CHAPTER 3

FORMALISM

3.1 HILBERT SPACE

In the last two chapters we have stumbled on a number of interesting properties of
simple quantum systems. Some of these are “accidental” features of specific poten-
tials (the even spacing of energy levels for the harmonic oscillator, for example),
but others seem to be more general, and it would be nice to prove them once and
for all (the uncertainty principle, for instance, and the orthogonality of stationary
states). The purpose of this chapter is to recast the theory in a more powerful form,
with that in mind. There is not much here that is genuinely new; the idea, rather,
is to make coherent sense of what we have already discovered in particular cases.

Quantum theory is based on two constructs: wave functions and operators. The
state of a system is represented by its wave function, observables are represented
by operators. Mathematically, wave functions satisfy the defining conditions for
abstract vectors, and operators act on them as linear transformations. So the
natural language of quantum mechanics is linear algebra.!

But it is not, I suspect, a form of linear algebra with which you are immediately
familiar. In an N-dimensional space it is simplest to represent a vector, |«), by the
N-tuple of its components, {a,}, with respect to a specified orthonormal basis:

a
) —a=| . |. [3.1]

r you have never studied linear algebra, you should read the Appendix belore continuing.
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The inner product, (@|8), of two vectors (generalizing the dot product in three
dimensions) is the complex number,

(@|B) = ayb) +a3br+ - - -+ ayby. [3.2]

Linear transformations, T, are represented by matrices (with respect to the specified
basis), which act on vectors (to produce new vectors) by the ordinary rules of matrix
multiplication:

nr fHa - NN a
fy fha -+ DnhnN az

B)=Tle) >b=Ta=] . . . .- [3.3]
INL IN2 - INN aN

But the “vectors™ we encounter in quantum mechanics are (for the most part)
functions, and they live in infinite-dimensional spaces. For them the N-tuple/matrix
notation is awkward, at best, and manipulations that are well-behaved in the finite-
dimensional case can be problematic. (The underlying reason is that whereas the
finite sum in Equation 3.2 always exists, an infinite sum—or an integral —may not
converge, in which case the inner product does not exist, and any argument involving
inner products is immediately suspect.) So even though most of the terminology and
notation should be familiar, it pays to approach this subject with caution.

The collection of all functions of x constitutes a vector space, but for our
purposes it is much too large. To represent a possible physical state, the wave
function ¥ must be normalized:

f |\Il|2d.\‘ = 1.

The set of all square-integrable functions, on a specified interval,

b
f(x) such that f | F(O)? dx < oo. [3.4]

a
constitutes a (much smaller) vector space (see Problem 3.1(a)). Mathematicians
call it L, (a. b); physicists call it Hilbert space.® In quantum mechanics, then,

Wave functions live in Hilbert space. [3.5]

ZFor us. the limits (a and b) will almost always be + 0o, but we might as well keep things more
general for the moment.

Mechnically. a Hilbert space i$ a complete inner product space, and the collection of square-
integrable Tunctions is only one example of a Hilbert space—indeed, every finite-dimensional vector
space is trivially a Hilbert space. But since L3> is the arena of quantuin mechanics, it's what physieists
generally mean when they say “Hilbert spacc.” By the way, the word complete here means that any
Cauchy sequence of functions in Hilbert space converges o a function that is also in the space: it has no
“holes” in iL. just as the set of all real numbers has no holes (by contrast, the space of all polynomials,
for example, like the sct of all rational numbers. certainly does have holes in it). The completeness
of a space has nothing o do with the completeness (same word. unfortunately) of a ser of functions.
which is the property that any other function can be expressed as a linear combination of them.
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We define the inner product of two functions, f(x) and g(x), as follows:
b

(fley= | Fx)*glx)dx. [3.6]

If f and g are both square-integrable (that is, if they are both in Hilbert space),
their inner product is guaranteed to exist (the integral in Equation 3.6 converges to
a finite number).* This follows from the integral Schwarz inequality:>

b b b
f f(x)*g(x) d-’c" < \[f | f ()2 dxf lg(x)? dx. [3.7]

You can check for yourself that Equation 3.6 satisfies all the conditions for an inner
product (Problem 3.1(b)). Notice in particular that

(glf) = {flg)*. [3.8]

Moreover, the inner product of f(x) with itself,

b
FIF) = f 00 dx, [3.9]

is real and non-negative; it’s zero only® when f(x) = 0.

A function is said to be normalized if its inner product with itself is 1; two
functions are orthogonal if their inner product is 0; and a set of functions, {f,},
is orthonormal if they are normalized and mutually orthogonal:

(fm'fn) = ‘Snm- [3-10]

Finally, a set of functions is complete if any other function (in Hilbert space) can
be expressed as a linear combination of them:

SO =" cn fuld). [3.11]

n=l|

*In Chapter 2 we were obliged on occasion to work with functions that were nor normalizable.
Such functions lic outside Hilbert space, and we are going Lo have to handle them with special care, as
you will see shortly. For the moment, I shall assume that all the functions we encounter are in Hilbert
space.

SFor a proot, see F. Riesz and B. Sz.-Nagy. Funcrional Analysis (Unger, New York, 1955),
Section 21. In a finite dimensional vector space the Schwarz inequality, l((xlﬂ)l2 =< {a]a){B8IB). is

casy Lo prove (see Problem A.5). But that proof assumes the existence of the inner products, which is
precisely what we are trying to establish here.

6What about a function that is zero everywhere except at a few isolated points? The integral
(Equation 3.9) would still vanish, cven though the function itself does not. If this bothers you, you
should have been a math major. In physics such pathological functions do not occur, but in any case, in
Hilbert space two functions that have the same square integral are considered equivalent. Technically,
vectors in Hilbert space represent equivalence classes of functions.
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If the functions { f;, (x)} are orthonormal, the coefficients are given by Fourier’s trick:

cn = {ful f)- [3.12]

as you can check for yourself. I anticipated this terminology, of course, back
in Chapter 2. (The stationary states for the infinite square well (Equation 2.28)
constitute a complete orthonormal set on the interval (0. a); the stationary states
for the harmonic oscillator (Equation 2.67 or 2.85) are a complete orthonormal set
on the interval (—oo. 00).)

Problem 3.1

(a) Show that the set of all square-integrable functions is a vector space (refer
to Section A.1 for the definition). Hint: The main problem is to show that
the sum of two square-integrable functions is itself square-integrable. Use
Equation 3.7. Is the set of all normalized functions a vector space?

(b) Show that the integral in Equation 3.6 satisfies the conditions for an inner
product (Section A.2).

xProblem 3.2

(a) For what range of v is the function f(x) = x" in Hilbert space, on the
interval (0. 1)? Assume v is real, but not necessarily positive.

(b) For the specific case v = 1/2, is f(x) in this Hilbert space? What about
xf(x)? How about (d/dx) f(x)?

3.2 OBSERVABLES

3.2.1 Hermitian Operators

The expectation value of an observable Q(x. p) can be expressed very neatly in
inner-product notation:’

(0) =fwéwx= (W|0W). [3.13]

TRemember that @ is the operator constructed from Q by the replacement p — p = (h/i)d/dx.
These operators arc linear. in the sense that

Q[af(.\') + bg(x)] = le_f(.\') + 17Qg(.\').

for any tunctions / and g and any complex numbers « and b. They constitute linear transformations
(Scction A.3) on the space of all Tunctions. However. they sometimes carry a function inside Hilbert
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Now, the outcome of a measurement has got to be real, and so, a fortiori, is the
average of many measurements:

(Q) =(0)". [3.14]
But the complex conjugate of an inner product reverses the order (Equation 3.8), so
(WIQW) = (QW|¥). [3.15]

and this must hold true for any wave function W. Thus operators representing
observables have the very special property that

(FI0F) =(QfIf) forall f(x). [3.16]

We call such operators hermitian.
Actually, most books require an ostensibly stronger condition:

(F10g) = (O flg) forall f(x)and all g(x). [3.17]

But it turns out, in spite of appearances, that this is perfectly equivalent to my
definition (Equation 3.16), as you will prove in Problem 3.3. So use whichever
you like. The essential point is that a hermitian operator can be applied either to
the first member of an inner product or to the second, with the same result, and
hermitian operators naturally arise in quantum mechanics because their expectation
values are real:

Observables are represented by hermitian operators. [3.18]

Well, let’s check this. Is the momentum operator, for example, hermitian?
o hd h * (hdf\* . ,
B k= +f (fi) gdv=(pflg). [3.19]
—eo L dx i dx

I used integration by parts, of course, and threw away the boundary term for the
usual reason: If f(x) and g(x) are square integrable, they must go to zero at +o0.8

space into a function outside it (see Problem 3.2(b)). and in this cuse the domain of the operator may
have 1o be restricted.

h‘Actually. this is not quite true. As I mention in Chapter . there exist pathological functions
that are square-integrable but deo nor go to zero at infinity, However, such functions do not arise in
physics. and if you are worried about it we will simply restrict the domain of our operators to exclude
them. On fuiite intervals. though. you really do have to be more carcful with the boundary terms,
and an operator that is hermitian on (—o0. 00) may nor be hermitian on (0. co) or (—x, x). If you're
wondering about the infinite square well. it’s safest to think of these wave functions as residing on the
infinite line—they just happen to be zer outside (0. a).
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Notice how the complex conjugation of i compensates for the minus sign picked
up from integration by parts—the operator d/dx (without the 7) is not hermitian,
and it does not represent a possible observable.

«Problem 3.3 Show that if (h|Qh) = (Qh|h) for all functions / (in Hilbert space),
then (f |Qg) = (Of lg) for all f and g (i.e., the two definitions of “hermi-
tian”—Equations 3.16 and 3.17—are equivalent). Hint: First let h = f 4+ g, and
then let h = f +ig.

Problem 3.4

(a) Show that the sum of two hermitian operators is hermitian.

(b) Suppose 0 is hermitian, and « is a complex number. Under what condition
(on @) is & Q hermitian?

(c) When is the product of two hermitian operators hermitian?

(d) Show that the position operator (X = x) and the hamiltonian operator (H =
—(h? /2m)d?/dx* + V (x)) are hermitian.

Problgm 3.5 The hermitian conjugate (or adjoint) of an operator 0 is the oper-
ator Q" such that

(f108) = (0" flg) (for all f and g). [3.20]
(A hermitian operator, then, is equal to its hermitian conjugate: Q = o
(a) Find the hermitian conjugates of x, i, and d/dx.

(b) Construct the hermitian conjugate of the harmonic oscillator raising operator,
a4 (Equation 2.47).

(c) Show that (QI'\;)T = IQTQJF.

3.2.2 Determinate States

Ordinarily, when you measure an observable Q on an ensemble of identically
prepared systems, all in the same state W, you do not get the same result each
time—this is the indeterminacy of quantum mechanics.® Question: Would it be
possible to prepare a state such that every measurement of Q is certain to return
the same value (call it ¢)? This would be, if you like, a determinate state, for
the observable Q. (Actually, we already know one example: Stationary states are
determinate states of the Hamiltonian; a measurement of the total energy, on a

I'm talking about competent measurements, of course—it's always possible to make a mistake.
and simply get the wrong answer, but that’s not the fault of quantum mechanics.
ply g q
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particle in the stationary state W¥,, is certain to yield the corresponding *“‘allowed”
energy E,.)

Well, the standard deviation of Q, in a determinate state, would be zero, which
is to say,

o? = ((Q — (0N*) = (¥I(Q — 9)*¥) = (O — P¥I(Q — )¥) =0. [3.21]

(Of course, if every measurement gives ¢, their average is also ¢g: (Q) = ¢q. I also
used the fact that O, and hence also 0 — g, is a hermitian operator, to move one
factor over to the first term in the inner product.) But the only function whose inner
product with itself vanishes is 0, so

OV =qW. 3.22]

This is the eigenvalue equation for the operator O; ¥ is an eigenfunction of 0.
and ¢ is the corresponding eigenvalue. Thus

Determinate states are eigenfunctions of Q [3.23]

Measurement of Q on such a state is certain to yield the eigenvalue, .

Note that the eigenvalue is a number (not an operator or a function). You can
multiply any eigenfunction by a constant, and it is still an eigenfunction, with the
same eigenvalue. Zero does not count as an eigenfunction (we exclude it by defi-
nition—otherwise every number would be an eigenvalue, since 00= q0 =0 for
any operator Q and all ¢). But there’s nothing wrong with zero as an eigenvalue.
The collection of all the eigenvalues of an operator is called its spectrum. Some-
times two (or more) linearly independent eigenfunctions share the same eigenvalue;
in that case the spectrum is said to be degenerate.

For example, determinate states of the total energy are eigenfunctions of the
Hamiltonian: R

Hy = Ey. [3.24]

which is precisely the time-independent Schrédinger equation. In this context we
use the letter E for the eigenvalue, and the lower case ¥ for the eigenfunction (tack
on the factor exp(—i Et/h) to make it W, if you like; it’s still an eigenfunction
of H).

Example 3.1 Consider the operator
Q=i—, [3.25]
where ¢ is the usual polar coordinate in two dimensions. (This operator might arise

in a physical context if we were studying the bead-on-a-ring; see Problem 2.46.)
Is Q hermitian? Find its eigenfunctions and eigenvalues.
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Solution: Here we are working with functions f(¢) on the finite interval 0 < ¢ <
2w, and stipulate that

flo+2m) = f(¢). [3.26]

since ¢ and ¢ + 2 describe the same physical point. Using integration by parts,

e g 2 (24 s
00 = [ 7 (i55) o =irvsly — [ (L ) eao =10 110

so Q is hermitian (this time the boundary term disappears by virtue of Equation 3.26).
The eigenvalue equation,

I-CE] (@) =qf(9). [3.27]

has the general solution

f(@) = Ae714?, [3.28]
Equation 3.26 restricts the possible values of the ¢:
e =1 = ¢=0%1.%2,... [3.29]

The spectrum of this operator is the set of all integers, and it is nondegenerate.

Problem 3.6 Consider the operator O = d?/d¢?, where (as in Example 3.1)
¢ is the azimuthal angle in polar coordinates, and the functions are subject to
Equation 3.26. Is O hermitian? Find its eigenfunctions and eigenvalues. What is
the spectrum of Q? Is the spectrum degenerate?

3.3 EIGENFUNCTIONS OF A HERMITIAN OPERATOR

Our attention is thus directed to the eigenfunctions of hermitian operators (phys-
ically: determinate states of observables). These fall into two categories: If the
spectrum is discrete (i.e., the eigenvalues are separated from one another) then the
eigenfunctions lie in Hilbert space and they constitute physically realizable states.
If the spectrum is continuous (i.e., the eigenvalues fill out an entire range) then
the eigenfunctions are not normalizable, and they do not represent possible wave
functions (though linear combinations of them—involving necessarily a spread
in eigenvalues—may be normalizable). Some operators have a discrete spectrum
only (for example, the Hamiltonian for the harmonic oscillator), some have only a
continuous spectrum (for example, the free particle Hamiltonian), and some have
both a discrete part and a continuous part (for example, the Hamiltonian for a
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finite square well). The discrete case is easier to handle, because the relevant inner
products are guaranteed to exist—in fact, it is very similar to the finite-dimensional
theory (the eigenvectors of a hermitian smatriv). I'll treat the discrete case first, and
then the continuous one.

3.3.1 Discrete Spectra

Mathematically, the normalizable eigenfunctions of a hermitian operator have two
important properties:

Theorem 1: Their eigenvalues are real.
Proof: Suppose
Of =qf.
(i.e., f(x) is an eigenfunction of Q, with eigenvalue ¢), and!?
(F10) = (O f1f)

(Q is hermitian). Then

a{f1f) =q*(f1f)

(¢ is a number, so it comes outside the integral, and because the first function
in the inner product is complex conjugated (Equation 3.6), so too is the g on
the right). But (f|f) cannot be zero ( f(x) = 0 is not a legal eigenfunction),
so ¢ = q*, and hence ¢ is real. QED

This is comforting: If you measure an observable on a particle in a determinate
state, you will at least get a real number.

Theorem 2: Eigenfunctions belonging to distinct eigenvalues are ortho-
gonal.

Proof: Suppose
Of=qf and Qg=g'g.
and O is hermitian. Then (leg) = (QAflg), SO
a'(flg) =q*(flg)

(again, the inner products exist because the eigenfunctions are in Hilbert
space by assumption). But ¢ is real (from Theorem 1), so if ¢’ # ¢ it must
be that (f|g) =0. QED

101 is here that we assume the eigenfunctions arc in Hilbert spacc—otherwise the inner product
might not cxist at all.
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That’s why the stationary states of the infinite square well, for example, or the
harmonic oscillator, are orthogonal —they are eigenfunctions of the Hamiltonian
with distinct eigenvalues. But this property is not peculiar to them, or even to the
Hamiltonian—the same holds for determinate states of any observable.
Unfortunately, Theorem 2 tells us nothing about degenerate states (¢’ = ¢).
However, if two (or more) eigenfunctions share the same eigenvalue, any lin-

ear combination of them is itself an eigenfunction, with the same eigenvalue

(Problem 3.7(a)), and we can use the Gram-Schmidt orthogonalization proce-
dure (Problem A .4) to construct orthogonal eigenfunctions within each degenerate
subspace. It is almost never necessary to do this explicitly (thank God!), but it can
always be done in principle. So even in the presence of degeneracy the eigenfunc-
tions can be chosen to be orthogonal, and in setting up the formalism of quantum
mechanics we shall assume that this has already been done. That licenses the use
of Fourier’s trick, which depends on the orthonormality of the basis functions.

In a finite-dimensional vector space the eigenvectors of a hermitian matrix
have a third fundamental property: They span the space (every vector can be
expressed as a linear combination of them). Unfortunately, the proof does not
generalize to infinite-dimensional spaces. But the property itself is essential to the
internal consistency of quantum mechanics, so (following Dirac!'!) we will take it
as an axiom (or, more precisely, as a restriction on the class of hermitian operators

that can represent observables):

Axiom: The eigenfunctions of an observable operator are complete: Any
function (in Hilbert space) can be expressed as a linear combination of
them.!?

Problem 3.7

(a) Suppose that f(x) and g(x) are two eigenfunctions of an operator Q, with
the same eigenvalue ¢. Show that any linear combination of f and g is itself
an eigenfunction of Q. with eigenvalue gq.

(b) Check that f(x) = exp(x) and g(x) = exp(—x) are eigenfunctions of the
operator d>/dx>, with the same eigenvalue. Construct two linear combina-
tions of f and g that are orthogonal eigenfunctions on the interval (—1. 1).

'p A. M. Dirac. The Principles of Quanium Meclanics. Oxford University Press, New York
(1958).

I . . . N

PIn some specific cases completeness is provable (we know that the siationary states of the
infinite square well. for example. ure complete, because of Dirichlet’s theorem). It is a little awk-
ward (o call something an “axiom™ that is provable in some cases. but | don’t know a better way to
handle it
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Problem 3.8

(a) Check that the eigenvalues of the hermitian operator in Example 3.1 are real.
Show that the eigenfunctions (for distinct eigenvalues) are orthogonal.

(b) Do the same for the operator in Problem 3.6.

3.3.2 Continuous Spectra

If the spectrum of a hermitian operator is continuous, the eigenfunctions are not
normalizable, and the proofs of Theorems | and 2 fail, because the inner products
may not exist. Nevertheless, there is a sense in which the three essential properties
(reality, orthogonality, and completeness) still hold. I think it's best to approach
this subtle case through specific examples.

Example 3.2 Find the eigenfunctions and eigenvalues of the momentum operator.

Solution: Let f),(x) be the eigenfunction and p the eigenvalue:

hod o
lTE;f/)(-\) = pr(-l)- [3.30]

The general solution is
fp(x) = AeP/N,

This is not square-integrable, for any (complex) value of p—the momentum oper-
ator has no eigenfunctions in Hilbert space. And yet, if we restrict ourselves to
real eigenvalues, we do recover a kind of ersatz “orthonormality.” Referring to
Problems 2.24(a) and 2.26,

m x 3 1
f Fo(®) fpx)dx = |A) f e PPN gy = |A|2mh 8(p — p').  [3.31]
bl &) -

If we pick A = 1/+/2mh, so that

1 .
() = —— Ip.\/h. 3.32
Jp(x) me [ ]
then
(fplfp) =8(p—p). [3.33]

which is strikingly reminiscent of true orthonormality (Equation 3.10)—the indices
are now continuous variables, and the Kronecker delta has become a Dirac delta,
but otherwise it looks just the same. I'll call Equation 3.33 Dirac orthonormality.
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Most important, the eigenfunctions are complete, with the sum (in Equation 3.11)
replaced by an integral: Any (square-integrable) function f(x) can be written in
the form

00 1 % -
fx)= f c(p) fp(x)dp = Wit f c(p)eP " dp. [3.34]
x5 —-2C

The expansion coefficient (now a function, c(p)) is obtained, as always, by Fourier’s
trick:
o0

(fplf) :f C(p)(fp'lfp)dp=f c(p)S(p—pHdp =c(p’). [3.35]

-0 -G

Alternatively, you can get them from Plancherel’s theorem (Equation 2.102), for
the expansion (Equation 3.34) is nothing but a Fourier transform.

The eigenfunctions of momentum (Equation 3.32) are sinusoidal, with wave-

length
2nth

=
This is the old de Broglie formula (Equation 1.39), which I promised to prove at
the appropriate time. It turns out to be a little more subtle than de Broglie imagined,
because we now know that there is actually 1o such thing as a particle with deter-
minate momentum. But we could make a normalizable wave packet with a narrow
range of momenta, and it is to such an object that the de Broglie relation applies.

What are we to make of Example 3.2? Although none of the eigenfunctions
of p lives in Hilbert space, a certain family of them (those with real eigenvalues)
reside in the nearby “suburbs,” with a kind of quasi-normalizability. They do not
represent possible physical states, but they are still very useful (as we have already
seen, in our study of one-dimensional scattering).l3

A [3.36]

Example 3.3 Find the eigenfunctions and eigenvalues of the position operator.

Solution: Let g,(x) be the eigenfunction and y the eigenvalue:

X gy(x) =y gy(x). [3.37]

I3What about the cigenfunctions with nonreal cigenvalues? These are not merely non-
normalizable—they actually blow up at +oc. Functions in what | called the “'suburbs™ of Hilbert space
(the entire metropolitan area is sometimes called a “rigged Hilbert space”: see. for example, Leslie
Ballentine's Quantum Mechanics: A Modern Development, World Scientific, 1998) have the property
that although they have no (finite) inner product with themselves, they do admit inner products with all
members of Hilbert space. This is not true for eigenfunctions of p with nonreal eigenvalues. In particu-
lar. T showed that the momentum operator is hermitian for functions in Hilbert space. but the argument
depended on dropping the boundary term (in Equation 3.19). That term is still zero if g is an eigenfunc-
tion of p with a real eigenvalue (as long as f is in Hilbert space), but not if the eigenvalue has an imag-
inary part. In this sense any complex number is an eigenvalue of the operator p, but only real numbers
are eigenvalues of the hermitian operator p—the others lic outside the space over which p is hermitian.
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Here y is a fixed number (for any given eigenfunction), but x is a continuous
variable. What function of x has the property that multiplying it by x is the same
as multiplying it by the constant y? Obviously it's got to be zero, except at the one
point x = y; in fact, it is nothing but the Dirac delta function:

gy(x) = A8(x — ).

This time the eigenvalue has to be real; the eigenfunctions are not square-integrable,
but again they admit Dirac orthonormality:

o0 o
/ g’:,(x) gy(x)dx = IAlzf S(x —v)8(x — y)dx = |A|28(y —y). [3.38]
0 —0Q

If we pick A=1, so
gy(x) =38(x — y). [3.39]

then
(gy'|g_\') =68(y — .V’)- [3.40]

These eigenfunctions are also complete:

.f(x)=/. c(y) g,v(-\‘)d.v=f | c(3)8(x — ¥)dy, [3.41]
-0 -0
with

c(») = f(y) [3.42]

(trivial, in this case, but you can get it from Fourier's trick if you insist).

If the spectrum of a hermitian operator is continuous (so the eigenvalues are
labeled by a continuous variable— p or y. in the examples; z, generically, in what
follows), the eigenfunctions are not normalizable, they are not in Hilbert space and
they do not represent possible physical states; nevertheless, the eigenfunctions with
real eigenvalues are Dirac orthonormalizable and complete (with the sum now an
integral). Luckily, this is all we really require.

Problem 3.9

(a) Cite a Hamiltonian from Chapter 2 (other than the harmonic oscillator) that
has only a discrete spectrum.

(b) Cite a Hamiltonian from Chapter 2 (other than the free particle) that has only
a continuous spectrum.



APPENDIX

LINEAR ALGEBRA

Linear algebra abstracts and generalizes the arithmetic of ordinary vectors, such as
those we encounter in first-year physics. The generalization is in two directions:
(1) We allow the scalars to be complex numbers, and (2) we do not restrict ourselves
to three dimensions.

A.1 VECTORS

A vector space consists of a set of vectors (|o), |8), |¥). ...), together with a set
of scalars (a, b, c, ...),! which is closed® under two operations: vector addition
and scalar multiplication.

e Vector Addition

The “sum” of any two vectors is another vector:

le) +18) = |y)- [A.1]
Vector addition is commutative:
la) +(B) = |B) + |e). [A.2]

FFor our purposes, the scalurs will be ordinary complex numbers. Mathematicians can tell you
about vector spaces over more exotic fields. but such objects play no role in quantum mechanics. Note
that @. B. y ... are not (ordinarily) numbers: they are names (labels)—Charlie.” [or instance. or
“F43A-9GL."” or whatever you care 1o use 0 identify the vector in question.

*That is to say, these operations arc always well-defined, and will never carry you outside the
veelor space.

435
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Linear Algebra

and associative:
la) + (18) + 1¥)) = (la) + [8)) + |¥). [A.3]

There exists a zero (or null) vector,3 |0), with the property that

) +10) = [e). [A.4]

for every vector |¢). And for every vector |«) there is an associated inverse
vector (| — «)),* such that

o) + | — ) = 10). [A.5]

e Scalar Multiplication
The “product” of any scalar with any vector is another vector:
aler) = |y). [A.6]

Scalar multiplication is distributive with respect to vector addition:

a(la) + |B)) = ala) + alB), [A.7]
and with respect to scalar addition:
(a + b)|a) = ala) + bla). [A.8]
It is also associative with respect to the ordinary multiplication of scalars:
a(bla)) = (ab)|a). [A.9]
Multiplication by the scalars 0 and 1 has the effect you would expect:
Olay = 10):  lla) = |a). [A.10]
Evidently | — ) = (—1)|o) (which we write more simply as —|a)).

There’s a lot less here than meets the eye—all I have done is to write down
in abstract language the familiar rules for manipulating vectors. The virtue of such
abstraction is that we will be able to apply our knowledge and intuition about the
behavior of ordinary vectors to other systems that happen to share the same formal
properties.

3t is customary, where no confusion can arise, to write the null vector without the adorning
bracket: |0) — 0.

AThis is funny notation. since « is not a number. I'm simply adopting the name “—Charlic™ for
the inverse of the vector whose name is “Charlie.” More natural terminology will suggest itself in a
moment.
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A linear combination of the vectors |o), |B8), |y), ..., is an expression of
the form
ala) +b|B) +cly) +---. [A.11]

A vector |A) is said to be linearly independent of the set |«), |B), |¥), ...,
if it cannot be written as a linear combination of them. (For example, in three
dimensions the unit vector £ is linearly independent of 7 and j, but any vector
in the xy plane is linearly dependent on i and j.) By extension, a set of vectors
is “linearly independent” if each one is linearly independent of all the rest. A
collection of vectors is said to span the space if every vector can be written as
a linear combination of the members of this set.’> A set of linearly independent
vectors that spans the space is called a basis. The number of vectors in any basis
is called the dimension of the space. For the moment we shall assume that the
dimension (n) is finite.
With respect to a prescribed basis

ler), le2).... . len). [A.12]

any given vector
lo) = aile)) +azlez) + - - -+ aylen), [A.13]

is uniquely represented by the (ordered) n-tuple of its components:
o) < (ay,ar.....ay). [A.14]

It is often easier to work with the components than with the abstract vectors them-
selves. To add vectors, you add their corresponding components:

ey + |BY <> (a1 +by.ax + by, ... .a,+ by): [A.15]
to multiply by a scalar you multiply each component:
cla) < (cay.caa, ... .cay). [A.16]
the null vector is represented by a string of zeroes:
[0) < (0.0....,0); [A.17]
and the components of the inverse vector have their signs reversed:

| — ) < (—ay;. —aa2. ... . —ay). [A.18]

A set of vectors that spans the space is also called complete. though I personally reserve that
word for the infinite-dimensional case. where subtle questions of convergence may arisc.
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The only disadvantage of working with components is that you have to commit
yourself to a particular basis. and the same manipulations will look very different
to someone working in a different basis.

Problem A.1 Consider the ordinary vectors in 3 dimensions (a,i + a,j + a-k),
with complex components.

(a) Does the subset of all vectors with a- = 0 constitute a vector space? If so,
what is its dimension; if not, why not?

(b) What about the subset of all vectors whose z component is 1? Hint: Would
the sum of two such vectors be in the subset? How about the null vector?

(c) What about the subset of vectors whose components are all equal?

xProblem A.2 Consider the collection of all polynomials (with complex coeffi-
cients) of degree less than N in x.

(a) Does this set constitute a vector space (with the polynomials as “vectors’™)?
If so, suggest a convenient basis, and give the dimension of the space. If not,
which of the defining properties does it lack?

(b) What if we require that the polynomials be even functions?

(c) What if we require that the leading coefficient (i.e., the number multiplying
N-1 :
X ) be 1?

(d) What if we require that the polynomials have the value 0 at x = 1?

(e) What if we require that the polynomials have the value 1 at x = 0?

Problem A.3 Prove that the components of a vector with respect to a given basis
are unique.

A.2 INNER PRODUCTS

In three dimensions we encounter two kinds of vector products: the dot product and
the cross product. The latter does not generalize in any natural way to n-dimensional
vector spaces, but the former does —in this context it is usually called the inner
product. The inner product of two vectors (Jo) and |8)) is a complex number,
which we write as {(«|B8), with the following properties:
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(Bla) = (o] B)*, [A.19]
(lay >0, and (a|a)=0<« |a)=|0), [A.20]
(a|(b|B) + cly)) = bl{a|B) + cla|y). [A.21]

Apart from the generalization to complex numbers, these axioms simply codify the
familiar behavior of dot products. A vector space with an inner product is called
an inner product space.

Because the inner product of any vector with itself is a nonnegative number
(Equation A.20), its square root is real —we call this the norm of the vector:

leell = v{a|a): [A.22]

it generalizes the notion of “length.” A unit vector (one whose norm is 1) is said
to be normalized (the word should really be “normal,” but I guess that sounds too
anthropomorphic). Two vectors whose inner product is zero are called orthogonal
(generalizing the notion of “‘perpendicular”). A collection of mutually orthogonal
normalized vectors,

{ajla;) = §;;. [A.23]

is called an orthonormal set. It is always possible (see Problem A.4), and almost
always convenient, to choose an orthonormal basis; in that case the inner product
of two vectors can be written very neatly in terms of their components:

(a|BY =aiby +asby+ - +a;by,. [A.24]
the norm (squared) becomes
(aler) = lar | + lazl® + - + lay . [A.25]
and the components themselves are
a; = {ej|a). [A.26]

(These results generalize the familiar formulas a - b = a,by + ayby +a;b., la]? =
a? + al + azz, anda, =171-a,a,=j-a, a. = k - a, for the three-dimensional
orthonormal basis 7, J, k.) From now on we shall always work in orthonormal
bases, unless it is explicitly indicated otherwise.

Another geommetrical quantity one might wish to generalize is the angle
between two vectors. In ordinary vector analysis cos# = (a-b)/|a||b|. But because
the inner product is in general a complex number, the analogous formula (in an
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arbitrary inner product space) does not define a (real) angle 8. Nevertheless, it is
still true that the absolute value of this quantity is a number no greater than 1,

| B)1? < {ala){BIB). [A.27)]

(This important result is known as the Schwarz inequality; the proof is given in
Problem A.5.) So you can, if you like, define the angle between |a) and |B8) by
the formula

(| B){Bla)
(arler)(B1B)

cosf = [A.28]

*xProblem A.4 Suppose you start out with a basis (|e;). |e2). ... . |e,)) that is not
orthonormal. The Gram-Schmidt procedure is a systematic ritual for generating
from it an orthonormal basis (|e). |e3). ... . |e,)). It goes like this:

(i) Normalize the first basis vector (divide by its norm):

ler)
le]) = —.
lley |l

(i) Find the projection of the second vector along the first, and subtract it off:

le2) — (€] lea)le}).
This vector is orthogonal to |e]); normalize it to get |e3).
(iii) Subtract from |e3) its projections along |e}) and |e5):
le3) — (e]le3)le]) — (eh]e3)ler).

This is orthogonal to |¢}) and |e}); normalize it to get |e}). And so on.

Use the Gram-Schmidt procedure to orthonormalize the 3-space basis |e)) =

~

(14D + (Df+ Ok. |ea) = ()i + (3] + (Dk. |ez) = (0)i + (28)] + (O)k.

Problem A.5 Prove the Schwarz inequality (Equation A.27). Hint: Let |y) =
1B) — («|B}/{ala))|a), and use {(y|y) = 0.

Problem A.6 Find the angle (in the sense of Equation A.28) between the vectors
lay = (1 +i)i + (1)) + (Dk and |B) = (4 — )i + (0)) + (2 — 20)k.

Problem A.7 Prove the triangle inequality: ||(|o) + |B)I < |l + I8
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A.3 MATRICES

Suppose you take every vector (in 3-space) and multiply it by 17, or you rotate every
vector by 39° about the z-axis, or you reflect every vector in the xy plane—these
are all examples of linear transformations. A linear transformation® (T) takes
each vector in a vector space and “transforms” it into some other vector (|o) —
|’y = T'|a)), subject to the condition that the operation be linear:

T (ale) + b|BY) = a(T|a)) + b(T|B)), [A.29]

for any vectors |a), |B) and any scalars a, b.
If you know what a particular linear transformation does to a set of basis
vectors, you can easily figure out what it does to any vector. For suppose that

Tler) = Tiiler) + Tailea) + -+ + Tyilen).
Tles) = Tialer) + Toalea) + - -« + Talen).

Tlen) = Tinler) + Tanlea) +- -+ + Tunlen),
or, more compactly,

n
Tlej) =Y Tyjle), (j=1.2.....n). [A.30]

i=]

If |a) is an arbitrary vector,

n
o) = aler) +azle2) + -+ +anlen) = D ajle;). [A.31]
—
then
n n n n n
Floy =Y a; (Tlep) =3 Y ajTjle = 3 | - Ty | len).  1432)
j=1 j=1i=l i=1 \j=I
Evidently T takes a vector with components a).da. ... ,d, into a vector with
components7
n
a,{ = Z Tija;. [A.33]
Jj=1

SIn this chapter I'll use a hat (") to denote linear transformations: this is not inconsistent with
my convention in the text (putting hats on operators). for (as we shall see) quantum operators are linear
transformations.

"Notice the reversal of indices between Equations A.30 and A.33. This is not a typographical
cerror. Another way of putting it (switching i <> j in Equation A.30) is that if the components transform
with T;;. the basis vectors transform with Tj;.
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Thus the n? elements T;; uniquely characterize the linear transformation 7' (with
respect to a given basis), just as the # components a; uniquely characterize the
vector |a) (with respect to the same basis):

T & (Tin.Tize .., Tn). [A.34]
If the basis is orthonormal, it follows from Equation A.30 that

Tij = (eilTle;). [A.35]

It is convenient to display these complex numbers in the form of a matrix:®

Tw Ty ... T
Iy T;pm ... Ty

= © [A.36]
Tnl TnZ ‘e Tnn

The study of linear transformations reduces then to the theory of matrices. The sum
of two linear transformations (S + T') is defined in the natural way:

(S + D)) = Sla) + Tla); [A.37]

this matches the usual rule for adding matrices (you add their corresponding
elements):
U=S+T & Uij = Sij + T;;. [A.38]

The product of two linear transformations (8T) is the net effect of performing
them in succession—first T, then S;

'y = Tlay; "y = Sla’y = S(T|a)) = ST |a). [A.39]

What matrix U represents the combined transformation U = §T2 1t's not hard to
work it out:

n n n
i = Y Sy = 35 (2 wk) S DITTN P i
i j k=1 k=1 \j=1 k=1
Evidently

n
U=ST & U = Z SiiTjk. [A.40]
j=1

8111 use boldface capital letters, sans serif, to denote squarc matrices.
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This is the standard rule for matrix multiplication—to find the ikth element of
the product ST, you look at the ith row of S, and the kth column of T, multi-
ply corresponding entries, and add. The same prescription allows you to multiply
rectangular matrices, as long as the number of columns in the first matches the
number of rows in the second. In particular, if we write the n-tuple of components
of |a) as an n x | column matrix (or “column vector”):’

aj
a

a=1| .|. [A.41]
ay
the transformation rule (Equation A.33) can be expressed as a matrix product:
a’ =Ta. [A.42]

Now some matrix terminology:

e The transpose of a matrix (which we shall write with a tilde: 'i') is the same
set of elements, but with rows and columns interchanged. In particular, the
transpose of a column matrix is a row matrix:

a= (al a ... a,,) . [A.43]

For a square matrix taking the transpose amounts to reflecting in the main
diagonal (upper left to lower right):

Iy Ty ... Ty

- T, Ty ... Tp2

T= . . . [A.44]
Tln TZn s Tnn

A (square) matrix is symmetric if it is equal to its transpose; it is antisym-
metric if this operation reverses the sign:

symmetric : T=T; antisymmetric: T = —T. [A.45]

e The (complex) conjugate of a matrix (which we denote, as usual, with an
asterisk, T*), consists of the complex conjugate of every element:

T1:1 T1:2 . TIZ' az
1 R P ) e
Lh Tnp - T dy,

(47998 . .
I'11 usc boldface lowercase letters. sans serif, for row and column matrices.
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A matrix is real if all its elements are real, and imaginary if they are all
imaginary:
real : T* =T; imaginary: T" = -T. [A.47]

e The hermitian conjugate (or adjoint) of a matrix (indicated by a dagger,
T") is the transpose conjugate:

Tl*l T?.*l T T:l

n o~k 1*‘) 5 ... :‘J s o

T=T=|"7 % |oat=at=(a @ . a).
T ... T [A.48]

A square matrix is hermitian (or self-adjoint) if it is equal to its hermitian
conjugate; if hermitian conjugation introduces a minus sign, the matrix is
skew hermitian (or anti-hermitian):

hermitian : T = T;  skew hermitian : T = —T. [A.49]
In this notation the inner product of two vectors (with respect to an orthonor-
mal basis—Equation A.24), can be written very neatly as a matrix product:

(@|B) =a'b. [A.50]

Notice that each of the three operations defined in this paragraph, if applied twice,
returns you to the original matrix.

Matrix multiplication is not, in general, commutative (ST % TS); the differ-
ence between the two orderings is called the commutator:'°

[S.T]|=ST-Ts. [A.51]
The transpose of a product is the product of the transposes in reverse order:
(8T) =T8S, [A.52]
(see Problem A.11). and the same goes for hermitian conjugates:
ST =T'S". [A.53]

The unit matrix (representing a linear transformation that carries every vector
into itself) consists of ones on the main diagonal, and zeroes everywhere else:

1 0 ... 0
o1 ... 0

I=|. . - [A.54]
0 0 1

10The commutator only makes sensc for square matrices. of course: for rectangular matrices the
two orderings wouldn't even be the same size.
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In other words,
|,'j = Jjj. [A.55]

The inverse of a (square) matrix (written T_]) 1s defined in the obvious way:“
T T=TT'=1l [A.56]

A matrix has an inverse if and only if its determinant'? is nonzero; in fact,

1

= %ot TC, [A.57]

T—l

where C is the matrix of cofactors (the cofactor of element Tj; is (—1)*/ times
the determinant of the submatrix obtained from T by erasing the ith row and the
Jth column). A matrix that has no inverse is said to be singular. The inverse of a
product (assuming it exists) is the product of the inverses in reverse order:

ST ' =1"'s7!, [A.58]

A matrix is unitary if its inverse is equal to its hermitian conjugate:!
unitary : u'=u-' [A.59]
Assuming the basis is orthonormal, the columns of a unitary matrix constitute an

orthonormal set, and so too do its rows (see Problem A.12). Linear transformations
represented by unitary matrices preserve inner products, since (Equation A.50)

('|8’y = a’'b’ = (Ua)"(Ub) = a'U'Ub = a’b = («|B). [A.60]

xProblem A.8 Given the following two matrices:

-1 1 i 2 0 —i
A=1] 2 0 31]. B=]0 1 O
20 =20 2 i 3 2

HNote that the left inverse is equal to the right inverse, for if AT = | and TB = |, then
(multiplying the second on the left by A and invoking the first) we get B = A.

12} assume you know how to evaluate determinants. If not. scc M. Boas. Mathematical Methods
in the Physical Sciences, 2nd ed. (John Wiley. New York, 1983), Scction 3.3.

31n a real vector space (that is, one in which the scalars are real) the hermitian conjugate is
the same as the transpose, and a unitary matrix is erthogonal: O = 0~ For example. rotations in
ordinary 3-space are represented by orthogonal matrices.
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compute: (2) A + B, (b) AB, (c) [AB], (d) A, (e) A*, () AT, (g) det(B), and
(h) B~!. Check that BB™! = I. Does A have an inverse?

*xProblem A.9 Using the square matrices in Problem A.8, and the column

matrices
[ 2
a=\|2]|]. b=]U-1
2 0

find: (a) Aa, (b) a'b, (c) aBb, (d) ab’.

Problem A.10 By explicit construction of the matrices in question, show that any
matrix T can be written

(a) as the sum of a symmetric matrix S and an antisymmetric matrix A;
(b) as the sum of a real matrix R and an imaginary matrix M;

(c) as the sum of a hermitian matrix H and a skew-hermitian matrix K.

xProblem A.11 Prove Equations A.52, A.53, and A.58. Show that the product of
two unitary matrices is unitary. Under what conditions is the product of two her-
mitian matrices hermitian? Is the sum of two unitary matrices necessarily unitary?
[s the sum of two hermitian matrices hermitian?

Problem A.12 Show that the rows and columns of a unitary matrix constitute
orthonormal sets.

Problem A.13 Noting that det('i') = det(T). show that the determinant of a her-
mitian matrix is real, the determinant of a unitary matrix has modulus 1 (hence the
name), and the determinant of an orthogonal matrix is either +1 or —1.

A.4 CHANGING BASES

The components of a vector depend, of course, on your (arbitrary) choice of basis,
and so do the elements of the matrix representing a linear transformation. We
might inquire how these numbers change when we switch to a different basis.
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The old basis vectors, |e¢;) are—like all vectors—Ilinear combinations of the new
ones, | f):

ler) = Sulfi) + Salfa) +---+ Suilfa),
lea) = Sialf1) + Sazl fo) + -+ Si2l ).

len) = Slnlfl) + S2n|f2) + 4+ Sn'nlfn)a
(for some set of complex numbers S;;), or, more compactly,
n
les) =Y Silfi). (G=1,2,....n). [A.61]
i=lI

This is itself a linear transformation (compare Equation A.30),!* and we know
immediately how the components transform:

n
al =3 8,45, [A.62]
j=I

(where the superscript indicates the basis). In matrix form
a’ =Sa’. [A.63]

What about the matrix representing a linear transformation T —how is if
modified by a change of basis? Well, in the old basis we had (Equation A.42)

a”“="Ta",
and Equation A.63—multiplying both sides by $~! —entails'S a¢ = §™'a’, so
a'/ = Sa” = §(T¢a®) = ST*S~'a’.

Evidently
T/ =sT°s . [A.64]

In general, two matrices (T and T,) are said to be similar if T, = STls_l for
some (nonsingular) matrix S. What we have just found is that marrices representing

14Notice. however. the radically different perspective: In this case we're talking about one and
the same vector, referred 1o two completely different bases. whereas before we were thinking of a
completely different vector, referred to the same basis.

I5Note that S~ certainly exists—if 8 were singular, the | f;)’s would not span the space, so
they wouldn’t constitute a basis.
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the same linear transformation, with respect to different bases, are similar. Inciden-
tally, if the first basis is orthonormal, the second will also be orthonormal if and
only if the matrix S is unirary (see Problem A.16). Since we always work in
orthonormal bases, we are interested mainly in unitary similarity transformations.

While the elements of the matrix representing a given linear transformation
may look very different in the new basis, two numbers associated with the matrix

are unchanged: the determinant and the trace. For the determinant of a product is

the product of the determinants, and hence
det(T/) = det(ST*S™") = det(S) det(T*) det(S™") = det T. [A.65]

And the trace, which is the sum of the diagonal elemnents,

To(T) = Z T;:. [A.66]

i=I
has the property (see Problem A.17) that
Tr(T;T2) = Tr(TLT)), [A.67]
(for any two matrices T; and T»), so

Tr(T/) = T(ST*S™") = Tr(T.$™'S) = Tr(T*). [A.68]

Problem A.14 Using the standard basis (i. j. k) for vectors in three dimensions:

(a) Construct the matrix representing a rotation through angle 6 (counterclock-
wise, looking down the axis toward the origin) about the z-axis.

(b) Construct the matrix representing a rotation by 1207 (counterclockwise, look-
ing down the axis) about an axis through the point (1,1,1).

(c) Construct the matrix representing reflection through the xy-plane.

(d) Check that all these matrices are orthogonal, and calculate their determinants.

Problem A.15 In the usual basis (i, j. k), construct the matrix T, representing a
rotation through angle 6 about the x-axis, and the matrix T, representing a rotation
through angle # about the y-axis. Suppose now we change bases, to i’ = j, J' =
—i, k' = k. Construct the matrix S that effects this change of basis, and check
that ST,S™! and ST.,.S_] are what you would expect.

Problem A.16 Show that similarity preserves matrix multiplication (that is, if
A‘B‘ = C*, then A/ B/ = C/). Similarity does not, in general, preserve symmetry,
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reality, or hermiticity; show, however, that if S is unitary, and H¢ is hermitian, then
H/ is hermitian. Show that S carries an orthonormal basis into another orthonormal
basis if and only if it is unitary.

*Problem A.17 Prove that Tr(T;T2) = Tr(T,T;). It follows immediately that
T(T | T2T3) = Tr(T.T3Ty), but is it the case that Tr(T;T.T3) = Tr(T>T;T3), in
general? Prove it, or disprove it. Hint: The best disproof is always a counterexam-
ple—the simpler the better!

A.5 EIGENVECTORS AND EIGENVALUES

Consider the linear transformation in three-space consisting of a rotation, about
some specified axis, by an angle 8. Most vectors will change in a rather complicated
way (they ride around on a cone about the axis), but vectors that happen to lie along
the axis have very simple behavior: They don’t change at all (T|a) = |a)). If 6 is
180°, then vectors which lie in the “equatorial” plane reverse signs ( Tla) = —|a)).
In a complex vector space'® every linear transformation has “special” vectors like
these, which are transformed into scalar multiples of themselves:

Tle) = Aler); [A.69]

they are called eigenvectors of the transformation, and the (complex) number A
is their eigenvalue. (The null vector doesn’t count, even though in a trivial sense
it obeys Equation A.69 for any T and any A; technically, an eigenvector is any
nonzero vector satisfying Equation A.69.) Notice that any (nonzero) multiple of an
eigenvector is still an eigenvector, with the same eigenvalue.

With respect to a particular basis, the eigenvector equation assumes the
matrix form

Ta = Aa, [A.70]

(for nonzero a), or

(T—iha=0. [A.71]

(Here 0 is the zero matrix, whose elements are all zero.) Now, if the matrix (T — Al)
had an inverse, we could multiply both sides of Equation A.71 by (T —Al)~!, and

16This is not always true in a real vector space (where the scalars are restricted to real values).
See Problem A.18.
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conclude that a = 0. But by assumption a is not zero, so the matrix (T — Al) must
in fact be singular, which means that its determinant is zero:

(T1; — A) T2 Tin
T3, (Tpa —2) ... Ty
det(T— AD = . . . =0. [A.72]
Tnl TnZ PN (Tnn - )\)

Expansion of the determinant yields an algebraic equation for A:
CoA" + Cy A"+ + C 1A+ Co = 0. [A.73]

where the coefficients C; depend on the elements of T (see Problem A.20). This is
called the characteristic equation for the matrix; its solutions determine the eigen-
values. Notice that it’s an nth-order equation, so (by the fundamental theorem
of algebra) it has n (complex) roots.!” However, some of these may be multiple
roots, so all we can say for certain is that an n x n matrix has ar least one and
at most n distinct eigenvalues. The collection of all the eigenvalues of a matrix is
called its spectrum; if two (or more) linearly independent eigenvectors share the
same eigenvalue, the spectrum is said to be degenerate.

To construct the eigenvectors it is generally easiest simply to plug each A
back into Equation A.70 and solve “by hand” for the components of a. I'll show
you how it goes by working out an example.

Example A.1 Find the eigenvalues and eigenvectors of the following matrix:

2 0 =2
M={|-2i i 2i]. [A.74]
1 0 -1

Solution: The characteristic equation is

(2 —21) 0 -2
—2i  (i—=A) 2i | == +A+DA—-ix=0. [A.75]
1 0 (=1-=2)

and its roots are 0, 1, and /. Call the components of the first eigenvector (a;, az, as);
then

2 0 =2\ [aq ai 0
—2i i 2 aml=0]la:| =10
| 0 -1 as as 0

171t is here that the case of real vector spaces becomes more awkward, because the characteristic
equation need not have any (real) solutions at all. See Problem A.18.
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which yields three equations:

2(11 — 2(13 = 0.
—2iay +iary + 2iaz3 =0,
ay —azy =0.
The first determines a3 (in terms of a|): a3 = ay; the second determines a>: a2 = 0;

and the third is redundant. We may as well pick a; = 1 (since any multiple of an
eigenvector is still an eigenvector):

1
a» =10], fora =0. [A.76]
1

For the second eigenvector (recycling the same notation for the components) we
have

2 0 =2 aj al' aj
=2 i 2 a|l=1lla]l=|a
1 0 -1 as as ai

which leads to the equations

2a; — 2a3 = ay,
—2ia) +iay + 2iaz = as.

a) —az = as.

with the solution a3 = (1/2)aj, a = [(1 —i)/2]a,; this time I'll pick a; = 2, so

1 —i|. fori;y=1. [A.77]
Finally, for the third eigenvector,
2 0 =2\ /a aj ia
=2 i 2 a)l=ila|l=\{ia
1 0 -1 as as iaz

which gives the equations

2a; —2a3 =1iay,
—2ia; +iar+ 2iaz = ias.

ay —az =ias.



452

Appendix Linear Algebra

whose solution is a3 = a; = 0, with a2 undetermined. Choosing a» = 1, we
conclude
0
a®=11|, forrz=i. [A.78]
0

If the eigenvectors span the space (as they do in the preceding example), we
are free to use them as a basis:

TIf1) = Mlf),
T|f2) = Aalfa).,

TIfa) = Malfu)-

In this basis the matrix representing T takes on a very simple form, with the
eigenvalues strung out along the main diagonal, and all other elements zero:

A 0 ... 0
0 2 ... 0
T=1]. . A [A.79]
0 0 ... Ay
and the (normalized) eigenvectors are
1 0 0
0 1 0
of. 19]..... 19]. [A.80]
0 0 1

A matrix that can be brought to diagonal form (Equation A.79) by a change
of basis is said to be diagonalizable (evidently a matrix is diagonalizable if and
only if its eigenvectors span the space). The similarity matrix that effects the
diagonalization can be constructed by using the normalized eigenvectors (in the
old basis) as the columns of S7!:

(S = @y [A.81]

Example A.2 In Example A.1,

1 2 0
s'=10 a-i 1
1 1 0



Section A.5: Eigenvectors and Eigenvalues 453

so (using Equation A.57)

-1 0 2
S= 1 0 -1
(-1 1 (1-1i)
and you can check for yourself that
1 0 0
sal =[o], sa®=[1]. sa® =0
0 0 1
and
0 0O
sMS™'=(0 1 0
0 0 i

There’s an obvious advantage in bringing a matrix to diagonal form: It’s much
easier to work with., Unfortunately, not every matrix can be diagonalized—the
eigenvectors have to span the space. If the characteristic equation has n distinct
roots, then the matrix is certainly diagonalizable, but it may be diagonalizable even
if there are multiple roots. (For an example of a matrix that cannot be diagonalized,
see Problem A.19.) It would be handy to know in advance (before working out
all the eigenvectors) whether a given matrix is diagonalizable. A useful sufficient
(though not necessary) condition is the following: A matrix is said to be normal
if it commutes with its hermitian conjugate:

normal : [N, N] = 0. [A.82]

Every normal matrix is diagonalizable (its eigenvectors span the space). In partic-
ular, every hermitian matrix, and every unitary matrix, is diagonalizable.

Suppose we have rwo diagonalizable matrices; in quantum applications the
question often arises: Can they be simultaneously diagonalized (by the same
similarity matrix S)? That is to say, does there exist a basis in which they are
both diagonal? The answer is yes if and only if the two matrices commute (see
Problem A.22).

xProblem A.18 The 2 x 2 matrix representing a rotation of the xy plane is

cosf —siné
T= (sin@ cos @ ) [A.83]

Show that (except for certain special angles—what are they?) this matrix has no
real eigenvalues. (This reflects the geometrical fact that no vector in the plane
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is carried into itself under such a rotation; contrast rotations in three dimensions.)
This matrix does, however, have complex eigenvalues and eigenvectors. Find them.
Construct a matrix S that diagonalizes T. Perform the similarity transformation
(STS™!) explicitly, and show that it reduces T to diagonal form.

Problem A.19 Find the eigenvalues and eigenvectors of the following matrix:

(3 )

Can this matrix be diagonalized?

Problem A.20 Show that the first, second, and last coefficients in the characteristic
equation (Equation A.73) are:

Ch=(=D" Ch_1==D""I(M). and Cy=det(T). [A.84]

For a 3 x 3 matrix with elements T;;, what is C?

Problem A.21 It’s obvious that the trace of a diagonal matrix is the sum of its
eigenvalues, and its determinant is their product (just look at Equation A.79). It
follows (from Equations A.65 and A.68) that the same holds for any diagonalizable
matrix. Prove that in fact

det(M=AAz---Ap. Te(M=A1+r2+--424,. [A.85]

for any matrix. (The A's are the n solutions to the characteristic equation—in the
case of multiple roots, there may be fewer linearly independent eigenvectors than
there are solutions, but we still count each A as many times as it occurs.) Hint:
Write the characteristic equation in the form

A =AMR2=A2)--- (A —A) =0,

and use the result of Problem A.20.

Problem A.22

(a) Show that if two matrices commuite in one basis, then they commute in any
basis. That is:

[T.T5]=0 = [T{.T{]=0. [A.86]

Hint: Use Equation A.64.
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(b) Show that if two matrices are simultaneously diagonalizable, they
commute.!8

Problem A.23 Consider the matrix

(a) Is it normal?

(b) Is it diagonalizable?

A.6 HERMITIAN TRANSFORMATIONS

In Equation A.48 I defined the hermitian conjugate (or “adjoint”) of a matrix as
its transpose-conjugate: T' = T*. Now I want to give you a more fundamental
definition for the hermitian conjugate of a linear transformation: It is that trans-
formation 7% which, when applied to the first member of an inner product, gives
the same result as if T itself had been applied to the second vector:

(T a|B) = (a|TB). [A.87]

(for all vectors |&) and |8)).1° I have to warn you that although everybody uses it,
this is lousy notation. For @ and B8 are not vectors (the vectors are |&) and |8)),
they are names. In particular, they are endowed with no mathematical properties
at all, and the expression “Tﬁ" is literally nonsense: Linear transformations act on
vectors, not labels. But it’s pretty clear what the notation means: T8 is the name
of the vector f”l B), and (f"%ozlﬁ)_ is the inner product of the vector f’*la-) with the
vector |B). Notice in particular that

(@]cB) = c(x|B). [A.88]

whereas
(ca|B) = c™(a|B). [A.89]

for any scalar c.

'SProving the converse (that if two diagonalizable matrices commute then they are simultaneously
diagonalizable) is not so simple. Scc for example Eugen Merzbacher. Quantum Mechanics. 3rd cd..
Wiley. New York (1998). Scction 10.4.

YYou may wonder whether such a translformation necessarily exists. Good question! The answer
is “ves.” See, for instance. P, R, Halmos, Finite Dimensional Vector Spaces, 2nd ed.. van Nostrand.
Princeton (1958), Section 44.



CHAPTER 3

FORMALISM

3.1 HILBERT SPACE

In the last two chapters we have stumbled on a number of interesting properties of
simple quantum systems. Some of these are “accidental” features of specific poten-
tials (the even spacing of energy levels for the harmonic oscillator, for example),
but others seem to be more general, and it would be nice to prove them once and
for all (the uncertainty principle, for instance, and the orthogonality of stationary
states). The purpose of this chapter is to recast the theory in a more powerful form,
with that in mind. There is not much here that is genuinely new; the idea, rather,
is to make coherent sense of what we have already discovered in particular cases.

Quantum theory is based on two constructs: wave functions and operators. The
state of a system is represented by its wave function, observables are represented
by operators. Mathematically, wave functions satisfy the defining conditions for
abstract vectors, and operators act on them as linear transformations. So the
natural language of quantum mechanics is linear algebra.!

But it is not, I suspect, a form of linear algebra with which you are immediately
familiar. In an N-dimensional space it is simplest to represent a vector, |«), by the
N-tuple of its components, {a,}, with respect to a specified orthonormal basis:

a
) —a=| . |. [3.1]

r you have never studied linear algebra, you should read the Appendix belore continuing.
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The inner product, (@|8), of two vectors (generalizing the dot product in three
dimensions) is the complex number,

(@|B) = ayb) +a3br+ - - -+ ayby. [3.2]

Linear transformations, T, are represented by matrices (with respect to the specified
basis), which act on vectors (to produce new vectors) by the ordinary rules of matrix
multiplication:

nr fHa - NN a
fy fha -+ DnhnN az

B)=Tle) >b=Ta=] . . . .- [3.3]
INL IN2 - INN aN

But the “vectors™ we encounter in quantum mechanics are (for the most part)
functions, and they live in infinite-dimensional spaces. For them the N-tuple/matrix
notation is awkward, at best, and manipulations that are well-behaved in the finite-
dimensional case can be problematic. (The underlying reason is that whereas the
finite sum in Equation 3.2 always exists, an infinite sum—or an integral —may not
converge, in which case the inner product does not exist, and any argument involving
inner products is immediately suspect.) So even though most of the terminology and
notation should be familiar, it pays to approach this subject with caution.

The collection of all functions of x constitutes a vector space, but for our
purposes it is much too large. To represent a possible physical state, the wave
function ¥ must be normalized:

f |\Il|2d.\‘ = 1.

The set of all square-integrable functions, on a specified interval,

b
f(x) such that f | F(O)? dx < oo. [3.4]

a
constitutes a (much smaller) vector space (see Problem 3.1(a)). Mathematicians
call it L, (a. b); physicists call it Hilbert space.® In quantum mechanics, then,

Wave functions live in Hilbert space. [3.5]

ZFor us. the limits (a and b) will almost always be + 0o, but we might as well keep things more
general for the moment.

Mechnically. a Hilbert space i$ a complete inner product space, and the collection of square-
integrable Tunctions is only one example of a Hilbert space—indeed, every finite-dimensional vector
space is trivially a Hilbert space. But since L3> is the arena of quantuin mechanics, it's what physieists
generally mean when they say “Hilbert spacc.” By the way, the word complete here means that any
Cauchy sequence of functions in Hilbert space converges o a function that is also in the space: it has no
“holes” in iL. just as the set of all real numbers has no holes (by contrast, the space of all polynomials,
for example, like the sct of all rational numbers. certainly does have holes in it). The completeness
of a space has nothing o do with the completeness (same word. unfortunately) of a ser of functions.
which is the property that any other function can be expressed as a linear combination of them.
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We define the inner product of two functions, f(x) and g(x), as follows:
b

(fley= | Fx)*glx)dx. [3.6]

If f and g are both square-integrable (that is, if they are both in Hilbert space),
their inner product is guaranteed to exist (the integral in Equation 3.6 converges to
a finite number).* This follows from the integral Schwarz inequality:>

b b b
f f(x)*g(x) d-’c" < \[f | f ()2 dxf lg(x)? dx. [3.7]

You can check for yourself that Equation 3.6 satisfies all the conditions for an inner
product (Problem 3.1(b)). Notice in particular that

(glf) = {flg)*. [3.8]

Moreover, the inner product of f(x) with itself,

b
FIF) = f 00 dx, [3.9]

is real and non-negative; it’s zero only® when f(x) = 0.

A function is said to be normalized if its inner product with itself is 1; two
functions are orthogonal if their inner product is 0; and a set of functions, {f,},
is orthonormal if they are normalized and mutually orthogonal:

(fm'fn) = ‘Snm- [3-10]

Finally, a set of functions is complete if any other function (in Hilbert space) can
be expressed as a linear combination of them:

SO =" cn fuld). [3.11]

n=l|

*In Chapter 2 we were obliged on occasion to work with functions that were nor normalizable.
Such functions lic outside Hilbert space, and we are going Lo have to handle them with special care, as
you will see shortly. For the moment, I shall assume that all the functions we encounter are in Hilbert
space.

SFor a proot, see F. Riesz and B. Sz.-Nagy. Funcrional Analysis (Unger, New York, 1955),
Section 21. In a finite dimensional vector space the Schwarz inequality, l((xlﬂ)l2 =< {a]a){B8IB). is

casy Lo prove (see Problem A.5). But that proof assumes the existence of the inner products, which is
precisely what we are trying to establish here.

6What about a function that is zero everywhere except at a few isolated points? The integral
(Equation 3.9) would still vanish, cven though the function itself does not. If this bothers you, you
should have been a math major. In physics such pathological functions do not occur, but in any case, in
Hilbert space two functions that have the same square integral are considered equivalent. Technically,
vectors in Hilbert space represent equivalence classes of functions.
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If the functions { f;, (x)} are orthonormal, the coefficients are given by Fourier’s trick:

cn = {ful f)- [3.12]

as you can check for yourself. I anticipated this terminology, of course, back
in Chapter 2. (The stationary states for the infinite square well (Equation 2.28)
constitute a complete orthonormal set on the interval (0. a); the stationary states
for the harmonic oscillator (Equation 2.67 or 2.85) are a complete orthonormal set
on the interval (—oo. 00).)

Problem 3.1

(a) Show that the set of all square-integrable functions is a vector space (refer
to Section A.1 for the definition). Hint: The main problem is to show that
the sum of two square-integrable functions is itself square-integrable. Use
Equation 3.7. Is the set of all normalized functions a vector space?

(b) Show that the integral in Equation 3.6 satisfies the conditions for an inner
product (Section A.2).

xProblem 3.2

(a) For what range of v is the function f(x) = x" in Hilbert space, on the
interval (0. 1)? Assume v is real, but not necessarily positive.

(b) For the specific case v = 1/2, is f(x) in this Hilbert space? What about
xf(x)? How about (d/dx) f(x)?

3.2 OBSERVABLES

3.2.1 Hermitian Operators

The expectation value of an observable Q(x. p) can be expressed very neatly in
inner-product notation:’

(0) =fwéwx= (W|0W). [3.13]

TRemember that @ is the operator constructed from Q by the replacement p — p = (h/i)d/dx.
These operators arc linear. in the sense that

Q[af(.\') + bg(x)] = le_f(.\') + 17Qg(.\').

for any tunctions / and g and any complex numbers « and b. They constitute linear transformations
(Scction A.3) on the space of all Tunctions. However. they sometimes carry a function inside Hilbert
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Now, the outcome of a measurement has got to be real, and so, a fortiori, is the
average of many measurements:

(Q) =(0)". [3.14]
But the complex conjugate of an inner product reverses the order (Equation 3.8), so
(WIQW) = (QW|¥). [3.15]

and this must hold true for any wave function W. Thus operators representing
observables have the very special property that

(FI0F) =(QfIf) forall f(x). [3.16]

We call such operators hermitian.
Actually, most books require an ostensibly stronger condition:

(F10g) = (O flg) forall f(x)and all g(x). [3.17]

But it turns out, in spite of appearances, that this is perfectly equivalent to my
definition (Equation 3.16), as you will prove in Problem 3.3. So use whichever
you like. The essential point is that a hermitian operator can be applied either to
the first member of an inner product or to the second, with the same result, and
hermitian operators naturally arise in quantum mechanics because their expectation
values are real:

Observables are represented by hermitian operators. [3.18]

Well, let’s check this. Is the momentum operator, for example, hermitian?
o hd h * (hdf\* . ,
B k= +f (fi) gdv=(pflg). [3.19]
—eo L dx i dx

I used integration by parts, of course, and threw away the boundary term for the
usual reason: If f(x) and g(x) are square integrable, they must go to zero at +o0.8

space into a function outside it (see Problem 3.2(b)). and in this cuse the domain of the operator may
have 1o be restricted.

h‘Actually. this is not quite true. As I mention in Chapter . there exist pathological functions
that are square-integrable but deo nor go to zero at infinity, However, such functions do not arise in
physics. and if you are worried about it we will simply restrict the domain of our operators to exclude
them. On fuiite intervals. though. you really do have to be more carcful with the boundary terms,
and an operator that is hermitian on (—o0. 00) may nor be hermitian on (0. co) or (—x, x). If you're
wondering about the infinite square well. it’s safest to think of these wave functions as residing on the
infinite line—they just happen to be zer outside (0. a).
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Notice how the complex conjugation of i compensates for the minus sign picked
up from integration by parts—the operator d/dx (without the 7) is not hermitian,
and it does not represent a possible observable.

«Problem 3.3 Show that if (h|Qh) = (Qh|h) for all functions / (in Hilbert space),
then (f |Qg) = (Of lg) for all f and g (i.e., the two definitions of “hermi-
tian”—Equations 3.16 and 3.17—are equivalent). Hint: First let h = f 4+ g, and
then let h = f +ig.

Problem 3.4

(a) Show that the sum of two hermitian operators is hermitian.

(b) Suppose 0 is hermitian, and « is a complex number. Under what condition
(on @) is & Q hermitian?

(c) When is the product of two hermitian operators hermitian?

(d) Show that the position operator (X = x) and the hamiltonian operator (H =
—(h? /2m)d?/dx* + V (x)) are hermitian.

Problgm 3.5 The hermitian conjugate (or adjoint) of an operator 0 is the oper-
ator Q" such that

(f108) = (0" flg) (for all f and g). [3.20]
(A hermitian operator, then, is equal to its hermitian conjugate: Q = o
(a) Find the hermitian conjugates of x, i, and d/dx.

(b) Construct the hermitian conjugate of the harmonic oscillator raising operator,
a4 (Equation 2.47).

(c) Show that (QI'\;)T = IQTQJF.

3.2.2 Determinate States

Ordinarily, when you measure an observable Q on an ensemble of identically
prepared systems, all in the same state W, you do not get the same result each
time—this is the indeterminacy of quantum mechanics.® Question: Would it be
possible to prepare a state such that every measurement of Q is certain to return
the same value (call it ¢)? This would be, if you like, a determinate state, for
the observable Q. (Actually, we already know one example: Stationary states are
determinate states of the Hamiltonian; a measurement of the total energy, on a

I'm talking about competent measurements, of course—it's always possible to make a mistake.
and simply get the wrong answer, but that’s not the fault of quantum mechanics.
ply g q
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particle in the stationary state W¥,, is certain to yield the corresponding *“‘allowed”
energy E,.)

Well, the standard deviation of Q, in a determinate state, would be zero, which
is to say,

o? = ((Q — (0N*) = (¥I(Q — 9)*¥) = (O — P¥I(Q — )¥) =0. [3.21]

(Of course, if every measurement gives ¢, their average is also ¢g: (Q) = ¢q. I also
used the fact that O, and hence also 0 — g, is a hermitian operator, to move one
factor over to the first term in the inner product.) But the only function whose inner
product with itself vanishes is 0, so

OV =qW. 3.22]

This is the eigenvalue equation for the operator O; ¥ is an eigenfunction of 0.
and ¢ is the corresponding eigenvalue. Thus

Determinate states are eigenfunctions of Q [3.23]

Measurement of Q on such a state is certain to yield the eigenvalue, .

Note that the eigenvalue is a number (not an operator or a function). You can
multiply any eigenfunction by a constant, and it is still an eigenfunction, with the
same eigenvalue. Zero does not count as an eigenfunction (we exclude it by defi-
nition—otherwise every number would be an eigenvalue, since 00= q0 =0 for
any operator Q and all ¢). But there’s nothing wrong with zero as an eigenvalue.
The collection of all the eigenvalues of an operator is called its spectrum. Some-
times two (or more) linearly independent eigenfunctions share the same eigenvalue;
in that case the spectrum is said to be degenerate.

For example, determinate states of the total energy are eigenfunctions of the
Hamiltonian: R

Hy = Ey. [3.24]

which is precisely the time-independent Schrédinger equation. In this context we
use the letter E for the eigenvalue, and the lower case ¥ for the eigenfunction (tack
on the factor exp(—i Et/h) to make it W, if you like; it’s still an eigenfunction
of H).

Example 3.1 Consider the operator
Q=i—, [3.25]
where ¢ is the usual polar coordinate in two dimensions. (This operator might arise

in a physical context if we were studying the bead-on-a-ring; see Problem 2.46.)
Is Q hermitian? Find its eigenfunctions and eigenvalues.
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Solution: Here we are working with functions f(¢) on the finite interval 0 < ¢ <
2w, and stipulate that

flo+2m) = f(¢). [3.26]

since ¢ and ¢ + 2 describe the same physical point. Using integration by parts,

e g 2 (24 s
00 = [ 7 (i55) o =irvsly — [ (L ) eao =10 110

so Q is hermitian (this time the boundary term disappears by virtue of Equation 3.26).
The eigenvalue equation,

I-CE] (@) =qf(9). [3.27]

has the general solution

f(@) = Ae714?, [3.28]
Equation 3.26 restricts the possible values of the ¢:
e =1 = ¢=0%1.%2,... [3.29]

The spectrum of this operator is the set of all integers, and it is nondegenerate.

Problem 3.6 Consider the operator O = d?/d¢?, where (as in Example 3.1)
¢ is the azimuthal angle in polar coordinates, and the functions are subject to
Equation 3.26. Is O hermitian? Find its eigenfunctions and eigenvalues. What is
the spectrum of Q? Is the spectrum degenerate?

3.3 EIGENFUNCTIONS OF A HERMITIAN OPERATOR

Our attention is thus directed to the eigenfunctions of hermitian operators (phys-
ically: determinate states of observables). These fall into two categories: If the
spectrum is discrete (i.e., the eigenvalues are separated from one another) then the
eigenfunctions lie in Hilbert space and they constitute physically realizable states.
If the spectrum is continuous (i.e., the eigenvalues fill out an entire range) then
the eigenfunctions are not normalizable, and they do not represent possible wave
functions (though linear combinations of them—involving necessarily a spread
in eigenvalues—may be normalizable). Some operators have a discrete spectrum
only (for example, the Hamiltonian for the harmonic oscillator), some have only a
continuous spectrum (for example, the free particle Hamiltonian), and some have
both a discrete part and a continuous part (for example, the Hamiltonian for a
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finite square well). The discrete case is easier to handle, because the relevant inner
products are guaranteed to exist—in fact, it is very similar to the finite-dimensional
theory (the eigenvectors of a hermitian smatriv). I'll treat the discrete case first, and
then the continuous one.

3.3.1 Discrete Spectra

Mathematically, the normalizable eigenfunctions of a hermitian operator have two
important properties:

Theorem 1: Their eigenvalues are real.
Proof: Suppose
Of =qf.
(i.e., f(x) is an eigenfunction of Q, with eigenvalue ¢), and!?
(F10) = (O f1f)

(Q is hermitian). Then

a{f1f) =q*(f1f)

(¢ is a number, so it comes outside the integral, and because the first function
in the inner product is complex conjugated (Equation 3.6), so too is the g on
the right). But (f|f) cannot be zero ( f(x) = 0 is not a legal eigenfunction),
so ¢ = q*, and hence ¢ is real. QED

This is comforting: If you measure an observable on a particle in a determinate
state, you will at least get a real number.

Theorem 2: Eigenfunctions belonging to distinct eigenvalues are ortho-
gonal.

Proof: Suppose
Of=qf and Qg=g'g.
and O is hermitian. Then (leg) = (QAflg), SO
a'(flg) =q*(flg)

(again, the inner products exist because the eigenfunctions are in Hilbert
space by assumption). But ¢ is real (from Theorem 1), so if ¢’ # ¢ it must
be that (f|g) =0. QED

101 is here that we assume the eigenfunctions arc in Hilbert spacc—otherwise the inner product
might not cxist at all.
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That’s why the stationary states of the infinite square well, for example, or the
harmonic oscillator, are orthogonal —they are eigenfunctions of the Hamiltonian
with distinct eigenvalues. But this property is not peculiar to them, or even to the
Hamiltonian—the same holds for determinate states of any observable.
Unfortunately, Theorem 2 tells us nothing about degenerate states (¢’ = ¢).
However, if two (or more) eigenfunctions share the same eigenvalue, any lin-

ear combination of them is itself an eigenfunction, with the same eigenvalue

(Problem 3.7(a)), and we can use the Gram-Schmidt orthogonalization proce-
dure (Problem A .4) to construct orthogonal eigenfunctions within each degenerate
subspace. It is almost never necessary to do this explicitly (thank God!), but it can
always be done in principle. So even in the presence of degeneracy the eigenfunc-
tions can be chosen to be orthogonal, and in setting up the formalism of quantum
mechanics we shall assume that this has already been done. That licenses the use
of Fourier’s trick, which depends on the orthonormality of the basis functions.

In a finite-dimensional vector space the eigenvectors of a hermitian matrix
have a third fundamental property: They span the space (every vector can be
expressed as a linear combination of them). Unfortunately, the proof does not
generalize to infinite-dimensional spaces. But the property itself is essential to the
internal consistency of quantum mechanics, so (following Dirac!'!) we will take it
as an axiom (or, more precisely, as a restriction on the class of hermitian operators

that can represent observables):

Axiom: The eigenfunctions of an observable operator are complete: Any
function (in Hilbert space) can be expressed as a linear combination of
them.!?

Problem 3.7

(a) Suppose that f(x) and g(x) are two eigenfunctions of an operator Q, with
the same eigenvalue ¢. Show that any linear combination of f and g is itself
an eigenfunction of Q. with eigenvalue gq.

(b) Check that f(x) = exp(x) and g(x) = exp(—x) are eigenfunctions of the
operator d>/dx>, with the same eigenvalue. Construct two linear combina-
tions of f and g that are orthogonal eigenfunctions on the interval (—1. 1).

'p A. M. Dirac. The Principles of Quanium Meclanics. Oxford University Press, New York
(1958).

I . . . N

PIn some specific cases completeness is provable (we know that the siationary states of the
infinite square well. for example. ure complete, because of Dirichlet’s theorem). It is a little awk-
ward (o call something an “axiom™ that is provable in some cases. but | don’t know a better way to
handle it
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Problem 3.8

(a) Check that the eigenvalues of the hermitian operator in Example 3.1 are real.
Show that the eigenfunctions (for distinct eigenvalues) are orthogonal.

(b) Do the same for the operator in Problem 3.6.

3.3.2 Continuous Spectra

If the spectrum of a hermitian operator is continuous, the eigenfunctions are not
normalizable, and the proofs of Theorems | and 2 fail, because the inner products
may not exist. Nevertheless, there is a sense in which the three essential properties
(reality, orthogonality, and completeness) still hold. I think it's best to approach
this subtle case through specific examples.

Example 3.2 Find the eigenfunctions and eigenvalues of the momentum operator.

Solution: Let f),(x) be the eigenfunction and p the eigenvalue:

hod o
lTE;f/)(-\) = pr(-l)- [3.30]

The general solution is
fp(x) = AeP/N,

This is not square-integrable, for any (complex) value of p—the momentum oper-
ator has no eigenfunctions in Hilbert space. And yet, if we restrict ourselves to
real eigenvalues, we do recover a kind of ersatz “orthonormality.” Referring to
Problems 2.24(a) and 2.26,

m x 3 1
f Fo(®) fpx)dx = |A) f e PPN gy = |A|2mh 8(p — p').  [3.31]
bl &) -

If we pick A = 1/+/2mh, so that

1 .
() = —— Ip.\/h. 3.32
Jp(x) me [ ]
then
(fplfp) =8(p—p). [3.33]

which is strikingly reminiscent of true orthonormality (Equation 3.10)—the indices
are now continuous variables, and the Kronecker delta has become a Dirac delta,
but otherwise it looks just the same. I'll call Equation 3.33 Dirac orthonormality.
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Most important, the eigenfunctions are complete, with the sum (in Equation 3.11)
replaced by an integral: Any (square-integrable) function f(x) can be written in
the form

00 1 % -
fx)= f c(p) fp(x)dp = Wit f c(p)eP " dp. [3.34]
x5 —-2C

The expansion coefficient (now a function, c(p)) is obtained, as always, by Fourier’s
trick:
o0

(fplf) :f C(p)(fp'lfp)dp=f c(p)S(p—pHdp =c(p’). [3.35]

-0 -G

Alternatively, you can get them from Plancherel’s theorem (Equation 2.102), for
the expansion (Equation 3.34) is nothing but a Fourier transform.

The eigenfunctions of momentum (Equation 3.32) are sinusoidal, with wave-

length
2nth

=
This is the old de Broglie formula (Equation 1.39), which I promised to prove at
the appropriate time. It turns out to be a little more subtle than de Broglie imagined,
because we now know that there is actually 1o such thing as a particle with deter-
minate momentum. But we could make a normalizable wave packet with a narrow
range of momenta, and it is to such an object that the de Broglie relation applies.

What are we to make of Example 3.2? Although none of the eigenfunctions
of p lives in Hilbert space, a certain family of them (those with real eigenvalues)
reside in the nearby “suburbs,” with a kind of quasi-normalizability. They do not
represent possible physical states, but they are still very useful (as we have already
seen, in our study of one-dimensional scattering).l3

A [3.36]

Example 3.3 Find the eigenfunctions and eigenvalues of the position operator.

Solution: Let g,(x) be the eigenfunction and y the eigenvalue:

X gy(x) =y gy(x). [3.37]

I3What about the cigenfunctions with nonreal cigenvalues? These are not merely non-
normalizable—they actually blow up at +oc. Functions in what | called the “'suburbs™ of Hilbert space
(the entire metropolitan area is sometimes called a “rigged Hilbert space”: see. for example, Leslie
Ballentine's Quantum Mechanics: A Modern Development, World Scientific, 1998) have the property
that although they have no (finite) inner product with themselves, they do admit inner products with all
members of Hilbert space. This is not true for eigenfunctions of p with nonreal eigenvalues. In particu-
lar. T showed that the momentum operator is hermitian for functions in Hilbert space. but the argument
depended on dropping the boundary term (in Equation 3.19). That term is still zero if g is an eigenfunc-
tion of p with a real eigenvalue (as long as f is in Hilbert space), but not if the eigenvalue has an imag-
inary part. In this sense any complex number is an eigenvalue of the operator p, but only real numbers
are eigenvalues of the hermitian operator p—the others lic outside the space over which p is hermitian.
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Here y is a fixed number (for any given eigenfunction), but x is a continuous
variable. What function of x has the property that multiplying it by x is the same
as multiplying it by the constant y? Obviously it's got to be zero, except at the one
point x = y; in fact, it is nothing but the Dirac delta function:

gy(x) = A8(x — ).

This time the eigenvalue has to be real; the eigenfunctions are not square-integrable,
but again they admit Dirac orthonormality:

o0 o
/ g’:,(x) gy(x)dx = IAlzf S(x —v)8(x — y)dx = |A|28(y —y). [3.38]
0 —0Q

If we pick A=1, so
gy(x) =38(x — y). [3.39]

then
(gy'|g_\') =68(y — .V’)- [3.40]

These eigenfunctions are also complete:

.f(x)=/. c(y) g,v(-\‘)d.v=f | c(3)8(x — ¥)dy, [3.41]
-0 -0
with

c(») = f(y) [3.42]

(trivial, in this case, but you can get it from Fourier's trick if you insist).

If the spectrum of a hermitian operator is continuous (so the eigenvalues are
labeled by a continuous variable— p or y. in the examples; z, generically, in what
follows), the eigenfunctions are not normalizable, they are not in Hilbert space and
they do not represent possible physical states; nevertheless, the eigenfunctions with
real eigenvalues are Dirac orthonormalizable and complete (with the sum now an
integral). Luckily, this is all we really require.

Problem 3.9

(a) Cite a Hamiltonian from Chapter 2 (other than the harmonic oscillator) that
has only a discrete spectrum.

(b) Cite a Hamiltonian from Chapter 2 (other than the free particle) that has only
a continuous spectrum.



APPENDIX

LINEAR ALGEBRA

Linear algebra abstracts and generalizes the arithmetic of ordinary vectors, such as
those we encounter in first-year physics. The generalization is in two directions:
(1) We allow the scalars to be complex numbers, and (2) we do not restrict ourselves
to three dimensions.

A.1 VECTORS

A vector space consists of a set of vectors (|o), |8), |¥). ...), together with a set
of scalars (a, b, c, ...),! which is closed® under two operations: vector addition
and scalar multiplication.

e Vector Addition

The “sum” of any two vectors is another vector:

le) +18) = |y)- [A.1]
Vector addition is commutative:
la) +(B) = |B) + |e). [A.2]

FFor our purposes, the scalurs will be ordinary complex numbers. Mathematicians can tell you
about vector spaces over more exotic fields. but such objects play no role in quantum mechanics. Note
that @. B. y ... are not (ordinarily) numbers: they are names (labels)—Charlie.” [or instance. or
“F43A-9GL."” or whatever you care 1o use 0 identify the vector in question.

*That is to say, these operations arc always well-defined, and will never carry you outside the
veelor space.
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Linear Algebra

and associative:
la) + (18) + 1¥)) = (la) + [8)) + |¥). [A.3]

There exists a zero (or null) vector,3 |0), with the property that

) +10) = [e). [A.4]

for every vector |¢). And for every vector |«) there is an associated inverse
vector (| — «)),* such that

o) + | — ) = 10). [A.5]

e Scalar Multiplication
The “product” of any scalar with any vector is another vector:
aler) = |y). [A.6]

Scalar multiplication is distributive with respect to vector addition:

a(la) + |B)) = ala) + alB), [A.7]
and with respect to scalar addition:
(a + b)|a) = ala) + bla). [A.8]
It is also associative with respect to the ordinary multiplication of scalars:
a(bla)) = (ab)|a). [A.9]
Multiplication by the scalars 0 and 1 has the effect you would expect:
Olay = 10):  lla) = |a). [A.10]
Evidently | — ) = (—1)|o) (which we write more simply as —|a)).

There’s a lot less here than meets the eye—all I have done is to write down
in abstract language the familiar rules for manipulating vectors. The virtue of such
abstraction is that we will be able to apply our knowledge and intuition about the
behavior of ordinary vectors to other systems that happen to share the same formal
properties.

3t is customary, where no confusion can arise, to write the null vector without the adorning
bracket: |0) — 0.

AThis is funny notation. since « is not a number. I'm simply adopting the name “—Charlic™ for
the inverse of the vector whose name is “Charlie.” More natural terminology will suggest itself in a
moment.
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A linear combination of the vectors |o), |B8), |y), ..., is an expression of
the form
ala) +b|B) +cly) +---. [A.11]

A vector |A) is said to be linearly independent of the set |«), |B), |¥), ...,
if it cannot be written as a linear combination of them. (For example, in three
dimensions the unit vector £ is linearly independent of 7 and j, but any vector
in the xy plane is linearly dependent on i and j.) By extension, a set of vectors
is “linearly independent” if each one is linearly independent of all the rest. A
collection of vectors is said to span the space if every vector can be written as
a linear combination of the members of this set.’> A set of linearly independent
vectors that spans the space is called a basis. The number of vectors in any basis
is called the dimension of the space. For the moment we shall assume that the
dimension (n) is finite.
With respect to a prescribed basis

ler), le2).... . len). [A.12]

any given vector
lo) = aile)) +azlez) + - - -+ aylen), [A.13]

is uniquely represented by the (ordered) n-tuple of its components:
o) < (ay,ar.....ay). [A.14]

It is often easier to work with the components than with the abstract vectors them-
selves. To add vectors, you add their corresponding components:

ey + |BY <> (a1 +by.ax + by, ... .a,+ by): [A.15]
to multiply by a scalar you multiply each component:
cla) < (cay.caa, ... .cay). [A.16]
the null vector is represented by a string of zeroes:
[0) < (0.0....,0); [A.17]
and the components of the inverse vector have their signs reversed:

| — ) < (—ay;. —aa2. ... . —ay). [A.18]

A set of vectors that spans the space is also called complete. though I personally reserve that
word for the infinite-dimensional case. where subtle questions of convergence may arisc.
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The only disadvantage of working with components is that you have to commit
yourself to a particular basis. and the same manipulations will look very different
to someone working in a different basis.

Problem A.1 Consider the ordinary vectors in 3 dimensions (a,i + a,j + a-k),
with complex components.

(a) Does the subset of all vectors with a- = 0 constitute a vector space? If so,
what is its dimension; if not, why not?

(b) What about the subset of all vectors whose z component is 1? Hint: Would
the sum of two such vectors be in the subset? How about the null vector?

(c) What about the subset of vectors whose components are all equal?

xProblem A.2 Consider the collection of all polynomials (with complex coeffi-
cients) of degree less than N in x.

(a) Does this set constitute a vector space (with the polynomials as “vectors’™)?
If so, suggest a convenient basis, and give the dimension of the space. If not,
which of the defining properties does it lack?

(b) What if we require that the polynomials be even functions?

(c) What if we require that the leading coefficient (i.e., the number multiplying
N-1 :
X ) be 1?

(d) What if we require that the polynomials have the value 0 at x = 1?

(e) What if we require that the polynomials have the value 1 at x = 0?

Problem A.3 Prove that the components of a vector with respect to a given basis
are unique.

A.2 INNER PRODUCTS

In three dimensions we encounter two kinds of vector products: the dot product and
the cross product. The latter does not generalize in any natural way to n-dimensional
vector spaces, but the former does —in this context it is usually called the inner
product. The inner product of two vectors (Jo) and |8)) is a complex number,
which we write as {(«|B8), with the following properties:



Section A.2: Inner Products 439

(Bla) = (o] B)*, [A.19]
(lay >0, and (a|a)=0<« |a)=|0), [A.20]
(a|(b|B) + cly)) = bl{a|B) + cla|y). [A.21]

Apart from the generalization to complex numbers, these axioms simply codify the
familiar behavior of dot products. A vector space with an inner product is called
an inner product space.

Because the inner product of any vector with itself is a nonnegative number
(Equation A.20), its square root is real —we call this the norm of the vector:

leell = v{a|a): [A.22]

it generalizes the notion of “length.” A unit vector (one whose norm is 1) is said
to be normalized (the word should really be “normal,” but I guess that sounds too
anthropomorphic). Two vectors whose inner product is zero are called orthogonal
(generalizing the notion of “‘perpendicular”). A collection of mutually orthogonal
normalized vectors,

{ajla;) = §;;. [A.23]

is called an orthonormal set. It is always possible (see Problem A.4), and almost
always convenient, to choose an orthonormal basis; in that case the inner product
of two vectors can be written very neatly in terms of their components:

(a|BY =aiby +asby+ - +a;by,. [A.24]
the norm (squared) becomes
(aler) = lar | + lazl® + - + lay . [A.25]
and the components themselves are
a; = {ej|a). [A.26]

(These results generalize the familiar formulas a - b = a,by + ayby +a;b., la]? =
a? + al + azz, anda, =171-a,a,=j-a, a. = k - a, for the three-dimensional
orthonormal basis 7, J, k.) From now on we shall always work in orthonormal
bases, unless it is explicitly indicated otherwise.

Another geommetrical quantity one might wish to generalize is the angle
between two vectors. In ordinary vector analysis cos# = (a-b)/|a||b|. But because
the inner product is in general a complex number, the analogous formula (in an
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arbitrary inner product space) does not define a (real) angle 8. Nevertheless, it is
still true that the absolute value of this quantity is a number no greater than 1,

| B)1? < {ala){BIB). [A.27)]

(This important result is known as the Schwarz inequality; the proof is given in
Problem A.5.) So you can, if you like, define the angle between |a) and |B8) by
the formula

(| B){Bla)
(arler)(B1B)

cosf = [A.28]

*xProblem A.4 Suppose you start out with a basis (|e;). |e2). ... . |e,)) that is not
orthonormal. The Gram-Schmidt procedure is a systematic ritual for generating
from it an orthonormal basis (|e). |e3). ... . |e,)). It goes like this:

(i) Normalize the first basis vector (divide by its norm):

ler)
le]) = —.
lley |l

(i) Find the projection of the second vector along the first, and subtract it off:

le2) — (€] lea)le}).
This vector is orthogonal to |e]); normalize it to get |e3).
(iii) Subtract from |e3) its projections along |e}) and |e5):
le3) — (e]le3)le]) — (eh]e3)ler).

This is orthogonal to |¢}) and |e}); normalize it to get |e}). And so on.

Use the Gram-Schmidt procedure to orthonormalize the 3-space basis |e)) =

~

(14D + (Df+ Ok. |ea) = ()i + (3] + (Dk. |ez) = (0)i + (28)] + (O)k.

Problem A.5 Prove the Schwarz inequality (Equation A.27). Hint: Let |y) =
1B) — («|B}/{ala))|a), and use {(y|y) = 0.

Problem A.6 Find the angle (in the sense of Equation A.28) between the vectors
lay = (1 +i)i + (1)) + (Dk and |B) = (4 — )i + (0)) + (2 — 20)k.

Problem A.7 Prove the triangle inequality: ||(|o) + |B)I < |l + I8
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A.3 MATRICES

Suppose you take every vector (in 3-space) and multiply it by 17, or you rotate every
vector by 39° about the z-axis, or you reflect every vector in the xy plane—these
are all examples of linear transformations. A linear transformation® (T) takes
each vector in a vector space and “transforms” it into some other vector (|o) —
|’y = T'|a)), subject to the condition that the operation be linear:

T (ale) + b|BY) = a(T|a)) + b(T|B)), [A.29]

for any vectors |a), |B) and any scalars a, b.
If you know what a particular linear transformation does to a set of basis
vectors, you can easily figure out what it does to any vector. For suppose that

Tler) = Tiiler) + Tailea) + -+ + Tyilen).
Tles) = Tialer) + Toalea) + - -« + Talen).

Tlen) = Tinler) + Tanlea) +- -+ + Tunlen),
or, more compactly,

n
Tlej) =Y Tyjle), (j=1.2.....n). [A.30]

i=]

If |a) is an arbitrary vector,

n
o) = aler) +azle2) + -+ +anlen) = D ajle;). [A.31]
—
then
n n n n n
Floy =Y a; (Tlep) =3 Y ajTjle = 3 | - Ty | len).  1432)
j=1 j=1i=l i=1 \j=I
Evidently T takes a vector with components a).da. ... ,d, into a vector with
components7
n
a,{ = Z Tija;. [A.33]
Jj=1

SIn this chapter I'll use a hat (") to denote linear transformations: this is not inconsistent with
my convention in the text (putting hats on operators). for (as we shall see) quantum operators are linear
transformations.

"Notice the reversal of indices between Equations A.30 and A.33. This is not a typographical
cerror. Another way of putting it (switching i <> j in Equation A.30) is that if the components transform
with T;;. the basis vectors transform with Tj;.



442

Appendix Linear Algebra

Thus the n? elements T;; uniquely characterize the linear transformation 7' (with
respect to a given basis), just as the # components a; uniquely characterize the
vector |a) (with respect to the same basis):

T & (Tin.Tize .., Tn). [A.34]
If the basis is orthonormal, it follows from Equation A.30 that

Tij = (eilTle;). [A.35]

It is convenient to display these complex numbers in the form of a matrix:®

Tw Ty ... T
Iy T;pm ... Ty

= © [A.36]
Tnl TnZ ‘e Tnn

The study of linear transformations reduces then to the theory of matrices. The sum
of two linear transformations (S + T') is defined in the natural way:

(S + D)) = Sla) + Tla); [A.37]

this matches the usual rule for adding matrices (you add their corresponding
elements):
U=S+T & Uij = Sij + T;;. [A.38]

The product of two linear transformations (8T) is the net effect of performing
them in succession—first T, then S;

'y = Tlay; "y = Sla’y = S(T|a)) = ST |a). [A.39]

What matrix U represents the combined transformation U = §T2 1t's not hard to
work it out:

n n n
i = Y Sy = 35 (2 wk) S DITTN P i
i j k=1 k=1 \j=1 k=1
Evidently

n
U=ST & U = Z SiiTjk. [A.40]
j=1

8111 use boldface capital letters, sans serif, to denote squarc matrices.
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This is the standard rule for matrix multiplication—to find the ikth element of
the product ST, you look at the ith row of S, and the kth column of T, multi-
ply corresponding entries, and add. The same prescription allows you to multiply
rectangular matrices, as long as the number of columns in the first matches the
number of rows in the second. In particular, if we write the n-tuple of components
of |a) as an n x | column matrix (or “column vector”):’

aj
a

a=1| .|. [A.41]
ay
the transformation rule (Equation A.33) can be expressed as a matrix product:
a’ =Ta. [A.42]

Now some matrix terminology:

e The transpose of a matrix (which we shall write with a tilde: 'i') is the same
set of elements, but with rows and columns interchanged. In particular, the
transpose of a column matrix is a row matrix:

a= (al a ... a,,) . [A.43]

For a square matrix taking the transpose amounts to reflecting in the main
diagonal (upper left to lower right):

Iy Ty ... Ty

- T, Ty ... Tp2

T= . . . [A.44]
Tln TZn s Tnn

A (square) matrix is symmetric if it is equal to its transpose; it is antisym-
metric if this operation reverses the sign:

symmetric : T=T; antisymmetric: T = —T. [A.45]

e The (complex) conjugate of a matrix (which we denote, as usual, with an
asterisk, T*), consists of the complex conjugate of every element:

T1:1 T1:2 . TIZ' az
1 R P ) e
Lh Tnp - T dy,

(47998 . .
I'11 usc boldface lowercase letters. sans serif, for row and column matrices.
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A matrix is real if all its elements are real, and imaginary if they are all
imaginary:
real : T* =T; imaginary: T" = -T. [A.47]

e The hermitian conjugate (or adjoint) of a matrix (indicated by a dagger,
T") is the transpose conjugate:

Tl*l T?.*l T T:l

n o~k 1*‘) 5 ... :‘J s o

T=T=|"7 % |oat=at=(a @ . a).
T ... T [A.48]

A square matrix is hermitian (or self-adjoint) if it is equal to its hermitian
conjugate; if hermitian conjugation introduces a minus sign, the matrix is
skew hermitian (or anti-hermitian):

hermitian : T = T;  skew hermitian : T = —T. [A.49]
In this notation the inner product of two vectors (with respect to an orthonor-
mal basis—Equation A.24), can be written very neatly as a matrix product:

(@|B) =a'b. [A.50]

Notice that each of the three operations defined in this paragraph, if applied twice,
returns you to the original matrix.

Matrix multiplication is not, in general, commutative (ST % TS); the differ-
ence between the two orderings is called the commutator:'°

[S.T]|=ST-Ts. [A.51]
The transpose of a product is the product of the transposes in reverse order:
(8T) =T8S, [A.52]
(see Problem A.11). and the same goes for hermitian conjugates:
ST =T'S". [A.53]

The unit matrix (representing a linear transformation that carries every vector
into itself) consists of ones on the main diagonal, and zeroes everywhere else:

1 0 ... 0
o1 ... 0

I=|. . - [A.54]
0 0 1

10The commutator only makes sensc for square matrices. of course: for rectangular matrices the
two orderings wouldn't even be the same size.
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In other words,
|,'j = Jjj. [A.55]

The inverse of a (square) matrix (written T_]) 1s defined in the obvious way:“
T T=TT'=1l [A.56]

A matrix has an inverse if and only if its determinant'? is nonzero; in fact,

1

= %ot TC, [A.57]

T—l

where C is the matrix of cofactors (the cofactor of element Tj; is (—1)*/ times
the determinant of the submatrix obtained from T by erasing the ith row and the
Jth column). A matrix that has no inverse is said to be singular. The inverse of a
product (assuming it exists) is the product of the inverses in reverse order:

ST ' =1"'s7!, [A.58]

A matrix is unitary if its inverse is equal to its hermitian conjugate:!
unitary : u'=u-' [A.59]
Assuming the basis is orthonormal, the columns of a unitary matrix constitute an

orthonormal set, and so too do its rows (see Problem A.12). Linear transformations
represented by unitary matrices preserve inner products, since (Equation A.50)

('|8’y = a’'b’ = (Ua)"(Ub) = a'U'Ub = a’b = («|B). [A.60]

xProblem A.8 Given the following two matrices:

-1 1 i 2 0 —i
A=1] 2 0 31]. B=]0 1 O
20 =20 2 i 3 2

HNote that the left inverse is equal to the right inverse, for if AT = | and TB = |, then
(multiplying the second on the left by A and invoking the first) we get B = A.

12} assume you know how to evaluate determinants. If not. scc M. Boas. Mathematical Methods
in the Physical Sciences, 2nd ed. (John Wiley. New York, 1983), Scction 3.3.

31n a real vector space (that is, one in which the scalars are real) the hermitian conjugate is
the same as the transpose, and a unitary matrix is erthogonal: O = 0~ For example. rotations in
ordinary 3-space are represented by orthogonal matrices.
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compute: (2) A + B, (b) AB, (c) [AB], (d) A, (e) A*, () AT, (g) det(B), and
(h) B~!. Check that BB™! = I. Does A have an inverse?

*xProblem A.9 Using the square matrices in Problem A.8, and the column

matrices
[ 2
a=\|2]|]. b=]U-1
2 0

find: (a) Aa, (b) a'b, (c) aBb, (d) ab’.

Problem A.10 By explicit construction of the matrices in question, show that any
matrix T can be written

(a) as the sum of a symmetric matrix S and an antisymmetric matrix A;
(b) as the sum of a real matrix R and an imaginary matrix M;

(c) as the sum of a hermitian matrix H and a skew-hermitian matrix K.

xProblem A.11 Prove Equations A.52, A.53, and A.58. Show that the product of
two unitary matrices is unitary. Under what conditions is the product of two her-
mitian matrices hermitian? Is the sum of two unitary matrices necessarily unitary?
[s the sum of two hermitian matrices hermitian?

Problem A.12 Show that the rows and columns of a unitary matrix constitute
orthonormal sets.

Problem A.13 Noting that det('i') = det(T). show that the determinant of a her-
mitian matrix is real, the determinant of a unitary matrix has modulus 1 (hence the
name), and the determinant of an orthogonal matrix is either +1 or —1.

A.4 CHANGING BASES

The components of a vector depend, of course, on your (arbitrary) choice of basis,
and so do the elements of the matrix representing a linear transformation. We
might inquire how these numbers change when we switch to a different basis.
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The old basis vectors, |e¢;) are—like all vectors—Ilinear combinations of the new
ones, | f):

ler) = Sulfi) + Salfa) +---+ Suilfa),
lea) = Sialf1) + Sazl fo) + -+ Si2l ).

len) = Slnlfl) + S2n|f2) + 4+ Sn'nlfn)a
(for some set of complex numbers S;;), or, more compactly,
n
les) =Y Silfi). (G=1,2,....n). [A.61]
i=lI

This is itself a linear transformation (compare Equation A.30),!* and we know
immediately how the components transform:

n
al =3 8,45, [A.62]
j=I

(where the superscript indicates the basis). In matrix form
a’ =Sa’. [A.63]

What about the matrix representing a linear transformation T —how is if
modified by a change of basis? Well, in the old basis we had (Equation A.42)

a”“="Ta",
and Equation A.63—multiplying both sides by $~! —entails'S a¢ = §™'a’, so
a'/ = Sa” = §(T¢a®) = ST*S~'a’.

Evidently
T/ =sT°s . [A.64]

In general, two matrices (T and T,) are said to be similar if T, = STls_l for
some (nonsingular) matrix S. What we have just found is that marrices representing

14Notice. however. the radically different perspective: In this case we're talking about one and
the same vector, referred 1o two completely different bases. whereas before we were thinking of a
completely different vector, referred to the same basis.

I5Note that S~ certainly exists—if 8 were singular, the | f;)’s would not span the space, so
they wouldn’t constitute a basis.
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the same linear transformation, with respect to different bases, are similar. Inciden-
tally, if the first basis is orthonormal, the second will also be orthonormal if and
only if the matrix S is unirary (see Problem A.16). Since we always work in
orthonormal bases, we are interested mainly in unitary similarity transformations.

While the elements of the matrix representing a given linear transformation
may look very different in the new basis, two numbers associated with the matrix

are unchanged: the determinant and the trace. For the determinant of a product is

the product of the determinants, and hence
det(T/) = det(ST*S™") = det(S) det(T*) det(S™") = det T. [A.65]

And the trace, which is the sum of the diagonal elemnents,

To(T) = Z T;:. [A.66]

i=I
has the property (see Problem A.17) that
Tr(T;T2) = Tr(TLT)), [A.67]
(for any two matrices T; and T»), so

Tr(T/) = T(ST*S™") = Tr(T.$™'S) = Tr(T*). [A.68]

Problem A.14 Using the standard basis (i. j. k) for vectors in three dimensions:

(a) Construct the matrix representing a rotation through angle 6 (counterclock-
wise, looking down the axis toward the origin) about the z-axis.

(b) Construct the matrix representing a rotation by 1207 (counterclockwise, look-
ing down the axis) about an axis through the point (1,1,1).

(c) Construct the matrix representing reflection through the xy-plane.

(d) Check that all these matrices are orthogonal, and calculate their determinants.

Problem A.15 In the usual basis (i, j. k), construct the matrix T, representing a
rotation through angle 6 about the x-axis, and the matrix T, representing a rotation
through angle # about the y-axis. Suppose now we change bases, to i’ = j, J' =
—i, k' = k. Construct the matrix S that effects this change of basis, and check
that ST,S™! and ST.,.S_] are what you would expect.

Problem A.16 Show that similarity preserves matrix multiplication (that is, if
A‘B‘ = C*, then A/ B/ = C/). Similarity does not, in general, preserve symmetry,
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reality, or hermiticity; show, however, that if S is unitary, and H¢ is hermitian, then
H/ is hermitian. Show that S carries an orthonormal basis into another orthonormal
basis if and only if it is unitary.

*Problem A.17 Prove that Tr(T;T2) = Tr(T,T;). It follows immediately that
T(T | T2T3) = Tr(T.T3Ty), but is it the case that Tr(T;T.T3) = Tr(T>T;T3), in
general? Prove it, or disprove it. Hint: The best disproof is always a counterexam-
ple—the simpler the better!

A.5 EIGENVECTORS AND EIGENVALUES

Consider the linear transformation in three-space consisting of a rotation, about
some specified axis, by an angle 8. Most vectors will change in a rather complicated
way (they ride around on a cone about the axis), but vectors that happen to lie along
the axis have very simple behavior: They don’t change at all (T|a) = |a)). If 6 is
180°, then vectors which lie in the “equatorial” plane reverse signs ( Tla) = —|a)).
In a complex vector space'® every linear transformation has “special” vectors like
these, which are transformed into scalar multiples of themselves:

Tle) = Aler); [A.69]

they are called eigenvectors of the transformation, and the (complex) number A
is their eigenvalue. (The null vector doesn’t count, even though in a trivial sense
it obeys Equation A.69 for any T and any A; technically, an eigenvector is any
nonzero vector satisfying Equation A.69.) Notice that any (nonzero) multiple of an
eigenvector is still an eigenvector, with the same eigenvalue.

With respect to a particular basis, the eigenvector equation assumes the
matrix form

Ta = Aa, [A.70]

(for nonzero a), or

(T—iha=0. [A.71]

(Here 0 is the zero matrix, whose elements are all zero.) Now, if the matrix (T — Al)
had an inverse, we could multiply both sides of Equation A.71 by (T —Al)~!, and

16This is not always true in a real vector space (where the scalars are restricted to real values).
See Problem A.18.
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conclude that a = 0. But by assumption a is not zero, so the matrix (T — Al) must
in fact be singular, which means that its determinant is zero:

(T1; — A) T2 Tin
T3, (Tpa —2) ... Ty
det(T— AD = . . . =0. [A.72]
Tnl TnZ PN (Tnn - )\)

Expansion of the determinant yields an algebraic equation for A:
CoA" + Cy A"+ + C 1A+ Co = 0. [A.73]

where the coefficients C; depend on the elements of T (see Problem A.20). This is
called the characteristic equation for the matrix; its solutions determine the eigen-
values. Notice that it’s an nth-order equation, so (by the fundamental theorem
of algebra) it has n (complex) roots.!” However, some of these may be multiple
roots, so all we can say for certain is that an n x n matrix has ar least one and
at most n distinct eigenvalues. The collection of all the eigenvalues of a matrix is
called its spectrum; if two (or more) linearly independent eigenvectors share the
same eigenvalue, the spectrum is said to be degenerate.

To construct the eigenvectors it is generally easiest simply to plug each A
back into Equation A.70 and solve “by hand” for the components of a. I'll show
you how it goes by working out an example.

Example A.1 Find the eigenvalues and eigenvectors of the following matrix:

2 0 =2
M={|-2i i 2i]. [A.74]
1 0 -1

Solution: The characteristic equation is

(2 —21) 0 -2
—2i  (i—=A) 2i | == +A+DA—-ix=0. [A.75]
1 0 (=1-=2)

and its roots are 0, 1, and /. Call the components of the first eigenvector (a;, az, as);
then

2 0 =2\ [aq ai 0
—2i i 2 aml=0]la:| =10
| 0 -1 as as 0

171t is here that the case of real vector spaces becomes more awkward, because the characteristic
equation need not have any (real) solutions at all. See Problem A.18.
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which yields three equations:

2(11 — 2(13 = 0.
—2iay +iary + 2iaz3 =0,
ay —azy =0.
The first determines a3 (in terms of a|): a3 = ay; the second determines a>: a2 = 0;

and the third is redundant. We may as well pick a; = 1 (since any multiple of an
eigenvector is still an eigenvector):

1
a» =10], fora =0. [A.76]
1

For the second eigenvector (recycling the same notation for the components) we
have

2 0 =2 aj al' aj
=2 i 2 a|l=1lla]l=|a
1 0 -1 as as ai

which leads to the equations

2a; — 2a3 = ay,
—2ia) +iay + 2iaz = as.

a) —az = as.

with the solution a3 = (1/2)aj, a = [(1 —i)/2]a,; this time I'll pick a; = 2, so

1 —i|. fori;y=1. [A.77]
Finally, for the third eigenvector,
2 0 =2\ /a aj ia
=2 i 2 a)l=ila|l=\{ia
1 0 -1 as as iaz

which gives the equations

2a; —2a3 =1iay,
—2ia; +iar+ 2iaz = ias.

ay —az =ias.
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whose solution is a3 = a; = 0, with a2 undetermined. Choosing a» = 1, we
conclude
0
a®=11|, forrz=i. [A.78]
0

If the eigenvectors span the space (as they do in the preceding example), we
are free to use them as a basis:

TIf1) = Mlf),
T|f2) = Aalfa).,

TIfa) = Malfu)-

In this basis the matrix representing T takes on a very simple form, with the
eigenvalues strung out along the main diagonal, and all other elements zero:

A 0 ... 0
0 2 ... 0
T=1]. . A [A.79]
0 0 ... Ay
and the (normalized) eigenvectors are
1 0 0
0 1 0
of. 19]..... 19]. [A.80]
0 0 1

A matrix that can be brought to diagonal form (Equation A.79) by a change
of basis is said to be diagonalizable (evidently a matrix is diagonalizable if and
only if its eigenvectors span the space). The similarity matrix that effects the
diagonalization can be constructed by using the normalized eigenvectors (in the
old basis) as the columns of S7!:

(S = @y [A.81]

Example A.2 In Example A.1,

1 2 0
s'=10 a-i 1
1 1 0
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so (using Equation A.57)

-1 0 2
S= 1 0 -1
(-1 1 (1-1i)
and you can check for yourself that
1 0 0
sal =[o], sa®=[1]. sa® =0
0 0 1
and
0 0O
sMS™'=(0 1 0
0 0 i

There’s an obvious advantage in bringing a matrix to diagonal form: It’s much
easier to work with., Unfortunately, not every matrix can be diagonalized—the
eigenvectors have to span the space. If the characteristic equation has n distinct
roots, then the matrix is certainly diagonalizable, but it may be diagonalizable even
if there are multiple roots. (For an example of a matrix that cannot be diagonalized,
see Problem A.19.) It would be handy to know in advance (before working out
all the eigenvectors) whether a given matrix is diagonalizable. A useful sufficient
(though not necessary) condition is the following: A matrix is said to be normal
if it commutes with its hermitian conjugate:

normal : [N, N] = 0. [A.82]

Every normal matrix is diagonalizable (its eigenvectors span the space). In partic-
ular, every hermitian matrix, and every unitary matrix, is diagonalizable.

Suppose we have rwo diagonalizable matrices; in quantum applications the
question often arises: Can they be simultaneously diagonalized (by the same
similarity matrix S)? That is to say, does there exist a basis in which they are
both diagonal? The answer is yes if and only if the two matrices commute (see
Problem A.22).

xProblem A.18 The 2 x 2 matrix representing a rotation of the xy plane is

cosf —siné
T= (sin@ cos @ ) [A.83]

Show that (except for certain special angles—what are they?) this matrix has no
real eigenvalues. (This reflects the geometrical fact that no vector in the plane
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is carried into itself under such a rotation; contrast rotations in three dimensions.)
This matrix does, however, have complex eigenvalues and eigenvectors. Find them.
Construct a matrix S that diagonalizes T. Perform the similarity transformation
(STS™!) explicitly, and show that it reduces T to diagonal form.

Problem A.19 Find the eigenvalues and eigenvectors of the following matrix:

(3 )

Can this matrix be diagonalized?

Problem A.20 Show that the first, second, and last coefficients in the characteristic
equation (Equation A.73) are:

Ch=(=D" Ch_1==D""I(M). and Cy=det(T). [A.84]

For a 3 x 3 matrix with elements T;;, what is C?

Problem A.21 It’s obvious that the trace of a diagonal matrix is the sum of its
eigenvalues, and its determinant is their product (just look at Equation A.79). It
follows (from Equations A.65 and A.68) that the same holds for any diagonalizable
matrix. Prove that in fact

det(M=AAz---Ap. Te(M=A1+r2+--424,. [A.85]

for any matrix. (The A's are the n solutions to the characteristic equation—in the
case of multiple roots, there may be fewer linearly independent eigenvectors than
there are solutions, but we still count each A as many times as it occurs.) Hint:
Write the characteristic equation in the form

A =AMR2=A2)--- (A —A) =0,

and use the result of Problem A.20.

Problem A.22

(a) Show that if two matrices commuite in one basis, then they commute in any
basis. That is:

[T.T5]=0 = [T{.T{]=0. [A.86]

Hint: Use Equation A.64.
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(b) Show that if two matrices are simultaneously diagonalizable, they
commute.!8

Problem A.23 Consider the matrix

(a) Is it normal?

(b) Is it diagonalizable?

A.6 HERMITIAN TRANSFORMATIONS

In Equation A.48 I defined the hermitian conjugate (or “adjoint”) of a matrix as
its transpose-conjugate: T' = T*. Now I want to give you a more fundamental
definition for the hermitian conjugate of a linear transformation: It is that trans-
formation 7% which, when applied to the first member of an inner product, gives
the same result as if T itself had been applied to the second vector:

(T a|B) = (a|TB). [A.87]

(for all vectors |&) and |8)).1° I have to warn you that although everybody uses it,
this is lousy notation. For @ and B8 are not vectors (the vectors are |&) and |8)),
they are names. In particular, they are endowed with no mathematical properties
at all, and the expression “Tﬁ" is literally nonsense: Linear transformations act on
vectors, not labels. But it’s pretty clear what the notation means: T8 is the name
of the vector f”l B), and (f"%ozlﬁ)_ is the inner product of the vector f’*la-) with the
vector |B). Notice in particular that

(@]cB) = c(x|B). [A.88]

whereas
(ca|B) = c™(a|B). [A.89]

for any scalar c.

'SProving the converse (that if two diagonalizable matrices commute then they are simultaneously
diagonalizable) is not so simple. Scc for example Eugen Merzbacher. Quantum Mechanics. 3rd cd..
Wiley. New York (1998). Scction 10.4.

YYou may wonder whether such a translformation necessarily exists. Good question! The answer
is “ves.” See, for instance. P, R, Halmos, Finite Dimensional Vector Spaces, 2nd ed.. van Nostrand.
Princeton (1958), Section 44.



456

Appendix Linear Algebra

If you’re working in an orthonormal basis (as we always shall), the hermitian
conjugate of a linear transformation is represented by the hermitian conjugate of
the corresponding matrix; for (using Equations A.50 and A.53),

(@|T8)=a'Th = (TTa)'b = (T7a|B). [A.90]

So the terminology is consistent, and we can speak interchangeably in the language
of transformations or of matrices.

In quantum mechanics, a fundamental role is played by hermitian transfor-
mations (71 = T). The eigenvectors and eigenvalues of a hermitian transformation
have three crucial properties:

1. The eigenvalues of a hermitian transformation are real.

Proof: Let A be an eigenvalue of T: f’la) = A|a), with |&) # |0). Then
(a|f"a) = (a|Aa) = Aa|a).
Meanwhile, if T is hermitian, then
(|Ta) = (Tala) = (Aaa) = A (o).

But (a|a) # 0 (Equation A.20), so A = A*, and hence A is real. QED

2. The eigenvectors of a hermitian transformation belonging to distinct
eigenvalues are orthogonal.

Proof: Suppose 7|a) = Ala) and T|8) = w|B), with A # . Then
(o TB) = (aluB) = p(alB).
and if T is hermitian,
(@|TB) = (Ta|B) = (rat|B) = A*(|B).

But A = A* (from 1), and A # u, by assumption, so (¢|8) =0. QED

3. The eigenvectors of a hermitian transformation span the space.
As we have seen, this is equivalent to the statement that any hermitian matrix
can be diagonalized (see Equation A.82). This rather technical fact is, in a
sense, the mathematical support on which much of quantum mechanics leans.
It turns out to be a thinner reed than one might have hoped, because the proof
does not carry over to infinite-dimensional vector spaces.
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Problem A.24 A hermitian linear transformation must satisfy (a|fﬁ) = (f’a|ﬁ)
for all vectors |o) and |B). Prove that it is (surprisingly) sufficient that (ylf’y) =
(f‘yly) for all vectors |y). Hint: First let |y) = |a) + |B), and then let |y) =
la) +i18)-

xProblem A.25 Let

11—
T"(1+i 0 )

Verify that T is hermitian.
Find its eigenvalues (note that they are real).
Find and normalize the eigenvectors (note that they are orthogonal).

Construct the unitary diagonalizing matrix S, and check explicitly that it
diagonalizes T.

(e) Check that det(T) and Tr(T) are the same for T as they are for its diagonal-
ized form.

* xProblem A.26 Consider the following hermitian matrix:

2 [ 1
T=\|—-i 2 i
1 —i 2

(a) Calculate det(T) and Tr(T).

(b) Find the eigenvalues of T. Check that their sum and product are consis-
tent with (a), in the sense of Equation A.85. Write down the diagonalized
version of T.

(c) Find the eigenvectors of T. Within the degenerate sector, construct two lin-
early independent eigenvectors (it is this step that is always possible for a
hermitian matrix, but not for an arbitrary matrix—contrast Problem A.19).
Orthogonalize them, and check that both are orthogonal to the third.
Normalize all three eigenvectors.

(d) Construct the unitary matrix S that diagonalizes T, and show explicitly that
the similarity transformation using S reduces T to the appropriate diagonal
form.

Problem A.27 A unitary transformation is one for which U0 =1.

(a) Show that unitary transformations preserve inner products, in the sense that
(Ua|UB) = (a|B), for all vectors |), |8).
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(b) Show that the eigenvalues of a unitary transformation have modulus 1.

(c) Show that the eigenvectors of a unitary transformation belonging to distinct
eigenvalues are orthogonal.

* % *Problem A.28 Functions of matrices are defined by their Taylor series expansions;
for example,

1 1
eME|+M+§M2+§M3+"'. [A.91]
(a) Find exp(M), if
0 1 3
(HM=1{0 0 4], (ii)M=(_00 g)
0 0O

(b) Show that if M is diagonalizable, then

det (eM> = TV, [A.92]

Comment: This is actually true even if M is not diagonalizable, but it’s
harder to prove in the general case.

(c) Show that if the matrices M and N commute, then

Prove (with the simplest counterexample you can think up) that Equation A.93
is not true, in general, for non-commuting matrices.

(d) If H is hermitian, show that e'H is unitary.
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If you’re working in an orthonormal basis (as we always shall), the hermitian
conjugate of a linear transformation is represented by the hermitian conjugate of
the corresponding matrix; for (using Equations A.50 and A.53),

(@|T8)=a'Th = (TTa)'b = (T7a|B). [A.90]
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1. The eigenvalues of a hermitian transformation are real.
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Meanwhile, if T is hermitian, then
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Problem A.24 A hermitian linear transformation must satisfy (a|fﬁ) = (f’a|ﬁ)
for all vectors |o) and |B). Prove that it is (surprisingly) sufficient that (ylf’y) =
(f‘yly) for all vectors |y). Hint: First let |y) = |a) + |B), and then let |y) =
la) +i18)-

xProblem A.25 Let

11—
T"(1+i 0 )

Verify that T is hermitian.
Find its eigenvalues (note that they are real).
Find and normalize the eigenvectors (note that they are orthogonal).

Construct the unitary diagonalizing matrix S, and check explicitly that it
diagonalizes T.

(e) Check that det(T) and Tr(T) are the same for T as they are for its diagonal-
ized form.

* xProblem A.26 Consider the following hermitian matrix:

2 [ 1
T=\|—-i 2 i
1 —i 2

(a) Calculate det(T) and Tr(T).

(b) Find the eigenvalues of T. Check that their sum and product are consis-
tent with (a), in the sense of Equation A.85. Write down the diagonalized
version of T.

(c) Find the eigenvectors of T. Within the degenerate sector, construct two lin-
early independent eigenvectors (it is this step that is always possible for a
hermitian matrix, but not for an arbitrary matrix—contrast Problem A.19).
Orthogonalize them, and check that both are orthogonal to the third.
Normalize all three eigenvectors.

(d) Construct the unitary matrix S that diagonalizes T, and show explicitly that
the similarity transformation using S reduces T to the appropriate diagonal
form.

Problem A.27 A unitary transformation is one for which U0 =1.

(a) Show that unitary transformations preserve inner products, in the sense that
(Ua|UB) = (a|B), for all vectors |), |8).
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(b) Show that the eigenvalues of a unitary transformation have modulus 1.

(c) Show that the eigenvectors of a unitary transformation belonging to distinct
eigenvalues are orthogonal.

* % *Problem A.28 Functions of matrices are defined by their Taylor series expansions;
for example,

1 1
eME|+M+§M2+§M3+"'. [A.91]
(a) Find exp(M), if
0 1 3
(HM=1{0 0 4], (ii)M=(_00 g)
0 0O

(b) Show that if M is diagonalizable, then

det (eM> = TV, [A.92]

Comment: This is actually true even if M is not diagonalizable, but it’s
harder to prove in the general case.

(c) Show that if the matrices M and N commute, then

Prove (with the simplest counterexample you can think up) that Equation A.93
is not true, in general, for non-commuting matrices.

(d) If H is hermitian, show that e'H is unitary.




