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Preface to the First Edition

Publish and perish—Giordano Bruno

Given the number of books that already exist on the subject of quantum mechanics,
one would think that the public needs one more as much as it does, say, the latest
version of the Table of Integers. But this does not deter me (as it didn’t my predeces-
sors) from trying to circulate my own version of how it ought to be taught. The
approach to be presented here (to be described in a moment) was first tried on a
group of Harvard undergraduates in the summer of *76, once again in the summer
of 77, and more recently at Yale on undergraduates (*77-'78) and graduates (78~
*79) taking a year-long course on the subject. In all cases the results were very
satisfactory in the sense that the students seemed to have learned the subject well
and to have enjoyed the presentation. It is, in fact, their enthusiastic response and
encouragement that convinced me of the soundness of my ‘approach and impelled
me to write this book.

The basic idea is to develop the subject from its postulates, after addressing
-~ some indispensable preliminaries. Now, most people would agree that the best way
to teach any subject that has reached the point of development where it can be
 reduced to a few postulates is to start with the latter, for it is this approach that
gives students the fullest understanding of the foundations of the theory and how it
is to be used. But they would also argue that whereas this is all right in the case of
special relativity or mechanics, a typical student about to learn quantum mechanics
seldom has any familiarity with the mathematical language in which the postulates
“are stated. I agree with these people that this problem is real, but I differ in my belief
that it should and can be overcome. This book is an attempt at doing just this.

It begins with a rather lengthy chapter in which the relevant mathematics of
vector spaces developed from simple’ideas on vectors and matrices the student is
assumed to know. The level of rigor is what I think is needed to make a practicing
quantum mechanic out of the student. This chapter, which typically takes six to
eight lecture hours, is filled with examples from physics to keep students from getting
too fidgety while they wait for the “real physics.” Since the math introduced has to
“be taught sooner or later, I prefer sooner to later, for this way the students, when
they get to it, can give quantum theory their fullest attention without having to
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battle with the mathematical theorems at the same time. Also, by segregating the |
mathematical theorems from the physical postulates, any possible confusion as to !
which is which is nipped in the bud.

This chapter is followed by one on classical mechanics, where the Lagrangian -
and Hamiltonian formalisms are developed in some depth. It is for the instructor to -
decide how much of this to cover; the more students know of these matters, the
better they will understand the connection between classical and quantum mechanics.
Chapter 3 is devoted to a brief study of idealized experiments that betray the
inadequacy of classical mechanics and give a glimpse of quantum mechanics. |

Having trained and motivated the students I now give them the postulates of |
quantum mechanics of a single particle in one dimension. I use the word “postulate”

- here to mean “that which cannot be deduced from pure mathematical or logical |

reasoning, and given which one can formulate and solve quantum mechanical prob- |
lems and interpret the results.” This is not the sense in which the true axiomatist |
would use the word. For instance, where the true axiomatist would just postulate
that the dynamical variables are given by Hilbert space operators, I would add the |
operator identifications, i.e., specify the operators that represent coordinate and
momentum (from which others can be built). Likewise, I would not stop with the |
statement that there is a Hamiltonian operator that governs the time evolution
through the equation i#d|y)/dt=H|y); 1 would say the H is obtained from the
classical Hamiltonian by substituting for x and p the corresponding operators. While
the more general axioms have the virtue of surviving as we progress to systems of |
more degrees of freedom, with or without classical counterparts, students given just |
these will not know how to calculate anything such as the spectrum of the oscillator. .
Now one can, of course, try to “derive” these operator assignments, but to do so :
one would have to appeal to ideas of a postulatory nature themselves. (The same
goes for *‘deriving” the Schrédinger equation.) As we go along, these postulates are |
generalized to more degrees of freedom and it is for pedagogical reasons that these §
generalizations are postponed. Perhaps when students are finished with this book, |
they can free themselves from the specific operator assignments and think of quantum ;
mechanics as a general mathematical formalism obeying certain postulates (in the
strict sense of the term). ‘

The postulates in Chapter 4 are followed by a lengthy discussion of the same,
with many examples from fictitious Hilbert spaces of three dimensions. Nonetheless, i
students will find it hard. It is only as they go along and see these postulates used |
over and over again in the rest of the book, in the setting up of problems and the
interpretation of the results, that they will catch on to how the game is played. It is
hoped they will be able to do it on their own when they graduate. [ think that any gg!
attempt to soften this initial blow will be counterproductive in the long run. :

Chapter 5 deals with standard problems in one dimension. It is worth mentioning |
that the scattering off a step potential is treated using a wave packet approach. If

the subject seems too hard at this stage, the instructor may decide to return to it ¥

after Chapter 7 (oscillator), when students have gained more experience. But I think |
that sooner or later students must get acquainted with this treatment of scattering. 2
The classical limit is the subject of the next chapter. The harmonic oscillator is
discussed in detail in the next. It is the first realistic problem and the instructor may |
be eager to get to it as soon as possible. If the instructor wants, he or she can discuss
the classical limit after discussing the oscillator. ‘




Postulate 1

Classical Mechanics

I. The state of a particle at any
given time 1s specified by the
two variables x(¢) and p(¢), 1.e.,
as a point in a two-dimensional
phase space.

Quantum Mechanics

[. The state of the particle 1s
represented by a vector | w(¢))
in a Hilbert space.
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Postulate 2

II. Every dynamical variable w 1s
a function of x and p: w =

w(x, p).

II. The independent variables x and
p of classical mechanics are
represented by Hermitian op-
erators X and P with the fol-
lowing matrix elements in the
eigenbasis of X*:

(x| X | X' = xd(x — x)
(x|P|X'>=—ihd(x — x)

The operators corresponding to
dependent variables w(x, p) are
given Hermitian operators

Q(X,P)=wlkx—X,p— P)}
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Postulate 3

II1. If the particle is in a state given
by x and p, the measurement!
of the variable w will yield a
value w(x, p). The state will

remain unaffected.

[11. If the particle is in a state | p),
measurement! of the variable
(corresponding to) £2 will yield
one of the eigenvalues w with
probability P(w) cc | {w | p) 2
The state of the system will
change from |y) to |w) as a
result of the measurement.
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Postulate 4

IV. The state variables change with
time according to Hamilton’s

equations:
v 07
=3
. o7
P= 0x

IV. The state vector |w(z)> obeys
the Schrodinger equation

d
i | 9(0)> = H | p(0)>

where H(X, P) = F(x — X,
p — P) 1s the quantum Hamil-

tonian operator and 7 is the

Hamiltonian for the corre-

sponding classical problem.
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