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The Postulates—a
General Discussion

Having acquired the necessary mathematical training and physical motivation, you
are now ready to get acquainted with the postulates of quantum mechanics. In this
chapter the postulates will be stated and discussed in broad terms to bring out
the essential features of quantum theory. The subsequent chapters will simply be
applications of these postulates to the solution of a variety of physically interesting
problems. Despite your preparation you may still find the postulates somewhat
abstract and mystifying on this first encounter. These feelings will, however, dis-
appear after you have worked with the subject for some time.

4.1. The Postulatesi

The following are the postulates of nonrelativistic quantum mechanics. We
consider first a system with one degree of freedom, namely, a single particle in one
space dimension. The straightforward generalization to more particles and higher
dimensions will be discussed towards the end of the chapter. In what follows, the
quantum postulates are accompanied by their classical counterparts (in the Hamil-
tonian formalism) to provide some perspective.

Classical Mechanics Quantum Mechanics
I. The state of a particle at any given 1. The state of the particle is represen-
time is specified by the two variables ted by a vector |y(#)) in a Hilbert
x(?) and p(?), i.e., as a point in a two- space.

dimensional phase space.

II. Every dynamical variable @ is a II. Theindependent variables x and p of
function of x and p: o = w(x, p). classical mechanics are represented

I Recall the discussion in the Preface regarding the sense in which the word is used here.
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116 by Hermitian operators X and P
CHAPTER 4 with the following matrix elements
in the eigenbasis of X1

x| X)x'>=x6(x—x")
{x|P|x"y=—ihd'(x—x)
The operators corresponding to
dependent variables w(x,p) are
given Hermitian operators

QX, P)=w(x—X, p—P)§

IIL. If the particle is in a state given by III. If the particle is in a state | ), meas-

x and p, the measurement| of the urement! of the variable (corre-
variable o will yield a value o(x, p). sponding to) Q will yield one of the
The state will remain unaffected. eigenvalues ® with probability

P(w)x|{w]|w)|*. The state of the
system will change from |y) to |®)
as a result of the measurement.

IV. The state variables change with time IV. The state vector |y(¢)) obeys the

according to Hamilton’s equations: Schrédinger equation
. _0X L d
X=—— iy (1)) =Hly(1)}
op dt
_ _aifi where H(X, P)=#(x—X, p—P) is
P the quantum Hamiltonian operator

and s is the Hamiltonian for the
corresponding classical problem.

4.2. Discussion of Postulates I-111

The postulates (of classical and quantum mechanics) fall naturally into two
sets: the first three, which tell us how the system is depicted at a given time, and the
last, which specifies how this picture changes with time. We will confine our attention
to the first three postulates in this section, leaving the fourth for the next.

The first postulate states that a particle is described by a ket |y) in a Hilbert
space which, you will recall, contains proper vectors normalizable to unity as well as

1 Note that the X operator is the same one discussed at length in Section 1.10. Likewise P=#K, where
K was also discussed therein. You may wish to go over that section now to refresh your memory.

§ By this we mean that Q is the same function of X and P as o is of x and P.

|| That is, in an ideal experiment consistent with the theory. It is assumed you are familiar with the ideal
classical measurement which can determine the state of the system without disturbing it in any way. A
discussion of ideal quantum measurements follows.
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