The Free Particle

Abstract Method aka
Operator Method
Algebraic Method
Use the Algebra of the Operators
Basis Free Method

Go into a Basis
Solve the Differential Equation: TDSE and TISE
Freshman Physics Method to Solve Differential Equations
Standard Method to Solve Differential Equations
The eigenstates of momentum
The eigenstates of position
The eigenstates of energy
The time evolution of the eigenstates
Separation of variables
Separating time and space: TDSE => TISE

Gaussian Superposition of Eigenstates
Dispersion Relations
The Propagator
The time evolution of the position
The time evolution of the momentum
The time evolution of the energy

Fourier Transforms and Dirac Notation

Fourier transforms in space
spatial frequency: wavevector and momentum: k and p
Fourier transforms in time
temporal frequency: angular frequency and energy: ω and E

$$
\begin{aligned}
& \text { lecture } 8 \\
& \text { TODAY: SOLVE FREE PARTIcLE PAORLEM } \\
& \text { Two wAyS } \\
& \text { (1) BSTAACT METHOD } \\
& \mathcal{H}=\frac{\rho^{2}}{2 m}+V(x) \quad \text { classical Hamiltonian } \\
& F R E E \Rightarrow F=0 \Rightarrow V=\frac{\partial V}{\partial x} \Rightarrow \text { CONSTANT }=0 \\
& H=\frac{P_{0}^{2} p}{2 m} \quad \text { quantum Hamiltonian } \\
& H\left|E_{n}\right\rangle=E_{n}\left|E_{n}\right\rangle \quad \text { TImE } \\
& \frac{\rho_{0} p_{p}^{2}}{2 m}\left|E_{n}\right\rangle=E_{n}\left|E_{n}\right\rangle \quad \text { rISE } \\
& {[H, P \circ P]=0 \Rightarrow H A N D \text { POP SNARE ALL CiV'S }} \\
& H \text { and } p \text { commute } \\
& \frac{p_{0}^{2}}{2 m}|p\rangle=E|p\rangle \\
& \rho_{0 \rho}|p\rangle=\rho|p\rangle \Rightarrow \frac{p^{2}}{2 m}|p\rangle=E|p\rangle \\
& \begin{array}{l}
\Rightarrow \frac{p^{2}}{2 m}=E \\
p= \pm \sqrt{2 m E}
\end{array} \\
& \text { AKA, DPGRATOR METrO } \\
& \text { bASIS FREE } \\
& \text { ALGEBRA OE THE OPERATORS }
\end{aligned}
$$

\Rightarrow TWO ORTHONORMAL GIGENKETS GOR GACH EIGEN ENGRGY.

Hop IS 2-ROLD OLGENGRATE
Pop $\mid S$ NOT $|+p\rangle$ mamentiom sigenkETS $1-p\rangle$
$|E, p\rangle$
$|E,+\rangle=\mid E, P=+\sqrt{2 m E}>$ enengy ecignkETS

$$
|E,-\rangle=|E, p-\sqrt{2 m E}\rangle
$$

SUPERPOSITION STATES
$|\psi\rangle=\alpha|\varepsilon,+\rangle+\beta|E,-\rangle$ aleo energy expen kers
measure H, ortain E 100\% of taE TIME
measure p?

$$
\begin{aligned}
& \operatorname{PROB}(p=+\sqrt{2 m E})=\frac{|\langle+\rho \mid \psi\rangle|^{2}}{\langle\psi \mid \psi\rangle}=\frac{|\alpha|^{2}}{|\alpha|^{2}+|\beta|^{2}} \\
& \operatorname{PAOB}(p=-\sqrt{2 m E})=\frac{|\langle\sim p \mid \psi\rangle|^{2}}{\langle\psi \mid \psi\rangle}=\frac{|\beta|^{2}}{|\alpha|^{2}+|\beta|^{2}} \\
& \text { IF }|\psi\rangle \text { IS NORMAGIZED }\langle\psi \mid \psi\rangle=1=|\alpha|^{2}+|\beta|^{2} \\
& |\psi(t)\rangle=\frac{\text { iff }}{\text { 伴 }}|E,+\rangle\langle E,+\mid \psi(0)\rangle e^{-i E t / K} \\
& +|E,-\rangle\langle E,-\mid \psi(0)\rangle e^{-i E t / K}
\end{aligned}
$$

(2)
OIFF

$$
\begin{aligned}
& H\left|E_{n}\right\rangle=E_{n}\left|E_{n}\right\rangle \\
& \text { in-x SPACE } \\
& \quad-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi_{m}(x)=E_{n} \Psi_{m}(x) \text { TISE }
\end{aligned}
$$

ThiAL SOLUTION freshman physics method

$$
\begin{aligned}
& \psi_{/ n}(x)=A e^{i k x}+B e^{-i k x} \\
&-\frac{\hbar^{2}}{2 m}(\pm i k)^{2} \psi_{n}(x)=E_{n} \psi_{n}(x) \\
& E_{m}=\frac{\hbar^{2} k^{2}}{2 m}=\frac{p^{2}}{2 m}
\end{aligned}
$$

(2') DIFF EQ METHOD TOSE

IN HAL BERT SPACE: $\quad H|\psi(t)\rangle=i \hbar \frac{d}{d t}|\psi(t)\rangle$

IN POSITION SPACE:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x, t)=i \hbar \frac{d}{d t} \psi(x, t)
$$

 IN SPACE IN TIME
freshman physics solution

$$
\begin{array}{r}
\text { TM, AL SOLuTion } \psi(x, t)=A e^{i(k x-\omega t)}+B e^{-i(k x+\omega t)} \\
\quad i k x-i \omega t \quad-i k x-i \omega t \\
\\
-i \varepsilon_{m} t / k \quad-i E_{m} t / \hbar
\end{array}
$$

$$
-\frac{\hbar^{2}}{2 m}(\pm i k)^{2} \psi(x, t)=i \hbar(-i w) \psi(x, t)
$$

$$
\begin{aligned}
& \frac{\hbar^{2} k^{2}}{2 m}=\hbar \omega \\
& P=\hbar k \\
& E=\hbar \omega
\end{aligned} \quad \Rightarrow \quad \frac{p^{2}}{2 m}=E
$$

separation of variables
DIFF EQ VIEW OF TDSE \rightarrow TISE

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x, t)=i \hbar \frac{d}{d t} \psi(x, t)
$$

assume the solution factors into the the spatial dependence $f(x)$ times the time dependence $g(t)$ anSATE $\quad \psi(x, t)=f(x) g(t)$
put it in and see if it works

$$
\begin{aligned}
& \frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}(f(x) g(t))=i \hbar \frac{d}{d t}(f(x) g(t)) \\
& g(t)\left(-\frac{\hbar^{2}}{2 m}\right) \frac{d^{2} f}{d x^{2}}=f(x)(i \hbar) \frac{d q}{d t}
\end{aligned}
$$

Separates if the LHS depends only on x and the RHS depends only on t

$$
\frac{1}{f \cdot g}
$$

How can that be? $=$ a constant $=E_{m}$

$$
\begin{aligned}
i \hbar \frac{d g}{d t} & =E_{m} g \\
\frac{d g}{d t} & =\left(-i E_{m} / \hbar\right) g \quad g(t)=e^{-i E_{m} t / \hbar} \\
\Rightarrow & T I S E \frac{-\hbar^{2}}{2 m} \frac{d^{2} \psi_{m}}{d x^{2}}=E_{m} \psi_{a}
\end{aligned}
$$

momentum eigenstates in position space
INFINITE EXTENT HELIcAL WAVES

momentum eigenstates in momentum space

$\hat{\psi}(p)$
the momentum operator is Hermitean so any wave can ae expressed as a Linear combination of momentum bigenstates

$$
\begin{aligned}
& I=\int|p\rangle\langle p| \alpha_{p} \quad \begin{array}{l}
\text { complete set of } p \text { states } \\
\text { resolution of the identity in } p
\end{array} \\
& |\psi\rangle=I|\psi\rangle=\int \alpha_{p}|p\rangle\langle p \mid \psi\rangle
\end{aligned}
$$

$\langle x|$ bate sides \Rightarrow go into the x inc es

$$
\langle x \mid \psi\rangle=\int \alpha_{p}\langle x \mid p\rangle\langle p \mid \psi\rangle
$$

$$
\psi(x)=\int d p \cdot \frac{e^{i p x / \hbar}}{\sqrt{2 \pi \hbar}} \tilde{\psi}(p)
$$

the position space wavefunction is the Fourier transform of the momentum space wavefunction
other way around

$$
I=\int d x|x\rangle\langle x|
$$

$$
\langle p \mid \psi\rangle=\int d x \frac{e^{-i \rho x / \hbar}}{\sqrt{2 \pi \hbar}} \psi(x)
$$

the momentum space wavefunction is the Fourier transform of the position space wavefunction
the pabpacator

$$
\begin{aligned}
& v(t)=\int d p|p\rangle\langle p| e^{-i E(p) t / \hbar} \\
&=\int d p e^{-i p^{2} t / 2 m \hbar} \\
& \quad|p\rangle\langle p|
\end{aligned}
$$

we will dEE this fir the freE particle wave packet problem

Use the propagator to find the time evolution of superposition states, in particular that of a Gaussian superposition

EONOTASO FOURIAR TRANSEORMS

TIME

$$
F(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t
$$

$$
f(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(\omega) e^{i \omega t} d \omega
$$

SYMMERIC CONVENTION
w TEMPORAL FREQUANCY

SPACE
she statial rrequancy

$$
\begin{aligned}
& F(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x \\
& f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(k) e^{i k x} d K \\
& E=\hbar \omega \\
& \rho=\hbar K
\end{aligned}
$$

GARTOON VERSION
 an infinite number of harmonic states

N. B.,
THESE MAVE

INPINITE
EXTENT
い Ω
गMOM the harmonic waves have infinite extent, so although the bump looks local it really is not
it complets \rightarrow Natricies

Essential issue in quantum mechanics is that the world is nonlocal

Any function?

$$
y \in s
$$

No mickey mouse wavefins!

$$
\begin{aligned}
& \hat{g}(p)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} g(x) e^{-i p x / \hbar} d x \\
& g(x)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \hat{g}(\rho) e^{i p x / \hbar} d \rho
\end{aligned}
$$

similar for E and omega

FT OF DELTA RUNS

$$
\begin{aligned}
\hat{f}(k) & =(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} \delta\left(x-x^{\prime}\right) e^{-i x x} d x \\
& =(2 \pi)^{-1 / 2} e^{-i \alpha x^{\prime}} \\
f(x) & =(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} \delta\left(\mu-k^{\prime}\right) e^{i k x} d k \\
& =(2 \pi)^{-1 / 2} e^{i k^{\prime} x}
\end{aligned}
$$

the integral of any function with a delta function, is the value of the function evaluated at the position of the delta function
eigenfunction of the position operator

eigenfunction of the momentum operator

$$
h(x)=\int_{-\infty}^{\infty} f(u) g(x-u) d u
$$

$\ F T$

convolving with a delta function puts a copy of the function centered on the position of the delta function

in position space multiply the helix by a square window

$\frac{\sin p}{p}$

in momentum space convolve the delta function with the sine function

FRS AND DIRAC NOTATION

$$
\begin{aligned}
|g\rangle & =|g\rangle \\
& =I|q\rangle \quad \begin{array}{c}
\text { INSERT A COMPLETE SAT } \\
\text { of STATES }
\end{array} \\
& =\int d k|k\rangle\langle K \mid q\rangle \begin{array}{c}
\text { insert a complete } \\
\text { set of k states }
\end{array} \\
& =\int d k|k\rangle \hat{g}(k)
\end{aligned}
$$

dot with x bra

$$
\langle x \mid q\rangle=\langle x| \int d k|k\rangle \hat{q}(k)
$$

$$
g(x)=\int\langle x \mid k\rangle \hat{g}(k) d k
$$

$$
(2 \pi)^{-1 / 2} e^{\cdot i k x}
$$

$$
=(2 \pi)^{-1 / 2} \int \frac{\hat{g}(k) e^{i k x}}{v} d k
$$

$G(K)$
EXERCISE:

$$
\begin{aligned}
& I=\int d x|x\rangle\langle x| \\
& \hat{g}(k)=(2 \pi)^{-1 / 2} \int g(x) e^{-i k x} d x \\
& \quad \text { remember that } \\
& \quad\langle k \mid x\rangle=\langle x \mid k\rangle^{*}
\end{aligned}
$$

Time evolution of superposition states

FOR THE SQUARE WELL

11

$a_{\text {n's }}$ are the FOURIER SERIES EXPANSION
COMES!
DISCRETE
http://www.st-andrews.ac.uk/~qmanim/animations_2/Expansion_Eigenstates_V3.swf

FOR tHE FREE PARticle

G aucsian

11

a_{n} 's ane given by the Fannie transform carte
continuous

SHOW MOVIES HERE!?

FREE WAVE PAGES

PLANE WAVE $e^{i p o x / k}$

$$
\begin{aligned}
\text { INFINITE EXTENT } & \Rightarrow \Delta X=\infty \\
\Delta X \Delta \rho \geq \frac{\hbar}{2} & \Rightarrow \Delta p=0
\end{aligned}
$$

an idealization since the urivence is finite
to represent a localized particle in position space, we make a localized packet

position
space

\Leftrightarrow

" momentum

space
we cut out a Gaussian shaped piece of an infinite helical (plane) wave
convolution theorem multiply Gaussian times delta fen

SPREADING OH THE WAVEPACKET

11

FINITE PACKET
$F T$

INTEGRAL OVER INFINITE \& स F NT WAVES

different frequency waves travel with different velocities => packet changes with time can spread or contract expand or compress
if component waver move at the same velocity, then pact stane taper

LIGHT IN JACUOM
light in vacuum is not dispersive
if arposent waver mare with
different velscition, then pacha sixpences
electrons in vacuum are dispersive
LIGHT IN A PRISM electrons in a vacuum

EmPty space is dispersive fir matter waves

Dispersion Relations

Linear Dispersion: light in vacuum
GUT E= PC LINEAR
E

$E(p)$
$E=\hbar \omega$
$\rho=\hbar \kappa$
$\omega(k)$
functions ane called diapusion relation
Parabolic Dispersion: electrons in vacuum
ELECTRONS
$E=\frac{p^{2}}{2 m}$
PARABOLIC

slope of the tangent line TANGENT LINE
slope $=\frac{d E}{d p}=\frac{2 p}{2 m}=v$

$$
\text { None }=\frac{E}{P}=\frac{P^{2}}{2 m}=\frac{1}{2} \frac{p}{m}=\frac{1}{2} N
$$

the group velocity of an electron = its classical velocity

Dispersion

http://paws.kettering.edu/~drussell/Demos/Dispersion/dispersion.htmI
http://www.csupomona.edu/~ajm/materials/animations/packets.html
http://gregegan.customer.netspace.net.au/APPLETS/20/20.htmI

Feynman's Rainbow

A
Search
FOR
Beauty
IN
Physics
AND IN
LIFE

Feynman was gazing at a rainbow. As if he had never seen one before. Or maybe as if it might be his last.

I approached him cautiously and joined him in staring at the rainbow. It wasn't something I normally did-in those days.
"Do you know who first explained the true origin of the rainbow?" I asked.
"It was Descartes," he said. After a moment he looked me in the eye. "And what do you think was the salient feature of the rainbow that inspired Descartes's mathematical analysis?" he asked.
"I give up. What would you say inspired his theory?"
"I would say his inspiration was that he thought rainbows were beautiful..."
-From FEYNMAN'S RAINBOW

ACCLAIM FOR FEYNMAN'S RAINBOW

"An accessible portrait of a brilliant man."
-Stephen Hawking, author of The Theory of Everpthing and a Brief History of Time

"An exhilarating book...one that reflects the radiance of its subject and so warms even as it instructs."
-David Berlinski, author of A Tour of the Calculus
"Like their celebrated quarks, the lives of scientists are strongly confined and shaped by the interplay of 'truth,' 'beauty,' and 'strangeness.' FEYNMAN'S RAINBOW offers a rare glimpse into this fascinating world. I enjoyed every page of it."

> -Fritjof Capra, author of The Tao of Physics

Poets say science takes away from the beauty of the stars - mere globs of gas atoms. Nothing is "mere". I too can see the stars on a desert night, and feel them. But do I see less or more? The vastness of the heavens stretches my imagination - stuck on this carousel my little eye can catch one-million-year-old light. A vast pattern - of which I am a part. What is the pattern or the meaning or the why? It does not do harm to the mystery to know a little more about it. For far more marvelous is the truth than any artists of the past imagined it. Why do the poets of the present not speak of it? What men are poets who can speak of Jupiter [Roman God] if he were a man, but if he is an immense spinning sphere of methane and ammonia must be silent?
"I have a friend who's an artist and has sometimes taken a view which I don't agree with very well. He'll hold up a flower and say "look how beautiful it is," and I'll agree. Then he says "I as an artist can see how beautiful this is but you as a scientist take this all apart and it becomes a dull thing," and I think that he's kind of nutty. First of all, the beauty that he sees is available to other people and to me too, I believe. Although I may not be quite as refined aesthetically as he is ... I can appreciate the beauty of a flower. At the same time, I see much more about the flower than he sees. I could imagine the cells in there, the complicated actions inside, which also have a beauty. I mean it's not just beauty at this dimension, at one centimeter; there's also beauty at smaller dimensions, the inner structure, also the processes. The fact that the colors in the flower evolved in order to attract insects to pollinate it is interesting; it means that insects can see the color. It adds a question: does this aesthetic sense also exist in the lower forms? Why is it aesthetic? All kinds of interesting questions which the science knowledge only adds to the excitement, the mystery and the awe of a flower. It only adds. I don't understand how it subtracts."

Newton versus Goethe

http://en.wikipedia.org/wiki/Theory_of_Colours

http://zebu.uoregon.edu/2000/ph102/lec19.html
The Newtonian deconstruction of the rainbow is said to have provoked John Keats to lament in his 1820 poem "Lamia":

Do not all charms fly
At the mere touch of cold philosophy?
There was an awful rainbow once in heaven:
We know her woof, her texture; she is given
In the dull catalogue of common things.
Philosophy will clip an Angel's wings, Conquer all mysteries by rule and line, Empty the haunted air, and gnomed mine Unweave a rainbow

In contrast to this is Richard Dawkins; talking about his book Unweaving the Rainbow: Science, Delusion and the Appetite for Wonder:
"My title is from Keats, who believed that Newton had destroyed all the poetry of the rainbow by reducing it to the prismatic colours. Keats could hardly have been more wrong, and my aim is to guide all who are tempted by a similar view, towards the opposite conclusion. Science is, or ought to be, the inspiration for great poetry."

In the seventeenth century, Newton published his famous experimentum crucis, in which he claimed that light is heterogeneous and is composed of (colored) rays with different refrangibilities. Experiments, especially a crucial experiment, were important for justifying Newton's theory of light, and eventually his theory of color. Goethe conducted a series of experiments on the nature of color, especially in contradistinction to Newton, and he defended his research with a methodological principle formulated in "Der Versuch als Vermittler." Goethe's principle included a series of experiments and resultant higher empirical evidence as mediator between the objective (natural phenomena) and the subjective (theory or hypothesis). Although the notion of experimentum crucis became popular among scientists, even until today, in reconstructing experimental research and for justifying theories, especially for rhetorical purposes, I propose that Newton's justification of his theory of light and color is best reconstructed in terms of Goethe's methodological principle. Finally, Goethe's principle has important consequences for the contemporary philosophical underdetermination thesis.

Dispersion

http://paws.kettering.edu/~drussell/Demos/Dispersion/dispersion.htmI
http://www.csupomona.edu/~ajm/materials/animations/packets.html
http://gregegan.customer.netspace.net.au/APPLETS/20/20.htmI

Cartoon Version of the Free Particle

http://www.st-andrews.ac.uk/~qmanim/embed_item_3.php?anim_id=10
http://www.st-andrews.ac.uk/~qmanim/embed_item_3.php?anim_id=1 http://www.physics.nus.edu.sg/einstein/lect14/applets/propa.html http://www.brainflux.org/java/classes/Schrodinger1D.html http://demonstrations.wolfram.com/WavepacketForAFreeParticle/
http://demonstrations.wolfram.com/EvolutionOfAGaussianWavePacket/

