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A. INTRODUCTION

A. INTRODUCTION

In classical mechanics, the motion of any physical system is determined if
the position r(x, y, z) and velocity v(x, y, Z) of each of its points are known as a
function of time. In general (appendix III), to describe such a system, one introduces
generalized coordinates ¢,(t) (i = 1, 2, ..., N), whose derivatives with respect to
time, ¢;(t), are the generalized velocities. Specifying the g,(¢) and §,(¢) enables us
to calculate, at any given instant, the position and velocity of any point of the
system. Using the Lagrangian Z(q,, §,, t), one defines the conjugate momentum p,
of each of the generalized coordinates g, :

0
P = 73—6]-,‘ (A-1)

The ¢,(t) and p,(¢) (i = 1, 2, ..., N) are called the fundamental dynamical
variables. All the physical quantities associated with the system (energy, angular
momentum, etc.) can be expressed in terms of the fundamental dynamical
variables. For example, the total energy of the system is given by the classical
Hamiltonian 4 (q;, p;, t). The motion of the system can be studied by using
either Lagrange’s equations or the Hamilton-Jacobi canonical equations, which
are written :

ql'—_’_ ==
—dt— [‘li (A-2-a)
Py _ _ 0% 2.

In the special case of a system consisting of a single physical point of mass m,
the g, are simply the three coordinates of this point, and the 4; are the components
of its velocity v. If the forces acting on this particle can be derived from a
scalar potential V(r, t), the three conjugate momenta of its position r (that is,
the components of its linear momentum p) are equal to the components of
its mechanical momentum mv. The total energy is then written:

2

=P -
E = 2m+ Vir, t) (A-3)

and the angular momentum with respect to the origin:
L=rxp (A-4)
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CHAPTER Il THE POSTULATES OF QUANTUM MECHANICS

2
Since H#(r, p, t) = % + V(r, t), the Hamilton-Jacobi equations (A-2) here take on

the well-known form:

dr p

== A-5-
dt m ( 3)
@ _ _wy (A-5-b)
dt

The classical description of a physical system can therefore be summarized
as follows:

(/) The state of the system at a fixed time ¢, is defined by specifying N
generalized coordinates ¢,(t,) and their N conjugate momenta p,(¢,).

(ii) The value, at a given time, of the various physical quantities is
completely determined when the state of the system at this time is known:
knowing the state of the system, one can predict with certainty the result of any
measurement performed at time ¢,.

(éif) The time evolution of the state of the system is given by the Hamilton-
Jacobi equations. Since these are first-order differential equations, their solution
{ ¢:(t), p;(t) } is unique if the value of these functions at a given time ¢, is fixed,
{ q.(to), p;(ty) }. The state of the system is known for all time if its initial state
is known.

In this chapter, we shall study the postulates on which the quantum
description of physical systems is based. We have already introduced them,
in a qualitative and partial way, in chapter 1. Here we shall discuss them
explicitly, within the framework of the formalism developed in chapter II.
These postulates will provide us with an answer to the following questions
(which correspond to the three points enumerated above for the classical
description) :

(/) How is the state of a quantum system at a given time described
mathematically ?

() Given this state, how can we predict the results of the measurement of
various physical quantities ?

(éii) How can the state of the system at an arbitrary time ¢ be found
when the state at time ¢, is known ?

We shall begin by stating the postulates of quantum mechanics (§B).
Then we shall analyze their physical content and discuss their consequences
(8§ C, D, E).

B. STATEMENT OF THE POSTULATES

1. Description of the state of a system

In chapter I, we introduced the concept of the quantum state of a particle.
We first characterized this state at a given time by a square-integrable wave
function. Then, in chapter II, we associated a ket of the state space & with
each wave function : choosing | ¥ > belonging to &, is equivalent to choosing
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B. STATEMENT OF THE POSTULATES

the corresponding function ¥(r) = {r |y >. Therefore, the quantum state of
a particle at a fixed time is characterized by a ket of the space &,. In this
form, the concept of a state can be generalized to any physical system.

First Postulate: At a fixed time ¢, the state of a physical system is defined
by specifying a ket | Y/(t,) > belonging to the state space &.

It is important to note that, since & is a vector space, this first postulate
implies a superposition principle : a linear combination of state vectors is a
state vector. We shall discuss this fundamental point and its relations to
the other postulates in §E.

2. Description of physical quantities

We have already used, in §D-1 of chapter I, a differential operator H
related to the total energy of a particle in a scalar potential. This is simply a
special case of the second postulate.

Second Postulate: Every measurable physical quantity &/ is described by an
operator A4 acting in & ; this operator is an observable.

COMMENTS :

(i) The fact that 4 is an observable (c¢f. chap. II, §D-2) will be seen below (§3)
to be essential.

(i)  Unlike classical mechanics (¢f. § A), quantum mechanics describes in a funda-
mentally different manner the state of a system and the associated physical
quantities : a state is represented by a vector, a physical quantity by an
operator.

3. The measurement of physical quantities

a. POSSIBLE RESULTS

The connection between the operator H and the total energy of the particle
appeared in §D-1 of chapter I in the following form: the only energies possible
are the eigenvalues of the operator H. Here as well, this relation can be
extended to all physical quantities.

Third Postulate : The only possible result of the measurement of a physical
quantity &/ is one of the eigenvalues of the corresponding observable A.

COMMENTS !

(i) A measurement of &/ always givec a real value, since A is by definition
Hermitian.
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CHAPTER il THE POSTULATES OF QUANTUM MECHANICS

(¢7) If the spectrum of A4 is discrete, the results that can be obtained by
measuring &/ are quantized (§ C-2).

b. PRINCIPLE OF SPECTRAL DECOMPOSITION

We are going to generalize and discuss in more detail the conclusions
of § A-3 of chapter I, where we analyzed a simple experiment performed on
polarized photons.

Consider a system whose state is characterized, at a given time, by the
ket | ¥ ), assumed to be normalized to 1:

ylyy=1 (B-1)

We want to predict the result of the measurement, at this time, of a physical
quantity .&/ associated with the observable A. This prediction, as we already
know, is of a probabilistic sort. We are now going to give the rules which
allow us to calculate the probability of obtaining any given eigenvalue of A.

o.  Case of a discrete spectrum

First, let us assume that the spectrum of A4 is entirely discrete. If all
the eigenvalues a, of A are non-degenerate, there is associated with each of them
a unique (to within a constant factor) eigenvector | u, »:

Alu,>=a,|u, (B-2)

Since A4 is an observable, the set of the |u,, >, which we shall take to be
normalized, constitutes a basis in &, and the state vector | > can be written:

> =, u> (B-3)
We postulate that the probability 2(a,) of finding a, when &/ is measured is:
2(a,) = le, = IGu, |9 P2 (B-4)

Fourth Postulate (case of a discrete non-degenerate spectrum ): When the
physical quantity &/ is measured on a system in the normalized state |y ),
the probability 2(a,) of obtaining the non-degenerate eigenvalue a, of the
corresponding observable A is:

Pla,) = Ku, [ I

where | 4, > is the normalized eigenvector of 4 associated with the eigenvalue
a

If, now, some of the eigenvalues a, are degenerate, several orthonormalized
eigenvectors | u} ) correspond to them :

Aluld=a,|ul)>; i=1,2 .9, (B-5)
| ¥ > can still be expanded in the orthonormal basis { [} > }:
gn :
[¥> =2 % alu> (B-6)
n i=1
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B. STATEMENT OF THE POSTULATES

In this case, the probability 2(a,) becomes:

P@) = 3 |6 = zl ICul [ )2 (B-7)

i=1

(B-4) is then seen to be a special case of (B-7), which can therefore be
considered to be the general formula,

Fourth Postulate (case of a discrete spectrum): When the physical quantity & is
measured on a system in the normalized state | ), the probability #(a,) of
obtaining the eigenvalue a, of the corresponding observable 4 is:

Pa) = 3 [y P

where g, is the degree of degeneracy of a, and { |ui>} (i =1,2,..,9,) is an
orthonormal set of vectors which forms a basis in the eigensubspace &,
associated with the eigenvalue a, of 4.

For this postulate to make sense, it is obviously necessary that, if the eigen-
value a, is degenerate, the probability Z (a,) be independent of the choice of
the { |4} } basis in' &,. To verify this, consider the vector :

0> = 5 ey (B-8)

=1

where the coefficients ¢ are the same as those appearing in the expansion (B-6)

of |y
= lv)> (59)

| ¥, > is the part of | ¥ ) which belongs to &,, that is, the projection of | { ) onto &,.
This is, moreover, what we find when we substitute (B-9) into (B-8):

[¥a> = > v
=P, |¢> (B-10)
where :
Po= 5 > (B-11)

is the projector onto &, (§ B-3-b of chapter I1). Let us now calculate the square of
the norm of |y, >. From (B-8):

AR _ian A (B-12)

Therefore, 2 (a,) is the square of the norm of |, > = P, |y, the projection of | )
onto &,. From this expression, it is clear that a change in the basis in &, does not
affect 2 (a,). This probability is written:

Pla,) =<y |PP,Y> (B-13)
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or, using the fact that P, is Hermitian (P! = P,)and that it is a projector (P? = P,):
Pa,)=<¥I|P|¢> (B-14)

B.  Case of a continuous spectrum

Now let us assume that the spectrum of A is continuous and, for the sake
of simplicity, non-degenerate. The system, orthonormal in the extended sense, of
eigenvectors |v, > of 4:

Alva>=alva> (B_IS)

forms a continuous basis in &, in terms of which |¥ > can be expanded:
2 =Jdac(a)|v,> (B-16)

Since the possible results of a measurement of & form a continuous set, we must
define a probability density, just as we did for the interpretation of the wave
function of a particle (§ B-2 of chapter I). The probability dZ(x) of obtaining
a value included between o and o« + da is given by:

d? () = p(x) da
with :
pa) = le(@))* = [<o, ¥ > I? (B-17)

Fourth Postulate (case of a continuous non-degenerate spectrum): When the
physical quantity ./ is measured on a system in the normalized state | ),
the probability d2?(x) of obtaining a result included between « and a + da
is equal to:

d2 (@) = [{v,|¥>|* da

where |v, > is the eigenvector corresponding to the eigenvalue o of the obser-
vable A4 associated with .o/,

COMMENTS:

(#) It can be verified explicitly, in each of the cases considered above, that the
total probability is equal to 1. For example, starting with formula (B-7),
we find:

SPa) =% ¥ [ = Culv>=1 (B-13)

n i=1

since | > is normalized. This last condition is therefore indispensable if the
statements we have made are to be coherent. Nevertheless, it is not essential :
if it is not fulfilled, it suffices to replace (B-7) and (B-17), respectively, by :

—_ 1 & il2
Pa,) = TS '_; |ci| (B-19)
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and:

- 1 A )| 2 -

(i7) For the fourth postulate to be coherent, it is necessary for the operator 4
associated with any physical quantity to be an observable: it must be possible
to expand any state on the eigenvectors of A.

(¢if) We have not given the fourth postulate in its most general form. Starting
with the discussion of the cases we have envisaged, it is simple to extend
the principle of spectral decomposition to any situation (continuous degene-
rate spectrum, partially continuous and partially discrete spectrum, etc...).
In §E, and later in chapter 1V, we shall apply this fourth postulate to a
certain number of examples, pointing out certain implications of the super-
position principle mentioned in § B-1.

Y. An important consequence

Consider two kets |y > and |y’ ) such that:

[y > =e?|y> (B-21)
where 0 is a real number. If | ) is normalized, so is |y’ >:
Y Yy =Cdle®e?lyd = Yly) (B-22)

The probabilities predicted for an arbitrary measurement are the same for |y )
and |y’ ) since, for any |u >:

[ <ub Y Y12 = [e®Cuf Y>> = [<ufly ) |2 (B-23)
Similarly, we can replace |y ) by:
"> = ae?|y) (B-24)

without changing any of the physical results : there appear, in both the numerator
and denominator of (B-19) and (B-20), factors of |x|?> which cancel. Therefore,
two proportional state vectors represent the same physical state.

Care must be taken to interpret this result correctly. For example, let us
assume that:

> =241, + 4, 1¢,) (B-25)
where A, and A, are complex numbers. It is true that e® |, > represents, for all
real 6, the same physical state as |y, ), and e”2|y, > represents the same state

as |y, >. But, in general:
o> = A, e [y, > + 1, €% |y,> (B-26)

does not describe the same state as | ) (we shall see in § E-1 that the relative
phases of the expansion coefficients of the state vector play an important
role). This is not true for the special case where 8, = 8, + 2nn, that is, where :

lo> =e® [A 1Y, > + 1,1, 0] =e?|¢) (B-27)
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In other words: a global phase factor does not affect the physical predictions, but
the relative phases of the coefficients of an expansion are significant.

c. REDUCTION OF THE WAVE PACKET

We have already introduced this concept in speaking of the measurement
of the polarization of photons in the experiment described in § A-3 of chapter 1.
We are now going to generalize it, confining ourselves, nevertheless, to the case
of a discrete spectrum (we shall take up the case of a continuous spectrum in §E).

Assume that we want to measure, at a given time, the physical quantity /.
If the ket |y ), which represents the state of the system immediately before the
measurement, is known, the fourth postulate allows us to predict the probabilities
of obtaining the various possible results. But when the measurement is actually per-
formed, it is obvious that only one of these possible results is obtained. Immediately
after this measurement, we cannot speak of the “probability of having obtained”
this or that value: we know which one was actually obtained. We therefore
possess additional information, and it is understandable that the state of the
system after the measurement, which must incorporate this information, should be
different from |y ).

Let us first consider the case where the measurement of & yields a simple
eigenvalue a, of the observable 4. We then postulate that the state of the system
immediately after this measurement is the eigenvector |u,) associated with a,:

v > £ |u,> (B-28)

COMMENTS:

({) We have been speaking about states “immediately before” the measure-
ment (|¥)>) and “immediately after” (|u,)). The precise meaning of
these expressions is the following : assume that the measurement takes place
at the time 7, > 0, and that we know the state |{/(0)) of the system at the
time ¢t = 0. The sixth postulate (see § 4) desCribes how the system evolves

Measurement giving
the result 4,

v

lu,> A~ W)
[Y(0) > s | Ulto) >

} f » [

0 to t,

FIGURE |

When a measurement at time ¢, of the observable 4 gives the result q,, the state vector of
the system undergoes an abrupt modification and becomes |u , ). This new initial state then
evolves.
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over time, that is, enables us to calculate from |y(0)) the state |y(z,))
“immediately before” the measurement. If the measurement has yielded the
non-degenerate eigenvalue q,, the state ||//(t1)> at a time ¢, > f, must be
calculated from |y'(t,)> = |u, ), the state “immediately after” the measure-
ment, using the sixth postulate to determine the evolution of the state vector
between the times ¢, and ¢, (fig. 1).

(if) If we perform a second measurement of &/ immediately after the first one
(that is, before the system has had time to evolve), we shall always find the
same result a,, since the state of the system immediately before the second
measurement is |u, », and no longer | ).

When the eigenvalue a, given by the measurement is degenerate, postu-
late (B-28) can be generalized as follows. If the expansion of the state | > immedia-
tely before the measurement is written, with the same notation as in section b :

v>=%% ¢

ul > (B-29)

the modification of the state vector due to the measurement is written:

an 1 gn
9> 2 ——— ¥ alu) (B-30)
\/ iz-:g IC;IZ N

gn . R

Y. ¢ |ul > is the vector |y, ) defined above [formula (B-8)], that is, the projec-
i=1

tion of |y > onto the eigensubspace associated with a,. In (B-30), we normalized
this vector since it is always more convenient to use state vectors of norm 1
[comment (i) of §b above]. With the notation of (B-10) and (B-11), we can therefore
write (B-30) in the form :

|y > b ii v (B-31)
VY|P YD

Fifth Postulate : If the measurement of the physical quantity &/ on the system
in the state | > gives the result a,, the state of the system immediately after the

measurement is the normalized projection, Pt , of |y ) onto the
=
VY|P,

eigensubspace associated with a,,.

The state of the system immediately after the measurement is therefore
always an eigenvector of A with the eigenvalue a,. We stress the fact, however, that
it is not an arbitrary ket of the subspace &,, but the part of | ) which belongs to &,
(suitably normalized, for convenience). In the light of § 3-b-y above, equation (B-28)
can be seen to be a special case of (B-30). When g, = 1, the summation over /
disappears from (B-30), which becomes:

u, > (B-32)

_|_2_| c, | u, > — eiArgc,.
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This ket indeed describes the same physical state as |u, ).

4. Time evolution of systems

We have already presented, in § B-2 of chapter I, the Schrodinger equation
for one particle. Here we shall write it in the general case.

Sixth Postulate: The time evolution of the state vector |y(z)) is governed
by the Schrédinger equation:

m% | w(0) > = H() | ¥() )

where H(t) is the observable associated with the total energy of the system.

H is called the Hamiltonian operator of the system, as it is obtained from
the classical Hamiltonian (appendix III and §5 below).

5. Quantization rules

We are finally going to discuss how to construct, for a physical quantity &/
already defined in classical mechanics, the operator 4 which describes it in quantum
mechanics.

a. STATEMENT

Let us first consider a system composed of a single particle, without spin,
subject to a scalar potential. In this case:

With the position r(x, y, z) of the particle is associated the observable R(X, Y, Z).
With the momentum p(p,, p,, p,) of the particle is associated the obser-
vable P(P,, P, P,).

Recall that the components of R and P satisfy the canonical commutation rela-
tions [chap. II, equations (E-30)]:

[Ris Rj] = [Pi’Pj] =0

[R;, P;] = iho; (B-33)

Any physical quantity .« related to this particle is expressed in terms of the
fundamental dynamical variables r and p: /(r, p, ¢). To obtain the corresponding

observable A4, one could simply replace, in the expression for (r, p, ¢), the
variables r and p by the observables R and P*:

At) = (R, P, 1) (B-34)

* See, in complement B,,. the definition of a function of an operator.
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However, this mode of action would be, in general, ambiguous. Assume, for
example, that in </ (r, p, ¢) there appears a term of the form :

r.p=xp, +yp, + zp, (B-35)

In classical mechanics, the scalar product r . p is commutative, and one can just
as well write :

p.r=pXx+py+pz (B-36)

But when r and p are replaced by the corresponding observables R and P, the
operators obtained from (B-35) and (B-36) are not identical [see relations (B-33)]:

R.P#P.R (B-37)
Moreover, neither R . P nor P . R is Hermitian:
(R.P)' = (XP, + YP, + ZP,)'=P.R (B-38)

To the preceding postulates, therefore, must be added a symmetrization rule.
For example, the observable associated with r . p will be :

%(R.P + P.R) (B-39)

which is indeed Hermitian. For an observable which is more complicated than R . P,
an analogous symmetrization is to be performed.

The observable 4 which describes a classically defined physical quantity o/
is obtained by replacing, in the suitably symmetrized expression for &/, r and p
by the observables R and P respectively.

We shall see, however, that there exist quantum physical quantities which
have no classical equivalent and which are therefore defined directly by the cor-
responding observables (this is the case, for example, for particle spin).

COMMENT:

The preceding rules, and commutation rules (B-33) in particular, are
valid only in cartesian coordinates. It would be possible to generalize them
to other coordinate systems; however, they would no longer have the same
simple form as they do above.

b. IMPORTANT EXAMPLES

o. The Hamiltonian of a particle in a scalar potential

Consider a (spinless) particle of charge ¢ and mass m, placed in an electric
field derived from a scalar potential U(r). The potential energy of the particle is
therefore V(r) = qU(r), and the corresponding classical Hamiltonian is writ-
ten [appendix III, formula (29)]:

2
AP =2+ Vi) (B-40)
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