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Lecture 5

Postulates 
using a simple toy problem

Statistical quantities
expectation value

uncertainty



Larry Sorensen
The state of the system is represented 
by a vector in a Hilbert space Here the
Hilbert space is three-dimensional
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state vector in the H basis
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The Hamiltonian operator
in its basis
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The momentum operator
in the H basis
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abstract state vector
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Postulate 1
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H is diagonal
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p is not diagonal
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After an energy measurement, the system will be in the corresponding eigenstate of H
After a momentum measurement, the system will be in the corresponding eigenstate of p
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Postulate 3
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Measure E at t=0
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The state vector at t=0 is
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The eigenstates (eigenbras) of E are
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The eigenbras must be normalized
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Postulate 3

Larry Sorensen
The probability that the system will be found in state A is given by 
the square of the inner product of A with the state of the system
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Prob(E=3)
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Prob(E=4)
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Prob(E=5)
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The total probability must be 1

Larry Sorensen


Larry Sorensen
Probability E=3
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Larry Sorensen
Measure p at t=0
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The eigenstates (eigenbras) of p are
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The eigenbras must be normalized
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The state vector at t=0 is
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The probability that the system will be found in state A is given by 
the square of the inner product of A with the state of the system
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Postulate 3
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Prob(p=2)

Larry Sorensen
Prob(p=3)
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Prob(p=1)
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The probabilities must sum to 1
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(at t=0)
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System in an eigenstate of E, stays in that eigenstate.
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"What happens in energy, stays in energy."
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If [ p, H ] is not equal to zero, then the 
eigenstates of momentum evolve in time.
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System in an eigenstate of momentum, does
not stay in that eigenstate at later times.
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If momentum shares an eigenstate with
energy, then that eigenstate does not evolve
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"What happens in momentum does not
necessarily stay in the same momentum"
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Quantum Zeno effect: Continuous measurement prevents 
time evolution---an unstable system cannot decay.
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Wiki quotes Sudarshan and Misra (1977): "An unstable particle, if observed continuously, will never decay."
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Cannot measure continuously. The projection postulate works.
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H and p share the E=3 eigenstate.
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H and p do not share the E=4 eigenstate.



Larry Sorensen
H and p do not share E=5 eigenstate.
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Time evolution
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TDSE
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| psi(0) > = a1 |E=3> + b | E=4 > + c |E=5 > in Dirac notation
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In basis notation. The basis is the eigenbasis of H
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The time dependence of
the energy eigenstates
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TDSE
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You must express the expansion vectors in the basis of H
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If H is not diagonal, these 
expansion vectors will not be
the simple unit vectors
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The Stationary States
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only their phase changes
stay in the same state
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Recipe for calculating time evolution

Larry Sorensen
Resolution of the identity
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Expansion in a comple set of states
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In this case expand in the eigenstates of H
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The time dependence of the 
energy eigenstates is very simple.
The time dependence of state vectors that are not eigenstates of E are not quite so simple
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The sum of the all of the outer products of the energy eigenstates is equal to the identity operator
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Once you have the expansion in terms of energy eigenstates at t=0 just insert the simple phase factors to obtain the state vector at time t
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In general
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| p=3 > = Identity | p=3 >
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again, resolution
of the identity
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Works for any basis
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If you are in a basis where H is not diagonal you must expand in that basis
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the H basis vectors
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What does the time evolution of | p = 3 > look like?
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| p = 3, t > =
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=
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factor out exp( -i 4 t/hbar )
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phase of ( 0 0 1 ) is different 
than the phase of ( 0 1 0)
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At t = zero
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At some specific times
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At any time t
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over all 
phase factor
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General form of
Postulate 3
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project onto the E=4 subspace
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Statistical Description
Expectation Value aka Mean or Average
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Two versions
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(1)
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(2)
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Version 1
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Now compute < H > using method 1 
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Version 2
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Do not need to know the eigenvalues or 
the eigenstates of the operator
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< H(t)> = < H(0) >
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The eigenstates of H are stationary, so < H(t)> = < H(0) >
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Calculate the commutator:
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This unitary operator is called the propagator. 
It generates the time evolution of every state.
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It is always diagonal in the energy basis
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In general U(t) = exp( - i H t/hbar)
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Statistical Description
Uncertainty aka Standard Deviation
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Oops, this quantity must be 
squared as shown above
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Method 1: Need to know eigenvalues and the probabilities
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Method 2: In general this matrix is not diagonal
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Method 2'
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square Omega first
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for example Omega
might be the second
derivative wrt x
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If Omega is simple (for example, if it is some power 
of a derivative or multiplication by some power of x) 
then these integrals can often be done without knowing the eigenvalues or eigenvectors of Omega
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Two thousand five hundred and two years ago, Zeno of Elea wrote a 
book about 40 paradoxes dealing with the continuum, now long lost.

The quantum Zeno effect (QZE) comes from Zeno's arrow paradox:

Since an arrow in flight is not seen to move during any single instant, 
it cannot possibly move at all. 

QZE: One can nearly "freeze" the evolution of the system by measuring 
it frequently enough.

The Projection Postulate and the Quantum Zeno Effect

The projection postulate has been used to predict a slow-down of the 
time evolution of the state of a system under rapidly repeated 
measurements, and ultimately a freezing of the state. To test this so-
called quantum Zeno effect an experiment was performed by Itano et 
al. (Phys. Rev. A 41, 2295 (1990)) in which an atomic-level 
measurement was realized by means of a short laser pulse. The 
relevance of the results has given rise to controversies in the literature. 
In particular the projection postulate and its applicability in this 
experiment have been cast into doubt. In this paper we show 
analytically that for a wide range of parameters such a short laser 
pulse acts as an effective level measurement to which the usual 
projection postulate applies with high accuracy. The corrections to the 
ideal reductions and their accumulation over n pulses are calculated. 
Our conclusion is that the projection postulate is an excellent 
pragmatic tool for a quick and simple understanding of the slow-down 
of time evolution in experiments of this type. However, corrections 
have to be included, and an actual freezing does not seem possible 
because of the finite duration of measurements.

http://arxiv.org/abs/quant-ph/9512012
For many more, google: quantum zeno effect site:arxiv.org

"a watched pot never boils"

http://arxiv.org/abs/quant-ph/9512012





