
Step-by-step procedure to solve QM problems

(1) Solve the TISE

H |En >= En |En >

Diagonalize the Hamiltonian

Find the eigenvalues En

Find the eigenstates |En >

(2) Expand |ψ(0) > in energy eigenstates

|ψ(0) >=
�

n

an |En >

The energy eigenstates are called stationary states

(3) Put in the time-dependent phase factors e
(−iEnt/h̄)

|ψ(t) >=
�

n

an e
(−iEnt/h̄) |En >
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Expand |ψ(0) > in the energy basis

|ψ(0) >= |E1 > +|E2 > +|E3 >

|ψ(0) >= I |ψ(0) >

I =
�

n

|En >< En|

|ψ(0) >=
�

n

|En >< En|ψ(0) >

an =< En|ψ(0) >

|ψ(0) >=
�

n

|En > an =
�

n

an |En >

Write down |ψ(t) > by inspection in energy basis

|ψ(t) >=
�

all n

an |En > exp(−iEnt/h̄)

ψ(x, t) =
�

all n

an ψn(x) exp(−iEnt/h̄)

Just insert the time-dependent phase factors

Warning: This only works in the energy basis!!!
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Eigenvector Example

In Dirac notation

|ψ(0) >= N (|E1 > + |E2 > + |E3 >)

In vector notation

ψ(0) =
1√
3




1
1
1





In Dirac notation

|ψ(t) >=
1√
3

�
e−iE1t/h̄|E1 > +e−iE2t/h̄|E2 > +e−iE3t/h̄|E3 >

�

In vector notation

ψ(t) =
1√
3
e−iE1t/h̄




1
0
0



+
1√
3
e−iE2t/h̄




0
1
0



+
1√
3
e−iE3t/h̄




0
0
1





ψ(t) =
1√
3




e−iE1t/h̄

e−iE2t/h̄

e−iE3t/h̄




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Eigenfunction Example

In Dirac notation

|ψ(0) >= N
�
|E1 > + |E2 > + |E3 >

�

In eigenfunction notation

ψ(x, 0) = N
�
ψ1(x) + ψ2(x) + ψ3(x)

�

In Dirac notation

|ψ(t) >=
1√
3

�
e−iE1t/h̄|E1 > +e−iE2t/h̄|E2 > +e−iE3t/h̄|E3 >

�

In eigenfunction notation

ψ(x, t) =
1√
3

�
ψ1(x)e

−iE1t/h̄+ψ2(x)e
−iE2t/h̄+ψ3(x)e

−iE3t/h̄
�

The ψn(x) functions are called the eigenfunctions or the
stationary states, and they are given by

ψ1(x) = < x |E1 >
ψ2(x) = < x |E2 >
ψ3(x) = < x |E3 >
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Possibilities and Probabilities

In Dirac notation

|ψ(0) >= N (|E1 > + |E2 > + |E3 >)

If you measure the energy, what are the possibilities and

what are the corresponding probabilities?

The possibilities are the eigenvalues of the Hamiltonian.

So, the possibilities are E1, E2, E3.

The probabilities are given by | < Ei | ψ > |2.

So, the probabilities are
1
3 ,

1
3 ,

1
3 .

What is the state of the system immediately after the

measurement?

The state is in the eigenstate of H corresponding to the

measured eigenvalue.

So, the state is |E1 > or |E2 > or |E3 >.
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For the eigenvector example

|E1 >=>




1

0

0





|E2 >=>




0

1

0





|E3 >=>




0

0

1





For the eigenfunction example

ψ1(x) = < x | E1 >

ψ2(x) = < x | E2 >

ψ3(x) = < x | E3 >



To find the an expansion coefficients

|ψ(0) >=
�

n

an |En >

Compute the inner products

an = < En|ψ(0) >

In the vector example

a1 = < E1|ψ(0) >= (1, 0, 0)
1√
3




1
1
1



 =
1√
3

a2 = < E2|ψ(0) >= (0, 1, 0)
1√
3




1
1
1



 =
1√
3

a3 = < E3|ψ(0) >= (0, 0, 1)
1√
3




1
1
1



 =
1√
3

In the eigenfunction example

a1 = < E1|ψ(0) >

a2 = < E2|ψ(0) >

a3 = < E3|ψ(0) >

Still compute the inner products, but .......
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Still compute the inner products, but the inner products
are now given by integrals

a1 = < E1|ψ(0) >=

�
ψ∗
1(x) ψ(x, 0) dx

a2 = < E2|ψ(0) >=

�
ψ∗
2(x) ψ(x, 0) dx

a3 = < E3|ψ(0) >=

�
ψ∗
3(x) ψ(x, 0) dx

Note that the probabilities are given by the magnitude
squared of the expansion coefficients Prob(En) = |an|2

Prob(E1) = |a1|2 = |< E1|ψ(0) >|2=

�����

�
ψ∗
1(x) ψ(x, 0) dx

�����

2

Prob(E2) = |a2|2 = |< E2|ψ(0) >|2=

�����

�
ψ∗
2(x) ψ(x, 0) dx

�����

2

Prob(E3) = |a3|2 = |< E3|ψ(0) >|2=

�����

�
ψ∗
3(x) ψ(x, 0) dx

�����

2



The Square Well aka The Particle in a Box

Time-Independent Schrodinger Equation (TISE)

H |En >= En |En >

In position space

Hop ψn(x) = Enψn(x)

Hop =
p
2
op

2m
+ V (xop)

pop = −ih̄
d

dx

xop = x

Hop =
−h̄

2

2m

d
2

dx2
+ V (x)

For the square well

V (x) = 0

So TISE becomes this differential equation

H ψn(x) =
−h̄

2

2m

d
2

dx2
ψn(x) = En ψn(x)

Larry




Larry


Larry


Larry
The differential equation
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The TISE
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Expand t=0 the wavefunction and insert the phase factors
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eigenenergies
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eigenfunctions
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En ~ n2 / L2

The larger the well, the lower the energy

The higher the quantum number n, the higher the energy

E = KE + PE

The potential energy for the square well is the same everywhere except at the boundaries 
where it is infinite. Consequently, the wavefunction must be zero at the boundaries.

The kinetic energy for the square well is proportional to the curvature of the wavefcn.

The ground state wavefunction has the minimum curvature---that is not zero everywhere 
and is zero at its ends.
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Larry
Measure the position: The probability to find the 
particle precisely at x=2 is zero. But the probability 
to find the particle at x=2 plus/minus 0.01 is non-zero.
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The Square Well
The Particle in a Box
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http://en.wikipedia.org/wiki/Particle_in_a_box

http://en.wikipedia.org/wiki/Particle_in_a_box


The Square Well

http://www.falstad.com/qm1d

http://phet.colorado.edu/en/simulation/bound-states

http://www.falstad.com/qm1d
http://phet.colorado.edu/en/simulation/bound-states
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energy E 
position x 
momentum p

Larry


Larry


Larry


Larry
In Dirac notation: the abstract state vector in Hilbert space
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In the position basis, aka in position space
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In the momentum basis, aka in momentum space
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In the energy basis, aka in energy space
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Before you measure
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After you
measure
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Measure the Energy
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If you measure the momentum
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probability density in
momentum-space
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when n=2
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when n is large
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