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Preface

In this course, we cover the necessary mathematical tools that underpin modern theoretical physics.

We examine topics in quantum mechanics (with which you have some familiarity from previous

courses) and apply the mathematical tools learnt in the IB Mathematics course (complex anal-

ysis, differential equations, matrix methods, special functions etc.) to topics like perturbation

theory, scattering theory, etc. A course outline is provided below. Items indicated by a * are non-

examinable material. They are there to illustrate the application of the course material to topics

that you will come across in the PartII/Part III Theoretical Physics options. While we have tried

to make the notes as self-contained as possible, you are encouraged to read the relevant sections

of the recommended texts listed below. Throughout the notes, there are “mathematical interlude”

sections reminding you of the the maths you are supposed to have mastered in the IB course. The

“worked examples” are used to illustrate the concepts and you are strongly encouraged to work

through every step, to ensure that you master these concepts and the mathematical techniques.

We are most grateful to Dr Guna Rajagopal for preparing the lecture notes of which these are an

updated version.

Course Outline

• Operator Methods in Quantum Mechanics (2 lectures): Mathematical foundations of

non-relativistic quantum mechanics; vector spaces; operator methods for discrete and contin-

uous eigenspectra; generalized form of the uncertainty principle; simple harmonic oscillator;

delta-function potential; introduction to second quantization.

• Angular Momentum (2 lectures): Eigenvalues/eigenvectors of the angular momentum

operators (orbital/spin); spherical harmonics and their applications; Pauli matrices and

spinors; addition of angular momenta.

• Approximation Methods for Bound States (2 lectures): Variational methods and their

application to problems of interest; perturbation theory (time-independent and time depen-

i



dent) including degenerate and non-degenerate cases; the JWKB method and its application

to barrier penetration and radioactive decay.

• Scattering Theory (2 lectures): Scattering amplitudes and differential cross-section; par-

tial wave analysis; the optical theorem; Green functions; weak scattering and the Born ap-

proximation; *relation between Born approximation and partial wave expansions; *beyond

the Born approximation.

• Identical Particles in Quantum Mechanics (2 lectures): Wave functions for non-

interacting systems; symmetry of many-particle wave functions; the Pauli exclusion principle;

fermions and bosons; exchange forces; the hydrogen molecule; scattering of identical parti-

cles; *second quantization method for many-particle systems; *pair correlation functions for

bosons and fermions;

• Density Matrices (2 lectures): Pure and mixed states; the density operator and its

properties; position and momentum representation of the density operator; applications in

statistical mechanics.

Problem Sets

The problem sets (integrated within the lecture notes) are a vital and integral part of the course.

The problems have been designed to reinforce key concepts and mathematical skills that you will

need to master if you are serious about doing theoretical physics. Many of them will involve signif-

icant algebraic manipulations and it is vital that you gain the ability to do these long calculations

without making careless mistakes! They come with helpful hints to guide you to their solution.

Problems that you may choose to skip on a first reading are indicated by †.

Books

There is no single book that covers all of material in this course to the conceptual level or mathe-

matical rigour required. Below are some books that come close. Liboff is at the right level for this

course and it is particularly strong on applications. Sakurai is more demanding mathematically

although he makes a lot of effort to explain the concepts clearly. This book is a recommended text

in many graduate schools. Reed and Simon show what is involved in a mathematically rigorous

treatment.

At about the level of the course: Liboff, Quantum Mechanics, 3rd Ed., Addison-Wesley.

At a more advanced level: Sakurai, Quantum Mechanics, 2nd Ed., Addison-Wesley;

Reed and Simon, Methods of Modern Mathematical Physics, Academic Press.
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Chapter 1

Operator Methods In Quantum

Mechanics

1.1 Introduction

The purpose of the first two lectures is twofold. First, to review the mathematical formalism of

elementary non-relativistic quantum mechanics, especially the terminology. The second purpose is

to present the basic tools of operator methods, commutation relations, shift operators, etc. and

apply them to familiar problems such as the harmonic oscillator. Before we get down to the operator

formalism, let’s remind ourselves of the fundamental postulates of quantum mechanics as covered

in earlier courses. They are:

• Postulate 1: The state of a quantum-mechanical system is completely specified by a function

Ψ(r, t) (which in general can be complex) that depends on the coordinates of the particles

(collectively denoted by r) and on the time. This function, called the wave function or the

state function, has the important property that Ψ∗(r, t)Ψ(r, t) dr is the probability that the

system will be found in the volume element dr, located at r, at the time t.

• Postulate 2: To every observable A in classical mechanics, there corresponds a linear Her-

mitian operator Â in quantum mechanics.

• Postulate 3: In any measurement of the observable A, the only values that can be obtained

are the eigenvalues {a} of the associated operator Â, which satisfy the eigenvalue equation

ÂΨa = aΨa

1
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where Ψa is the eigenfunction of Â corresponding to the eigenvalue a.

• Postulate 4: If a system is in a state described by a normalised wavefunction Ψ, and the

eigenfunctions {Ψa} of Â are also normalised, then the probability of obtaining the value a

in a measurement of the observable A is given by

P (a) =
∣∣∣∣
∫ ∞

−∞
Ψ∗

aΨ dr
∣∣∣∣
2

(Recall that a function Φ(r) such that
∫ ∞

−∞
Φ∗Φ dr = 1

is said to be normalised.)

• Postulate 5: As a result of a measurement of the observable A in which the value a is

obtained, the wave function of the system becomes the corresponding eigenfunction Ψa. (This

is sometimes called the collapse of the wave function.)

• Postulate 6: Between measurements, the wave function evolves in time according to the

time-dependent Schrödinger equation
∂Ψ
∂t

= − i

h̄
ĤΨ

where Ĥ is the Hamiltonian operator of the system.

The justification for the above postulates ultimately rests with experiment. Just as in geometry one

sets up axioms and then logically deduces the consequences, one does the same with the postulates

of QM. To date, there has been no contradiction between experimental results and the outcomes

predicted by applying the above postulates to a wide variety of systems.

We now explore the mathematical structure underpinning quantum mechanics.

1.1.1 Mathematical foundations

In the standard formulation of quantum theory, the state of a physical system is described by a

vector in a Hilbert space H over the complex numbers. The observables and dynamical variables

of the system are represented by linear operators which transform each state vector into another

(possibly the same) state vector. Throughout this course (unless stated otherwise) we will adopt

Dirac’s notation: thus a state vector is denoted by a ket |Ψ〉. This ket provides a complete de-

scription of the physical state. In the next section we will explore the mathematical properties of

the Hilbert space and learn why it plays such a central role in the mathematical formulation of

quantum mechanics.
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1.1.2 Hilbert space

A Hilbert space H,

H = {|a〉, |b〉, |c〉, . . .}, (1.1)

is a linear vector space over the field of complex number C i.e. it is an abstract set of elements

(called vectors) with the following properties

1. ∀ |a〉, |b〉 ∈ H we have

• |a〉 + |b〉 ∈ H (closure property)

• |a〉 + |b〉 = |b〉 + |a〉 (commutative law)

• (|a〉 + |b〉) + |c〉 = |a〉 + (|b〉) + |c〉) (associative law)

• ∃ a null vector, |null〉 ∈ H with the property

|a〉 + |null〉 = |a〉 (1.2)

• ∀ |a〉 ∈ H ∃ |− a〉 ∈ H such that

|a〉 + |− a〉 = |null〉 (1.3)

• ∀ α, β ∈ C

α(|a〉 + |b〉) = α|a〉 + α|b〉 (1.4)

(α + β)|a〉 = α|a〉 + β|a〉 (1.5)

(αβ)|a〉 = α(β|a〉) (1.6)

1|a〉 = |a〉 (1.7)

2. A scalar product is defined in H. It is denoted by (|a〉, |b〉) or 〈a|b〉, yielding a complex number.

The scalar product has the following properties

(|a〉, λ|b〉) = λ(|a〉, |b〉) (1.8)

(|a〉, |b〉 + |c〉) = (|a〉, |b〉) + (|a〉, |c〉) (1.9)

(|a〉, |b〉) = (|b〉, |a〉)∗ (1.10)
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The last equation can also be written as

〈a|b〉 = 〈b|a〉∗ (1.11)

From the above, we can deduce that

(λ|a〉, |b〉) = λ∗(|a〉, |b〉) (1.12)

= λ∗〈a|b〉 (1.13)

and

(|a1〉 + |a2〉, |b〉) = (|a1〉, |b〉) + (|a2〉, |b〉) (1.14)

= 〈a1|b〉 + 〈a2|b〉 (1.15)

The norm of a vector is defined by

‖a‖ =
√
〈a|a〉 (1.16)

and corresponds to the “length” of a vector. Note that the norm of a vector is a real number ≥ 0.

(This follows from (1.11)).

1.1.3 The Schwartz inequality

Given any |a〉, |b〉 ∈ H we have

‖a‖ ‖b‖ ≥ |〈a|b〉| (1.17)

with the equality only being valid for the case

|a〉 = λ|b〉 (1.18)

(with λ a complex number) i.e. when one vector is proportional to the other.

Proof

Define a |c〉 such that

|c〉 = |a〉 + λ|b〉 (1.19)

where λ is an arbitrary complex number. Whatever λ may be:

〈c|c〉 = 〈a|a〉 + λ〈a|b〉 + λ∗〈b|a〉 + λλ∗〈b|b〉 (1.20)

≥ 0 (1.21)
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Choose for λ the value

λ = −〈b|a〉
〈b|b〉 (1.22)

and substitute into the above equation, which reduces to

〈a|a〉 − 〈a|b〉〈b|a〉
〈b|b〉 ≥ 0 (1.23)

Since 〈b|b〉 is positive, multiply the above inequality by 〈b|b〉 to get

〈a|a〉〈b|b〉 ≥ 〈a|b〉〈b|a〉 (1.24)

≥ |〈a|b〉|2 (1.25)

and finally taking square roots and using the definition of the norm we get the required result.

(This result will be used when we prove the generalised uncertainty principle).

1.1.4 Some properties of vectors in a Hilbert space

∀ |a〉 ∈ H, a sequence {|an〉} of vectors exists, with the property that for every ε > 0, there exists

at least one vector |an〉 of the sequence with

‖|a〉 − |an〉‖ ≤ ε (1.26)

A sequence with this property is called compact.

The Hilbert space is complete i.e. every |a〉 ∈ H can be arbitrarily closely approximated by a

sequence {|an〉}, in the sense that

lim
n→∞

‖|a〉 − |an〉‖ = 0 (1.27)

Then the sequence {|an〉} has a unique limiting value |a〉.

The above properties are necessary for vector spaces of infinite dimension that occur in QM.

1.1.5 Orthonormal systems

Orthogonality of vectors. |a〉, |b〉 ∈ H are said to be orthogonal if

〈a|b〉 = 0 (1.28)

Orthonormal system. The set {|an〉} of vectors is an orthonormal system if the vectors are

orthogonal and normalised, i.e.

〈an|am〉 = δn,m (1.29)
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where

δn,m =





1 m = n

0 m != n

Complete orthonormal system. The orthonormal system {|an〉} is complete in H if an arbi-

trary vector |a〉 ∈ H can be expressed as

|a〉 =
∑

n

αn|an〉 (1.30)

where in general αn are complex numbers whose values are

αm = 〈am|a〉 (1.31)

Proof

〈am|a〉 = 〈am|
( ∑

n

αn|an〉
)

=
∑

n

αn〈am|an〉

=
∑

n

αnδm,n

= αm (1.32)

Thus we can write

|a〉 =
∑

n

|an〉〈an|a〉 (1.33)

Note that this implies

Î =
∑

n

|an〉〈an| (1.34)

called the “resolution of the identity operator” or the closure relation. The complex

numbers αn are called the an−representation of |a〉, i.e. they are the components of the vector

|a〉 in the basis {|an〉}.

1.1.6 Operators on Hilbert space

A linear operator Â induces a mapping of H onto itself or onto a subspace of H. (What this means

is that if Â acts on some arbitrary vector ∈ H the result is another vector ∈ H or in some subset

of H. Hence

Â(α|a〉 + β|b〉) = αÂ|a〉 + βÂ|b〉 (1.35)
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The operator Â is bounded if

‖Â|a〉‖ ≤ C‖|a〉‖ (1.36)

∀ |a〉 ∈ H, and C is a real positive constant (< ∞).

Bounded linear operators are continuous, i.e. if

|an〉 → |a〉 (1.37)

then it follows that

Â|an〉 → Â|a〉 (1.38)

Two operators Â and B̂ are equal (Â = B̂) if, ∀|a〉 ∈ H,

Â|a〉 = B̂|a〉 (1.39)

The following definitions are valid ∀ |a〉 ∈ H:

Unit operator, Î

Î|a〉 = |a〉 (1.40)

Zero operator, 0̂

0̂|a〉 = |null〉 (1.41)

Sum operator, Â + B̂

(Â + B̂)|a〉 = Â|a〉 + B̂|a〉 (1.42)

Product operator, ÂB̂

(ÂB̂)|a〉 = Â(B̂|a〉) (1.43)

Adjoint operator, Â† : Given Â, an adjoint operator, Â†, exists if ∀ |a〉, |b〉 ∈ H

(|b〉, Â|a〉) = (Â†|b〉, |a〉) (1.44)

or

〈b|Â|a〉 = 〈a|Â†|b〉∗ (1.45)

The adjoint of an operator has the following properties:

(αÂ)† = α∗Â† (1.46)

(Â + B̂)† = Â† + B̂† (1.47)

(ÂB̂)† = B̂†Â† (1.48)

(Â†)† = Â (1.49)
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If Â is Hermitian, then

Â = Â†

〈b|Â|b〉 = 〈b|Â†|b〉

= 〈b|Â†|b〉∗

= 〈b|Â|b〉∗

= real (1.50)

Unitary operator, U : The operator Û is called unitary if

Û Û † = Û †Û = Î (1.51)

Projection operator, |a〉〈a| : Given any normalised vector |a〉, a projection operator P̂ can be

defined as the operator that projects any vector into its component along |a〉

P̂ |b〉 = 〈a|b〉|a〉 = |a〉〈a|b〉 (1.52)

We write this symbolically as

P̂ = |a〉〈a| (1.53)

Note that a projection operator is idempotent: its square (or any power) is equal to itself

P̂ 2 = |a〉〈a|a〉〈a| = |a〉〈a| (1.54)

since |a〉 is normalised. Note that the resolution of the identity (1.34) is a sum of projection

operators.

Commutator, [Â, B̂]

[Â, B̂] = ÂB̂ − B̂Â (1.55)

Note that in general

ÂB̂ $= B̂Â (1.56)

Properties of commutators:

[Â, B̂] = −[B̂, Â] (1.57)

[Â, (B̂ + Ĉ)] = [Â, B̂] + [Â, Ĉ] (1.58)

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ] (1.59)

[Â, [B̂, Ĉ]] + [B̂, [Ĉ, Â]] + [Ĉ, [Â, B̂]] = 0̂ (1.60)

[Â, B̂]
†

= [B̂†, Â†] (1.61)
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EXAMPLE

Suppose the operators P̂ and Q̂ satisfy the commutation relation

[P̂ , Q̂] = aÎ

where a is a constant (real) number.

• Reduce the commutator [P̂ , Q̂n] to its simplest possible form.

Answer: Let

R̂n = [P̂ , Q̂n] n = 1, 2, · · ·

Then R̂1 = [P̂ , Q̂] = aÎ and

R̂n+1 = [P̂ , Q̂n+1] = [P̂ , Q̂nQ̂] = [P̂ , Q̂n]Q̂ + Q̂n[P̂ , Q̂]

(We have used [Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ). Therefore,

R̂n+1 = R̂nQ̂ + Q̂n(aÎ) = R̂nQ̂ + aQ̂n

which gives R̂2 = 2aQ̂, R̂3 = 3aQ̂2 etc. This implies that

R̂n = [P̂ , Q̂n] = naQ̂n−1

Note that in general,

[P̂ , f(Q̂)] = a
∂f

∂Q̂

• Reduce the commutator

[P̂ , eiQ̂]

to its simplest form.

Answer: Use results above to get

[P̂ , eiQ̂] = iaeiQ̂
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Problem 1: Two operators, Â and B̂ satisfy the equations

Â = B̂†B̂ + 3

Â = B̂B̂† + 1 (1.62)

• Show that Â is self-adjoint

• Find the commutator [B̂†, B̂]

Answer: −2Î

• Find the commutator [Â, B̂]

Answer: −2B̂

1.1.7 Eigenvectors and eigenvalues

If

Â|a〉 = a|a〉 (1.63)

then |a〉 is an eigenvector of the operator Â with eigenvalue a (which in general is a complex

number). The set of all eigenvalues of a operator is called its spectrum, which can take discrete

or continuous values (or both). For the case of Hermitian operators the following is true:

• The eigenvalues are real

• The eigenvectors corresponding to different eigenvalues are orthogonal i.e

Â|a〉 = a|a〉 (1.64)

Â|a′〉 = a′|a′〉 (1.65)

and if a #= a′, then

〈a|a′〉 = 0 (1.66)

• In addition, the normalised eigenvectors of a bounded Hermitian operator give rise to a

countable, complete orthonormal system. The eigenvalues form a discrete spectrum.
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Problem 2: Prove that if Ĥ is a Hermitian operator, then its eigenvalues are real and its eigen-

vectors (corresponding to different eigenvalues) are orthogonal.

Answer: To be discussed in class.

From above, we deduce that an arbitrary |ψ〉 ∈ H can be expanded in terms of the complete,

orthonormal eigenstates {|a〉} of a Hermitian operator Â:

|ψ〉 =
∑

a

|a〉〈a|ψ〉 (1.67)

where the infinite set of complex numbers {〈a|ψ〉} are called the A representation of |ψ〉.

Problem 3: The operator Q̂ satisfies the equations

Q̂†Q̂† = 0

Q̂Q̂† + Q̂†Q̂ = Î (1.68)

The Hamiltonian for the system is given by

Ĥ = αQ̂Q̂†

where α is a real constant.

• Show that Ĥ is self-adjoint

• Find an expression for Ĥ2 in terms of Ĥ

Answer: Use the anti-commutator property of Q̂ to get Ĥ2 = αĤ.

• Deduce the eigenvalues of Ĥ using the results obtained above.

Answer:The eigenvalues are 0 and α.
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Problem 4 : Manipulating Operators

• Show that if |a〉 is an eigenvector of Â with eigenvalue a, then it is an eigenvector of f(Â)

with eigenvalue f(a).

• Show that

(ÂB̂)† = B̂†Â† (1.69)

and in general

(ÂB̂Ĉ . . .)† = . . . Ĉ†B̂†Â† (1.70)

• Show that ÂÂ† is Hermitian even if Â is not.

• Show that if Â is Hermitian, then the expectation value of Â2 are non-negative, and the

eigenvalues of Â2 are non-negative.

• Suppose there exists a linear operator Â that has an eigenvector |ψ〉 with eigenvalue a. If

there also exists an operator B̂ such that

[Â, B̂] = B̂ + 2B̂Â2 (1.71)

then show that B̂|ψ〉 is an eigenvector of Â and find the eigenvalue.

Answer: Eigenvalue is 1 + a + 2a2.

EXAMPLE

• (a) Suppose the operators Â and B̂ commute with their commutator, i.e. [B̂, [Â, B̂]] =

[Â, [Â, B̂]] = 0. Show that [Â, B̂n] = nB̂n−1[Â, B̂] and [Ân, B̂] = nÂn−1[Â, B̂].

Answer: To show this, consider the following steps:

[Â, B̂n] = ÂB̂n − B̂nÂ (1.72)

= ÂB̂B̂n−1 − B̂ÂB̂n−1 + B̂(ÂB̂)B̂n−2 − B̂(B̂Â)B̂n−3 + · · · B̂n−1ÂB̂ − B̂n−1B̂Â

= [Â, B̂]B̂n−1 + B̂[Â, B̂]B̂n−2 + · · · + B̂n−1[Â, B̂]
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Since B̂ commutes with [Â, B̂], we obtain

[Â, B̂n] = B̂n−1[Â, B̂] + B̂n−1[Â, B̂] + · · · + B̂n−1[Â, B̂] = nB̂n−1[Â, B̂]

as required. In the same way, since [Ân, B] = −[B̂, Ân] and using the above steps, we obtain

[Ân, B̂] = nÂn−1[Â, B̂]

as required.

• (b) Just as in (a), show that for any analytic function, f(x), we have [Â, f(B̂)] = [Â, B̂]f ′(B̂),

where f ′(x) denotes the derivative of f(x).

Answer: We use the results from (a). Since f(x) is analytic, we can expand it in a power

series
∑

n anxn. Then

[Â, f(B̂)] = [Â,
∑

n

anB̂n] (1.73)

=
∑

n

an[Â, B̂n]

= [Â, B̂]
∑

n

n an B̂n−1

= [Â, B̂]f
′
(B̂)

• (c) Just as in (a), show that eÂeB̂ = eÂ+B̂ e
1
2 [Â,B̂].

Answer: Consider an operator F̂ (s) which depends on a real parameter s:

F̂ (s) = esÂ esB̂

Its derivative with respect to s is:

dF̂

ds
=

(
d

ds
esÂ

)

esB̂ + esÂ

(
d

ds
esB̂

)

(1.74)

= ÂesÂesB̂ + esÂB̂esB̂

= ÂesÂesB̂ + esÂB̂e−sÂesÂesB̂

=
[

Â + esÂB̂e−sÂ

]

F̂ (s)

Using part (a), we can write

[esÂ, B̂] = −[B̂, esÂ] = −s[B̂, Â]esÂ = s[Â, B̂]esÂ
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This means that esÂB̂ = B̂e−sÂ + s[Â, B̂]esÂ and esÂB̂e−sÂ = B̂ + s[Â, B̂]. Substituting this

into the equation above, we get

dF̂

ds
=

[

Â + B̂ + s[Â, B̂]
]

F̂ (s)

Since Â + B̂ and [Â, B̂] commute, we can integrate this differential equation. This yields

F̂ (s) = F̂ (0) e(Â+B̂)s+ 1
2 [Â,B̂]s2

Setting s = 0, we obtain F̂ (0) = Î. Finally substituting F̂ (0) and s = 1, we obtain the

required result.

• (d) Prove the following identity for any two operators Â and B̂:

eÂB̂e−Â = B̂ + [Â, B̂] +
1
2!

[Â, [Â, B̂]] +
1
3!

[Â, [Â, [Â, B̂]]] + · · · (1.75)

Answer: To show this, define

f(λ) = eλÂB̂e−λÂ

where λ is a real parameter. Then,

f(0) = B̂ (1.76)

f(1) = eÂB̂e−Â

f ′(λ) = eλÂ[Â, B̂]e−λÂ

f ′(0) = [Â, B̂]

f ′′(λ) = eλÂ[Â, [Â, B̂]]e−λÂ

f ′′(0) = [Â, [Â, B̂]]

The Taylor expansion of f(λ) is given by

f(λ) = f(0) + λf ′(0) +
1
2!

λ2f ′′(0) + · · ·

This implies

eλÂB̂e−λÂ = B̂ + λ[Â, B̂] +
1
2!

λ2[Â, [Â, B̂]] + · · ·

Now setting λ = 1, we get the required result.
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1.1.8 Observables

A Hermitian operator Â is an observable if its eigenvectors |ψn〉 are a basis in the Hilbert space:

that is, if an arbitrary state vector can be written as

|ψ〉 =
D∑

n=1

|ψn〉〈ψn|ψ〉 (1.77)

(If D, the dimensionality of the Hilbert space is finite, then all Hermitian operators are observables;

if D is infinite, this is not necessarily so.)

In quantum mechanics, it is a postulate that every measurable physical quantity is described by

an observable and that the only possible result of the measurement of a physical quantity is one

of the eigenvalues of the corresponding observable. Immediately after an observation of Â which

yields the eigenvalue an, the system is in the corresponding state |ψn〉. It is also a postulate that

the probability of obtaining the result an when observing Â on a system in the normalised state

|ψ〉, is

P (an) = |〈ψn|ψ〉|2 (1.78)

(The probability is determined empirically by making a large number of separate observations of

Â, each observation being made on a copy of the system in the state |ψ〉.) The normalisation of

|ψ〉 and the closure relation ensure that
D∑

n=1

P (an) = 1 (1.79)

For an observable, by using the closure relation, one can deduce that

Â =
∑

n

an|ψn〉〈ψn| (1.80)

which is the spectral decomposition of Â.

The expectation value 〈Â〉 of an observable Â, when the state vector is |ψ〉, is defined as the

average value obtained in the limit of a large number of separate observations of Â, each made on

a copy of the system in the state |ψ〉. From equations (1.78) and (1.80), we have

〈Â〉 =
∑

n

anP (an) =
∑

n

an|〈ψn|ψ〉|2

=
∑

n

an〈ψ|ψn〉〈ψn|ψ〉 = 〈ψ|Â|ψ〉 (1.81)

Let Â and B̂ be two observables and suppose that rapid successive measurements yield the results

an and bn respectively. If immediate repetition of the observations always yields the same results

for all possible values of an and bn, then Â and B̂ are compatible (or non-interfering) observables.
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Problem 5: A system described by the Hamiltonian Ĥ0 has just two orthogonal energy eigenstates,

|1〉 and |2〉 with

〈1|1〉 = 1

〈1|2〉 = 0

〈2|2〉 = 1 (1.82)

The two eigenstates have the same eigenvalues E0:

Ĥ0|i〉 = E0|i〉

for i = 1, 2. Suppose the Hamiltonian for the system is changed by the addition of the term V̂ ,

giving

Ĥ = Ĥ0 + V̂

The matrix elements of V̂ are

〈1|V̂ |1〉 = 0

〈1|V̂ |2〉 = V12

〈2|V̂ |2〉 = 0 (1.83)

• Find the eigenvalues of Ĥ

• Find the normalised eigenstates of Ĥ in terms of |1〉 and |2〉.

Answer: This will be done in class.

1.1.9 Generalised uncertainty principle

Suppose Â and B̂ are any two non-commuting operators i.e.

[Â, B̂] = iĈ (1.84)

(where Ĉ is Hermitian). It can be shown that

∆A∆B ≥ 1
2

∣∣∣〈Ĉ〉
∣∣∣ (1.85)
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where

∆A =
[
〈(Â − 〈Â〉)2〉

] 1
2 (1.86)

and similarly for ∆B. The expectation value is over some arbitrary state vector. This is the

generalised uncertainty principle, which implies that it is not possible for two non-commuting

observables to possess a complete set of simultaneous eigenstates. In particular if Ĉ is a non-zero

real number (times the unit operator), then Â and B̂ cannot possess any simultaneous eigenstates.

Problem 6: Prove (1.85).

If the eigenvalues of Â are non-degenerate, the normalised eigenvectors |ψn〉 are unique to within

a phase factor i.e. the kets |ψn〉 and eiθ|ψn〉, where θ is any real number yield the same physical

results. Hence a well defined physical state can be obtained by measuring Â. If the eigenvalues

of Â are degenerate we can in principle identify additional observables B̂, Ĉ, . . . which commute

with Â and each other (but not functions of Â or each other), until we have a set of commuting

observables for which there is no degeneracy. Then the simultaneous eigenvectors |an, bp, cq, . . .〉
are unique to within a phase factor; they are a basis for which the orthonormality relations are

〈an′ , bp′ , cq′ , . . . |an, bp, cq, . . .〉 = δn′nδp′pδq′q . . . (1.87)

The observables Â, B̂, Ĉ, . . . constitute a complete set of commuting observables (CSCO).

A well defined initial state can be obtained by an observation of a CSCO.

Problem 7: Given a set of observables Â, B̂, . . . prove that any one of the following conditions

proves the other two:

• Â, B̂, . . . commute with each other,

• Â, B̂, . . . are compatible,

• Â, B̂, . . . possess a complete orthonormal set of simultaneous eigenvectors (assuming no de-

generacy).
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1.1.10 Basis transformations

Suppose {|ψn〉} and {|φn〉} respectively are the eigenvectors of the non-commuting observables Â

and B̂ of a system. This means that we can use either {|ψn〉} or {|φn〉} as basis kets for the Hilbert

space. The two bases are related by the transformation

|φn〉 = Û |ψn〉 (1.88)

where

Û =
∑

i

|φi〉〈ψi| (1.89)

Orthonormality of {|φn〉} and the closure relation for {|ψn〉} ensure that Û is a unitary operator

(i.e. Û †Û = Î).

Problem 8:

• Prove that Û as defined above is unitary.

• Starting from the eigenvalue equation:

Â|ψn〉 = an|ψn〉 (1.90)

show that the operator

Â′ = Û ÂÛ † (1.91)

has Û |ψn〉 as its eigenvector with eigenvalue an.

• Show also that the inner product, 〈Ψ|Φ〉 is preserved under a unitary transformation.

• If Û is unitary and Â is Hermitian, then show that Û ÂÛ † is also Hermitian.

• Show that the form of the operator equation Ĝ = ÂB̂ is preserved under a unitary transfor-

mation.

The problem above shows that a unitary transformation preserves the form of the eigenvalue equa-

tion. In addition, since the eigenvalues of an operator corresponding to an observable are physically

measurable quantities, these values should not be affected by a transformation of basis in Hilbert

space. It therefore follows that the eigenvalues and the Hermiticity of an observable are preserved

in a unitary transformation.
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1.1.11 Matrix representation of operators

From the closure relation (or resolution of the identity) it is possible to express any operator as

Â = ÎÂÎ =
∑

n

∑

n′
|n′〉〈n′|Â|n〉〈n| (1.92)

where the set {|n〉} are a set of basis vectors in the Hilbert space and the complex numbers 〈n′|Â|n〉
are a matrix representation of Â. (Note that the matrix representation of Â† is obtained by

transposing the matrix representation of Â and taking the complex conjugate of each element.)

The table below lists various matrix properties:

Matrix Definition Matrix Elements

Symmetric A = AT Apq = Aqp

Antisymmetric A = −AT Apq = −Aqp

Orthogonal A = (AT )−1 (AT A)pq = δpq

Real A = A∗ Apq = A∗
pq

Pure Imaginary A = −A∗ Apq = −A∗
pq

Hermitian A = A† Apq = A∗
qp

Anti-Hermitian A = −A† Apq = −A∗
qp

Unitary A = (A†)−1 (A†A)pq = δpq

Singular |A| = 0

where T denotes the transpose of a matrix and |A| denotes the determinant of matrix A.

Problem 9:

• If A, B, C are 3 n×n square matrices, show that Tr(ABC) = Tr(CAB) = Tr(BCA), where

Tr denotes the trace of a matrix, i.e. the sum of its diagonal elements.

• Show that the trace of a matrix remains the same (i.e. invariant) under a unitary transfor-

mation.

• Let A be an n× n square matrix with eigenvalues a1, a2, . . . , an. Show that |A| = a1a2 . . . an

and hence that the determinant of A is another invariant property.

• Show that if A is Hermitian, then U = (A + iI)(A − iI)−1 is unitary. (I here is the identity

matrix.)
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• Show that |I + εA| = I + εTrA + O(ε2) where A is an n × n square matrix.

• Show that |eA| = eTrA where A is a n × n square matrix.

1.1.12 Mathematical interlude: Dirac delta function

Definition

The Dirac delta function δ(x) is defined as follows

δ(x) =





0 x "= 0

∞ x = 0

Its integral properties are
∫ ∞

−∞
f(x)δ(x)dx = f(0)

∫ ∞

−∞
δ(x)dx = 1

∫ ∞

−∞
f(x′)δ(x − x′)dx′ = f(x)

∫ ∞

−∞
δ(x − x′)dx′ = 1 (1.93)

Note that
∫ b

a
f(x)δ(x)dx =





f(0) 0 ∈ [a, b]

0 Otherwise

In three dimensions, the above definition is generalised as follows
∫

all space
f(r)δ(r − a)dr = f(a) (1.94)

In mathematics, an object such as δ(x), which is defined in terms of its integral properties, is called

a distribution.

Some useful properties

δ(x) = δ(−x)
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δ
′
(x) = −δ

′
(−x)

x δ(x) = 0

δ(a x) =
1
|a| δ(x)

δ(x2 − a2) =
1

|2a|

[
δ(x − a) − δ(x + a)

]

∫ ∞

−∞
δ(a − x) δ(x − b)dx = δ(a − b)

f(x) δ(x − a) = f(a) δ(x − a)

x δ
′
(x) = −δ(x)

∫
g(x) δ

[
f(x) − a

]
dx =

g(x)
|df/dx|

∣∣∣∣
x=x0, f(x0)=a

(1.95)

These relations can easily be verified by using some arbitrary function. For example, to prove

x δ
′
(x) = −δ(x)

we proceed as follows
∫ ∞

−∞
f(x)x δ

′
(x)dx =

∫ ∞

−∞

d

dx

(
f x δ

)
dx −

∫ ∞

−∞
δ

d

dx

(
f x

)
dx

= −
∫ ∞

−∞
δ(x)

(
x

df

dx
+ f

)
dx

= −
∫ ∞

−∞
δ(x)f(x)dx (1.96)

where we have used integration by parts.

1.1.13 Operators with continuous or mixed (discrete-continuous) spectra

There exist operators which do not have a purely discrete spectra, but either have a continuous or

mixed (discrete-continuous) spectrum. An example is the Hamiltonian for the hydrogen atom. In

general, all Hamiltonians for atoms and nuclei have both discrete and continuous spectral ranges.

Usually the discrete spectrum is connected with bound states while the continuous spectrum is

connected with free (unbound) states. The representation related to such operators cause difficulties
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because eigenstates with continuous spectra are not normalizable to unity. (A rigorous discussion

is too difficult so we will just state the results.)

An observable Â has a continuous spectrum if its eigenvalues {a}

Â|a〉 = a|a〉

are a continuous set of real numbers. The eigenstates {|a〉} can no longer be normalised to unity

but must be normalised to Dirac delta functions:

〈a|a′〉 = δ(a − a′) (1.97)

The resolution of the identity (or closure relation) becomes
∫

da |a〉〈a| = Î (1.98)

and an arbitrary state can |ψ〉 be expanded in terms of the complete set {|a〉} via

|ψ〉 =
∫

da′|a′〉〈a′|ψ〉 (1.99)

with 〈a′|ψ〉 denoting |ψ〉 in the A representation. The inner product for two state vectors |ψ〉 and

|φ〉 is defined as

〈ψ|φ〉 =
∫

da′〈ψ|a′〉〈a′|φ〉

=
∫

ψ∗(a′)φ(a′)da′ (1.100)

If the spectrum is mixed, then the expansion of |ψ〉 is

|ψ〉 =
∑

a′
|a′〉〈a′|ψ〉 +

∫
|a′〉〈a′|ψ〉da′ (1.101)

where the sum is over the discrete eigenvectors and the integral is over the continuous eigenvectors

|a〉.

Position and momentum representations for free particles

In one dimension, the eigenvalue equations for x̂ and p̂ read

x̂|x′〉 = x′|x′〉

p̂|p′〉 = p′|p′〉

〈x|x′〉 = δ(x − x′)

〈p|p′〉 = δ(p − p′) (1.102)
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These definitions, the fundamental commutator

[x̂, p̂] = ih̄ (1.103)

and the above properties of the Dirac delta function can be used to determine the following matrix

elements:

〈x′|p̂|x′′〉 =
h̄

i

∂

∂x′ δ(x
′ − x′′)

〈p′|x̂|p′′〉 = − h̄

i

∂

∂p′
δ(p′ − p′′)

〈x′|p̂2|x′′〉 =
(
− ih̄

∂

∂x′

)2

δ(x′ − x′′)

〈p′|x̂2|p′′〉 =
(

ih̄
∂

∂p′

)2

δ(p′ − p′′) (1.104)

Problem 10†1: Verify the formulae (1.104)

Now consider the eigenvalue problem for the momentum operator in the position representation. If

p̂|p′〉 = p′|p′〉

then we have

〈x′|p̂|p′〉 =
∫

dx′′〈x′|p̂|x′′〉〈x′′|p′〉

=
∫

dx′′
(
− ih̄

∂

∂x′ δ(x
′ − x′′)

)
〈x′′|p′〉

= −ih̄
∂

∂x′

∫
dx′′δ(x′ − x′′)〈x′′|p′〉

= −ih̄
∂

∂x′ 〈x
′|p′〉 (1.105)

On the other hand, we also have

〈x′|p̂|p′〉 = p′〈x′|p′〉
1Problems that you may choose to skip on a first reading are indicated by †.
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Therefore

−ih̄
∂

∂x′ 〈x
′|p′〉 = p′〈x′|p′〉 (1.106)

which implies

〈x′|p′〉 =
1√
2πh̄

exp
(

ip′x′

h̄

)
(1.107)

where we have chosen the normalisation such that

〈p′′|p′〉 =
∫

dx′〈p′′|x′〉〈x′|p′〉

=
∫

dx′〈x′|p′′〉∗〈x′|p′〉

=
1

(2πh̄)

∫
dx′ exp

(
i(p′ − p′′)x′

h̄

)

= δ(p′′ − p′) (1.108)

These results can be generalised to three-dimensions. We have

|r〉 = |x, y, z〉

r̂|r〉 = r|r〉

〈r′|r′′〉 = δ(r′ − r′′)

|p〉 = |px, py, pz〉

p̂|p〉 = p|p〉

〈p′|p′′〉 = δ(p′ − p′′)

〈r′|p̂|r′′〉 = −ih̄∇r′δ(r′ − r′′)

〈p′|r̂|p′′〉 = ih̄∇p′δ(p′ − p′′)

〈r|p〉 =
1

(2πh̄)3/2
exp

(
ir · p/h̄

)
(1.109)


