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PARTICLE IN AN INFINITE POTENTIAL WELL %
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FIGURE 4

Graphical representation of the functions @2 (the probability density of the particle in the
ground state), @3 (the probability density of the particle in the first excited state) ad 9,0,
(the cross term responsible for the evolution of the shape of the wave packet).

Using these figures and relation (18), it is not difficult to represent graphically
the variation in time of the shape of the wave packet (cf. fig. 5): we sce that the
wave packet oscillates between the two walls of the well.
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FIGURE $

Periodic motion of a wave packet ebtained by superposing the ground state and the first excited state
of a particle in an infinite well. The frequency of the motion is the Bohr frequency w,,/27.




AS TIimE 665 oN

X e
-cELlh
* e
Le
‘-’ wl: ,;E—-‘—-
e — A
> 1=¥%
N\ s g e
'
Zm
Sug o R N
vegw Bl { D
\t-,/"u re
~ //L



Larry



The Square Well

http://www.falstad.com/gqm1d

http://phet.colorado.edu/en/simulation/bound-states


http://www.falstad.com/qm1d
http://phet.colorado.edu/en/simulation/bound-states

Phasors

http://www.jhu.edu/signals/phasoriecture2/indexphasoriect2.htm

http://www.jhu.edu/signals/phasorapplet2/phasorappletindex.htm
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Choosing a basis: E, x, p, L, S
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Phasors and Fourier Series
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PARTICLE IN AN INFINITE POTENTIAL WELL

Complement Ay,

PARTICLE IN AN INFINITE POTENTIAL WELL

1. Distribution of the momentum values in a stationary state
a. Calculation of the function @,(p), of { P ) andof AP
b. Discussion

2. Evolution of the particle’s wave function

a. Wave function at the instant t
b. Evolution of the shape of the wave packet
c. Motion of center of the wave packet

3. Perturbation created by a position measurement

In complement H; (§2-c-p), we studied the stationary states of a particle in a one-
dimensional infinite potential well. Here we intend to re-examine this subject from
a physical point of view. This will allow us to apply some of the postulates of
chapter III to a concrete case. We shall be particularly interested in the results that
can be obtained when the position or momentum of the particle is measured.

1. Distribution of the momentum values in a stationary state

a. CALCULATION OF THE FUNCTION ¢,(p). OF (P> AND OF 4P

We have seen that the stationary states of the particle correspond to the
energies*:

n’n?h?

2ma*

E, = (1)

n

and to the wave functions:

00 = [ sin (72%) @)

(where a is the width of the well and » is any positive integer).

Consider a particle in the state | ¢, >, with energy E,. The probability of a
measurement of the momentum P of the particle yielding a result between p
and p + dp is:

P(p)dp = |@,(p)* dp 3)
with :

?,(p) = \/%;i L \E sin ("Zx-> e PXh dx @)

* We shall use the notation of complement H;.

269




COMPLEMENT Ay,

This integral is easy to calculate; it is equal to:
aip ~—— [ [ B B
2i \/ nha Jo
1 ei<%—5p)" -1 e—i(%+§)a -1

Coiaha| (m P\ fmm . p
(z-3) - (%+3)
that is:

7l = \/-; EE(p ) (e )| 6

with :

F(p) = S22 0

To within a proportionality factor, the function @,(p) is the sum (or the
: . . i nzh _ nnh
difference) of two “diffraction functions™ F{p & % , centered at p = F %.
The “width” of these functions (the distance between the first two zeros, symme-
trical with respect to the central value) does not depend on » and is equal
4mh . : - .
to %. Their “amplitude” does not depend on n either.
The function inside brackets in expression (6) is even if n is odd, and odd if »
is even. The probability density 2 (p) given in (3) is therefore an even function of p
in all cases, so that :

+ o0

(P>, = J Z(p)pdp =0 (8)
The mean value of the momentum of the particle in the energy state E,, is therefore
ZET0.

Let us calculate, in the same way, the mean value { P? >, of the square of the
momentum. Using the fact that in the { | x ) } representation P acts like EI%,
and performing an integration by parts, we obtain*:

a qu 2
PZ — hz n .
(P, j 2o dx

“2 (nm\ nmx
= h? J —(—) cos? (————) dx
a a a
0
2
_ (nmh 9)
a
+ w
* Result (9) could also be derived from (6) by performing the integral P>, = J [@,(p)|* 2 dp.

This calculation, which presents no theoretical difficulties, is nevertheless not as direct as the one which
is given here.
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From (8) and (9), we get:

nrh

AP, = (P Y, = (POI === (10)

The root-mean-square deviation therefore increases linearly with .

b. DISCUSSION

Let us trace, for different values of n, the curves which give the probability
density 2(p). To do this, let us begin by studying the function inside brackets
in expression (6). For the ground state (n = 1), it is the sum of two functions F,
the centers of these two diffraction curves being separated by half their width
(fig. 1-a). For the first excited level (n = 2), the distance between these centers is
twice as large, and in this case, moreover, the difference of two functions F must
be taken (fig. 2-a). Finally, for an excited level corresponding to a large value of n,
the centers of the two diffraction curves are separated by a distance much greater
than their width.

a
> P
b
nh
—— a
1 P p
FIGURE 1

The wave function @, (p), associated in the { | p > } representation with the ground state of a par-
ticle in a infinite well, is obtained by adding two diffraction functions F (curves in dashed lines in
figure a). Since the centers of these two functions F are separated by half their width, their sum has
the shape represented by the solid-line curve in figure a. Squaring this sum, one obtains the proba-

bility density 2 (p) associated with a measurement of the momentum of the particle (fig. b).

Squaring these functions, one obtains the probability density 2.(p) (cf. fig. 1-b

and 2-b). Note that for large n the interference term between F{p — n—Zh and
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FIGURE 2

For the first excited level, the function ,(p) is obtained by taking the difference between two func-
tions 7, which have the same width as in figure 1-a but are now more widely separated (dashed-line

curve in figure a). The curve obtained is the solid line in figure a. The probability density #,(p) then
has two maxima located in the neighborhood of p = + 2mh/a (fig. b).

F (p + 27;?) is negligible (because of the separation of the centers of the two

curves):

2
) —%[P(p R ﬁl@) ¥ F2<p * EZ—R)] (11)

The function Z,(p) then has the shape shown in figure 3.
Tt can be seen that when # is large, the probability density has two symmetrical

peaks, of width 4—; centered at p = & —aﬁ. it is then possible to predict with

almost complete certainty the results of a measurement of the momentum of the

h
particle in the state | @, > : the value found will be nearly equal to + —Z— or

nnh . . ) : .
_ =, the relative accuracy* improving as n Increases (the two opposite

a
* The absolute accuracy is independent of n, since the width of the curves is always 4—nh—
a
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values + 17?- being equally probable). This is simple to understand : for large n,

the function @, (x), which varies sinusoidally, performs numerous oscillations inside

the well; it can then be considered to be practically the sum of two progressive

. . nnh
waves corresponding to opposite momenta p = + e

=
D 4 %( p) pcl

FIGURE 3

When 7 is large (a very excited level), the probability density has two pronounced peaks, centered at
the values p = + nnh/a, which are the momenta associated with the classical motion at the same

energy.

When n decreases, the relative accuracy with which one can predict the possible
values of the momentum diminishes. We see, for example, in figure 2-b, that
when n = 2, the function 2,(p) has two peaks whose widths are comparable to their
distance from the origin. In this case, the wave function undergoes only one
oscillation inside the well. It is not surprising that, for this sinusoid “ truncated ”
at x = 0 and x = a, the wavelength (and therefore, the momentum of the particle)
is poorly defined. Finally, for the ground state, the wave function is represented
by half a sinusoidal arc : the relative values of the wavelength and momentum of the
particle are then very poorly known (fig. 1-b).

COMMENTS:

(i) Let us calculate the momentum of a classical particle of energy E, given
in (1); we have:

pczl n2n2h2

2m - 2ma? (12)
that is:
h
P = £ (13)

When 7 is large, the two peaks of #.(p) therefore correspond to the classical
values of the momentum.
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(if)  We see that, for large n, although the absolute value of the momentum is
well-defined, its sign is not. This is why 4P, is large: for probability distri-
butions with two maxima like that of figure 3, the root-mean-square
deviation reflects the distance between the two peaks; it is no longer related
to their widths.

2. Evolution of the particle’s wave function

Each of the states | @, >, with its wave function @,(x), describes a stationary
state, which leads to time-independent physical predictions. Time evolution
appears only when the state vector is a linear combination of several kets | @, .
We shall consider here a very simple case, for which at time + = 0 the state vector

[ Y(0) > is:

Iw<0)>=—}£[|<p1> o] )

a. WAVE FUNCTION AT THE INSTANT ¢

Apply formula (D-54) of chapter IIT; we immediately obtain :

2

1 ~~i—n’it —21——2'1
S [e 2ma? | 0, > + ¢ ma \ ¢, >] (15)

/2

or, omitting a global phase factor of | y(7) >:

(1) > =

1 .
Iw(t)>oc—ﬁ[l<m> +eT ] 0, 5] (16)
with:
E, — E, 3n*h
Wy = = 17
21 - - (17)
b. EVOLUTION OF THE SHAPE OF THE WAVE PACKET
The shape of the wave packet is gi'vgn by the probability density:
1 1
(x, ) = 3 @1(x) + 3 @3(x) + @4(x) @5(x)cos w1 (18)

We see that the time variation of the probability density is due to the interference
term in ¢,¢,. Only one Bohr frequency appears, v,; = (E; — E,)/h, since the
initial state (14) is composed only of the two states | @, > and | ¢, ). The curves
corresponding to the variation of the functions ¢, @3 and ¢, ¢, are traced in
figures 4-a, b and c.
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?1 93 b 00, ¢

RN}
bl 4

FIGURE 4

Graphical representation of the functions @} (the probability density of the particle in the
ground state), @3 (the probability density of the particle in the first excited state) and ¢,0,
(the cross term responsible for the evolution of the shape of the wave packet).

Using these figures and relation (18), it is not difficult to represent graphically
the variation in time of the shape of the wave packet (cf. fig. 5): we see that the
wave packet oscillates between the two walls of the well.

—_
—
—
t=90 0 <t < 12wy, t = /2w,
= <
Pru——
t = njw,, t= 3n/2w,, t = 2n/w,,
FIGURE 5

Periodic motion of a wave packet obtained by superposing the ground state and the first excited state
of a particle in an infinite well. The frequency of the motion is the Bohr frequency w,,/2x.
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c. MOTION OF THE CENTER OF THE WAVE PACKET

Let us calculate the mean value { X )(¢) of the position of the particle at
time ¢. It is convenient to take:

X' =X —ap2 (19)

since, by symmetry, the diagonal matrix elements of X' are zero:

, ¢ a\ . ,[7nx
Coy | X |¢1>OCL <x—§>sm2<7>dx=0

<¢2|X'|¢2>ocj (x—§>sin2<2—zf>dx=o (20)

We then have:

(X)) =Re{e ™n'Co, | X |90} (21)
with:
a
<901|XI|§02>=<(P1|X|(P2>_§<(P1|‘P2>
2Jw . WX . 2nx
=2 | xsin— sin——dx
alj, a a
- _@_ (22)
9n?
Therefore:
a 16a
(X >(t)=— ——=cos w,t (23)

2 97?

N/
N | A AN

2nfw,,

FIGURE 6

Time variation of the mean value { X ) corresponding to the wave packet of figure 5. The dashed
line represents the position of a classical particle moving with the same period. Quantum mechanics
predicts that the center of the wave packet will turn back before reaching the wall, as explained by
the action of the potential on the “edges” of the wave packet.
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The variation of { X M(¢) is represented in figure 6. In dashed lines, the
variation of the position of a classical particle has been traced, for a particle moving
to and fro in the well with an angular frequency of w,, (since it is not subjected to
any force except at the walls, its position varies linearly with ¢ between 0
and a during each half-period).

We immediately notice a very clear difference between these two types of
motion, classical and quantum mechanical. The center of the quantum wave
packet, instead of turning back at the walls of the well, executes a movement of
smaller amplitude and retraces its steps before reaching the regions where the
potential is not zero. We see again here a result of §D-2 of chapter I: since the
potential varies infinitely quickly at x = 0 and x = g, its variation within a domain
of the order of the dimension of the wave packet is not negligible, and the motion
of the center of the wave packet does not obey the laws of classical mechanics
(see also chapter III, § D-1-d-y). The physical explanation of this phenomenon
is the following : before the center of the wave packet has touched the wall, the
action of the potential on the “edges™ of this packet is sufficient to make it turn
back.

COMMENT :

The mean value of the energy of the particle in the state () >
calculated in (15) is easy to obtain:

1 1 5
asis:
1 1 17
which gives:
y 3
H :§E1 (26)

Note in particular that { H », { H* ) and AH are not time-dependent ; since 4
is a constant of the motion, this could have been foreseen. In addition, we see from
the preceding discussion that the wave packet evolves appreciably over a time of
the order of :

At ~ 27
@, (27)
Using (26) and (27), we find :
3 h h
AH.m_§E1x§E—1_5 (28)

We again find the time-energy uncertainty relation.
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3. Perturbation created by a position measurement

Consider a particle in the state | ¢, >. Assume that the position of the particle
is measured at time ¢ = 0, with the result x = @/2. What are the probabilities of the
different results that can be obtained in a measurement of the energy, performed
immediately after this first measurement ?

One must beware of the following false argument : after the measurement,
the particle is in the eigenstate of X corresponding to the result found, and its wave
function is therefore proportional to d(x — a/2); if a measurement of the energy
is then performed, the various values E, can be found, with probabilities propor-

tional to:
a
@, 5

Ladx 5(x — %) @F(x)

Using this incorrect argument, one would find the probabilities of all values of E,
corresponding to odd n to be equal. This is absurd, since the sum of these
probabilities would then be infinite.

This error results from the fact that we have not taken the norm of the wave
function into account. To apply the fourth postulate of chapter III correctly, it is
necessary to write the wave function as normalized just after the first measurement.
However it is not possible to normalize the function é(x — @/2)*. The problem
posed above must be stated more precisely.

As we saw in §E-2-b of chapter 111, an experiment in which the measurement
of an observable with a continuous spectrum is performed never yields any result
with complete accuracy. For the case with which we are concerned, we can only
say that:

2

2 _ <|L2/a if n is odd (29)

0 ifniseven

+

—Z<x< (30)

ol e
ol o™
ol
rol o

where ¢ depends on the measurement device used but is never zero.
If we assume ¢ to be much smaller than the extension of the wave function
before the measurement (here @), the wave function after the measurement will be

practicall Veoo[x — L)o@ x) is the null function everywhere except in the
y 2

interval defined in (30), where it takes on the value l/e: ¢f. appendix II, §1-a].
This wave function is indeed normalized since:

j dx [\e (5‘5’<x - f’-> 2

2
* We see concretely in this example that a §-function cannot represent a physically realizable state.

=1 (1)
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What happens now if the energy is measured ? Each value E, can be found

with the probability:

Z(E,) = I Jﬁo,’." ) Ve 5‘”(): - %) dx
8a

2

2
— <i> sin? (ﬁ'—@> if n is odd
=< ¢ \nn 2a

0

if n is even

(32)

The variation with respect to n of 2(E,), for fixed ¢ and odd #, is shown in
figure 7. This figure shows that the probability 2(E,) becomes negligible when »
is much larger than a/e. Therefore, however small ¢ may be, the distribution of
probabilities #(E,) depends strongly on ¢ This is why, in the first argument,
where we set ¢ = 0 at the beginning, we could not obtain the correct result. We also
see from the figure that the smaller ¢ is, the more the curve extends towards large
values of n. The interpretation of this result is the following: according to
Heisenberg’s uncertainty relations (cf. chap. I, § C-3), if one measures the position
of the particle with great accuracy, one drastically changes its momentum. Thus
kinetic energy is transferred to the particle, the amount increasing as ¢ decreases.

2a

£

1
1 35 7 9 11 131517

FIGURE 7

Variation with n of the probabi-
lity #(E,) of finding the energy £,
after a measurement of the par-
ticle’s position has yielded the
result @/2 with an accuracy of ¢
(¢ < «). The smaller &, the greater
the probability of finding high
energy values.
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