Lecture 13

Equations

Finish simple harmonic oscillator Start angular momentum

Pictures
 Time dependence of superposition states Spherical harmonics

(ii) We see that, for large n, although the absolute value of the momentum is well-defined, its sign is not. This is why ΔP_{n} is large: for probability distributions with two maxima like that of figure 3, the root-mean-square deviation reflects the distance between the two peaks; it is no longer related to their widths.

2. Evolution of the particle's wave function

Each of the states $\left|\varphi_{n}\right\rangle$, with its wave function $\varphi_{n}(x)$, describes a stationary state, which leads to time-independent physical predictions. Time evolution appears only when the state vector is a linear combination of several kets $\left|\varphi_{n}\right\rangle$. We shall consider here a very simple case, for which at time $t=0$ the state vector $|\psi(0)\rangle$ is:

$$
\begin{equation*}
|\psi(0)\rangle=\frac{1}{\sqrt{2}}\left[\left|\varphi_{1}\right\rangle+\left|\varphi_{2}\right\rangle\right] \tag{14}
\end{equation*}
$$

a. WAVE FUNCTION AT THE INSTANT t

Apply formula (D-54) of chapter III; we immediately obtain :

$$
\begin{equation*}
|\psi(t)\rangle=\frac{1}{\sqrt{2}}\left[\mathrm{e}^{-i \frac{\pi^{2} \hbar}{2 m a^{2}} t}\left|\varphi_{1}\right\rangle+\mathrm{e}^{-2 i \frac{\pi^{2} \hbar}{m a^{2}} t}\left|\varphi_{2}\right\rangle\right] \tag{15}
\end{equation*}
$$

or, omitting a global phase factor of $|\psi(t)\rangle$:

$$
\begin{equation*}
|\psi(t)\rangle \propto \frac{1}{\sqrt{2}}\left[\left|\varphi_{1}\right\rangle+\mathrm{e}^{-i \omega_{21} t}\left|\varphi_{2}\right\rangle\right] \tag{16}
\end{equation*}
$$

with:

$$
\begin{equation*}
\omega_{21}=\frac{E_{2}-E_{1}}{\hbar}=\frac{3 \pi^{2} \hbar}{2 m a^{2}} \tag{17}
\end{equation*}
$$

b. EVOLUTION OF THE SHAPE OF THE WAVE PACKET

The shape of the wave packet is given by the probability density:

$$
\begin{equation*}
|\psi(x, t)|^{2}=\frac{1}{2} \varphi_{1}^{2}(x)+\frac{1}{2} \varphi_{2}^{2}(x)+\varphi_{1}(x) \varphi_{2}(x) \cos \omega_{21} t \tag{18}
\end{equation*}
$$

We see that the time variation of the probability density is due to the interference term in $\varphi_{1} \varphi_{2}$. Only one Bohr frequency appears, $\nu_{21}=\left(E_{2}-E_{1}\right) / h$, since the initial state (14) is composed only of the two states $\left|\varphi_{1}\right\rangle$ and $\left|\varphi_{2}\right\rangle$. The curves corresponding to the variation of the functions $\varphi_{1}^{2}, \varphi_{2}^{2}$ and $\varphi_{1} \varphi_{2}$ are traced in figures $4-a, b$ and c.

FIGURE 4
Graphical representation of the functions φ_{1}^{2} (the probability density of the particle in the ground state), φ_{2}^{2} (the probability density of the particle in the first excited state) and $\varphi_{1} \varphi_{2}$ (the cross term responsible for the evolution of the shape of the wave packet).

Using these figures and relation (18), it is not difficult to represent graphically the variation in time of the shape of the wave packet ($c f$. fig. 5): we see that the wave packet oscillates between the two walls of the well.

figure 5
Periodic motion of a wave packet obtained by superposing the ground state and the first excited state of a particle in an infinite well. The frequency of the motion is the Bohr frequency $\omega_{21} / 2 \pi$.

$$
\begin{aligned}
&|\psi(0)\rangle=\frac{1}{\sqrt{2}}\left|E_{j}\right\rangle+\frac{1}{\sqrt{2}}\left|E_{\mu}\right\rangle \\
&=\frac{1}{\sqrt{2}}|j\rangle+\frac{1}{\sqrt{2}}|\mu\rangle \\
&|\psi(t)\rangle=\frac{1}{\sqrt{2}}|j\rangle e^{-i E_{j} t / \hbar}+\frac{1}{\sqrt{2}}|k\rangle e^{-i E_{k} t / \hbar} \\
&=\frac{1}{\sqrt{2}}|j\rangle e^{-i \omega_{j} t}+\frac{1}{\sqrt{2}}|\mu\rangle e^{-i \omega_{k} t} \\
& \psi(x, t)=\frac{1}{\sqrt{2}} \psi_{i}(x) e^{-i \omega_{j} t}+\frac{1}{\sqrt{2}} \psi_{\mu}(x) e^{-i \omega_{1 K} t} \\
& P(x, t)=|\psi(x, t)|^{2}= \\
&\left(\frac{1}{\sqrt{2}} \psi_{j}^{*}(x) e^{+i \omega_{1} t}+\frac{1}{\sqrt{2}} \psi_{k}^{x}(x) e^{+i \omega_{L} t}\right) \\
&\left(\frac{1}{\sqrt{2}} \psi_{j}(x) e^{-i \omega_{j} t}+\frac{1}{\sqrt{2}} \psi_{\mu}(x) e^{-i \omega_{k} t}\right)
\end{aligned}
$$

FOUR TERMS (2 DIRECT TERMS)

$$
\begin{aligned}
& \frac{1}{\sqrt{2}} \psi_{i}^{*}(x) e^{+i \omega_{i} t} \frac{1}{\sqrt{2}} \psi_{j}(x) e^{-i \omega_{j} t}=\frac{1}{2}\left|\psi_{j}(x)\right|^{2} \\
& \frac{1}{\sqrt{2}} \psi_{k}^{x}(x) e^{+i \omega_{k} t} \frac{1}{\sqrt{2}} \psi_{k}(x) e^{-i \omega_{k} t}=\frac{1}{2}\left|\psi_{k}(x)\right|^{2}
\end{aligned}
$$

2 cross terms

$$
\begin{aligned}
& \left(\frac{1}{\sqrt{2}} \psi_{j}^{t}(x) e^{+i \omega_{j} t}\right)\left(\frac{1}{\sqrt{2}} \psi_{k}(x) e^{-i \omega_{k} t}\right) \\
& \left(\frac{1}{\sqrt{2}} \psi_{k}^{*}(x) e^{+i \operatorname{\omega os} t}\right)\left(\frac{1}{\sqrt{2}} \psi_{j}(x) e^{-i \omega_{j} t}\right) \\
& \frac{1}{2} \psi_{j}(x) \psi_{k}(x) \quad e^{-i\left(\omega_{k}-\omega_{j}\right) t} \\
& \frac{1}{2} \Psi_{j}(x) \psi_{k}(x) e^{+i\left(\omega_{K}-\omega_{j}\right) t} \\
& e^{i \theta}+e^{-i \theta}=2 \cos \theta \\
& \psi_{j}(x) \psi_{\mu}(x) \cos \left(\omega_{k}-\omega_{j}\right) t \\
& \psi_{j}(x) \psi_{k}(x) \cos \left(\omega_{k j} t\right) \\
& P(x, t)=\frac{1}{2}\left|\psi_{i}(x)\right|^{2}+\frac{1}{2}\left|\psi_{k}(x)\right|^{2}+\psi_{j}(x) \psi_{k}(x) \cos (\Omega t)
\end{aligned}
$$

1. Quantitative Aspects of the Harmonic Oscillator

Consider a particle moving in a simple harmonic oscillator well with the zero-time state vector

$$
\mid \psi(t=0)>=N[|n=3>+| n=4>] .
$$

(a) Calculate the normalization constant N . Write down the equation for the normalized zero-time state vector $\mid \psi(0)>$ in terms of the energy eigenkets $\mid n>$. Using your equation for $\mid \psi(0)>$ in terms of the energy eigenkets $\mid n>$ write down the equation for the corresponding normalized time-dependent state vector $\mid \psi(t)>$ in terms of the energy eigenkets $\mid n>$. Convert your equation for the time-dependent state vector $\mid \psi(t)>$ in terms of the energy eigenkets $\mid n>$ into the corresponding equation for the time-dependent position-space wavefunction $\psi(x, t)$ in terms of the position-space stationary states $\psi_{n}(x)$.
(b) If you measure E at $t=0$ what are the possibilities and what are the probabilities? Calculate the time-dependent expectation value $\langle E(t)>$. Calculate the time-dependent uncertainty $\Delta E(t)$. Explain the time-dependence, or lack thereof, of $<E(t)>$ and $\Delta E(t)$.
(c) If you measure x at $t=0$ what are the possibilities and what are the probabilities? Calculate the time-dependent expectation value $\langle x(t)\rangle$. Calculate the time-dependent uncertainty $\Delta x(t)$. Simulate the time evolution of this system using http://falstad.com. Do your expressions for $\langle x(t)\rangle$ and $\Delta x(t)$ agree with your simulation?
(d) If you measure p at $t=0$ what are the possibilities and what are the probabilities? Calculate the time-dependent expectation value $\langle p(t)\rangle$. Calculate the time-dependent uncertainty $\Delta p(t)$. Simulate the time evolution of this system using http://falstad.com. Do your expressions for $\langle p(t)\rangle$ and $\Delta p(t)$ agree with your simulation?
(e) Sketch the $t=0$ probability density distributions $P(E, 0), P(x, 0)$, and $P(p, 0)$. Add your calculated expectation values and uncertainties to your sketches. Do they agree?

Three Ways to Solve:

(1) Use Matrix Method
(2) Do the integrals in x-space
(3) Use Dirac Notation

Matrix Method

1) Simple harmonic Oscillator:

$$
\begin{aligned}
& |\psi(t=0)\rangle=N[|N=3\rangle+|N=4\rangle] \\
& \checkmark a) \\
& \begin{array}{l}
\langle\psi(0) \mid \psi(0)\rangle=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & 0 \ldots
\end{array}\right) N\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1 \\
0 \\
\vdots
\end{array}\right)=1 \\
\quad=|N|^{2}(1+1)=2|N|^{2}
\end{array} \\
& \Rightarrow \quad N=\frac{1}{-\sqrt{2}} \\
& -|\psi(t=0)\rangle=\frac{1}{\sqrt{2}}[|N=3\rangle+|N=4\rangle] \\
& E_{N}=(N+1 / 2) \hbar \omega \\
& \Rightarrow E_{N}=\frac{7}{2} \text { ow or } \\
& \frac{9}{2} \text { nu } \\
& -|\psi(t)\rangle=\frac{1}{\sqrt{2}}\left[e^{-7 i \omega t / 2}|3\rangle+e^{-9 i \omega t / 2}|4\rangle\right]
\end{aligned}
$$

$$
\begin{aligned}
- & \langle x \mid \Psi(t)\rangle=\Psi(x, t) \\
= & \frac{1}{\sqrt{2}}\left(\langle x \mid 3\rangle e^{-7 i \omega t / 2}+\langle x \mid 4\rangle e^{-q i \omega t / 2}\right) \\
= & \frac{1}{\sqrt{2}}\left(\Psi_{3}(x) e^{-7 i \omega t / 2}+\Psi_{4}(x) e^{-9 i \omega t / 2}\right)
\end{aligned}
$$

(b)r E at $t=0$, possibilities + probabilitics?
possibilitics: $E_{N}=\frac{7}{2} \hbar \omega$, $\frac{9}{2} \hbar \omega \rightarrow$ only possibie eigcivaloes (a) $t=0$.

Probabilitics:

$$
\begin{aligned}
& =\left|\frac{1}{\sqrt{2}}(1.1+0.1)\right|^{2}=\left|\frac{1}{\sqrt{2}}\right|^{2}=\frac{1}{2} \\
& P(9 / 2 \hbar \omega)=|\langle N=41 \psi(t=0)\rangle|^{2}=\left\lvert\,\left(\begin{array}{llll}
0 & 00010 \ldots)\left.\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right)\right|^{2}
\end{array}\right.\right. \\
& =\left|\frac{1}{\sqrt{2}}(0.1+1.1)\right|^{2}=\left|\frac{1}{\sqrt{2}}\right|=\frac{1}{2} \\
& -\langle E(t)\rangle=\langle\psi(t)| \psi(\psi(t)\rangle \\
& =\langle\psi(t)| \cdot\left(\begin{array}{cccccc}
0 / 2 & 0 & 0 & 0 & 0 & \cdots \\
0 & 3 / 2 & 0 & 0 & 0 & \cdots \\
0 & 0 & 5 / 2 & 0 & 0 & \cdots \\
0 & 0 & 0 & 7 / 2 & 0 \\
0 & 0 & 0 & 0 & 9 / 2 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right) \hbar_{w} \cdot \frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
0 \\
0 \\
e^{-i \cdot 7 \omega t / 2} \\
e^{-i \cdot 9 \omega t / 2} \\
\vdots
\end{array}\right) \\
& \begin{array}{l}
=\frac{\hbar_{\omega}}{2}\left(000 e^{7 i \omega t / 2} e^{9 i \omega / 2} \ldots . .\right)\left(\begin{array}{c}
0 \\
0 \\
0 \\
7 / 2 e^{-i / \omega t / 2} \\
9 / 2 e^{-i q \omega t / 2}
\end{array}\right) \\
=\frac{k_{\omega}}{2}[7 / 2+9 / 2]=4 \hbar \omega
\end{array}
\end{aligned}
$$

(b)cont $\Delta E(t)=\left[\langle\psi(t)| H^{2}|\psi(t)\rangle-\langle\psi(t)| \psi\left(|\psi(t)\rangle^{2}\right]^{1 / 2}\right.$

- ist calculate $\mathcal{H}^{2}:\langle\hat{E}\rangle=\left(a^{+} a+\frac{1}{2}\right) \hbar \omega\left(a^{+} a+\frac{1}{2}\right) \hbar \omega$

$$
\begin{aligned}
& =\left(a^{+} a a^{+} a+\frac{1}{2} a^{+} a+a^{+} a \frac{1}{2}+\frac{1}{4}\right) \hbar^{2} w^{2} \quad a^{+} a=N \\
& =\left(n^{2}+n+1 / 4\right) \hbar^{2} w^{2}
\end{aligned}
$$

$$
-\langle\psi(t)| H^{2}|\psi(t)\rangle=\frac{\hbar^{2} \omega^{2}}{2}\left[\langle 3| e^{7 i \omega t / 2}+\langle 4| e^{9 i \omega t / 2}\right]
$$

$$
\left(n^{2}+N+1 / 4\right) \cdot\left[|3\rangle e^{-7 \omega \omega t / 2}+|4\rangle e^{-9 i \omega t / 2}\right]
$$

$$
=\frac{\hbar^{2} \omega^{2}}{2}\left[\left\langle31 e^{7 i \omega t / 2}+\left\langle 41 e^{9 i \omega t / 2}\right] \cdot\left[\left(3^{2}+3+1 / 4\right) 13\right\rangle e^{-7 i \omega / 2}+\right.\right.
$$

$$
\left.\left(4^{2}+4+1 / 4\right)|4\rangle e^{-9 i \omega t / 2}\right]=\frac{\hbar^{2} \omega^{2}}{2}\left[\langle 3| e^{7 \omega t / 2}+\left\langle 41 e^{9 \omega \omega / 2}\right]\right.
$$

$$
\cdot\left[\frac{49}{4}|3\rangle e^{-7 i \omega t / 2}+\frac{81}{4}|4\rangle e^{-9 i m t / 2}\right]
$$

$$
=\frac{\hbar^{2} \omega^{2}}{2}\left[\left\langle 3 / /^{\prime}\right\rangle e^{\beta^{\prime}} \cdot \frac{49}{4}+\frac{81}{4}\left\langle 4 \not / \lambda^{\prime}\right\rangle e^{\beta^{d}}\right]=\frac{65}{4} \hbar^{2} \omega^{2}
$$

$$
\Delta E(t)=\left[\frac{65}{4} \hbar^{2} \omega^{2}-(4 \hbar \omega)^{2}\right]^{1 / 2}=\left[\frac{65}{4} \hbar^{2} \omega^{2}-\frac{64}{4} \hbar^{2} \omega^{2}\right]^{1 / 2}
$$

$$
=\sqrt{\frac{\hbar w}{2}}
$$

- Buth $\langle E(t)\rangle+\Delta E(t)$ should be fre of time dependence, becaose of the symmetrical Brapket relation for the nawiltena. t the moormall of all encory eigurecters.

IC)r The possible values for x (a) $t=0$ are only and all values of x between $-\infty+\infty$. This is due to the continuous Nature of position in the univase. The probabilities of the position values will be governed by the gaussian distrubutien, given by the
 precise value of x will cause the probability to Soto zero, as shown by the collation below, because are $\partial x \rightarrow 0$.
N. $\int_{a}^{a}|\varphi(x, t)|^{2} \partial x=0 \Rightarrow$ No possible probability except zero for a single position measurement.

$$
\begin{aligned}
& -\langle x(t)\rangle=\langle\psi(t)| X|\psi(t)\rangle \\
& =\langle\psi(t)|\left(\frac{\hbar}{2 m \omega}\right)^{1 / 2} 0\left(\begin{array}{ccccc}
0 & \sqrt{1} & 0 & 0 & 0 \\
1 \\
\sqrt{1} & 0 & \sqrt{2} & 0 & 0 \\
0 & \sqrt{2} & 0 & \sqrt{3} & 0 \\
0 & \cdots \\
0 & 0 & \sqrt{3} & 0 & \sqrt{4} \\
0 & 0 & 0 & \sqrt{4} & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
0 \\
0 \\
e^{-i 7 \omega t / 2} \\
e^{-i q \omega b / 2} \\
\vdots
\end{array}\right) \\
& =\langle\psi(t)| \frac{1}{\sqrt{2}}\left(\frac{\hbar}{2 m \omega}\right)^{1 / 2} \cdot\left(\begin{array}{c}
0 \\
0 \\
0 \\
\sqrt{4} e^{-i 7 \omega t / 2} \\
\sqrt{4} e^{-i 9 w t / 2}
\end{array}\right) \\
& =\frac{\pi}{\pi}\left(\frac{\hbar}{2 m \omega}\right)^{1 / 2} \cdot\left(\begin{array}{llll}
0 & 0 & e^{+i 7 \omega t / 2} & e^{+i q \omega t / 2} \cdot
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
0 \\
e^{-i q \omega t / 2} \\
e^{-i g \omega t / 2}
\end{array}\right) \\
& =\left[\frac{\hbar}{2 n \omega}\right]^{1 / 2}\left(e^{i 7 \omega t / 2} \cdot e^{-i 9 \omega t / 2}+e^{i 9 \omega t / 2} \cdot e^{-i 7 \omega t / 2}\right)=\left[\frac{\hbar}{2 m \omega}\right]^{1 / 2} \frac{\left(e^{i \omega t}+e^{-i \omega t}\right) \cdot 2}{2} \\
& =\left\lvert\,\left[\frac{2 \hbar}{m \omega}\right]^{1 / 2} \cos (w t)\right.
\end{aligned}
$$

|c) cont $\Delta x(t)=\left[\langle\psi(t)| x^{2}|\psi(t)\rangle-(\langle\psi(t)| x|\psi(t)\rangle)^{2}\right]^{1 / 2}$

$$
\begin{aligned}
& x^{2}=x \cdot x=\left(\frac{\hbar}{2 m \omega}\right)_{1}^{0}\left(\begin{array}{cccccc}
1 & 0 & \sqrt{2} & 0 & 0 & \cdots \\
0 & 3 & 0 & \sqrt{6} & 0 & \cdots \\
\sqrt{2} & 0 & 5 & 0 & \sqrt{12} & \cdots \\
0 & \sqrt{6} & 0 & 7 & 0 & \cdots \\
0 & 0 & \sqrt{12} & 0 & 9 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right) \\
& \langle\psi(t)| \chi^{2}|\psi(t)\rangle=\frac{1}{2} \cdot \frac{\hbar}{2 m \omega}\langle\psi(t)|\left(\begin{array}{ccccc}
1 & 0 & \sqrt{2} & 0 & 0 \\
0 & 3 & 0 & \sqrt{6} & 0 \\
\sqrt{2} & 0 & 5 & 0 & \sqrt{12} \\
0 & \sqrt{6} & 0 & 7 & 0 \\
0 & 0 & \sqrt{12} & 0 & 9
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
e^{-i 7 \omega t / 2} \\
e^{-i 9 \omega+/ 2}
\end{array}\right) \\
& =\frac{\hbar}{4 m \omega}\left(0000 e^{7 \omega t / 2} e^{9 i \omega t / 2} \cdots\right)\left(\begin{array}{c}
0 \\
\sqrt{6} e^{-7 i \omega t / 2} \\
\sqrt{12} e^{-9 \omega \omega / 2} \\
7 e^{-i \omega 7 t / 2} \\
9 e^{-9 i \omega t / 2}
\end{array}\right)=\begin{array}{l}
\frac{4 \hbar}{m \omega}
\end{array} \\
& \Delta x(t)=\left[\frac{4 \hbar}{m \omega}-\left(\left[\frac{2 \hbar}{m \omega}\right]^{1 / 2} \cos (\omega t)\right)^{2}\right]=\left[\left(\frac{2 \hbar}{m \omega}\left[2-\cos ^{2}(\omega t)\right]\right)^{1 / 2}\right.
\end{aligned}
$$

- acconding to http://Falstad com, my valucs of $\langle x(t)\rangle$ $t \Delta x(t)$ are consistant w/ the sinulation.

1d) similior to the position possibilities t probabilities, measurement of p (a) tine $t=0$ cove have an infinite number of possibilitics, in the interval $-\infty$ to ∞. (fop) FF we wore able to Dimpoirt one valuator p then the corresponding probability will goto zero for the reasons listed in part ic. This all bolls down to p being directly proportional to \dot{x} (ievelocit,y), and x 's continuous nature in the. cai spectrum, P will still have a gaossion probability countered at zero + falling off exponential as shown

$$
\begin{aligned}
& -\langle p(t)\rangle=\langle\psi(t)| P|\psi(t)\rangle \\
& =\frac{1}{2}\langle\psi(t)| i\left(\frac{m \omega \hbar}{2}\right)^{1 / 2} \cdot\left(\begin{array}{cccccc}
0 & i & 0 & 0 & 0 & \cdots \\
\sqrt{1} & 0 & i \sqrt{2} & 0 & 0 & \cdots \\
0 & \sqrt{2} & 0 & i \sqrt{3} & 0 & \cdots \\
0 & 0 & \sqrt{3} & 0 & i \sqrt{4} & \cdots \\
0 & 0 & 0 & \sqrt{4} & 0 & \cdots \\
\vdots & \vdots & \vdots & & \vdots
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
e^{-7 i \omega t / 2} \\
e^{-9, \omega t / 2} \\
\vdots
\end{array}\right) \\
& \begin{array}{l}
=\frac{i}{2}\left(\frac{m \omega \hbar}{2}\right)^{1 / 2}\left(\varnothing \otimes \infty e^{7 i \omega t / 2} e^{9 i \omega t / 2}\right)\left(\begin{array}{l}
\theta \\
\theta \\
i \sqrt{5} e^{-i \omega t / 2} \\
2 i e^{-i \omega t / 2} \\
2 e^{-7 i \omega t / 2}
\end{array}\right)
\end{array} \\
& =\bar{F}\left(\frac{+m \omega \hbar}{2}\right)^{1 / 2} \cos (\omega t) \\
& -\Delta p(t)=\left[\langle\psi(t)| p^{2}|\psi(t)\rangle-(\langle\psi(t)| P|\psi(t)\rangle)^{2}\right]^{1 / 2}
\end{aligned}
$$

1d)cont

$$
\begin{aligned}
& \begin{array}{c}
P^{2}=P, P= \\
\left.i^{2}\binom{n \omega \hbar}{2} \quad \begin{array}{ccccc}
2 & i & 0 & 0 & 0 \\
1 & 0 & \sqrt{2} i & 0 & 0 \\
0 & \sqrt{2} & 0 & i \sqrt{3} & 0 \\
0 & \cdots \\
0 & 0 & \sqrt{3} & 0 & 2 i \\
0 & 0 & 0 & 2 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right)\left(\begin{array}{ccccc}
0 & i & 0 & 0 & 0 \\
1 & 0 & \sqrt{2 i} & 0 & 0 \\
0 & \sqrt{2} & 0 & \sqrt{3} i & 0 \\
0 & 0 & \sqrt{3} & 0 & 2 i \\
0 & 0 & 0 & 2 & 0
\end{array}\right)=\left(\begin{array}{ccccc}
i & 0 & -\sqrt{2} & 0 & 0 \\
0 & 3 i & 0 & -\sqrt{3} \sqrt{2} & 0 \\
\sqrt{2} & 0 & 5 i & 0 & -2 \sqrt{3} \\
0 & \sqrt{3} \sqrt{2} & 0 & 7 i & 0 \\
0 & 0 & 2 \sqrt{3} & 0 & 4 i
\end{array}\right)
\end{array} \\
& \begin{array}{l}
\left.-\langle\psi(t)| \rho^{2}|\psi(t)\rangle=\frac{1}{2} \cdot \frac{-m \omega \hbar}{2}\langle\psi(t)| \begin{array}{ccccc}
i & 0 & -\sqrt{2} & 0 & 0 \\
0 & 3 i & 0 & -\sqrt{3} \sqrt{2} & 0 \\
\sqrt{2} & 0 & 5 i & 0 & -2 \sqrt{3} \\
0 & \sqrt{3} \sqrt{2} & 0 & 7 i & 0 \\
0 & 0 & 2 \sqrt{3} & 0 & 4 i
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
0 \\
=\frac{-m \omega \hbar}{4}
\end{array}\right)\left(\phi e^{-7 i \omega t / 2} e^{9 i \omega t / 2} \left\lvert\, \begin{array}{c}
\sigma \\
e^{-7 i \omega t / 2} \\
e^{-9 \omega \omega t / 2}
\end{array}\right.\right) \\
\left.=\frac{-m \omega \hbar}{-\sqrt{3} \sqrt{2} e^{-i \omega t / 2}} \begin{array}{l}
-2 \sqrt{5} e^{-9 i \omega t / 2} \\
7 i e^{-7 i \omega t / 2} \\
4 i e^{-9 i \omega t / 2}
\end{array}\right)
\end{array} \\
& \Rightarrow \Delta p(t)=\left[-\frac{11}{4} i m \omega \hbar-\left(i\left(\frac{m \omega \hbar}{2}\right)^{1 / 2} \cos (\omega t)\right)^{2}\right]^{1 / 2} \\
& =\left[-\frac{11}{4} i n \omega \hbar+\frac{m \omega \hbar}{2} \cos ^{2}(\omega t)\right]^{1 / 2}=\frac{\left(\frac{m \omega \hbar}{2}\right)^{1 / 2}\left(\cos (\omega t)-\frac{11}{2} i\right)^{1 / 2}}{\sqrt{2 m \omega \hbar}\left(1+\cos ^{2} \omega t\right)^{1 / 2}}
\end{aligned}
$$

- After checking http://falstad.com, my expressions for $\Delta p(t) \quad\langle p(t)\rangle$ appcare to agece w/ the sinulations.
(e)
(I) $P(E, O)$

In[15]:= Plot[Evaluate[Conjugate[phi[p]] phi[p]], \{p, -5, 5\}]

Yes, they agree

Do the integrals

c.) The prssible locations for a partiale sme unlimitad. althoush you are

8 very unlibely to measuse a perticle for outside the potantisl well. the probilility is siven by $\int_{x_{1}}^{x_{2}} \Psi^{*}(x, 0) \Psi(x, 0) d x$.

$$
\Rightarrow \quad \zeta=\sqrt{\frac{m w}{\hbar} x}
$$

$$
\begin{aligned}
& \langle x(t)\rangle=\int_{-\infty}^{\infty} \psi^{*}(x, t) \times \psi(x, t) d x \\
& d z=\sqrt{m_{k}^{\omega}} d x \\
& =\left(\frac{\omega \infty}{\pi k}\right)^{\frac{1}{2}} \frac{1}{2} \int_{-\infty}^{\infty} \frac{x}{2^{3} \cdot 3!} H_{3}^{2}(\zeta) e^{-\zeta^{2}}+\frac{x}{2^{4} \cdot 4!} d H_{4}^{2}(\zeta) e^{-\zeta^{2}}+\left[e^{i\left(E_{2}-\xi_{4}\right) t}+e^{-i\left(E_{3}-E_{4}\right) t}\right] \times H_{3}(\zeta) H_{4}(\zeta) \frac{e^{-\zeta^{2}} d \zeta}{\sqrt{2^{3} 2^{4} 3!4!}} \\
& =\frac{1}{2 \sqrt{\pi}}\left[2 \int_{-\infty}^{\infty} x \cos (\omega t) H_{3}(\zeta) H_{4}(\zeta) \frac{e^{-\zeta^{2}}}{\sqrt{2^{3} 2^{4} 3!4!}} d \zeta\right]=6
\end{aligned}
$$

$$
\begin{aligned}
& \langle x(t)\rangle=\frac{1}{\sqrt{\pi} 2} \int_{-\infty}^{\infty} \frac{\vec{t}}{2^{3} \cdot 3!} H_{3}^{2}(\zeta) e^{-\zeta^{2}}+\frac{z}{2^{4} \cdot 4!} H_{4}^{2}(\zeta) e^{-\zeta^{2}}+\frac{\vec{\zeta} \cos (\omega t) H_{3}(\zeta)}{\sqrt{2^{3} \cdot 2^{4} \cdot 3!\cdot 4!}} H_{4}(\zeta) e^{-\zeta^{2}} d \zeta \\
& =\frac{1}{2 \sqrt{\pi}}\left[\int _ { - \infty } ^ { \infty } \sqrt { \frac { \hbar } { m \omega } } \left[\frac{\delta}{2^{3} \cdot 3!}\left(8^{2} \zeta^{6}-16 \cdot 12 \zeta^{4}+12^{2} \delta^{2}\right) e^{-\delta^{2}}+\frac{\delta}{2^{4} 4!}\left(16^{2} \delta^{8}-2 \cdot 16 \cdot 48 J^{6}+2 \cdot 16 \cdot 12 \delta^{4}+48^{2} J^{4}-2 \cdot 12 \cdot \cdot 9 z^{2}\right.\right.\right. \\
& \sqrt{\frac{\hbar}{m \omega}} \frac{1}{2 \sqrt{\pi}} \int_{-\infty}^{\infty} \cos (\omega t)\left[\frac{1}{\sqrt{2^{7} .314!}}\left(8.16 \xi^{8}-8.48 J^{6}-12.16 \delta^{5}+12.8 J^{4}+12.48 J^{5}-12.1 k J\right) e^{-J} d J\right] \\
& \text { - dd turns are } 0 \\
& =\frac{\cos (\omega t)}{\sqrt{2^{7} \cdot 3!\cdot 4!\cdot \pi}} \cdot \frac{1}{2} \cdot \sqrt{\frac{\hbar}{m \omega}}\left[\begin{array}{c}
8.105 \sqrt{\pi}+15 \cdot 48 \sqrt{\pi}+6 \cdot 12 \sqrt{\pi} \\
\sqrt{2 \hbar}
\end{array} \quad \sim \operatorname{cocy}\right. \\
& \sqrt{\frac{2 \hbar}{m w}} \Rightarrow \text { why dian't you un } a \text { and } a^{+} \text {? } \\
& 1 \uparrow \uparrow \\
& =\frac{816}{\sqrt{18432}} \sqrt{\frac{\hbar}{m \omega}} \cos (\omega t)=\frac{17}{2 \sqrt{2}} \sqrt{\frac{E}{m \omega}} \cos (\omega t) \\
& \text { party! } \\
& \left\langle x^{2}(t)\right\rangle=\frac{1}{2 \sqrt{\pi}} \sqrt{\frac{\hbar}{\operatorname{mon}}} \int_{-\infty}^{\infty} \frac{\delta^{2} e^{-\delta^{2}}}{2^{3} \cdot 3!} H_{3}^{2}(\delta)+\frac{\delta^{2} e^{-\delta^{2}}}{2^{4} 4!} H_{4}{ }^{2}(\zeta)+\frac{\delta^{2} e^{-\delta^{2}}}{\sqrt{2^{2} \cdot 3!\cdot 4!}} H_{3}(\zeta) H_{4}(\zeta) \hat{d} \hat{\delta} \\
& =\frac{1}{2 \sqrt{\pi}} \sqrt{\frac{\hbar}{m u n}}\left[\int_{-\infty}^{\infty} \frac{e^{-J^{2}}}{2^{3} \cdot 3!}\left(8^{2} J^{8}-16 \cdot 12 J^{6}+12^{2} \delta^{4}\right)+\frac{e^{-\delta^{2}}}{2^{4} \cdot 4!}\left(16^{2} J^{16}-2 \cdot 16 \cdot 48 J^{8}+2-16 \cdot 12 J^{6}+48^{2} J^{6}-2 \cdot 12 \cdot 48 J^{4}\right) d \xi\right. \\
& \left.+\int_{-\infty}^{\infty} \frac{\cos (\omega t)}{\sqrt{2^{7} \cdot 3!\cdot 4!}} e^{-\delta^{2}}\left(8.16 J^{d}-8.48 J^{J}-12.16 J^{6}+12.8 j^{5}+12.48 J^{4}-12.12 J^{2}\right) d j\right] \\
& \text { ode tums leos out }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\frac{2 \cdot 48^{2} \cdot 15}{11} \sqrt{6}-\frac{4 \cdot 12-48 \cdot 3}{8} \sqrt{1}\right)+\frac{\cos (\omega t)}{\sqrt{2^{2} \cdot 3!\cdot x^{2}}}\left(-2 \cdot 12 \cdot 16 \cdot \frac{15}{16} y+12 \cdot 48 \cdot 2 \cdot \frac{3}{8} \sqrt{\pi}-\frac{12^{2} \cdot 2}{4} \sqrt{7}\right)\right] \\
& =\frac{1}{2} \sqrt{\frac{\hbar}{m \omega}}\left(\frac{197}{16}+\cos (\omega t)(0)\right)=\frac{197}{32} \sqrt{\frac{\hbar}{m \omega}}
\end{aligned}
$$

$\Delta x(t)=\sqrt{\frac{197}{32} \sqrt{\frac{\hbar}{m \omega}}-\frac{289}{8} \cdot \frac{\hbar}{m \omega} \cos ^{2}(\omega t)} \quad$ Both seem to match falstad-com.
$\sqrt{\frac{2 \hbar}{m \omega}}\left(1+\sin ^{2} \omega t\right)^{1 / 2} \quad$ again laden apenatres are more
d) If you measure p at ats bine zero the value of p could be any where between $9-\infty$ and with probability $\int_{P_{1}}^{P_{1}} \hat{\psi}(p, 0) \hat{\varphi}(p, 0) d p$.

$$
\begin{aligned}
& \langle p(t)\rangle=\int_{-\infty}^{\infty} \psi^{*}(x, t)-i \hbar \frac{\partial}{\partial x} \psi(x, t) d x \\
& =\frac{-i \hbar}{2} \hbar \int_{-\infty}^{\infty} \underbrace{\varphi_{3}^{*}(x) \frac{\partial}{\partial x} \varphi_{3}(x)}_{\text {part one }}+\underbrace{\psi_{4}^{*}(x) \frac{\partial}{\partial x} \psi_{4}(x)}_{\text {put two }}+\underbrace{e^{i\left(\frac{\left.E_{4}-E_{3}\right) t}{\hbar} \psi_{4}^{*}(x) \frac{\partial}{\partial x} \psi_{3} \tau x\right)}+\underbrace{e^{-i \frac{\left.i E_{1}-E_{2}\right) t}{\hbar}} \psi_{2}^{*}(x) \frac{\partial}{\partial x} \psi_{4}(x)}_{\text {port four }} d x}_{\text {port then }} d x \\
& \begin{array}{l}
A=\frac{m \omega}{\hbar} \\
\text { suit one }=-\frac{i \hbar}{2} \int_{-\infty}^{\infty} \frac{A}{\sqrt{\pi}} \cdot \frac{1}{2^{3} 3!}\left[\left(8 A x^{3}-12 x\right) e^{-\frac{A x^{2}}{2}} \frac{\partial}{\partial x}\left(8 A x^{3}-12 x\right) e^{-\frac{A x^{2}}{2}}\right] \lambda_{x}
\end{array} \\
& =\frac{-i \hbar}{2^{4} 3!} \frac{A}{\sqrt{\pi}} \int_{-\infty}^{\infty}\left(8 A x^{3}-12 x\right) e^{-\frac{A x^{2}}{2}}\left[\left(24 A x^{2}-12\right) e^{-\frac{A x^{2}}{2}}-A x\left(8 A x^{3}-12 x\right) e^{-\frac{A x^{2}}{2}}\right] d x \\
& \begin{array}{c}
=\frac{-i \hbar}{2^{4} 3!} \frac{A}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-A x^{2}}\left[8 \cdot 24 A^{2 / 5} x^{5}-8 \cdot 12 A x^{3}-8^{2} y^{3} x^{7}+8 \cdot 12 \cdot A x^{2}-12 \cdot 2 \cdot 4 x^{2}+1 y^{3} / x+12 \cdot 8 A^{2} x^{5}-12^{3} x x^{3}\right] d x \\
\text { ode tums drop out }
\end{array} \\
& =\frac{-i \hbar A^{2}}{\sqrt{\pi}} \int_{-\infty}^{\infty} x^{4} e \underbrace{-A x^{2}} d x=\frac{-i \hbar A^{2}}{A^{3 / 2}} \cdot \frac{3}{4}=\frac{i \hbar \cdot 3}{A^{1 / 2} \cdot 4}=0 \\
& \text { part too }=-\frac{i \hbar}{2} \int_{-\infty}^{\infty} \frac{A^{1 / 2}}{\sqrt{\pi}} \frac{1}{2^{4} 4!}\left[\left(16 A^{2} x^{4}-48 A x^{2}+12\right] e^{-\frac{\mu x^{2}}{2}} \frac{\partial}{\partial x}\left(16 A^{2} x^{4}-48 A x^{2}+12\right) e^{-\frac{A x^{2}}{2}} d x\right] \\
& =\frac{-i \hbar A^{1 / 2}}{2^{6} 4!\sqrt{\pi}} \int_{-\infty}^{\infty}\left(16 A^{2} x^{4}-48 A x^{2}+12\right) e^{-A x^{2}}\left[\left(64 A^{2} x^{3}-96 A x\right)-A x\left(16 A^{2} x^{4}-48 A x^{2}+12\right)\right] \lambda x \\
& =\frac{-i \hbar A^{1 / 2}}{8 \cdot 3 \sqrt{\pi}} \int_{-\infty}^{\infty} e^{-A x^{2}}\left[16.64 A^{4} x^{7}-16.96 A^{3 / 5} x^{5}-16^{2} A^{4} x^{9}+16 \cdot 48 A^{5} x^{7}+12.46 A^{5} x^{5} \cdots-\cdots=0\right. \\
& \text { port three }=\frac{-i \hbar}{2} e^{i \frac{\left(E_{y}-E_{2}\right) t}{\hbar}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2^{7} 3!4!}} \frac{A^{2}}{\sqrt{\pi}}\left[\left(16 A^{2} x^{4}-48 A x^{2}+12\right) e^{-\frac{A x^{2}}{2}} \frac{\partial}{\partial x}\left(8 A^{3} x^{3}-12 \frac{\beta}{2}_{h_{2}} x\right) e^{-\frac{A x^{2}}{2}}\right] d x \\
& =\frac{-i \hbar}{2-3 \sqrt{211}} \frac{A}{\sqrt{\pi}} e^{i \omega t} \int_{-\infty}^{\infty}\left(16 A^{2} x^{4}-48 A x^{2}+12\right) e^{-A x^{2}}\left[\begin{array}{c}
\left.\left(3.8 A x^{2}-12 \pi\right)-A x\left(8 A x^{3}-12 x\right)\right] \\
24 A x^{2}-12-8 A^{2} x^{4}+12 A x^{2}
\end{array} d x\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-i \hbar A}{\frac{13 / 2}{13} \cdot 3^{2} \cdot \sqrt{\pi}} e^{i \omega t} \sqrt{\pi}\left[\frac{-8 \cdot 16 \cdot A^{4} \cdot 2 \cdot 105}{32 \cdot A^{9 / 2}}+\frac{2 \cdot\left(16 \cdot 24 \cdot A^{3}+12 \cdot 16 A^{3}+8 \cdot 48 A^{3}\right) \cdot 15}{16 a^{2 / 2}}+\frac{2 \cdot 3\left(-12 \cdot 16 A^{2}-48 \cdot 24 A^{2}-12 \cdot 48 A^{2}-8 \cdot 12 A^{2}\right)}{8 a^{3 / 2}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{1}{2 A^{3 / 2}}\left(12.48 A+12.24 A+12^{2} A\right)+\frac{-12^{2}}{A^{1 / 2}}\right] \\
& =\frac{-i \hbar A^{1 / 2}}{2^{13 / 2} \cdot 3^{t}} e^{i \omega t}[-840+1800+-1312+504-144]=i \hbar A^{1 / 2} \cdot \frac{\sqrt{2}}{2} e^{i \omega t}=\frac{i \hbar A^{1 / 2}}{\sqrt{2}} e^{i \omega t}=i \sqrt{\frac{m \omega t}{2}} e^{i \omega t} \\
& \text { part four }=-\frac{i \hbar}{2} \frac{e^{-i \omega t} A^{1 / 2}}{\sqrt{2^{11} \cdot 3^{2}} \sqrt{\pi}} \int_{-\infty}^{\infty}\left(8 A^{3 / 2} x^{3}-12 A^{1 / 2} x\right) e \frac{-\frac{-A x^{2}}{x^{2}}}{\partial x}\left(16 A^{2} x^{4}-48 A x^{2}+12\right) e^{-\frac{A x^{2}}{2}} d x \\
& =-\frac{i \hbar A^{1 / 2}}{2^{12^{2} / 2} \cdot 3 \sqrt{\pi}} e^{-i t} \int_{-\infty}^{\infty}\left(8 A^{3 / 2} x^{3}-12 A^{1 / 2} x\right) e^{-A x^{2}}\left[\left(16.4 A^{2} x^{3}-48.2 A x\right)-A x\left(16 A^{2} x^{4}-48 A x^{2}+12\right)\right] d x \\
& =\frac{-i \hbar A^{1 / 2} e^{i+1}}{2^{17 / 2} \cdot 3 \sqrt{\pi}} \int_{-\infty}^{\infty} e^{-A x^{2}}\left[8 \cdot 16 \cdot 4 A^{7 / 2} x^{6}-8 \cdot 48 \cdot 2 A^{5 / 4} x^{4}-8 \cdot 16 \cdot A^{5 / 2} x^{8}+8 \cdot 48 \cdot A^{7 / 2} x^{6}-12 \cdot 8 \cdot A^{5 / 2} x^{4}-12 \cdot 16 \cdot 4 A^{5 / 2} x^{4}\right. \\
& \left.+12.48-2 A^{3 / 2} x^{2}+12.16 A^{76} x^{6}-12.48 A^{5 / 2} x^{4}+12^{2} A^{3 / 2} x^{2}\right] d x \\
& =\frac{-i \hbar A^{1 / 2} e^{-i \omega t}}{2^{13 / 2} 3 \sqrt{\pi}} \int_{-\infty}^{\infty} e^{-A x^{2}}\left[-128 A^{9 / 2} x^{8}+1088 A^{7 / 2} x^{6}-2208 A^{5 / 2} x^{4}+1296 A^{3 / 2} x^{2}\right] d x \\
& =\frac{-i \hbar A^{1 / 2} e^{-i \omega t}}{i^{3 / 2} \cdot 3 \cdot \sqrt{\pi}} 2 \pi[-420+1020-828+324]=-i \sqrt{\frac{m \omega t}{2}} e^{-i \omega t} \\
& \text { Again LADOER OP'S! } \\
& \langle p(t)\rangle=\sqrt{\frac{m \omega \hbar}{2}}\left[i e^{i \omega t}-i e^{-i \omega t}\right]=\sqrt{2 m \omega \hbar}\left[\frac{-e^{i \omega t}+e^{-i \omega t}}{2 i}\right]=-\sqrt{2 m \omega \hbar} \sin (\omega t)- \\
& \left\langle p^{2}(t)\right\rangle=\int_{-\infty}^{\infty}-\hbar^{2} \psi^{*}(x, t) \frac{\partial^{2}}{\partial x^{2}} \Psi(x, t) d x \\
& =\frac{-\hbar^{2}}{2} \int_{-\infty}^{\infty}\left(\Psi_{3}^{*}(x, t)+\psi_{4}^{*}(x, t)\right) \frac{\partial^{2}}{\partial x^{2}}\left(\Psi_{3}(x, t)+\Psi_{4}(x, t)\right) d x \\
& =-\frac{\hbar^{2}}{2} \int_{-\infty}^{\infty} \psi_{3}^{*}(x, t) \frac{\partial^{2}}{\partial x^{2}} \Psi_{3}(x, t)+\psi_{4}^{*}(x, t) \frac{\partial^{2}}{\partial x^{2}} \Psi(x, t)+\psi_{3}^{*}(x, t) \frac{\partial^{2}}{\partial x^{2}} \psi_{4}(x, t)+\psi_{4}^{*}(x, t) \frac{\partial^{2}}{\partial x^{2}} \psi_{3}(x, t) d x \\
& \int_{-\infty}^{\infty} \psi_{3}^{*}(x, t) \frac{\partial^{2}}{\partial x^{2}} \psi_{3}(x, t) d x=\int_{-\infty}^{\infty} \frac{A^{1 / 2}}{2^{3} 3!\sqrt{\pi}}\left(8 A^{3 / 2} x^{3}-12 A^{1 / 2} x\right) e^{-\frac{\Delta x^{2}}{2}} \frac{\partial^{2}}{\partial x^{2}}\left(8 A^{3 / 2} x^{3}-12 A^{1 / 2} x\right) e^{-\frac{\Delta x^{2}}{2}} d x \\
& =\frac{A^{1 / 2}}{2^{3} 3!\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-A x^{2}}\left[\left(8 A^{3 / 2} x^{3}-12 A^{1 / 2} x\right)\left[8 A^{7 / 2} x^{5}-68 A^{5 / 2} x^{3}+84 A^{3 / 2} x\right]\right] d x \\
& =\frac{A^{1 / 2}}{2^{3} 3!\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-A x^{2}}\left[64 A^{8} x^{8}-640 A^{4} x^{6}+1488 A^{3} x^{4}-1008 A^{2} x^{2}\right] d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{A^{1 / 2} 2 \cdot \sqrt{A}}{2^{3} 3!\sqrt{7}}\left[A^{1 / 2} 210-A^{1 / 2} 600+A^{1 / 2} 558-A^{1 / 2} 252\right]=A[-7 / 2] \\
& \int_{-\infty}^{\infty} \psi_{4}^{*}(x, t) \frac{\partial^{2}}{\partial x^{2}} \Psi_{4}(x, t)=\frac{A^{2 / 2}}{2 \cdot \frac{1}{-\infty}} \int_{\infty}^{\infty} \frac{1}{\sqrt{\pi}}\left(16 A^{2} x^{4}-48 A x^{2}+12\right) \frac{\partial^{2}}{\partial x^{2}}\left(16 A^{2} x^{4}-48 A x^{2}+12\right) d x \\
& =\frac{A^{1 / 2}}{2^{4} 4!\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-A^{6}}\left[256 A^{6} x^{10}+3840 A^{5} x^{8}+18624 A^{4} x^{6}-31680 A^{3} x^{4}+12096 A^{2} x^{2}-1296 A\right] d x \\
& \left.=\frac{A}{2^{3} 4!} \cdot[3780-12600+17460-11880+3024-648)\right]=A\left(\frac{-9}{2}\right) \\
& \int_{-\infty}^{\infty} \psi_{3}^{*}(x, t) \frac{\partial^{2}}{\partial x^{2}} \psi_{4}(x, t) d x=\frac{A^{1 / 2}}{\sqrt{2^{2} 3!4!\pi}} e^{-i \omega t} \int_{-\infty}^{\infty}\left(8 A^{3 / 2} x^{3}-12 A^{1 / 2} x\right) e^{-\frac{A x^{2}}{2}} \frac{\partial^{2}}{\partial x^{2}}\left(16 A^{2} x^{4}-48 A x^{2}+12\right) e^{-\frac{A x^{2}}{2}} d x \\
& =\frac{A^{1 / 2} e^{-i \omega t}}{\sqrt{2^{7} 3!4!\pi}} \int_{-\infty}^{\infty}\left(8 A^{3 / 2} x^{3}-12 A^{1 / 2} x\right)\left(16 A^{4} x^{6}+-192 A^{3} x^{4}+576 A^{2} x^{2}-108 A\right) d x=0
\end{aligned}
$$

likewise $\quad \int_{-\infty}^{\infty} \psi_{4}^{*}(x, t) \frac{\partial^{3}}{\partial x^{2}}\left(\psi_{3}(x, t)\right) d x=0$

$$
\begin{aligned}
& \left\langle p^{2}(t)\right\rangle=-\frac{\hbar^{2}}{2}[-8 A]=4 m \omega \hbar \quad A G A N L A D P E R \text { ODIS } \\
& A p(t)=\sqrt{\left\langle p^{2}(t)\right\rangle-\langle p(t)\rangle^{2}}=\sqrt{4 m \omega \hbar-2 m \omega \hbar \sin ^{2}(\omega t)}=\sqrt{2 m \omega \hbar\left(2-\sin ^{2}(\omega t)\right)}
\end{aligned}
$$

The expectation of p is 90° out of phase with $\langle x(t)\rangle$ exactly is the simulation on falstad.com shows. The uncertainty seems to match as well.

Dirac Notation

2. Quantitative aspects of SHO
(a)
(1) we have

$$
\begin{aligned}
\langle\psi(0) \mid \psi(0)\rangle & =N^{*} N(\langle 4|+\langle 3|)(|3\rangle+|4\rangle)=2 N^{2}=1 \\
& \Rightarrow N \text { can be } \frac{1}{\sqrt{2}}
\end{aligned}
$$

D) the normalized wave function at $t=0$ is

$$
\begin{equation*}
|\psi(t=0)\rangle=\frac{1}{\sqrt{2}}(|3\rangle+|4\rangle) \tag{1}
\end{equation*}
$$

(3) Assuring the ground state is $|0\rangle$, we have the time-dependent state vector

$$
\begin{aligned}
|\psi(t)\rangle \text { be: }|\psi(t)\rangle & =\frac{1}{\sqrt{2}}\left(|3\rangle e^{-i \xi_{5} t}+|4\rangle e^{-\frac{i E_{4} t}{\hbar}}\right), \text { where } \\
E_{3} & =\left(3+\frac{1}{2}\right) \hbar \omega=\frac{7}{2} \hbar \omega \\
E_{4} & =\left(4+\frac{1}{2}\right) \hbar \omega=\frac{9}{2} \hbar \omega
\end{aligned}
$$

(4) Using $\langle x \mid \psi(t)\rangle=\psi(x, t)$ we have

$$
\begin{aligned}
\psi(x, t) & =\langle x \mid \psi(t)\rangle=\frac{1}{\sqrt{2}}\left(\langle x \mid 3\rangle e^{-\frac{i E_{5} t}{\hbar}}+\langle x \mid 4\rangle e^{-\frac{\bar{E}_{4} t}{\hbar}}\right) \\
& =\frac{1}{\sqrt{2}}\left(\psi_{3}(x) e^{-i \frac{E_{5} t}{\hbar}}+\psi_{4}(x) e^{-i E_{4} t} \hbar\right.
\end{aligned}
$$

$\checkmark(b)$ (1) Since $|\psi(0)\rangle=\frac{1}{\sqrt{2}}(|3\rangle+|4\rangle)$ contains only eigenstates corresponding to E_{3} and E_{4}, the possible energy measurements are only:

$$
\begin{aligned}
& E_{3}=\frac{\eta}{2} \hbar \omega, \text { with probability }|\langle 3 \mid \psi(0)\rangle|^{2}=\frac{1}{2} \\
& E_{4}=\frac{9}{2} \hbar \omega, \ldots-\cdots \quad|\langle 4 \mid \psi(0)\rangle|^{2}=\frac{1}{2}
\end{aligned}
$$

(2) $\langle E(t)\rangle=\langle\psi| H|\psi\rangle=\langle\psi(t)|\left(\frac{1}{\sqrt{2}} E_{3}|3\rangle e^{-\frac{i E_{3} t}{\hbar}}+\frac{1}{\sqrt{2}} E_{4}|4\rangle e^{-\frac{i E_{4} t}{\hbar}}\right)$

$$
\begin{aligned}
& =\text { using } e^{i x} \cdot e^{-i\rangle}=1 \text { and }\langle n \mid m\rangle=\delta_{n m} \quad \frac{1}{2} E_{3}+\frac{1}{2} E_{4}=\frac{1}{2}\left(\frac{\pi}{2}+\frac{9}{2}\right) \hbar \omega \\
& =4 \hbar \omega \psi
\end{aligned}
$$

(3) $\quad \Delta E(t)=\left\langle H^{2}\right\rangle-\langle H\rangle^{2}=\langle\psi(t)|\left(\frac{1}{\sqrt{2}} E_{3}^{2}|B\rangle e^{-\frac{E_{3} t}{\hbar}}+\frac{1}{\sqrt{2}} E_{4}^{2} \| e^{-i \frac{E_{4} t}{\hbar}}|4\rangle\right)-16 \hbar^{2} \omega^{2}$

$$
\begin{gathered}
=\frac{1}{2} E_{3}^{2}+\frac{1}{2} E_{4}^{2}-16 \\
\therefore E(t)=\frac{1}{2} \hbar \omega,
\end{gathered}
$$

(4) Since the energy) is the eigenvalue of the stationary states of the system, we expect that $\langle E\rangle$ and ΔE will not A change with t. Our calculation in $0,(3)$ verify this.
(c)
(I) Since the ${ }_{\text {p energy }}$ is nut infinite (unless at $x \rightarrow \pm \infty$), the possible measurement of position can be $x \in[-\infty, \infty]$, with probability density be

$$
|\langle x \mid \psi(0)\rangle|^{2}=\frac{1}{2}\left(\psi_{3}(x)+\psi_{4}(x)\right)^{2} \text {, where }
$$

$\Psi_{n}(x)$ is the stationary energy eigenstate in position space
12) using $x=\left(\frac{\hbar}{2 m \omega}\right)^{\frac{1}{2}}\left(a+a^{+}\right)$, where a, a^{+}are the lowering raising operators, we have

$$
\begin{aligned}
\langle x(t)\rangle & \left.=\left(\frac{\hbar}{2 m \omega}\right)^{\frac{1}{2}}\left(\frac{d}{2}\right)\left(\frac{1}{2} e^{\frac{i t}{\hbar}\left(E_{3}-E_{4}\right)}+\right) e^{\frac{i t}{\hbar}\left(E_{4}-E_{3}\right)}\right) \\
& =\left(\frac{2 \hbar}{m \omega}\right)^{\frac{1}{2}} \cos \left(\frac{t}{\hbar}\left(E_{4}-E_{3}\right)\right)=\left(\frac{2 \hbar}{m \omega}\right)^{\frac{1}{2}} \cos (\omega t)
\end{aligned}
$$

(3) We have $\left\langle X^{2}\right\rangle=\frac{\hbar}{2 m \omega}\left\langle\psi_{(t)}\right|\left(a+a^{+}\right)^{2}|\psi(t)\rangle=\frac{\hbar}{2 m \omega}\left\langle\left(a+a^{+}\right) \psi(t) \mid\left(a+a^{+}\right) \psi(t)\right\rangle$

$$
\begin{aligned}
& =\frac{\hbar}{2 m \omega}\left|\frac{1}{\sqrt{2}} e^{-\frac{i \xi_{5} t}{\pi}}(\sqrt{3}|2\rangle+2|4\rangle)+\frac{1}{\nu}\right. \\
& =\frac{\hbar}{4 m \omega}(7+9)=\frac{4 \hbar}{m \omega}
\end{aligned}
$$

Thus, $\Delta x^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}=\frac{4 k}{m \omega}-\frac{2 k}{m \omega} \cos ^{2}(\omega t)$

$$
\begin{aligned}
& =\frac{2 k}{m \omega}\left(1+\sin ^{2} \omega t\right) \\
\Rightarrow \quad \Delta x & =\sqrt{\frac{2 \hbar}{m \omega}}\left(1+\sin ^{2} \omega t\right)^{\frac{1}{2}}
\end{aligned}
$$

(4) The simulations do agree with my calculation (bath $\langle x\rangle$, Δx are periodic, with the frequency of Δx is twice as frequency of $\langle x\rangle$.
(d)
(1) From the symmetric of x, P in the Hamiltonian of H we know that $\Psi_{n}(p)=\langle p \mid n\rangle$ is only a translation of $\psi_{n}(x)$ to $\psi_{n}\left(\frac{p}{m \omega}\right)$. Thus, from (C) we know that the possible measurement of momentum can be $p \in[-\infty, \infty]$, with the probability density be $|\langle p \mid \psi(0)\rangle|^{2}=\frac{1}{2}\left(\hat{\psi}_{3}\left(\frac{p}{m \omega}\right)+\hat{\psi}_{4}\left(\frac{p}{m^{\omega}}\right)\right)^{2}$, where
$\psi_{n}(x)$ is the eigenstates in position space
(2) using $P=i\left(\frac{m \omega k}{2}\right)^{\frac{1}{2}}(a \pm a)$, we have

$$
\begin{aligned}
& \langle P(t)\rangle=i\left(\frac{m \omega \hbar}{2}\right)^{\frac{1}{2}}\langle\psi(0)|\left(a^{+}-a\right)|\psi(0)\rangle \\
& =i\left(\frac{m \omega k}{2}\right)^{\frac{1}{2}}\left(e^{i\left(E_{4}-\varepsilon_{3} \frac{t}{k}\right.} \ldots e^{-i\left(E_{4}-E_{2} \frac{t}{k}\right.}\right) \\
& =2 i\left(\frac{a m \omega \hbar}{2}\right)^{\frac{1}{2}} i \sin (\omega t)=-2\left(\frac{m \omega \hbar}{2}\right)^{\frac{1}{2}} \sin (\omega t) \geqslant
\end{aligned}
$$

(3) for $\left\langle p^{2}\right\rangle$, Using $H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}$ we have

$$
\begin{aligned}
\langle H\rangle & =4 \hbar \omega=\frac{1}{2 m}\left\langle p^{2}\right\rangle+\frac{1}{2} m \omega^{2}\left\langle\dot{x}^{2}\right\rangle \\
& =\frac{1}{2 m}\left\langle p^{2}\right\rangle+\frac{1}{2} m \omega^{2} \frac{4 \hbar}{m \omega}=\frac{1}{2 m}\left\langle p^{2}\right\rangle+2 \hbar \omega \\
& \Rightarrow\left\langle p^{2}\right\rangle=2 m(4 \hbar \omega-2 \hbar \omega)=4 m \hbar \omega
\end{aligned}
$$

Thus, we have $\Delta P^{2}=\left\langle p^{2}\right\rangle-\langle P\rangle^{2}=4 m \hbar \omega--2 m \hbar \omega \sin ^{2} c \omega t$

$$
\begin{aligned}
& =2 m \hbar \omega\left(1+\cos ^{2} \omega t\right) \\
\Rightarrow \Delta P & =\sqrt{2 m \hbar \omega}(1+\cos 2 \omega t)^{\frac{1}{2}}
\end{aligned}
$$

(4) The simulation agrees with my expressions of $\langle p(t)\rangle$ and $\Delta p(t)$
(both $\langle P\rangle, \Delta P$ are periodic, with frequency $\omega(\Delta P)=2 \omega(\langle P\rangle)$.
There is a $\frac{\pi}{2}$ phase difference between $\langle P\rangle$ and $\langle x\rangle$, which is consistent to the sinwt and coset expressions.

