CHAPTER 3

THE POSTULATES OF
QUANTUM MECHANICS. OPERATORS,
EIGENFUNCTIONS, AND EIGENVALUES

3.1 Observables and Operators

3.2 Measurement in Quantum Mechanics

3.3 The State Function and Expectation Values

3.4 Time Development of the State Function

3.5 Solution to the Initial-Value Problem in Quantum Mechanics

In this chapter we consider four basic postulates of quantum mechanics, which when
taken with the Born postulate described in Section 2.8, serve to formalize the rules of
quantum mechanics. Mathematical concepts material to these postulates are developed
along with the physics. The postulates are applied over and over again throughout the
text. We choose the simplest problems first to exhibit their significance and method of
application—that is, problems in one dimension.

3.1 OBSERVABLES AND OPERATORS

Postulate 1

This postulate states the following: To any self-consistently and well-defined observ-
able in physics (call it 4), such as linear momentum, energy, mass, angular momen-
tum, or number of particles, there corresponds an operator (call it 4) such that
measurement of A yields values (call these measured values a) which are eigenvalues
of 4. That is, the values, a, are those values for which the equation

3.1 Ap = ag an eigenvalue equation}
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3.2 MEASUREMENT IN QUANTUM MECHANICS

Postulate II

The second postulate' of quantum mechanics is: measurement of the observable A
that yields the value a leaves the system in the state ¢,, where ¢, is the eigenfunction
of A that corresponds to the eigenvalue a.

—— e e Sa PP e e e TS paT he e IO T O OIS O T e do—
not know which state the particle is in. At a given instant we measure the particle’s
momentum and find the value p = &k (with k a specific value, say 1.3 x 10 cm™!).
This measurement? leaves the particle in the state ¢,, so immediate subsequent

measurement of p 1s certain to yield hk.

Suppose that one measures the position of a free particle and the position
x = x' is measured. The first two postulates tell us the following. (1) There is an
operator corresponding to the measurement of position, call it %. (2) Measurement
of x that yields the value x leaves the particle in the eigenfunction of % corresponding
to the eigenvalue x'.

The operator equation appears as

(3.26) %6(x — x') = x'6(x — x')

Dirac Delta Function

The eigenfunction of £ has been written® §(x — x’) and is called the Dirac delta
Junction. It is defined in terms of the following two properties. The first are the
integral properties

f I8 = X dx' = f(v)
(3.27)
fw o(x —x)dx' =1

' This postulate has been the source of some discussion among physicists. For further reference, see B S DeWitt. Phys
Todar 23, 30 (September 1970).

* Measurement 1s taken in the idealized sense. More formal discussions on the theory of measurement may be found in
K. Gottfried, Quanium Mechanics. W. A Benjamuin. New York, 1966; J. Jauch, Foundations of Quanium Mechanics,
Addison-Wesley, Reading. Mass., 1968. and E. C. Kemble, The Fundamental Principles of Quantum Mechamcs with
Elementary Applications, Dover, New York, 1958,

* More accurately one says that 8(x — x’) 1s an eigenfunction of £ in the coordinate representation. This topic 1s returned
to in Section 7.4 and 1n Appendix A.
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3.3 THE STATE FUNCTION AND EXPECTATION VALUES

Postulate I11

The third postulate of quantum mechanics establishes the existence of the state
function and its relevance to the properties of a system: The state of a system at any
instant of time may be represented by a state or wave function y which is continuous
and differentiable. All information regarding the state of the system is contained in
the wavefunction. Specifically, if a system is in the state y(r, t), the average of any
physical observabie C relevant to that system at time ¢ is

(3.32) (Cy = fw*éw dr

(The differential of volume is written dr.) The average, {(C), is called the expectation
value of C.

I'he physical meaning of the average of an observable C involves the following
type of (conceptual) measurements. The observable C is measured in a specific
experiment, X. One prepares a very large number (N) of identical replicas of X. The
initial states ys(r, 0) in each such replica are all identical. At the time ¢, one measures C
in all these replica experiments and obtains the set of values C,, C,, ..., Cy. The
average of C is then given by the rule

1
N,

M=

(3.33) (CH = (oF N>1

]

1

The postulate stated above claims that this experimentally calculated average (3.33)
is the same as that given by the integral in (3.32). Another way of defining (C) is in
terms of the probability P(C;). This function gives the probability that measurement of
C finds the value C;. For (C), we then have
(3.34) (C> =) CP(C)

all C
This is a consistent formula if all the values C may assume comprise a discrete set (e.g.,
the number of marbles in a box). In the event that the values that C may assume
comprise a continuous set {e.g., the values of momentum of a free particle), {<C>
becomes

(3.35) (CY = f CP(C) dC

The integration is over all values of C. Here P(C) is the probability of finding C in the

interval C, C + dC.
The quantity <C) is also called the expectation value of C because it is repre-
sentative of the value one expects to obtain in any given measurement of C. This will
73
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3.4 TIME DEVELOPMENT OF THE STATE FUNCTION

Postulate 1V

The fourth postulate of quantum mechanics specifies the time development of the
state function (r, t): the state function for a system (e.g., a single particle) develops in
time according to the equation

0 ~
(3.45) ih Y Y(r, 1) = Hy(r, t)
This equation is called the time-dependent Schrédinger equation.'! The operator His
the Hamiltonian operator. For a single particle of mass m, in a potential field V(r), it is

given by (3.12). If A is assumed to be independent of time, we may write

(3.46) A = H()

Under these circumstances, one is able to construct a solution to the time-dependent
Schridinger equation through the technique of separation of variables. We assume a
solution of the form
(3.47) Y(r, 1) = @(n)T(1)
Substitution into (3.45) gives
T, Hep

. h— =~

(3.48) ih — -

The subscript t denotes differentiation with respect to 1. Equation (3.48) is such that
the left-hand side is a function of t only, while the right-hand side is a function of r only.
Such an equation can be satisfied only if both sides are equal to the same constant, call
it E (we do not yet know that E is the energy).

(3.49) He(r) = E@(r)
0 iE
(3.50) (5 4 7)T(r) ~ 0

The first of these equations is the time-independent Schrédinger equation (3.13).
This identification serves to label E, in (3.49), the energy of the system. That is, E, as it
appears in this equation, is an eigenvalue of H. But the eigenvalues of H are the
allowed energies a system may assume, and we again conclude that E is the energy of
the system.

' A formulation of the Schrédinger equation that has its ongin in the classical principle of least action has been offered
by R. P Feynman. Ret. Mod. Phs 60. 367 (1948). An elementary description of this derivation may be found in
S. Borowitz. Quantum Mechanics. W A Benjamin, New York. 1967
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PROBLEMS

4.3 For the one-dimensional box problem, show that P = |¢,|* is maximum at the values
x = x; given by
2+ 1
=21 L j=01,2..,n—1
2n

4.3 DIRAC NOTATION

In this section we introduce a notation that proves to be an invaluable tool in cal-
culation, called the Dirac notation. It gives a monogram to the integral of the product
of two state functions, Y/(x) and ¢(x), which appears as

“19) Wloy = [ weetdx

In Dirac notation, the integral on the right is written in the form shown on the left.

More generally, the integral operation (¢ |¢)> denotes: (1) take the complex
conjugate of the object in the first slot (i — ¥*) and then, (2) integrate the product
(¥ *@). This operation has the following simple properties. If a is any complex number
and the functions  and ¢ are such that

(4.20) f ” Yo dx < o
the following rules hold:

(4.21) Wlag) = alyled
(4.22) (aylo) = a*(yle)
(4.23) Plod* = oY)
@24 (o + Y| = <Yl + <ol
425) Jon v+ oax

=W+ Y210 + 020 = Yl + Do + 192))
= Y1l + Yile) + {Yle + Ylez)

The object i | (called a “ bra vector ”) has an inevitable fate. Eventually, it is integrated
in a product form with a (“ket vector”) | ), to form the “bra-ket,” (y/| ).

Dirac notation is not complicated. The properties above tell the whole story.
We move next to function spaces, where {¢|) assumes a geometrical quality.

93



PROBLEMS

4.4 Write the following equations for the state vectors f, g, and so on, in Dirac notation.

@ f(x)=g().

(b) c= fg*(x')h(x’) dx’.
© 10 =T o) [0, f ) dx.
d) 0=y f dx' o*(x).

0
© 5 S0 = hto) f I x)g(x) dx.

4.5 Consider the operator O = |@){y| and the arbitrary state function f(x). Describe the
following forms.

@ <f 0.

(® 011

© <S101f).

(@ <{f10}e>.

Answer (partial)
(a) ([0 is the bra vector C{y|, where the constant C = {f|p)> = {2 [*¢dx.

4.4 HILBERT SPACE

In this section we introduce the concept of a space of functions. Specifically we will
deal with a Hilbert space. This serves the purpose of giving a geometrical quality to
some of the abstract concepts of quantum mechanics.

We recall that in Cartesian 3-space a vector V is a set of three numbers, called
components (V,, V,, V,). Any vector in this space can be expanded in terms of the three
unit vectors e,, e,, e, (Fig. 4.5). Under such conditions one terms the triad e, e, e,,
a basis. '

(4.26) V=elV,+el, +el,

The vectors e,, e,, e, are said to span the vector space.
The inner (“dot™) product of two vectors (U and V) in the space is defined as

(4.27) V-U=VU +VU,+VU,

The length of the vector Vis /V* V.
94
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FIGURE 4.5 Vector V in Cartesian 3-space and its

components (V,, V,, V,). The orthogonal triad (e, e,, e,)
spans the space.

A Hilbert space is much the same type of object. Its elements are functions instead
of three-dimensional vectors. The similarity is so close that the functions are some-
times called vectors. A Hilbert space $ has the following properties.

L.

The space is linear. A function space is linear under the following two
conditions: (a) If a is a constant and ¢ is any element of the space, then
a@ is also an element. of the space. (b) If ¢ and Y are any two elements of
the space, then ¢ + ¥ is also an element of the space.

There is an inner product, {y |, for any two elements in the space. For
functions defined in the interval a < x < b (in one dimension), we may take

b
(4.28) (oly) = f o*Y dx

Any element of $ has a norm (“length”) that is related to the inner product
as follows:

(4.29) (norm of 9)? = |lo|* = {ele)

$ is complete. Every Cauchy sequence of functions in § converges to an
element of $. A Cauchy sequence {¢,} is such that | ¢, — ¢,| = 0Oasnand!
approach infinity. (See Problem 4.24.) Loosely speaking, a Hilbert space
contains all its limit points.
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An example of a Hilbert space is given by the set of functions defined on the
interval (0 < x < L) with finite norm

L
(4.30) ww=fwwu<w $,
0

Another example is the space of functions commonly referred to by mathematicians
as “L? space.” This is the set of square-integrable functions defined on the whole
X interval.

@.31) wW=f¢wh<w $,

Let us see how the preceding concept of inner product (4.28) is similar to the
definition of the inner product between two finite-dimensional vectors (4.27). To
see this we interpret the function ¢(x) as a vector with infinitely many components.
These components are the values that ¢ assumes at each distinct value of its inde-
pendent variable x. Just as the inner product between U and V is a sum over the
products of paralle]l components, so is the inner product between ¢ and i a sum over
parallel components. This sum is nothing but the integral of the product of ¢ and .
The reason we complex-conjugate the first “vector” is to ensure that the “length”
(square root of the inner product between a *“ vector” ¢ and itself) of a vector ¢ is real.

Thus we see that Hilbert space is closely akin to a vector space. Mathematicians!
call it that—an infinite-dimensional vector space (also: a complete, normed, linear
vector space). Elements of this space have length and one can form an inner product
between any two elements. The vector quality of Hilbert space can be pushed a bit
further. We recall that if two vectors U and V in three-dimensional vector space are
orthogonal to each other, their inner product vanishes. In a similar vein two vectors
in Hilbert space, ¢ and y, are said to be orthogonal if

(4.32) ply> =0

Furthermore, we recall that the three unit vectors e,, e,, and e, “span” 3-space.
Similarly, there is a set of vectors that “spans” Hilbert space. For instance, the
Hilbert space whose elements all have the property given by (4.30) is spanned by the
sequence of functions {¢,}, which are the eigenfunctions of the Hamiltonian relevant

' A more mathematically accurate presentation of function spaces may be found in C. Goffman and G. Pedrick, First
Course in Functional Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1965. Another book in this area, but more directly
related to quantum mechanics, is T. F. Jordan, Linear Operators for Quantum Mechanics, Wiley, New York, 1969.
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Projection of ¢
onto ¢; =< g;lp> Projection of
pontoy, =<y, lp>

p \

Projection of
pontoy, =<y, lp>

FIGURE 4.6 Projection of ¢ onto an orthonormal set of eigenfunctions in Hilbert space.

to the one-dimensional box Problem (4.15). This means that any function ¢ in this
Hilbert space may be expanded in a series of the sequence {¢,}.

(433) o) = 3 0,6,

The geometrical interpretation of this relation is depicted in Fig. 4.6. The
coefficient a,, is the projection of ¢ onto the vector ¢,. To see this, first we state a fact
to be illustrated in the next section. The basis vectors {¢,} comprise an orthogonal set.
That is,

(4.34) @ul@w> =0 (n#n)

Furthermore, ¢, is a unit vector; that is, it has unit “length”

(4.35) {@ulow) = lloall> = 1
These latter two statements may be combined into the single equation
(436) <(pn|(pn> = 5n, n

The symbol d, ,- is called the Kronecker delta and is defined by
4.37) Opw =0 forn#n, Opw=1 forn=n

Any sequence of functions that obeys (4.36) is called an orthonormal set.
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To show that g, is the projection of ¢ into ¢,, we first rewrite (4.33) in Dirac
notation.

(4.38) lo> = Yla,om

Then we multiply from the left by {¢, | and use the relation (4.36).
owlo) = Y {onla,0,>

(439) = Zan<(pn’l(pn> = Zanén,n’ = an’

ay = <(pn |(P>

The coefficient a, is the inner product between the basis vector ¢,. and the vector ¢.
Since ¢, is a “unit” vector, a, is the projection of ¢ onto ¢, (Fig. 4.6). The student
should recognize (4.33) to be a discrete Fourier series representation of ¢, in terms
of the trigonometric sequence (4.15).

Delta-Function Orthogonality

We will continue with the use of the labels $, and $, to denote the two Hilbert
spaces defined by (4.30) and (4.31), respectively. As stated previously, the sequence
{@,} given by (4.15)“spans” §,. The sequence {¢,} is a basis of §,. What are the vectors
which span §,? The answer is: the eigenfunctions of the momentum operator p,

ikx

(4.40) ou(x) = \/1278

Let us see if this (continuous) set of functions is an orthogonal set. Toward these ends
we form the inner product

1 [
(41) ooy =5 [ e Pax = ok — by

It follows that the inner product between any two distinct eigenvectors of the operator
p vanishes.

Any function in §, may be expanded in terms of the eigenvectors {¢,}. Since
this sequence comprises a continuous set, the expansion is not a discrete sum as in
(4.33), but an integral. If ¢(x) is any element of §,, then since {¢,} spans this space,
one may write

(442 o) = [ b0 dk
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This is the Fourier integral representation of ¢(x). Again, the coefficient of ex-
pansion b(k) is the projection of ¢(x) onto ¢,. To exhibit this fact, we first rewrite the
last integral in the form

) 0= [ kb

Again, if this equation is compared to (4.38), we see how the sum over discrete a,
values is replaced by an integration over the continuum of b(k) values. If we now multi-
ply (4.43) from the left with (¢, |, there results

as) ooy = [ dkonlbtond = [ kol
- f " dkb()SK — k) = b(K)

The coefficient of expansion b(k’) is the inner product between ¢, and ¢, hence it
may be termed a projection of ¢ onto ¢,.. But ¢, does not appear to be a “unit”
vector. Indeed, the vector ¢, is infinitely long.

(4.45) loal? = <orlod = 80 = 3 [ dx =0

Although this disqualifies the set {¢,} for membership in §,, they nevertheless span
the space. They comprise a valid set of basis vectors and the projection of any function
in $, onto any member of the basis {¢,} gives a finite result. If ¢ is any function in
$,, then

(4.46) ‘ {oulo) < 00

The functions {¢,} may, through proper renormalization, be cast in a form which
allows them to be members of §,. (See Problem 4.6.)

PROBLEMS

4.6 .Consider the functions

defined over the interval (— L/2, +L/2). .

(a) Show that these functions are all normalized to unity and maintain this nermaliza-
tion in the limit L — oo.

(b) Show that these functions comprise an orthogonal set in the limit L — oo.
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4.7 State to which space each of the functions listed belongs, $, or 9.
@ f; =% —x*— Lx* + Lx*)/(x — 2L)

(b) f = (sinx)e™

(©) fi=+/Inlx(x — L)+ 1]
(d) f,=sin2nn[x(x - L)+ 1], n=0,1,2,...

(€ fs= e +a)!
() fo=x'%*
(&) fr =1/sinkx

4.8 The function

g(x) = x(x — L)e**

is in §,. Calculate the coefficients of expansion, a,, of this function, in the series representation
(4.33), in terms of the constants L and k. Use the basis functions (4.15).

4.9 Two vectors i and ¢ in a Hilbert space are orthogonal. Show that their lengths obey the
Pythagorean theorem,

Iy + @l = Wi* + loll®

4.10 Consider a free particle moving in one dimension. The state functions for this particle are
allglements of §,. Show that the expectation of the momentum {p,) vanishes in any state that is
purely real (f* = ). Does this property hold for (H)»? Does it hold for {x>?

45 HERMITIAN OPERATORS

The average of an observable A for a system in the state y(x, t) is given by (3.32). In
Dirac notation this equation appears as (in one dimension)

@.47) Ay = f U0 DAY(x, 1) dx = YAV

Since ¢ is a fixed parameter in this equation, we may conclude that the formula gives
the expectation of A at the time t. Now one may ask: What are the possible state
functions for a particle moving in one dimension at a given instant of time ? The answer
is: any function in §, . For example, the particle could be in any of the following states
at some specified time:

) C ikx D
(4.48) Ui =Be My, = gy = e
X x% + a?

where B, C, and D are normalization constants. Again consider the observable A.
If the average of this observable is calculated in any of these states (that is, any
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member of §,), the result must be a real number. Thisis a property that we demand an
operator have if it is to qualify as the operator corresponding to a physical observable.
The object (¥/| Ay> must be real for all ¥ in §,. When working with the one-di-
mensional box problem, (| Ay'> must be real for all ¥ in §,. For example, if A is the
operator corresponding to energy, then

L *hz 62
dl Wn//dx

(449) (EY = WIAY) = -

o 2m

must be real for any state function y in §,.

These observations give rise to the following rule: In quantum mechanics one
requires that the eigenvalues of an operator corresponding to a physical observable
be real numbers. In this section we discuss the class of operators that have this property.
They are called Hermitian operators and are a cornerstone in the theory of quantum
mechanics,

The Hermitian Adjoint

To understand what a Hermitian operator is, we must first understand what the
Hermitian adjoint of an operator is. Consider the operator A. The Hermitian adjoint of
A is written A'. Under most circumstances, it is an entirely different operator from A.
For instance, the Hermitian adjoint of the complex number ¢ is the complex conjugate
of c. That is,

(4.50) ct=c*

How is the Hermitian adjoint defined? First, let us agree that an operator is defined
. over a specific Hilbert space, $. Also if A is the operator and Y is any element of §,
then Ay is also in $. For any two elements of this space, say y, and y,, we can form
the inner product

451) Wil Ay,
Suppose there is another operator, A*, also defined over 9, for which
(4.52) Al = Wil Ay,

Suppose further that this equality holds for all y, and Y, in $. Then At is called the
Hermitian adjoint of A. To find the Hermitian adjoint of an operator 4, we have to
find the object A* that fits (4.52) for all Y, and y,. Consider 4 = a,a complex number.
Then

(4.53) @Wilyn) = hlay,) = adgily,y = <a* 1y,
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Equating the first and the last terms, we see that a' = a*. As a second example, con-
sider the operator

d

4.54 D=—
(4.54) P

defined in §,. Then
o ® 0 ®
R W T R TATA LR e L7 12

= (=Dylya>
The “surface” term is zero since y, and y, are elements of §,. Thus we find
(4.56) bt=-D

For some cases we will find that the Hermitian adjoint of an operator is the operator
itself. For such an operator A, we may write

4.57) At =4

In terms of the defining equation (4.52), this implies that for all y, and y, in § (over
which 4 is defined),

(4.58) Wl Ay = CAnlv.>

Operators that have this property are called Hermitian operators. The simplest ex-
ample of a Hermitian operator is any real number a, since

(4.59) ' ilay,y = <aylyny

If A and B are two Hermitian operators, is the product operator AB Hermitian? This
is most simply answered with the aid of Problem 4.11(b), according to which

(4.60) (AB)t = B'At

If A and B are Hermitian, then

(4.61) (AB)' = BA

and AB is not (necessarily) Hermitian. What about AB + BA?

(4.62) (AB + BA)t = B'A' + A'B* = BA + AB
= AB + BA

It follows that if A and B are both Hermitian, so is the bilinear form (4B + BA).
Is the square of a Hermitian operator Hermiitian?

-~ P Ay~ -~

(4.63) (At = (AD = A4 = A4 = (A)?
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The answer is yes. Another way of doing this problem is as follows. Look at the inner
product,

(4.64) Wil AAy,y = CAy,| Ay,> = CAAy,y,>

The first equality follows because Ay, is in § and A is Hermitian, while the second
equality follows simply because 4 is Hermitian. Comparing the first and third terms
shows that 42 is Hermitian.

The Momentum and Energy Operators

Let us test the momentum operator p and see if it is Hermitian. For the free-particle
case, p is Hermitian if for all y, and y, in §,,

(4.65) ity = <oyl
Developing the left-hand side, we have

® d Y
ass) | w(—ihgwn)dn ~ihy =+ i | (é;w,*)wndx

© a *
_ f_w(""’a—x"") Undx = Bl

This technique is, by and large, the principal method by which a specific operator is
shown to be Hermitian.

Having shown that p is Hermitian, it follows that the free-particle Hamiltonian,
A, is Hermitjan. ‘

~ P
. =2
(4.67) o
52\t a2

p 14 A

.6 t=—) =—=8
(4.68) R <2m 2m

[Recall (4.63).] For a particle in a potential field V(x),
. p?
(4.69) H = o + V(x)
Since V' (x) is a real function that merely multiplies (say in $,), it is Hermitian.

@70) Wiviy = [ wevinax= [ viry,ax

- f Vhndx = Vil

- ~
It follows that A as given by (4.69) is Hermitian.



PROBLEMS

411 (a) Show that (ad + bB)' = a*4" + b*B'.
(b) Show that (AB)! = Bt4*".
() What is the Hermitian adjoint of the real number a?
(d) What is the Hermitian adjoint of D*? [See (4.54).]
(¢) What is the Hermitian adjoint of (4B — BA)?
(f) What is the Hermitian adjoint of (48 + BA)?
(g) What is the Hermitian ajoint of (4B — BA)?
(h) What is (ANH'?
(i) What is (A'A)'?
412 1If A and B are both Hermitian, which of the following three operators are Hermitian?
(a) i(AB — BA).
(b) (AB - BA).

AB + BA
© (—: )

(d) If 4 is not Hermitian, is the product A'4 Hermitian?
(e) If A corresponds to the observable 4, and B corresponds to B, what is a “good” (i.e.,
Hermitian) operator that corresponds to the physically observable product AB?

4.13 If 4 is Hermitian, show that
(A% =0
Answer (in 9,)

(a = jw YAy dx = j " (ApyAy dx

=J A2 dx =0

4.14 If A is Hermitian, show that (A4 is real; that is, show that (A>* = (4.

4.15 For a particle moving in one dimension, show that the operator £p is not Hermitian.
Construct an operator which corresponds to this physically observable product that is
Hermitian.

4.6 PROPERTIES OF HERMITIAN OPERATORS y

The first property of Hermitian operators we wish to establish is that their eigenvalues
are real. Let A be a Hermitian operator. Let {¢,} and {a,} represent, respectively, the
eigenfunctions and eigenvalues of the operator A.

~

4.71) Ao, = a,0,

In Dirac notation

4.72) |Ap,> = |a,@,> orequivalently 4|@,> =a,|p,)
104
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Multiplying from the left with (¢, | gives
(4.73) {PnlA0s> = {Pul 0, 00> = a, {0, ] 0,

Since A is Hermitian, we can write the left-hand side as

(4.74) CAPal 0n) = 0@l @) = 0,0, 0
Equating the last terms in the latter two equations gives
4.75) a,* = a,

and g, is real.

The second property of Hermitian operators we wish to establish is that their
eigenfunctions are orthogonal. Again consider (4.72). Now multiply from the left with
another eigenvector of 4, (¢,|. There results

(4.76) (o1l Ap,y = a o)l @,
Since A4 is Hermitian, the left-hand side of this equation can be rewritten
4.77) Apilo = a1l e.> = aloil o,

The eigenvalue q, is real because it is an eigenvalue of a Hermitian operator (ie., A).
Subtracting the two equations above gives

(4.78) (@ — a)<oil@,> =0
If a; # a,, this equation says that
(4.79) ‘ {plo,y =0

which is the expression of the orthogonality of the set of functions {¢,}. If these
functions are all normalized, then (4.79) may be generalized to read

(4.80) {@il@n) = by

Thus, the eigenvalues of a Hermitian operator are real, and its eigenfunctions are
orthogonal.

PROBLEMS
4.16 Show that if an operator B has an eigenvalue b, # b,*, then B is not Hermitian.
4.17 Consider the operator C,
Co(x) = ¢*(x)

(@ Is C Hermitian?
(b) What are the eigenfunctions of C?
(c) What are the eigenvalues of C?
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418 Given that the operator O annihilates the ket vector | ), that is, 0| f> = 0, what is the
value of the bra vector ¢ f]0'? Interpret the meaning of your answer.

4.19 The parallelogram law of geometry states that: the sum of the squares of the diagonals of a
parallelogram equals twice the sum of the squares of the sides. Show that this is also true in Hilbert
space; that is, if  and ¢ are any two elements of a Hilbert space, then

W + @l + Iy = ol = 21¥I* + 2|el?

4.20 Show that the standard properties of cos 6, together with the definition of the inner product
between two vectors ¢ and i, in $, with respective lengths, |l¢| and [y, imply the Cauchy-
Schwartz inequality

[<el¥! < llof vl

4.21 Use the Cauchy-Schwartz inequality to prove the triangle inequality

o + ¥iI? < (el + I¥1)?

4.22 Construct the squared length of (y — ¢) to show that

11 + lol*> > 2Re (Ylo>

4.23 Let the sequence {¢,} be an orthonormal basis in §. Let the sequence {cos 6,} represent the
angles between the vectors {¢,} and an arbitrary element i in $. Using Bessel’s inequality,

Y Keal¥d1* < Iyl
n=1
show that

Y cos? 6, <1
n=1

s/
Under what circumstances does the equality hold?
|
4.24 Every convergent sequence is also a Cauchy sequence. A sequence {¢,(x)} is a Cauchy
sequence if

lim o, — il =0

e
A function space $ is a complete space if every Cauchy sequence in $ converges to an element of $.
This is a requirement that a function space must satisfy in order that it be termed a Hilbert space.
(See property 4 after Eq. 4.27.) Show that the space of functions on the unit interval with the
property ¢(0) = o(1) = 0 is not a Hilbert space.
4.25 In addition to a complete space, one also defines a complete sequence. An orthonormal
sequence {¢,} is complete in $ if there is no vector ¥, in $ of nonzero length (||| >0), which is
perpendicular to all the elements in the sequence {¢,}. Show that if {¢,} is an orthonormal basis
of §, it is complete in §.
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Answer

Let {¢,} be an orthonormal basis of §. Let i be an element of $ with nonzero length, which is
normal to all the elements of {g,}. If {¢,} is a basis, then we may expand i,

¥ =2Ya,0,= ) {e.l¥o,
But y is normal to all ¢,. Therefore, {¢,|¥> = 0, which gives y = 0, so the hypothesis leads to a
contradiction, hence the hypothesis is an incorrect statement and there is no such Y in 9.

4.26 Show that any operator 4 may be expressed as the linear combination of a Hermitian and
an anti-Hermitian (B' = — B) operator. |

. (2 + 2*) _(2 - 2')
A= + i -
2 2i

[Note: A + A" and i(4 — A") are both Hermitian.]
4.27 Show that the wavefunctions for a particle in a one-dimensional box with walls at x = 0
and L satisfy the equality

Answer

f:w*wn dx = — f:lw dx

The subscript x denotes differentiation.

4.28 Use the equality proved in Problem 4.27 to establish the following variational principle.
If the expectation | y*Hy dx is minimum, the normalized wavefunction ¥ is the ground state.
Specifically, establish the theorem for a particle in a one-dimensional box, assuming real wave-
functions.

Answer
Apart from a constant factor and with the results of Problem 4.27, we may write

(Hy = — f Y dx = f:z//ﬁ dx

Let y minimize (K. Then infinitesimal variation of y causes no change in (H>. Let  — ¢ + .
The variation 3y is an arbitrary infinitesimal function of x that vanishes at x = 0 and L. Then

CH = f v, dx - f (W + 6)? dx = CHY + 6CH
5<H>=2f.//xé.pxdx=2f¢,(;ixa.pdx=o

Integrating the last term by parts and dropping the “surface” terms gives

[opax=0
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Variation of the normalization statement (both y and y + & are normalized) gives
A f://é:// dx =0
where 4 is an arbitrary undetermined multiplier. Combining the last two equations yields

fLaw(w,, _ Ay dx =0

If this equation is to be satisfied for arbitrary variation of y about the minimizing vaiue, we may
conclude
Vs = A

It follows that y is an eigenstate of A, in which case {H ) is an energy eigenvalue which has minimum
value for the ground state.



