Step-by-step procedure to solve QM problems
(1) Solve the TISE

$$
H\left|E_{n}>=E_{n}\right| E_{n}>
$$

Diagonalize the Hamiltonian
Find the eigenvalues E_{n}
Find the eigenstates $\left|E_{n}\right\rangle$
(2) Expand $\mid \psi(0)>$ in energy eigenstates

$$
\left|\psi(0)>=\sum_{n} a_{n}\right| E_{n}>
$$

The energy eigenstates are called stationary states
(3) Put in the time-dependent phase factors $e^{\left(-i E_{n} t / \hbar\right)}$

$$
\left|\psi(t)>=\sum_{n} a_{n} e^{\left(-i E_{n} t / \hbar\right)}\right| E_{n}>
$$

$$
\begin{gathered}
\left|\psi(0)>=\left|E_{1}>+\left|E_{2}>+\right| E_{3}>\right.\right. \\
|\psi(0)>=I| \psi(0)> \\
I=\sum_{n}\left|E_{n}><E_{n}\right| \\
\left|\psi(0)>=\sum_{n}\right| E_{n}><E_{n} \mid \psi(0)> \\
a_{n}=<E_{n} \mid \psi(0)> \\
\left|\psi(0)>=\sum_{n}\right| E_{n}>a_{n}=\sum_{n} a_{n} \mid E_{n}>
\end{gathered}
$$

Write down $\mid \psi(t)>$ by inspection in energy basis

$$
\begin{aligned}
\mid \psi(t)> & =\sum_{\text {all } n} a_{n} \mid E_{n}>\exp \left(-i E_{n} t / \hbar\right) \\
\psi(x, t) & =\sum_{\text {all } n} a_{n} \psi_{n}(x) \exp \left(-i E_{n} t / \hbar\right)
\end{aligned}
$$

Just insert the time-dependent phase factors
Warning: This only works in the energy basis!!!

Eigenvector Example

In Dirac notation

$$
\mid \psi(0)>=N\left(\left|E_{1}>+\left|E_{2}>+\right| E_{3}>\right)\right.
$$

In vector notation

$$
\psi(0)=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

In Dirac notation
$\left\lvert\, \psi(t)>=\frac{1}{\sqrt{3}}\left(e^{-i E_{1} t / \hbar}\left|E_{1}>+e^{-i E_{2} t / \hbar}\right| E_{2}>+e^{-i E_{3} t / \hbar} \mid E_{3}>\right)\right.$

In vector notation

$$
\begin{aligned}
& \psi(t)=\frac{1}{\sqrt{3}} e^{-i E_{1} t / \hbar}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+\frac{1}{\sqrt{3}} e^{-i E_{2} t / \hbar}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+\frac{1}{\sqrt{3}} e^{-i E_{3} t / \hbar}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& \psi(t)=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
e^{-i E_{1} t / \hbar} \\
e^{-i E_{2} t / \hbar} \\
e^{-i E_{3} t / \hbar}
\end{array}\right)
\end{aligned}
$$

In Dirac notation

$$
\mid \psi(0)>=N\left(\left|E_{1}>+\left|E_{2}>+\right| E_{3}>\right)\right.
$$

In eigenfunction notation

$$
\psi(x, 0)=N\left(\psi_{1}(x)+\psi_{2}(x)+\psi_{3}(x)\right)
$$

In Dirac notation

$\left\lvert\, \psi(t)>=\frac{1}{\sqrt{3}}\left(e^{-i E_{1} t / \hbar}\left|E_{1}>+e^{-i E_{2} t / \hbar}\right| E_{2}>+e^{-i E_{3} t / \hbar} \mid E_{3}>\right)\right.$

In eigenfunction notation
$\psi(x, t)=\frac{1}{\sqrt{3}}\left(\psi_{1}(x) e^{-i E_{1} t / \hbar}+\psi_{2}(x) e^{-i E_{2} t / \hbar}+\psi_{3}(x) e^{-i E_{3} t / \hbar}\right)$

The $\psi_{n}(x)$ functions are called the eigenfunctions or the stationary states, and they are given by

$$
\begin{aligned}
& \psi_{1}(x)=<x \mid E_{1}> \\
& \psi_{2}(x)=<x \mid E_{2}> \\
& \psi_{3}(x)=<x \mid E_{3}>
\end{aligned}
$$

In Dirac notation

$$
\mid \psi(0)>=N\left(\left|E_{1}>+\left|E_{2}>+\right| E_{3}>\right)\right.
$$

If you measure the energy, what are the possibilities and what are the corresponding probabilities?

The possibilities are the eigenvalues of the Hamiltonian. So, the possibilities are E_{1}, E_{2}, E_{3}.

The probabilities are given by $\left|<E_{i}\right| \psi>\left.\right|^{2}$. So, the probabilities are $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$.

What is the state of the system immediately after the measurement?

The state is in the eigenstate of H corresponding to the measured eigenvalue.

So, the state is $\mid E_{1}>$ or $\mid E_{2}>$ or $\mid E_{3}>$.

For the eigenvector example

$$
\begin{aligned}
& \left\lvert\, E_{1}>=>\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right. \\
& \left\lvert\, E_{2}>=>\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right. \\
& \left\lvert\, E_{3}>=>\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right.
\end{aligned}
$$

For the eigenfunction example

$$
\begin{aligned}
& \psi_{1}(x)=<x \mid E_{1}> \\
& \psi_{2}(x)=<x \mid E_{2}> \\
& \psi_{3}(x)=<x \mid E_{3}>
\end{aligned}
$$

To find the a_{n} expansion coefficients

$$
\left|\psi(0)>=\sum_{n} a_{n}\right| E_{n}>
$$

Compute the inner products

$$
a_{n}=<E_{n} \mid \psi(0)>
$$

In the vector example

$$
\begin{aligned}
& a_{1}=<E_{1} \left\lvert\, \psi(0)>=(1,0,0) \frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\frac{1}{\sqrt{3}}\right. \\
& a_{2}=<E_{2} \left\lvert\, \psi(0)>=(0,1,0) \frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\frac{1}{\sqrt{3}}\right. \\
& a_{3}=<E_{3} \left\lvert\, \psi(0)>=(0,0,1) \frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\frac{1}{\sqrt{3}}\right.
\end{aligned}
$$

In the eigenfunction example

$$
\begin{aligned}
& a_{1}=<E_{1} \mid \psi(0)> \\
& a_{2}=<E_{2} \mid \psi(0)> \\
& a_{3}=<E_{3} \mid \psi(0)>
\end{aligned}
$$

Still compute the inner products, but

Still compute the inner products, but the inner products are now given by integrals

$$
\begin{aligned}
& a_{1}=<E_{1} \mid \psi(0)>=\int \psi_{1}^{*}(x) \psi(x, 0) d x \\
& a_{2}=<E_{2} \mid \psi(0)>=\int \psi_{2}^{*}(x) \psi(x, 0) d x \\
& a_{3}=<E_{3} \mid \psi(0)>=\int \psi_{3}^{*}(x) \psi(x, 0) d x
\end{aligned}
$$

Note that the probabilities are given by the magnitude squared of the expansion coefficients $\operatorname{Prob}\left(E_{n}\right)=\left|a_{n}\right|^{2}$

$$
\begin{aligned}
& \operatorname{Prob}\left(E_{1}\right)=\left|a_{1}\right|^{2}=\left|<E_{1}\right| \psi(0)>\left.\right|^{2}=\left|\int \psi_{1}^{*}(x) \psi(x, 0) d x\right|^{2} \\
& \operatorname{Prob}\left(E_{2}\right)=\left|a_{2}\right|^{2}=\left|<E_{2}\right| \psi(0)>\left.\right|^{2}=\left|\int \psi_{2}^{*}(x) \psi(x, 0) d x\right|^{2} \\
& \operatorname{Prob}\left(E_{3}\right)=\left|a_{3}\right|^{2}=\left|<E_{3}\right| \psi(0)>\left.\right|^{2}=\left|\int \psi_{3}^{*}(x) \psi(x, 0) d x\right|^{2}
\end{aligned}
$$

The Square Well aka The Particle in a Box

Time-Independent Schrodinger Equation (TISE)

$$
H\left|E_{n}>=E_{n}\right| E_{n}>
$$

In position space

$$
\begin{gathered}
H_{o p} \psi_{n}(x)=E_{n} \psi_{n}(x) \\
H_{o p}=\frac{p_{o p}^{2}}{2 m}+V\left(x_{o p}\right) \\
p_{o p}=-i \hbar \frac{d}{d x} \\
x_{o p}=x \\
H_{o p}=\frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x)
\end{gathered}
$$

For the square well

$$
V(x)=0
$$

So TISE becomes this differential equation

$$
H \psi_{n}(x)=\frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi_{n}(x)=E_{n} \psi_{n}(x)
$$

INFINITE SQUARE WELL
"particle in a Box"

SOLVE TISE \Rightarrow STATIONARY STATES (TI)
TIME-DEPENOANT STATES

Expand $\mathbf{t}=0$ the wavefunction and insert the phase factors

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+v(x) \psi(x)=E \psi(x) \text { The TISE }
$$

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{2 m E}{\hbar^{2}} \psi=0 \quad \text { The differential equation }
$$

$$
\begin{aligned}
& \frac{d^{2} \psi}{d x^{2}}+k^{2} \psi=0 \\
\Rightarrow & A e^{i k x}+B e^{-i k x} \\
& \text { GENERAL SOLUTION }
\end{aligned}
$$

WE NEED TO FIND ef's OF H EN'S OFH
sQuare well
aKa, PARTICLE IN A BOX

AT BOUNDARY AND OUTSIDE $V(x)=\infty$
\Rightarrow PAATICLE CANNOT GET OUTSIDE
even if poney wnele

$$
V(x)=0
$$

$=\infty$, partice cannat
eacape
$T 1 S E H H=E H$
$1+2\left[-\frac{\hbar^{2}}{2 m} \frac{x^{2}}{d x^{2}}+v(x)\right] \psi_{m}^{0}(x)=E_{m} \psi_{m}(x)$

$$
-\frac{\hbar^{2}}{2 m} \frac{\alpha^{2}}{\alpha x^{2}} \psi_{n}(x)=E_{n} \psi_{n}(x)
$$

THESE
F<N
ef's

$$
\begin{aligned}
\text { GENERAL SOLUTION } & \Rightarrow \text { SPECIFIC SOLN'S } \\
+\quad & \Rightarrow \text { SH AN }
\end{aligned}
$$

BOUNDARY CONDITIONS

$$
\begin{array}{r}
\psi(0)=0 \Rightarrow A \sin (\mu x) \\
\psi(L)=0 \Rightarrow A \sin \left(\frac{n \pi}{L} x\right) \\
\\
A \sin \left(k_{n} x\right) \\
\\
k_{n}=\frac{n \pi}{L}
\end{array}
$$

NORMALIZED STATIONARY STATES

$$
\psi_{m}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right)
$$

$$
k_{n}=\frac{n \pi}{L} \Rightarrow E_{n}=\frac{\hbar^{2} \mu^{2}}{2 m}=\left(\frac{\pi^{2} \hbar^{2}}{2 m L^{2}}\right) n^{2}=E_{1} n^{2}
$$

$E_{n} \sim n^{2} / L^{2}$

The larger the well, the lower the energy
The higher the quantum number n , the higher the energy
$E=K E+P E$
The potential energy for the square well is the same everywhere except at the boundaries where it is infinite. Consequently, the wavefunction must be zero at the boundaries.

The kinetic energy for the square well is proportional to the curvature of the wavefcn.
The ground state wavefunction has the minimum curvature---that is not zero everywhere and is zero at its ends.

The Square Well

 The Particle in a Box

 The Particle in a Box}

Measure the position: The probability to find the particle precisely at $x=2$ is zero. But the probability
to find the particle at $\mathbf{x = 2}$ plus/minus 0.01 is non-zero.
http://en.wikipedia.org/wiki/Particle_in_a_box

The Square Well

http://www.falstad.com/qm1d
http://phet.colorado.edu/en/simulation/bound-states

TIME-DEPENDENCE OF THE ENERGY EJGENKETS

$$
\left|E_{n}(t)\right\rangle=e^{-i E_{n} t / \hbar}\left|E_{n}(0)\right\rangle
$$

TIME-DEPENDENCE OF THE STATIONARY STATES

$$
\psi_{m}(x, t)=e^{-i E_{n} t / \hbar} \psi_{n}(x)
$$

IN POSITION SPACE

$$
\begin{aligned}
& \omega_{2}=E_{2} / \hbar=4 E_{1} / \hbar \\
& \omega_{2}=4 \omega_{1}
\end{aligned}
$$

$$
\omega_{3}=\epsilon_{2} / \hbar=q \omega_{1}
$$

TIME-DEPENDENCE

$$
\psi(x, t)=\quad a, e^{-i \omega, t}
$$

$$
\tau_{1}
$$

$$
T_{3}=\frac{T_{1}}{9}
$$

$$
+a_{5} e^{-i \omega_{5} t}
$$

$$
\Rightarrow \text { RECURRENCE TIME }=T_{1}!
$$

EXPANSION IN DIFFERENT SAACES/BASES

$$
E, x, p
$$

SUPRRIOSITION OF 3 LOWEST STATES momentum p
$\operatorname{mos} \quad 1 / 3 \quad 1 / 3 \quad 1 / 3$
In Dirac notation: the abstract state vector in Hilbert space

$$
|\psi\rangle=\frac{1}{\sqrt{3}}\left|E_{1}\right\rangle+\frac{1}{\sqrt{3}}\left|E_{2}\right\rangle+\frac{1}{\sqrt{3}}\left|E_{2}\right\rangle \text { assracact }
$$

In the position basis, aka in position space

$$
\begin{aligned}
\langle x \mid \psi\rangle & =\frac{1}{\sqrt{3}}\left\langle x \mid E_{1}\right\rangle+\frac{1}{\sqrt{3}}\left\langle x \mid E_{2}\right\rangle+\frac{1}{\sqrt{3}}\left\langle x \mid E_{3}\right\rangle \\
\psi(x) & =\frac{1}{\sqrt{3}} \psi_{1}(x)+\frac{1}{\sqrt{3}} \psi_{2}(x)+\frac{1}{\sqrt{3}} \psi_{3}(x)
\end{aligned}
$$

In the momentum basis, aka in momentum space

$$
\begin{aligned}
& \langle\rho \mid \psi\rangle=\frac{1}{\sqrt{3}}\left\langle\rho \mid E_{1}\right\rangle+\frac{1}{\sqrt{3}}\left\langle\rho \mid E_{2}\right\rangle+\frac{1}{\sqrt{3}}\left\langle\rho \mid E_{3}\right\rangle \\
& \hat{\psi}(p)=\frac{1}{\sqrt{3}} \hat{\psi}_{1}(\rho)+\frac{1}{\sqrt{3}} \hat{\psi}_{2}(\rho)+\frac{1}{\sqrt{3}} \hat{\psi}_{3}(\rho)
\end{aligned}
$$

HOW ABOUT $\psi(E)$?
In the energy basis, aka in energy space

$$
\begin{aligned}
&\langle E \mid \psi\rangle \psi \psi \mid=\frac{1}{\sqrt{3}}\left\langle E \mid E_{1}\right\rangle+\frac{1}{\sqrt{3}}\left\langle E \mid E_{2}\right\rangle+\frac{1}{\sqrt{3}}\left\langle E \mid E_{3}\right\rangle \\
& \tilde{\psi}(E)=\frac{1}{\sqrt{3}} \tilde{\psi}_{1}(E)+\frac{1}{\sqrt{3}} \tilde{\psi}_{2}(E)+\frac{1}{\sqrt{3}} \tilde{\psi}_{3}(E) \\
&=\frac{1}{\sqrt{3}} \delta\left(E-E_{1}\right)+\frac{1}{\sqrt{3}} \delta\left(E-E_{2}\right)+\frac{1}{\sqrt{3}} \delta\left(E-E_{3}\right) \\
& \tilde{\psi}(E) \\
& \left.\frac{1}{\sqrt{3}} \right\rvert\, 1
\end{aligned}
$$

If You mEASURE....

Measure the Energy

```
**IZRGY
POLSIBLE
RESULTS:EIGENVALUGSOOFTHENAMILTONGAN
```

EIGKNENERGIES

PROBABILITIES: HOW MUCH OF THAT KIGRNSHATK IS IN | H >

mysterious because:

Measure the Position

If you measure the momentum

when $n=2$
probability density in
momentum-space

when \mathbf{n} is large

TIME-DEPENDENCE OF THE ENERGY EJGENKETS

$$
\left|E_{n}(t)\right\rangle=e^{-i E_{n} t / \hbar}\left|E_{n}(0)\right\rangle
$$

TIME-DEPENDENCE OF THE STATIONARY STATES

$$
\psi_{m}(x, t)=e^{-i E_{n} t / \hbar} \psi_{n}(x)
$$

IN POSITION SPACE

$$
\begin{aligned}
& \omega_{2}=E_{2} / \hbar=4 E_{1} / \hbar \\
& \omega_{2}=4 \omega_{1}
\end{aligned}
$$

$$
\omega_{3}=\epsilon_{2} / \hbar=q \omega_{1}
$$

