January 25, 2012

Lecture 5

Postulates
using a simple toy problem

Statistical quantities expectation value uncertainty

STEP I: CONSTRUCT OPRZATORS V

STEP 2: FIND Cv's AND EN゙S OF OPRRATORS

H

$$
e v=3
$$

$e \vec{N}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
ρ

$$
e v=2
$$

$$
3
$$

$$
1
$$

$$
e^{-2}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \quad \frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)
$$

WHAT ENERGIGS WILL Wת FIND? 3,4,5 WHAT MOMENTA WIGL WE FINO? 2,3,

WITH WHAT PRABABILITAS WILL WE FIND THEM?

Postulate 3

After an energy measurement, the system will be in the corresponding eigenstate of H After a momentum measurement, the system will be in the corresponding eigenstate of p

Measure E at $\mathbf{t}=\mathbf{0}$

$$
\operatorname{PrOB}\left(E_{i}\right)=\frac{\left|\left\langle E_{i} \mid \psi(0)\right\rangle\right|^{2}}{\langle\psi(0) \mid \psi(0)\rangle}
$$

The state vector at $t=0$ is

$$
|\psi(0)\rangle \rightarrow\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

The eigenstates (eigenbras) of E are

$$
\begin{aligned}
& \langle E=3| \rightarrow\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \\
& <E=4 \left\lvert\, \rightarrow\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right)\right. \\
& <E=5 \left\lvert\, \rightarrow\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)\right.
\end{aligned}
$$

The eigenbras must be normalized

Postulate 3

The probability that the system will be found in state \mathbf{A} is given by the square of the inner product of A with the state of the system'

Measure p at $\mathbf{t = 0}$

$$
\operatorname{ROB}\left(p_{i}\right)=\frac{\left|\left\langle\rho_{i} \mid \psi(0)\right\rangle\right|^{2}}{\langle\psi(0) \mid \psi(0)\rangle}
$$

The state vector at $\mathbf{t}=\mathbf{0}$ is

$$
|\psi(0)\rangle \rightarrow\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

The eigenstates (eigenbras) of p are

$$
\left.\begin{array}{l}
\left\langle p=21 \rightarrow\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)\right. \\
\left\langle p=31 \rightarrow \frac{1}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 1
\end{array}\right)\right. \\
\langle p=1
\end{array}\right) \rightarrow \frac{1}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & -1
\end{array}\right)
$$

The eigenbras must be normalized

Postulate 3

The probability that the system will be found in state \mathbf{A} is given by the square of the inner product of \mathbf{A} with the state of the system

NOW IF we measure the
MOMENTUM(att=0)

The probabilities must sum to 1

CHECK

$$
\frac{2}{28}+\frac{25}{28}+\frac{1}{28}=1
$$

System in an eigenstate of E, stays in that eigenstate.

$\frac{1}{\sqrt{14}}\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \xrightarrow[4 / 4]{4=4}\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$

MEASURE A AGANA
always Ger same energy en stay in same anergy e $\overrightarrow{i v}$
"What happens in energy, stays in energy."

System in an eigenstate of momentum, does not stay in that eigenstate at later times.

If [p, H] is not equal to zero, then the eigenstates of momentum evolve in time.

If momentum shares an eigenstate with energy, then that eigenstate does not evolve
"What happens in momentum does not necessarily stay in the same momentum"
time evolution---an unstable system cannot decay. REPEATED MEASUREMIRNTS WITH ZERO TIME DELAY

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \xrightarrow[\frac{1}{14}]{6=3}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \xrightarrow[100 \%]{\stackrel{6=3}{ }}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

$$
\left|4\left(0^{+}\right)\right\rangle
$$

$$
\left.14\left(0^{++}\right)\right\rangle
$$

$\left|\psi\left(0^{-}\right)\right\rangle$

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \xrightarrow[\frac{4}{14}]{E=44}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \xrightarrow[100 \%]{E=44}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

IF IN AN E家A THEN MEASURE ASSOCIATED

if in an din of p and you measure pop

THIEN in GRNRRAL YOU wILL NOT STAY iN er of Pop

Wiki quotes Sudarshan and Misra (1977): "An unstable particle, if observed continuously, will never decay."

Cannot measure continuously. The projection postulate works.

FOR ZERO TIME DELAY SAME THING RR P

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \xrightarrow[\frac{25}{28}]{\rho=3} \frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \xrightarrow[100 \%]{\rho=3} \frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

$\left.1 \psi\left(0^{-}\right)\right\rangle$
$14\left(0^{+}\right)>$

FOR ZERO TIME DELAY what if you maasune E, p, E, p, \ldots
H and p share the $E=3$ eigenstate.

$$
\begin{aligned}
& \left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \xrightarrow[\frac{1}{14}]{\underline{2}=3}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \xrightarrow[100 \%]{\rho=2}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \xrightarrow[100 \%]{E=3}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& H \text { AND } P \text { SHARE A } \overrightarrow{\text { ON }}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

HAND P DO NOT SHARE QU EN
H and p do not share the $E=4$ eigenstate.
H and p do not share $E=5$ eigenstate.

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \xrightarrow[\frac{9}{14}]{\sqrt{2}=5}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

$$
\begin{aligned}
& p=3 \\
& 50 \% \\
& p=1
\end{aligned}
$$

$$
\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)
$$

(zGRO TIME OEAAY)
ff maasuae p, , p, E, \ldots

SAME TREES

Time evolution
What haphens if we wait t Gepore WE MAKE THE SECOND MKASURRMRNT?

$$
\begin{aligned}
& \left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \xrightarrow{E=3}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \xrightarrow[\substack{\text { MEABORE }}]{\text { wast } t}\left(\begin{array}{l}
? \\
? \\
?
\end{array}\right)+\mathbb{A R A R} \\
& \left|4\left(0^{-}\right)\right\rangle \quad\left|4\left(0^{+}\right)\right\rangle \quad|\psi(t)\rangle \\
& \left.\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right\}\right) \xrightarrow{p=3}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \xrightarrow[\text { mansine } p]{\text { watr } t}\left(\begin{array}{l}
? \\
? \\
?
\end{array}\right) \\
& \text { ev=? }
\end{aligned}
$$

TDSE

Postulate 4

IV. The state variables change with time according to Hamilton's equations:

$$
\begin{aligned}
\dot{x} & =\frac{\partial \mathscr{H}}{\partial p} \\
\dot{p} & =-\frac{\partial \mathscr{H}}{\partial x}
\end{aligned}
$$

IV. The state vector $|\psi(t)\rangle$ obeys the Schrödinger equation

$$
i \hbar \frac{d}{d t}|\psi(t)\rangle=H|\psi(t)\rangle
$$

where $H(X, P)=\mathscr{H}(x \rightarrow X$, $p \rightarrow P$) is the quantum Hamiltonian operator and \mathscr{H} is the Hamiltonian for the corresponding classical problem.

$$
\begin{aligned}
& \text { TIME EVOLUTION } \\
& \text { POSTULATE } 4
\end{aligned}
$$

(1) EXPAND | $4(0)\rangle$ IN ENERGY EIGENBASIS: | $\mathrm{psi}(0)>=a 1|E=3>+\mathrm{b}| E=4>+c \mid E=5>$ in Dirac notation

$$
\frac{1}{\sqrt{14}}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\frac{1}{\sqrt{14}}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+\frac{2}{\sqrt{14}}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+\frac{3}{\sqrt{14}}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

In basis notation. The basis is the eigenbasis of \mathbf{H}
Civ of H OBAY tOE TDSE

$$
\begin{aligned}
& H\left|E_{i}\right\rangle=E_{i}\left|E_{i}\right\rangle \\
& H\left|E_{i}\right\rangle=i \hbar \frac{d}{d t}\left|E_{i}\right\rangle=E_{i}\left|E_{i}\right\rangle
\end{aligned}
$$

$$
\left|E_{i}(t)\right\rangle=e^{-i \sigma t / \hbar}\left|E_{i}(0)\right\rangle
$$

The time dependence of the energy eigenstates

TIME RVOLUTION OF Civ's OF 4 is
VERY SIMPLE: ONLY THEIR PHASE CHANGES
(2) SIMCIY WGITE DONN THE TIME OEIRNOENCE:

$$
|\psi(t)\rangle=\sum e^{-i E_{i} t / \hbar} \text { the } a_{i}\left|E_{i}\right\rangle
$$

You must express the expansion vectors in the basis of H

$$
=\frac{1}{\sqrt{14}} e^{-i 3 t / \hbar}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+\frac{2}{\sqrt{14}} e^{-i+6 / \hbar}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

If \mathbf{H} is not diagonal, these expansion vectors will not be
the simple unit vectors

$$
+\frac{3}{\sqrt{14}} e^{-i 5 t / \hbar}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

The Stationary States
eft's
dir's of h ace called stationary states es's
only their phase varies

$$
\begin{aligned}
& \text { (innaiuracy } \\
& \xrightarrow{E=3}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{-i 3 t / \hbar} \xrightarrow[t \times 20]{\substack{\text { inmajintacy } \\
E=3}}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{-i 3 t / \hbar} \\
& \left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{-i \Delta t / \hbar} \xrightarrow[\substack{\text { rAin } \\
\text { MaASOAE }}]{\text { whir } t^{\prime}}\left(\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{-i 3 t / \hbar}\right) e^{-i 3 t^{\prime} /}
\end{aligned}
$$

always get kites
always in state $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) e^{i \theta_{0}}$
TIME EVOLUTION OF e ir OF H :

$$
e^{i \theta_{0}}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \xrightarrow{\text { wart } t}\left[\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{i \theta_{0}}\right] e^{-i 3 t / \hbar}
$$

only their phase changes stay in the same state

Resolution of the identity
Expansion in a comple set of states In this case expand in the eigenstates of H

Recipe for calculating time evolution

TIME EVOLUTION
(i) EXAAND $|\psi(0)\rangle$ IN ENERGY E/GANKETS

The sum of the all of the outer products

In general
only eigen lets of w are stationary

COOKIE AT

$$
\begin{aligned}
& |\rho=3\rangle \quad \rightarrow \quad \frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \\
& \text { | } \mathrm{p}=3 \text { > = Identity | } \mathrm{p}=3 \text { > } \\
& |P=3\rangle=\sum_{i}\left|E_{i}\right\rangle\left\langle\varepsilon_{i} \mid P=3\right\rangle \quad \text { Works for any basis } \\
& =\left|E_{1}\right\rangle\left\langle E_{1} \mid P=3\right\rangle \\
& +\left|E_{2}\right\rangle\left\langle E_{2} \mid p=3\right\rangle \\
& +\left|E_{3}\right\rangle\left\langle E_{3} \mid \rho=3\right\rangle \\
& =0\left|E_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|E_{2}\right\rangle+\frac{1}{\sqrt{2}}\left|E_{3}\right\rangle \\
& |P=3, t\rangle=0\left|E_{1}\right\rangle e^{-i E_{1} t / \hbar} \\
& +\frac{1}{\sqrt{2}}\left|E_{2}\right\rangle e^{-i E_{2} t / \hbar} \\
& +\frac{1}{\sqrt{2}}\left|E_{3}\right\rangle e^{-i \Sigma_{3} t / \hbar}
\end{aligned}
$$

TIME EVOLUTION OF Pin's OF P

$$
\text { e } p=2 \text { eNs }=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\quad 6=3 \text { ens of Hop }
$$

P: 2 is Stationary Cactus\& |fail| $\equiv \mid$ | $=3\rangle$ AND 1E=E> 1S StatIONARY
SO ITS TIME EVOLUTION IS GAAGTLV THE SAME AS THE $2=3$ EN OR

$$
P=3 \text { EN OF } P=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \quad \begin{aligned}
& \text { NO EQUAL TOAN EA ゙ OAH } \\
& \text { SO }|P=3\rangle \text { IS TIME: } \\
& O E P N D E N T
\end{aligned}
$$

To FIND ITS rime EvOLUTION

$$
\begin{gathered}
\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
\left.0\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+1\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+1\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right] \\
\text { EXPAND IN UNIS OF A }
\end{array} .=\begin{array}{l}
1
\end{array}\right]
\end{gathered}
$$

BECAUSE WE KNOW THEIR tIME EVOLUTION
If you are in a basis where H is not diagonal you must expand in that basis
POT IN THEIR

$$
\begin{aligned}
& \text { TIME } \\
& \text { DEPENDENCE }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}}\left[0\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{-i 3 t / \hbar}+1\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) e^{-i t t / \hbar}+1\right. \\
& =|\psi(0)\rangle=|p=3\rangle \quad \operatorname{racN}|\Psi(t)\rangle \neq|p=3\rangle
\end{aligned}
$$

What does the time evolution of | $p=3$ > look like?
$\mid p=3, t>=\frac{1}{\sqrt{2}}\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) e^{-i 4 t / \hbar}+\frac{1}{\sqrt{2}}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) e^{-i 5 t / \hbar}$
factor out $\exp (-i 4$ t/hbar)
phase of (001) is different than the phase of (010)

At $\mathbf{t}=$ zero $\quad\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+1\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$

At some specific times $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+(-1)\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$

At any time t

$$
\left(\begin{array}{l}
0 \\
1 \\
e^{-i t / \hbar}
\end{array}\right)
$$

START UN P＝3 CN OF POP
世 IN EATWAGN SOO：SO GATER iN P＝I eiv OF POP

BACK iN $P=3$ e \vec{H} OF POP \quad AGAIN IN BETWELN JUGT $\angle K E$ COURLED DANDULA

IN BETWGAN，YOC AEA IN A GINIAAR COMEINATION OF｜E＝4〉AND｜E＝5〉

Statistical Description
 Expectation Value aka Mean or Average

THE STATISTICAL OESCEIPTION
aILTIONARY

(1) $\langle\Omega\rangle_{\psi}=\sum_{i} p\left(\omega_{i}\right) \omega_{i}$

$$
=\frac{\langle\psi| \Omega|\psi\rangle}{\langle\psi \mid \psi\rangle}
$$

(2)

$$
\langle\Omega\rangle_{\psi}=\langle\psi| \Omega|\psi\rangle
$$

WORMS IN ANY BASIS.'

Show the two deals ageelz

$$
\begin{aligned}
& \langle\Omega\rangle_{\psi}=\sum_{i} p\left(w_{i}\right) \omega_{i} \\
& \left.=\sum|<i| 4\right\rangle\left.\right|^{2} w_{i} \\
& =\sum_{i}\left\langle\psi_{i} \mid i\right\rangle\langle i \mid \psi\rangle w i \quad \text { just a number } \\
& =\sum_{I}^{\sum_{i}}\langle\psi| \Omega|i\rangle\langle i \mid \psi\rangle=\langle\psi| \Omega|\psi\rangle
\end{aligned}
$$

back to our toy problem Version 1

$$
\begin{aligned}
& H=\left(\begin{array}{lll}
3 & & \\
& 4 & \\
& & 5
\end{array}\right) \\
& |\psi(0)\rangle=\frac{1}{\sqrt{14}}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\end{aligned}
$$

$$
\rho(\varepsilon=3)=|\langle i \mid \psi\rangle|^{2}=\left|(100) \frac{1}{\sqrt{14}}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\right|^{2}
$$

$$
\rho(\epsilon=3)=\frac{1}{14}
$$

$$
P(E=4)=|\langle i \mid \psi\rangle|^{2}=\left|(10,0) \frac{1}{\sqrt{14}}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\right|^{2}
$$

$$
P(E=4)=\frac{4}{14}
$$

$$
\rho(\varepsilon=5)=|\langle i \mid \psi\rangle|^{2}=\left|\left(\begin{array}{llll}
0 & 0 & 1
\end{array}\right) \frac{1}{\sqrt{14}}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\right|^{2}
$$

$$
p(E=5)=\frac{9}{14}
$$

FIRST WAY $\langle H\rangle$

$$
\begin{aligned}
\langle\Omega\rangle_{\psi} & =\sum_{i} P\left(\omega_{i}\right) \omega_{i} \\
& =\sum_{i}\left|\left\langle\omega_{i} \mid \psi\right\rangle\right|^{2} \omega_{i}
\end{aligned}
$$

$$
\begin{aligned}
\langle H\rangle=\langle E\rangle & =\frac{1}{14}(3)+\frac{4}{14}(4)+\frac{9}{14}(5) \\
& =\frac{64}{14} \approx 4.57
\end{aligned}
$$

second way Version 2

$$
\begin{aligned}
& \langle\psi| H|\psi\rangle=\frac{1}{\sqrt{14}}\left(\begin{array}{llll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{lll}
3 & & \\
& 4 & \\
& & 5
\end{array}\right) \frac{1}{\sqrt{14}}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \\
& =\frac{1}{14}\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\binom{3}{15} \\
& =\frac{64}{14} \\
& \Rightarrow \text { same result } \\
& \text { but }\langle\psi| H|\psi\rangle \text { does not depend on the basis }
\end{aligned}
$$

$$
\begin{aligned}
& \text { cannot calculate } \quad \sum_{i} p\left(w_{i}\right) w_{i} \text { wto eq's and dit's }
\end{aligned}
$$

Do not need to know the eigenvalues or the eigenstates of the operator

The eigenstates of H are stationary, so $\langle H(t)\rangle=\langle H(0)\rangle$
expectation value of energy versus time

$$
\begin{aligned}
& \langle E\rangle_{\psi(0)}=\langle\psi(0)| H|\psi(0)\rangle \\
& \langle\varepsilon(0)\rangle=\frac{64}{14} \\
& \langle E\rangle_{\psi(t)}=\langle E(t)\rangle=\langle\psi(t)| H|\psi(t)\rangle \\
& =\frac{1}{\sqrt{14}}\left(e^{+i 3 t / \hbar}, 2 e^{+4 i t / \hbar}, 3 e^{+i 5 t / \hbar}\right) x \\
& \left(\begin{array}{lll}
3 & & \\
& 4 & \\
& & 5
\end{array}\right)\left(\begin{array}{l}
e^{-i 3 t / \hbar} \\
2 e^{-i 4 t / \hbar} \\
3 e^{-i 5 t / \hbar}
\end{array}\right) \\
& \langle E(t)\rangle=\langle E(0)\rangle\langle H(t)\rangle E\langle H(0)\rangle
\end{aligned}
$$

\Rightarrow ENERGY IS CONSERVED!
Calculate the commutator:
GENERAL CASE: IF $[\Omega, H]=0$

THEN $\langle\Omega(0)\rangle=\langle\Omega(t)\rangle$
$\Rightarrow \Omega 15$ CONSERVED

$$
[H, H]=0
$$

hamiltonian gancratrs time tran elation!

WII ALSO SAID
$|\psi(\epsilon)\rangle=\sum_{j}\left|E_{i}\right\rangle\left\langle E_{i} \mid \psi(0)\right\rangle e^{-i E_{i} t / \hbar}$

$$
=\underbrace{\sum_{i}^{e^{-i E_{i}}}}_{U(t)}
$$

This unitary operator is called the propagator. It generates the time evolution of every state.
$U(t)$ IS UNITARY \Rightarrow STATGAS StaY NOMMAMZESD!

$$
\begin{aligned}
& \langle\psi(0) \mid \psi(0)\rangle=1 \\
& 1 \\
& I=\langle\psi(0)| U(t) 0^{+}(t)|\psi(0)\rangle \\
& 1=\langle\psi(t) \mid \psi(t)\rangle
\end{aligned}
$$

It is always diagonal in the energy basis
IN DIAGONAL RGPRLSEINTATION

In general $\mathbf{U}(\mathbf{t})=\exp (-\mathbf{i} \mathbf{H} \mathbf{t} / \mathrm{hb}$ br $)$

TIME-EVOLUTION OF THE stationary states

$$
u(t)=/ e^{-i 3 t / \hbar}
$$

$$
e^{-i 4 t / \hbar} \text { l }
$$

$$
t=0
$$

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

$$
\begin{aligned}
& t=t \\
& \left(\begin{array}{c}
e^{-i 3 t / \hbar} \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

$$
\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

$$
\left(\begin{array}{c}
0 \\
e^{-i 4 t / 5} \\
0
\end{array}\right)
$$

$$
\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

$$
\left(\begin{array}{c}
0 \\
0 \\
e^{-i 5 t / \hbar}
\end{array}\right)
$$

start in $e \vec{s}$ of H, stay in $e \vec{s}$ of H

ware nd

STATIONARY STATES \Leftrightarrow ENERGY CONSERVATION

HOWEVER,
C \vec{S} OF Ω WHERE $[H, \Omega] \pm O$ ARE NOT STATIONARY

$$
\begin{array}{cc}
t=0 & t=t \\
\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) & \frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
e^{-i 4 t / \hbar} \\
e^{-i s t / \hbar}
\end{array}\right)
\end{array}
$$

$$
p=3
$$

WHEN
jp
$\theta_{5}-\theta_{4}=\pi$
$\frac{1}{\sqrt{2}}\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$
PROB (P) AT $t=0$

$$
p=1
$$

$$
\begin{gathered}
P=1 \\
\langle P\rangle \text { DEPENDS } \\
\text { ON } \\
\text { TIME! }
\end{gathered}
$$

Statistical Description Uncertainty aka Standard Deviation

$$
\begin{array}{ll}
\bar{x} & \langle x\rangle \\
\sigma_{x} & \Delta x
\end{array}
$$

$$
\begin{aligned}
& \text { AXPACTATION VALUE } \\
&\langle x\rangle_{\psi}=\langle\psi| x_{0,}|\psi\rangle \\
&=\sum_{i} P\left(x_{i}\right) x_{i} \quad \text { DISCAETE } \\
&=\int_{x_{i}-6}^{x_{i+6}} \alpha x P(x) x \quad \text { cONTINVOUS }
\end{aligned}
$$

MOAE LATER AEOUT CONTINUOUS

TOOAY: UNGGRTAINTY
QM ANALOG OF STANDARO OEVIATION

DISCAETE

$$
\left\|_{1}, \quad, i\right\| \|_{i}
$$

$a=R O O T$

Ma MEAN
$S=S$ QUALE

AGAIN, TWO FORMS

$$
(\Delta \Omega)^{2}=\sum_{i} P\left(w_{i}\right)\left[\omega_{i}-\langle\Omega\rangle\right]^{2}
$$

$$
(\Delta \Omega)_{\psi}=\sqrt{\langle\psi| \Omega-\langle\Omega\rangle|\psi\rangle}
$$

Oops, this quantity must be

Method 1: Need to know eigenvalues and the probabilities

FIRST WAY $\triangle \Omega$

$$
\begin{aligned}
(\Delta H)^{2}= & \sum_{i} \rho\left(E_{i}\right)\left[E_{i}-\langle E\rangle\right]^{2} \\
= & \frac{1}{14}[3-4.57]^{2} \\
& +\frac{4}{14}[4-4.57]^{2} \\
& +\frac{9}{14}[5-4.57]^{2}
\end{aligned}
$$

$$
(\Delta H)^{2}=\frac{5.43}{14}=0.39
$$

$$
\Delta H=0.62
$$

$$
E=
$$

$$
4.57 \pm 0.62
$$

USEFUL ALGEBRA
square Omega first

$$
\begin{aligned}
& \Delta R^{2}=\left\langle(\Omega-\langle\Omega\rangle I)^{2}\right\rangle=\left\langle\left(\Omega^{2}-2\langle\Omega\rangle \Omega^{I}+\langle\Omega\rangle^{2} I\right\rangle\right\rangle \\
& =\left\langle\Omega^{2}\right\rangle-2\langle\Omega\rangle\langle\Omega\rangle+\langle\Omega\rangle^{2} \\
& =\left\langle\Omega^{2}\right\rangle-\langle\Omega\rangle^{2} \\
& {\left[\frac{1}{\sqrt{14}}\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{lll}
9 & & \\
& 16 & \\
& & 25
\end{array}\right) \frac{1}{\sqrt{14}}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\right]} \\
& \left.-\left[\begin{array}{lll}
1 \\
\frac{14}{14} & (123
\end{array}\right)\left(\begin{array}{lll}
3 & & \\
& 4 & \\
& & 5
\end{array}\right)\left(\begin{array}{l}
\frac{1}{\sqrt{14}} \\
2 \\
3
\end{array}\right)\right]^{2}=\frac{5.43}{14}=0.39
\end{aligned}
$$

- *~N. National Brand

$$
\Delta \Omega=\sqrt{(\Delta \Omega)^{2}}=0.69
$$

NOTE THAT

$$
\langle\Omega\rangle_{\psi}=\frac{\langle\psi| \Omega|\psi\rangle}{\langle\psi \mid \psi\rangle}
$$

$A \sim D$

$$
\begin{aligned}
& (\Delta \Omega)_{4}=\sqrt{\frac{\langle\psi|(\Lambda \Omega-\langle\Omega\rangle)^{2}|\psi\rangle}{\langle\psi 1 \psi\rangle}}
\end{aligned}
$$

DISCRETE \rightarrow CONTINUOUS

for example Omega might be the second derivative writ x
continuous

$$
(\Delta \Omega)_{\psi}^{2}=\int p(\omega)[\omega-\langle\Omega\rangle]^{2} d w
$$

useful agama

$$
\begin{aligned}
\left\langle(\Omega-\langle\Omega\rangle I)^{2}\right\rangle & =\left\langle\Omega^{2}-2\langle\Omega\rangle \Omega+\langle\Omega\rangle^{2} I\right\rangle \\
& =\left\langle\Omega^{2}\right\rangle-\langle\Omega\rangle^{2}
\end{aligned}
$$

continuous case

$$
\begin{aligned}
& \left\langle\Omega^{2}\right\rangle-\langle\Omega\rangle^{2} \\
& \int \psi^{*}(x) \Omega^{2} \psi(x) d x-\left(\int \psi^{5}(x) \Omega \psi(x) d x\right)^{2}
\end{aligned}
$$

If Omega is simple (for example, if it is some power of a derivative or multiplication by some power of \mathbf{x}) then these integrals can often be done without knowing the eigenvalues or eigenvectors of Omega

Two thousand five hundred and two years ago, Zeno of Elea wrote a book about 40 paradoxes dealing with the continuum, now long lost.

The quantum Zeno effect (QZE) comes from Zeno's arrow paradox:

Since an arrow in flight is not seen to move during any single instant, it cannot possibly move at all.

QZE: One can nearly "freeze" the evolution of the system by measuring it frequently enough.

The Projection Postulate and the Quantum Zeno Effect

The projection postulate has been used to predict a slow-down of the time evolution of the state of a system under rapidly repeated measurements, and ultimately a freezing of the state. To test this socalled quantum Zeno effect an experiment was performed by Itano et al. (Phys. Rev. A 41, 2295 (1990)) in which an atomic-level measurement was realized by means of a short laser pulse. The relevance of the results has given rise to controversies in the literature. In particular the projection postulate and its applicability in this experiment have been cast into doubt. In this paper we show analytically that for a wide range of parameters such a short laser pulse acts as an effective level measurement to which the usual projection postulate applies with high accuracy. The corrections to the ideal reductions and their accumulation over n pulses are calculated. Our conclusion is that the projection postulate is an excellent pragmatic tool for a quick and simple understanding of the slow-down of time evolution in experiments of this type. However, corrections have to be included, and an actual freezing does not seem possible because of the finite duration of measurements.
http://arxiv.org/abs/quant-ph/9512012
For many more, google: quantum zeno effect site:arxiv.org

> "a watched pot never boils"

