Principles of Quantum Mechanics (Plenum Press, New York, 1994), 2nd ed., p. 40.
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Since these matrices are equal, their determinants are equal. So

det
(
Ω′ − I !

)
= det

[
U†(

Ω − I !
)
U

]
= det

(
U†)

det
(
Ω − I !

)
det

(
U

)

= det
(
U†)

det
(
U

)
det

(
Ω − I !

)
= det

(
U†U

)
det

(
Ω − I !

)

= det
(
I

)
det

(
Ω − I !

)
=

(
1
)
det

(
Ω − I !

)
= det

(
Ω − I !

)

therefore det
(
U†Ω U − I !

)
= det

(
Ω − I !

)
:

Since the determinants of Ω − I ! and Ω′ − I ! = U†Ω U − I ! are equal, their characteristic
equations are identical, and consequently, the eigenvalues of the operators Ω and Ω′ = U†Ω U
are identical since the respective eigenvalues are the roots of identical characteristic equations.
Therefore, the eigenvalues of an operator are not changed by a unitary change of basis.

21. Consider the two operators A =




3 0 −1
0 3 0

−1 0 3


 and B =




0 0 −1
0 −3 0

−1 0 0


.

(a) Are they Hermitian?

(b) Do they commute?

(c) Find the eigenvalues and eigenvectors of A .

(d) Find U†AU where U is constructed from the eigenvectors of A . Is it diagonal and what are
its eigenvectors?

(e) Find U†B U using the same U constructed for part (d). Is it diagonal and what are its
eigenvectors?

This is a toy problem meant to introduce a concept. This problem illustrates feasible mathematical
mechanics to simultaneously diagonalize two matrix operators. Physics will likely never ask you
to do such a calculation. Quantum mechanics, however, demands that you grasp the underlying
concept. Simultaneous diagonalization of more than one operator is the mechanism that leads to a
complete set of commuting observables required to describe many realistic physical systems.

All physical observables are represented by Hermitian matrices. Thus, part (a) asks you to
check that A = A†; for instance. As stated in the last problem, every Hermitian operator can
be diagonalized by a unitary change of basis, therefore, both of these Hermitian matrices can be
diagonalized. When can they be simultaneously diagonalized? The answer is when they commute!
Two Hermitian operators that commute will both be diagonalized by the same unitary transfor-
mation. This means that they share a common eigenbasis. Given the appropriate rotation, the
eigenvalues do not change but both operators will have the same eigenvectors! The common eigen-
basis for Hermitian matrices will be unit vectors. Part (b) asks you to check that the commutator,
[ A; B ] = AB − B A = 0 . You will find that these two operators commute.

You need to solve the eigenvalue/eigenvector problem for one of the two operators. The eigen-
vectors of either operator are satisfactory to form an appropriate unitary matrix. We arbitrarily
choose to solve the eigenvalue/eigenvector problem for A in part (c) of this problem. The eigen-
values of A are 2, 3, and 4. Use the procedures of problem 20 to form your unitary matrix. You
will find that both U†AU and U†B U are diagonal operators in parts (d) and (e).
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(a) Both operators are Hermitian, because A = A† and B = B†.

(b) The commutator is

[
A; B

]
= AB − B A =




3 0 −1
0 3 0

−1 0 3







0 0 −1
0 −3 0

−1 0 0


 −




0 0 −1
0 −3 0

−1 0 0







3 0 −1
0 3 0

−1 0 3




=




0 + 0 + 1 0 + 0 + 0 −3 + 0 + 0
0 + 0 + 0 0 − 9 + 0 0 + 0 + 0
0 + 0 − 3 0 + 0 + 0 1 + 0 + 0


 −




0 + 0 + 1 0 + 0 + 0 0 + 0 − 3
0 + 0 + 0 0 − 9 + 0 0 + 0 + 0

−3 + 0 + 0 0 + 0 + 0 1 + 0 + 0




=




1 0 −3
0 −9 0

−3 0 1


 −




1 0 −3
0 −9 0

−3 0 1


 =




0 0 0
0 0 0
0 0 0


 = 0 · I ; or just 0 ;

therefore A and B commute. This means that there is a basis of common eigenvectors that
simultaneously diagonalize both A and B .

(c) The unitary transformation to this basis can be constructed from the eigenvectors of either
operator, so we arbitrarily pick A and find its eigenvalues and eigenvectors.

det
(
A − I fi

)
=




3 − fi 0 −1
0 3 − fi 0

−1 0 3 − fi


 = (3 − fi)3 + 0 + 0 − 0 − 0 − (3 − fi) = 0

⇒ 27 − 27fi + 9fi2 − fi3 − 3 + fi = 0 ⇒ fi3 − 9fi2 + 26fi − 24 = 0

⇒ (fi − 2)(fi − 3)(fi − 4) = 0 ⇒ fi = 2; 3; and 4 are the eigenvalues of A :

Next, find the eigenvectors.

fi = 2 ⇒




3 0 −1
0 3 0

−1 0 3







a
b
c


 = 2




a
b
c


 ⇒

3a − c = 2a
3b = 2b

−a + 3c = 2c
⇒

a = c
b = 0
a = c

Choose a = 1 ⇒ c = 1 , and b = 0 , so | 2> = A




1
0
1


 ; and <2 | 2> = 1 means that

(
1; 0; 1

)
A∗ A




1
0
1


 =

∣∣A
∣∣2(1 + 0 + 1) = 2

∣∣ A
∣∣2 = 1 ⇒ A =

1√
2

⇒ | 2> =
1√
2




1
0
1


 :

fi = 3 ⇒




3 0 −1
0 3 0

−1 0 3







a
b
c


 = 3




a
b
c


 ⇒

3a − c = 3a
3b = 3b

−a + 3c = 3c
⇒

c = 0
b = 1
a = 0

| 3> =




0
1
0


 which is a unit vector so is already normalized:
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fi = 4 ⇒




3 0 −1
0 3 0

−1 0 3







a
b
c


 = 4




a
b
c


 ⇒

3a − c = 4a
3b = 4b

−a + 3c = 4c
⇒

−c = a
b = 0

−a = c

Choose a = 1 ⇒ c = −1 , and b = 0 , so | 4> = A




1
0

−1


 ; and <4 | 4> = 1 means that

(
1; 0;−1)A∗ A




1
0

−1


 =

∣∣ A
∣∣2(1+0+1) = 2

∣∣ A
∣∣2 = 1 ⇒ A =

1√
2

⇒ | 4> =
1√
2




1
0

−1


 :

(d) Form U from the eigenvectors of A by placing them in a matrix from left to right in order of
ascending eigenvalue.

U =




1=
√

2 0 1=
√

2
0 1 0

1=
√

2 0 −1=
√

2


 ⇒ U† =




1=
√

2 0 1=
√

2
0 1 0

1=
√

2 0 −1=
√

2




⇒ U†AU =




1=
√

2 0 1=
√

2
0 1 0

1=
√

2 0 −1=
√

2







3 0 −1
0 3 0

−1 0 3







1=
√

2 0 1=
√

2
0 1 0

1=
√

2 0 −1=
√

2




=




1=
√

2 0 1=
√

2
0 1 0

1=
√

2 0 −1=
√

2







3=
√

2 − 1=
√

2 0 3=
√

2 + 1=
√

2
0 3 0

−1=
√

2 + 3=
√

2 0 −1=
√

2 − 3=
√

2




=




1=
√

2 0 1=
√

2
0 1 0

1=
√

2 0 −1=
√

2







2=
√

2 0 4=
√

2
0 3 0

2=
√

2 0 −4=
√

2




=




2=2 + 2=2 0 4=2 − 4=2
0 3 0

2=2 − 2=2 0 4=2 + 4=2


 =




2 0 0
0 3 0
0 0 4


 :

This operator is diagonal. The eigenvalues on the principal diagonal are as calculated in part (c),
but the eigenvectors are now

| 2> =




1
0
0


 ; | 3> =




0
1
0


 ; and | 4> =




0
0
1


 :

(e) Applying the same transformation to B ,

U†B U =




1=
√

2 0 1=
√

2
0 1 0

1=
√

2 0 −1=
√

2







0 0 −1
0 −3 0

−1 0 0







1=
√

2 0 1=
√

2
0 1 0

1=
√

2 0 −1=
√

2




=




1=
√

2 0 1=
√

2
0 1 0

1=
√

2 0 −1=
√

2







−1=
√

2 0 1=
√

2
0 −3 0

−1=
√

2 0 −1=
√

2
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=




−1=2 − 1=2 0 1=2 − 1=2
0 −3 0

−1=2 + 1=2 0 1=2 + 1=2


 =




−1 0 0
0 −3 0
0 0 1


 :

This is a diagonal matrix. The eigenvalues and corresponding eigenvectors are

| − 1> =




1
0
0


 ; | − 3> =




0
1
0


 ; and | 1> =




0
0
1


 :

Postscript: Notice that after the unitary transformations are completed the common eigenvectors
of both operators are the unit vectors.

Suppose that we did part (e) before part (d). Given that we solved the eigenvalue/eigenvector
problem for A in part (c) so have the eigenvalues, the diagonal form of A can be constructed by
inspection. Do you understand why?

The diagonal operator for B has eigenvalues on the principal diagonal but they are not in
ascending order. That is because the unitary matrix was formed from the eigenvectors of A . If the
unitary matrix was formed from the eigenvectors of B , the eigenvalues of B would be in ascending
order and the eigenvalues of the transformed A would appear in the order 3, 2, 4.

The key thing to take from this problem is that any two Hermitian operators that commute
have a common set of eigenvectors so can be simultaneously diagonalized.

22. Given that

D =




1 0 0
0 2 0
0 0 3


 and that the state function is the superposition |ˆ> = fl




0
1
0


 + °




0
0
1


 ;

what are the possible results of a measurement of D ?

This problem introduces substance that is the reason for the next two problems. It informally
introduces two of the postulates of quantum mechanics. The primary reason for this lengthy
mathematics preliminary is to make the postulates of quantum mechanics and the calculations
that follow from them accessible.

The eigenvalues and corresponding eigenvectors of D are

| 1> =




1
0
0


 ; | 2> =




0
1
0


 ; and | 3> =




0
0
1


 :

The first postulate of quantum mechanics indicates that any possible state vector is a linear
combination of the eigenvectors, i.e.,

|ˆ > = fi




1
0
0


 + fl




0
1
0


 + °




0
0
1


 ;
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where fi; fl, and ° are scalars. This type of linear combination is known as a superposition.
A state vector is a linear combination or superposition of the eigenvectors. The third postulate of
quantum mechanics indicates that the only possible results of a measurement are the eigenvalues
of the operator that represents the observable. In general, the possible results of a measurement of
D are 1, 2, and 3. The third postulate also indicates, however, that the state vector must contain
the eigenvector in order to measure the corresponding eigenvalue. The given state vector contains
only two of the three eigenvectors, so only two of the three eigenvalues are possible results of a
measurement.

Possible outcomes of a measurement are 2, the eigenvalue corresponding to the second eigenvector,
and 3, the eigenvalue corresponding to the third eigenvector. A measurement with a result of 1
is impossible, because the state vector does not contain the eigenvector that corresponds to the
eigenvalue 1.

Postscript: The condition that the state vector does not contain the first eigenvector is equivalent
to fi = 0 . We will examine the meaning of the coefficients fi; fl; and ° in chapter 2.

We have examined only operators that have the property that there is one eigenvector for

each eigenvalue to this point. Consider the operator A =




1 0 0
0 1 0
0 0 2


 : This has eigenvalues of

1, 1, and 2. An eigenvalue is repeated. The eigenvectors are

| 1> =




1
0
0


 ; | 1> =




0
1
0


 ; and | 2> =




0
0
1


 :

A is Hermitian so could represent a measurable quantity. Only 1 or 2 are possible outcomes of a
measurement of A because those are its only eigenvalues. But two eigenvectors are associated with
the eigenvalue 1. If the outcome of a measurement is 1, to which eigenvector does this correspond?
It is impossible to tell. This is an example of degeneracy. An operator that has an eigenvalue
corresponding to two or more eigenvectors is known as degenerate.

23. Is B =




1 0 1
0 2 0
1 0 1


 degenerate?

Solve the characteristic equation. If B has any repeated eigenvalues, then that eigenvalue will
correspond to more than one eigenvector and B is degenerate.

det
[
B − fi I

]
= det




1 − fi 0 1
0 2 − fi 0
1 0 1 − fi


 = (1 − fi)2(2 − fi) − (2 − fi)

= (1−2fi+fi2)(2−fi)−(2−fi) = (1−2fi+fi2−1)(2−fi) = (−2fi+fi2)(2−fi) ⇒ −fi (2−fi)2 = 0
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(because (−2fi +fi2) = −fi (2−fi) ) , is the characteristic equation. The eigenvalues are 0, 2, and
2. The eigenvalue 2 corresponds to more than one eigenstate, so the operator B is degenerate.

Postscript: Notice that we have referred to an eigenvector as an eigenstate. The two terms are
used interchangeably. Since the superposition of eigenvectors is known as the “state vector,” the
term eigenstate frequently preferred within the realm of physics.

24. Simultaneously diagonalize A =




1 0 1
0 2 0
1 0 1


 and B =




0 1 0
1 0 1
0 1 0


 :

The procedures to this problem parallel problem 22 except that operator A is degenerate. Both
operators are Hermitian. The next question is do they commute? Check to see if these operators
commute and they will: : :because this is a non-problem if they do not commute. Operators that
do not commute do not have a common eigenbasis so cannot be diagonalized simultaneously. Solve
the eigenvalue/eigenvector problem for operator B . The choice was arbitrary in problem 22. It is
not arbitrary in this problem because A is degenerate. Solve the eigenvalue/eigenvector problem
for B because it is the non-degenerate operator. Procedures for forming the unitary matrix and
doing the unitary transformations are the same as problem 22.

[
A; B

]
=




1 0 1
0 2 0
1 0 1







0 1 0
1 0 1
0 1 0


 −




0 1 0
1 0 1
0 1 0







1 0 1
0 2 0
1 0 1




=




0 2 0
2 0 2
0 2 0


 −




0 2 0
2 0 2
0 2 0


 =




0 0 0
0 0 0
0 0 0


 :

These operators commute so they can be simultaneously diagonalized. A is degenerate from
problem 23, so solve the eigenvalue/eigenvector problem for B and hope that it is not degenerate.

det




−fi 1 0
1 −fi 1
0 1 −fi


 = (−fi)3 − (−fi) − (−fi) = −fi3 + 2fi ⇒ −fi3 + 2fi = 0

⇒ fi3 − 2fi = 0 ⇒ fi (fi2 − 2) = 0 ⇒ fi (fi +
√

2 )(fi −
√

2 ) = 0

so the eigenvalues are fi = −
√

2 ; 0;
√

2 . B is not degenerate. Therefore, A and B can be
diagonalized simultaneously by forming the unitary matrix from the eigenvectors of B . We need
to find the eigenvectors.




0 1 0
1 0 1
0 1 0







a
b
c


 =

(
−

√
2

)



a
b
c


 ⇒

b = −
√

2 a
a + c = −

√
2 b

b = −
√

2 c

The top and bottom equations tell us a = c . Using this in the middle equation,

a + a = −
√

2 b ⇒ b = −
2√
2

a ⇒ b = −
√

2 a ;
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so choosing a = 1 determines b and c, or | −
√

2 > = A




1
−

√
2

1


 : Normalizing,

(
1; −

√
2 ; 1

)
A∗ A




1
−

√
2

1


 = 4

∣∣ A
∣∣2 = 1 ⇒ A =

1
2

⇒ | −
√

2 > =
1
2




1
−

√
2

1


 :




0 1 0
1 0 1
0 1 0







a
b
c


 = 0




a
b
c


 ⇒

b = 0
a + c = 0

b = 0

⇒ b = 0 and a = −c , so choosing a = 1 ; | 0> = A




1
0

−1


 : Normalizing,

(
1; 0; −1

)
A∗ A




1
0

−1


 =

∣∣A
∣∣2(1+0+1

)
= 2

∣∣ A
∣∣2 = 1 ⇒ A =

1√
2

⇒ | 0> =
1√
2




1
0

−1


 :




0 1 0
1 0 1
0 1 0







a
b
c


 =

√
2




a
b
c


 ⇒

b =
√

2 a
a + c =

√
2 b

b =
√

2 c
:

The top and bottom equations tell us a = c. Using this in the middle equation,

a + a =
√

2 b ⇒ b =
2√
2

a ⇒ b =
√

2 a ;

so choosing a = 1 determines b and c , or |
√

2 > = A




1√
2

1


 : Normalizing,

(
1;

√
2 ; 1

)
A∗ A




1√
2

1


 =

∣∣ A
∣∣2(1+2+1

)
= 4

∣∣A
∣∣2 = 1 ⇒ A =

1
2

⇒ |
√

2 > =
1
2




1√
2

1


 :

Now that we have the eigenvectors, we can form the appropriate unitary operator,

U =




1=2 1=
√

2 1=2
−1=

√
2 0 1=

√
2

1=2 −1=
√

2 1=2


 ⇒ U† =




1=2 −1=
√

2 1=2
1=

√
2 0 −1=

√
2

1=2 1=
√

2 1=2




⇒ U†A U =




1=2 −1=
√

2 1=2
1=

√
2 0 −1=

√
2

1=2 1=
√

2 1=2







1 0 1
0 2 0
1 0 1







1=2 1=
√

2 1=2
−1=

√
2 0 1=

√
2

1=2 −1=
√

2 1=2




=




1=2 −1=
√

2 1=2
1=

√
2 0 −1=

√
2

1=2 1=
√

2 1=2







1=2 + 1=2 1=
√

2 − 1=
√

2 1=2 + 1=2
−2=

√
2 0 2=

√
2

1=2 + 1=2 1=
√

2 − 1=
√

2 1=2 + 1=2
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=




1=2 −1=
√

2 1=2
1=

√
2 0 −1=

√
2

1=2 1=
√

2 1=2







1 0 1
−2=

√
2 0 2=

√
2

1 0 1




=




1=2 + 2=2 + 1=2 0 1=2 − 2=2 + 1=2
1=

√
2 − 1=

√
2 0 1=

√
2 − 1=

√
2

1=2 − 2=2 + 1=2 0 1=2 + 2=2 + 1=2


 =




2 0 0
0 0 0
0 0 2


 :

We do not need to do the diagonalization for B because of our method of constructing the unitary
matrix. Place the eigenvalues on the diagonal in ascending order, and the eigenvectors are the unit
vectors by inspection, meaning

U†B U =




−
√

2 0 0
0 0 0
0 0

√
2


 :

Postscript: The eigenvectors for both A and B are the unit vectors where the eigenvalues
correspond to the unit eigenvector appropriate to that position. Look at what has developed. If
we measure that A has the eigenvalue 2 and B has the eigenvalue −

√
2 , we can ascertain the

eigenvector is




1
0
0


. If we measure that A has the eigenvalue 2 and B has the eigenvalue

√
2 ,

the eigenvector is




0
0
1


. We can now tell which eigenvector corresponds to the eigenvalue of 2

for A by measuring both A and B . We have removed the degeneracy, however, we must specify
two eigenvalues to identify one eigenstate. That is one of the consequence of degeneracy.

The concept is much more important than the mathematical mechanics. This is a toy problem
intended for illustration and exercise. Physical systems are commonly degenerate. The process
used to remove the degeneracy in problem 24 is the same process used to remove degeneracy in
realistic physical systems. We have developed what is known as a complete set of commuting
observables for the operators of the last problem.

A complete set of commuting observables is used to remove a degeneracy. The first step in
developing a complete set of commuting observables is to find a non-degenerate operator with
which the degenerate operator commutes. The eigenvectors of the non-degenerate operator can
be used to form a unitary matrix for unitary transformations that will simultaneously diagonalize
both operators.

In the instance that A and B are both degenerate, it is necessary to find an operator C
with which both A and B commute to develop a complete set of commuting observables. In this
circumstance, three eigenvalues would be required to specify one eigenstate.

It is not a mathematical necessity to use the eigenvectors of the non-degenerate operator to
form the unitary matrix, though it is a practical necessity. The indeterminacy in the eigenvec-
tor/eigenvalue problem of the degenerate operator make it difficult to attain a unitary matrix that
leads to transformations that diagonalize operators other than itself.

30



25. Show that for any Hermitian operator Ω ,

detΩ = the product of the eigenvalues of Ω =
n∏

i=1

!i :

Remember that any Hermitian operator can be diagonalized. That the determinant of a matrix is
the same as the product of the eigenvalues is a fact that is fairly accessible if the matrix is diagonal.

You need to show that the determinant of an operator is invariant under a unitary transfor-
mation. You already know that the eigenvalues are not changed by a unitary change of basis.
A unitary transformation diagonalizes Ω : So if you can show that the statement is true in the
diagonal basis, then you are essentially done. The fact that the determinant of a matrix is the
product of the eigenvalues is a simple consistency check for eigenvalue/eigenvector problems.

If Ω is Hermitian, there exists a unitary operator U such that U†Ω U is diagonal. That the
eigenvalues of U†Ω U and Ω are the same has been demonstrated previously. Further, the
determinants of U†Ω U and Ω are identical because

det U†Ω U = detU†detΩ detU = detU†detU det Ω = det
(
U†U

)
detΩ =

(
1
)
detΩ = det Ω :

Let Λ = U†Ω U . Λ is diagonal because U†Ω U is diagonal. To find the eigenvalues,

det
(
U†Ω U − I!

)
= det

(
Λ − !I

)
= 0

⇒ det




Λ11 − ! 0 0 · · · 0
0 Λ22 − ! 0 · · · 0
0 0 Λ33 − ! · · · 0
...

...
...

. . .
...

0 0 0 · · · Λnn − !




= 0 :

This has the characteristic equation
(
Λ11 − !

)(
Λ22 − !

)(
Λ33 −!

)
· · ·

(
Λnn −!

)
= 0 ; which has

n roots !i = Λii; i = 1; 2; : : : ; n. The elements on the principal diagonal of a diagonal matrix
are the eigenvalues. Therefore, the form of detΛ or detU† Ω U in the diagonal basis is

detΩ = det
(
U†Ω U

)
= det




!1 0 0 · · · 0
0 !2 0 · · · 0
0 0 !3 · · · 0
...

...
...

. . .
...

0 0 0 · · · !n




= (!1)(!2)(!3) · · · (!n) =
n∏

i=1

!i : Q:E:D:
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Supplementary Problems

26. Show that

A =




1 −i 0
i 1 0
0 0 1


 is linear:

Like problem 1, show that A commutes with scalars and that it distributes over vectors.

27. Use explicit calculations to show that

(a) det
(
AA

)
= detA detA , and

(b) det
(
AB

)
= det AdetB ,

for A =




2 i 1
−i 1 −i
1 i 2


 B =




1 1 2
1 2 2
2 2 3


 :

This is a numerical exercise intended to reinforce the fact that the determinant of the products
is the same as the product of the determinants. Simply form the appropriate determinants and
products for the right and left sides of the equations, and they will be the same.

28. Verify that the operator R =




1 0 0
0 0 −1
0 1 0


 is unitary.

This problem is practice in forming adjoints and should help solidify the meaning of a unitary
matrix. R represents a rotation of …=2 around the x-axis in three dimensions. Calculate R†

and RR† . You will find that RR† = I , so can conclude that this matrix is unitary.

29. Show that
(
A + B

)† = A† + B† in two dimensions.

That the adjoint of the sum is the same as the sum of the adjoints is not obvious but the fact
is used frequently. The proof in two dimensions is simplest. The result extends to arbitrary or
infinite dimension. Use

A =
(

a11 a12
a21 a22

)
and B =

(
b11 b12
b21 b22

)
:

Calculate the adjoint of the sum and the sum of the adjoints. They will be the same.
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30. (a) Show that any two diagonal matrices commute.

(b) Show that a diagonal matrix does not commute with an arbitrary matrix.

The fact that diagonal operators commute is both a useful tool and another reason to diagonalize
operators when the opportunity exists. Part (b) warns you that there is an end to this good fortune
because you cannot generally assume commutivity. For part (a), explicitly multiply two diagonal
matrices of arbitrary dimension. Your result should be another diagonal matrix. The elements of
the resulting diagonal matrix will be the product of two numbers. Is each of these products the
same if you reverse the order of the factors? Why? For part (b), explicitly multiply a matrix with
all non-zero elements by a diagonal matrix. You should show that the off-diagonal elements are
different when you change the order of matrix multiplication.

31. Show that U U† = I ⇒ U†U = I .

This problem is an application of the insertion of the identity. Remember that both U U† = I
and U−1 U = I . Assume that U is non-singular.

32. Given that Ω and Λ are Hermitian, show that

(a) Ω Λ is not Hermitian,

(b) ΩΛ + ΛΩ is Hermitian,

(c)
[
Ω; Λ

]
is anti-Hermitian, and

(d) i
[
Ω; Λ

]
is Hermitian.

This problem is designed to deepen your understanding of the properties of Hermitian operators.
It should also provide a vehicle for use of commutators and some previous results. All parts use
the result of problem 11. As an example of how you want to proceed, here is the solution to part

(d). Hermitian for part (d) means
(

i
[
Ω; Λ

] )†
= i

[
Ω; Λ

]
. To show that this is true,

(
i
[
Ω; Λ

] )†
= (i)∗ (

ΩΛ − Λ Ω
)†

= −i
((

ΩΛ
)† −

(
Λ Ω

)† )

= −i
(
Λ† Ω† − Ω† Λ† )

= −i
(
Λ Ω − Ω Λ

)

= −i
(

− Ω Λ + Λ Ω
)

= i
(
Ω Λ − Λ Ω

)

= i
[
Ω; Λ

]
; so it is Hermitian:

33. Consider the matrix Ω =




1 1 2
1 1 1
2 2 0


 :

(a) Is it Hermitian?
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(b) Find its eigenvalues and normalized eigenvectors.

(c) Verify that U†Ω U is diagonal, where U is the matrix of eigenvectors of Ω .

The eigenvalue/eigenvector problem is one of the preeminent problems of quantum mechanics, so
you need to understand it thoroughly. Part (a) is simply to recognize Hermiticity. Show that
Ω = Ω†. Solve the eigenvalue/eigenvector problem. You should find

| − 2> =
1√
6




1
1

−2


 ; | 0> =

1√
2




1
−1

0


 ; and | 4> =

1√
3




1
1
1


 :

Use the convention of keeping the column vectors in columns and placing them in a matrix from
left to right in the ascending order of the eigenvalues to form the unitary matrix. The unitary
matrix that diagonalizes Ω is

U =




1=
√

6 1=
√

2 1=
√

3
1=

√
6 −1=

√
2 1=

√
3

−2=
√

6 0 1=
√

3




using our convention. U†Ω U is diagonal, with eigenvalues from left to right in ascending order.

34. Consider the matrix

Ω =




0 4i 0
−4i 0 −3i

0 3i 0


 :

(a) Is it Hermitian?

(b) Find its eigenvalues and normalized eigenvectors.

(c) Verify that U†Ω U is diagonal, where U is the unitary matrix constructed from the eigen-
vectors of Ω .

The intent and procedures for this problem are essentially identical to the previous one, however,
this operator has elements that are imaginary. The operator Ω is Hermitian. The eigenvalues
are integral but the eigenvectors are slightly more challenging than the last problem. Using the
convention that the leading non-zero component should be 1, you should find

| − 5> =
4

5
√

2




1
i5=4
3=4


 ; | 0> =

3
5




1
0

−4=3


 ; and | 5> =

4
5
√

2




1
−i5=4

3=4


 :

The eigenvectors above lead to the unitary matrix

U =




4=5
√

2 3=5 4=5
√

2
i=

√
2 0 −i=

√
2

3=5
√

2 −4=5 3=5
√

2
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if formed using our convention. The transformation U†Ω U does diagonalize this matrix.

35. Consider the matrix

Ω =




0 2 0
2 4 −i
0 i 0


 :

(a) Is it Hermitian?

(b) Find its eigenvalues and normalized eigenvectors.

(c) Verify that U†Ω U is diagonal, where U is the unitary matrix constructed from the eigen-
vectors of Ω .

This problem has both real and imaginary elements. Again, this operator is Hermitian. You should
find

| − 1> =

√
2
3




1
−1=2

i=2


 ; | 0> =

1√
5




1
0

−2i


 ; and | 5> =

2√
30




1
5=2
i=2


 ;

for eigenvalues and eigenvectors. These lead to the unitary matrix

U =




2=
√

6 1=
√

5 2=
√

30
−1=

√
6 0 5=

√
30

i=
√

6 −2i=
√

5 i=
√
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if formed using our convention. We have done some arithmetic so that denominators are common
in each column. If you have the foresight to do this, you save having to find common denominators
in the following steps. Again, the transformation U†Ω U must diagonalize this matrix.

36. Consider the operator Ω =
(

cos µ sin µ
− sin µ cos µ

)
.

(a) Show that Ω is unitary.

(b) Show that Ω’s eigenvalues are eiµ and e−iµ .

(c) Find the corresponding eigenvectors, and show that they are orthogonal.

(d) Verify that U†Ω U is diagonal, where U is the unitary matrix constructed from the eigen-
vectors of Ω .

You should proceed forward undaunted even though this operator has components that are trigono-
metric functions. You will probably want to use the quadratic formula to solve the eigenvalue
problem. You may also want to recall Euler’s equation e±iµ = cos µ ± i sin µ .

37. Show that A =




0 1 0
1 0 1
0 1 0


 B =




0 −i 0
i 0 −i
0 i 0


 cannot be simultaneously diagonalized.
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If they do not commute, then they cannot be simultaneously diagonalized because there is no
common eigenbasis!

38. Consider the operators A =




1 0 1
0 0 0
1 0 1


 B =




2 1 1
1 0 −1
1 −1 2


 :

(a) Show that they are Hermitian.

(b) Show that they commute.

(c) Diagonalize A and B using a unitary matrix formed from the eigenvectors of B .

The operators are Hermitian. Part (b) means to check if
[
A; B

]
= 0 , and it does. Part (c)

means solve the eigenvalue/eigenvector problem for B and form U from the eigenvectors of that
operator so as to diagonalize both operators using the transformations U†AU and U†B U . You
want to form the unitary operator from the eigenvectors of B because A is degenerate.

The most important idea here is that when one operator is degenerate, simultaneous diagonal-
ization is essentially a necessary procedure. It is the procedure used in problems where degeneracy
occurs to attain a complete set of commuting operators. In fact, where two or more quantum
numbers are required to specify an eigenstate, you can be sure that simultaneous diagonalization
or an equivalent process has been accomplished.

If a degenerate operator is encountered, you can lift the degeneracy using simultaneous di-
agonalization by finding another non-degenerate operator with which it commutes, and using the
eigenvectors of the non-degenerate operator to form a unitary transformation that diagonalizes
both operators. If you have two operators which are both degenerate, you have to find a third op-
erator that commutes with both of these that is not degenerate. That is why it takes at least three
quantum numbers to specify an eigenstate for the hydrogen atom, two of the quantum numbers
specify eigenstates of degenerate operators. The concept is more important than the mathematical
mechanics, but you are not likely to comprehend the concept without mastering the math.

39. Consider the two operators A =




4 −i 0
i 4 0
0 0 3


 B =




1 −i 0
i 1 0
0 0 1


 :

(a) Show that they are Hermitian.

(b) Show that they commute.

(c) What are A and B in the eigenbasis in which both are diagonal?

Use the same procedures as the previous problem. These operators have both real and imaginary
elements which makes this problem more challenging than the last one. One of the operators is
degenerate. If the characteristic equation yields duplicate eigenvalues for the operator you choose,
then you want to solve the eigenvalue/eigenvector equation for the other operator and use the
eigenvectors of the non-degenerate operators to form your unitary matrix.
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40. Consider the operators A =




3 i 0
−i 3 0
0 0 −3


 B =




−1 2i 0
−2i −1 0

0 0 2


. What are A

and B in the eigenbasis in which both are diagonal?

This should look a lot like the previous two problems. These operators are Hermitian and they
commute. You may have perceived that these properties are important. If you have not, perceive
so now! Physical quantities are represented by Hermitian operators. Operators that commute have
a common eigenbasis so can be simultaneously diagonalized. Pick one of the two operators and
solve the eigenvalue/eigenvector problem. If it is not degenerate, you can form a unitary matrix
from its eigenvectors and do a unitary transformation for both operators.
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