Mathematics Part 3

Geometry

Bra Space and Ket Space
Eigenvalues and Eigenvectors

Algebra

Bra Space and Ket Space

Hermitean Operators
Anti-Hermitean Operators
Unitary Operators
Projection Operators
Degenerate Operators
Inner Products and Outer Products Characteristic Equation
Eigenvalues and Eigenvectors
Changing Basis
Commutation Relations
The Commutator
Compatible Operators
Incompatible Operators
Partially Compatible Operators
Simultaneous Diagonalization
Complete Set of Commuting Observables (CSCOs)
Fundamental Theorem of Algebra
Abel-Ruffini Theorem

```
THE GEOMETRY OF QM
```

QM TALES PLACE IN HILBERT SPACE,

AN INFINITE DIMENSIONAL VECTOR SPACE.

STATES OF THE SYSTEM \Rightarrow VECTORS
$|\psi(t)\rangle=A$ VECTOR IN THE HILBERT SPACE

Postulate 1: The state of the system is represented by a state vector in a Hilbert space

$$
\text { ALSO HAVE OPERATORS } \left.\quad \theta\left|4_{1}\right\rangle=1 \psi_{2}\right\rangle
$$

EIGENVALUES OF HERMITEAN
PHYSICAL OBSERVABLES \Rightarrow OPERATORS

Postulate 2: Physical observables are represented by Hermitean operators

Postulate 3: Measurement of a physical observable will result in an eigenvalue of the operator

$$
\text { DYNAMICS OF THE SYSEM } \Rightarrow \text { He via TDSE }
$$

$$
T \text { ire - D pendent } s \text { chadingen Equation }
$$

$$
H|\psi(t)\rangle=i \frac{d}{d t}|\psi(t)\rangle
$$

FIRST -ORDER DIFEFQ
$\operatorname{simPLER~THAN~CM~F=m~} \frac{d^{2} x}{d t^{2}}$ SECOND

GEOMETRY OF THE TIME EVOLUTION

Postulate 4: The time evolution of the state vector is given by the time-dependent Schrodinger equation.

TO Git THE USUAL WAVEFLNS
we must introduce a Basis

$$
|\psi\rangle \text { ABSTRACT, NO BASIS, GEOMETRIC OBTECT }
$$ $\langle x \mid \psi\rangle=\psi(x) \quad$ POSATION-SPACE WAVEFGN

$<\mathrm{x}$ I, < P I, and $<$ E | each represent a complete set of basis vectors

$$
\begin{aligned}
& \langle p \mid \psi\rangle=\hat{\psi}(p) \quad \text { momentum-space wavefen } \\
& \langle E \mid \psi\rangle=\hat{\psi}(E) \quad \text { enemay-space wavefcn } \\
& \uparrow \\
& \text { miner moduct } \\
& \text { in o/rac } \\
& \text { matatain }
\end{aligned}
$$

$$
\begin{aligned}
& \text { an EN } x \text {-OPGRATBR } \\
& \text { RESULT IS ON OF THE } X \text {-BASIS } \\
& \text { STATE IS AN E } \vec{v} \text { OF THE X-OPRRATOR }
\end{aligned}
$$

Postulate 3: Measurement of a physical observable will result in an eigenvalue of the operator and the state of the system will correspond to one of the eigenvectors of the measured operator
TODAY: EIGENVALUES AND EIGENVECTORS

Q: WHEN DOES AN OPERATOR JUST STRETCH OR SHRINIC A VECTOR WITHOUT CHANGING ITS DIRECTION?

Q: When does an operator just change the phase of a vector?

$\Omega|\psi\rangle=\alpha|\psi\rangle$

$$
\alpha=\alpha+b i=|\alpha| e^{4 \varphi}
$$

geneal ap $=>\alpha$ is complex

THE importance of er and e \vec{N} :

TIME EVOLUTION IS GIVEN BY TDSE:

$e \vec{v}$ of H are called otatering state for stationary states the only time eurention in or phase od civ on et NORMAL MODE DEMO!

2 KINDS OF EVOLUTION: HAMILTONIAN
MEASURE
MEASUREMENT

TA\&ル

jermpter to $e \vec{v} x$ the thini yace meancue
meacere E
exginstete of H

mecsure X
ingersente of $X_{O P}$
mesarne P
eigratate of Pop
genenae sase
$\Omega|v\rangle=|\omega\rangle$
$|\omega\rangle$ is not panalel to $|v\rangle$
speccier core

$$
\Omega|i\rangle=\omega_{i}|i\rangle
$$

When Ω is Henimitan \Rightarrow ole ω_{i} 's ses seae
$\Rightarrow \quad\{1 i>\}$ is a hasion for ohe Hienort apace

VERY SPEGIAL CASE: IDENTITY OPEMATOR

$$
I|\psi\rangle=(+1)|4\rangle
$$

every wester is an ev ruite ev $=+1$.

This is very importer for the physics!!'

We nile wont ta find a complete set of commuting aperatore. CSCO
$E, L^{2}, L Z$ ban the hydrogen atom $|n, l, m\rangle$
 canute mite H

$$
H \Omega \equiv \Omega H
$$

commutator [A, B] = AB - BA share a common eigenbasis

Simultaneously Diagonalizable: in the common shared basis they are both diagonal

CM: find all conserved quantities
QM: find a complete set of commuting observables
(2) PROSECTION OPERATURS

$$
\mathbb{P}_{i}|i\rangle=(|i\rangle\langle i|)|i\rangle=(+1)|i\rangle
$$

ii) is ingenvedto with eignomere +1

$$
\mathbb{P}_{i}|j\rangle=(|j\rangle\langle j|)|i\rangle=(0)|j\rangle
$$

1 i> are ugarvedten with eigenerdue 0

Diagonalizing the Hamiltonian:

FINDING Cv and er of Ω
(1) $\operatorname{det}(\Omega-w I) \stackrel{0}{\Rightarrow}(H A M A C E E R 1 S T I C E Q N$ (CE)
(2) SOLVE CE TO GET EN=\{ wi
(3) $\Omega\left|\omega_{i}\right\rangle=\omega_{i}\left|\omega_{i}\right\rangle \quad \operatorname{soLv}$ for $\left.=\left\{\omega_{i}\right\rangle\right\}$

Hamiltonian is not a function of time => energy is conserved The Hamiltonian generates the time evolution via TDSE

EXAMPLE 3
$\Omega=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1\end{array}\right)$
$1-\omega$
0
1

$$
\begin{array}{cc}
(1-\omega)(2-\omega)(1-\omega)-0+11)[0-(2-\omega)(1)]=0 \\
\left(2-3 \omega+\omega^{2}\right)(1-\omega) & -2+\omega=0 \\
2\left(-3 \omega+\omega^{2}-\not 2 \omega+3 \omega^{2}-\omega^{3}\right. & -\mu+\varphi=0 \\
-4 \omega+4 \omega^{2}-\omega^{3}=0 & \operatorname{COBCC} \text { EQN } \\
\omega^{3}-4 \omega^{2}+4 \omega=0
\end{array}
$$

$$
\begin{aligned}
& \omega\left(\omega^{2}-4 \omega+4\right)=0 \quad \text { "CE" } \\
& \omega(\omega-2)(\omega-2)=0
\end{aligned}
$$

so levis ARE 0,2,2
find the ext s

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=0 \quad\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

$$
\left(\begin{array}{c}
a+c \\
2 b \\
a+c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$$
\Rightarrow \quad b=0
$$

$$
\Rightarrow \quad c=-a \quad \text { CHOOSE } a=+1, c=-1
$$

$$
|\omega=0\rangle=\underset{\substack{\text { NORMALIZATION } \\
\text { CONSTANT }}}{ }\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

TO FIND THE OTHER TWO eVeS
ASSOCIATED WITH $\omega=L$

$\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \\ c \\ b \\ c\end{array}\right)=2\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$

$$
\left(\begin{array}{c}
a+c \\
2 b \\
a+c
\end{array}\right)=\left(\begin{array}{l}
2 a \\
2 b \\
2 c
\end{array}\right)
$$

Solve this set of coupled algebraic equations

$$
\begin{aligned}
a+c & =2 a \\
a+c & =2 c
\end{aligned}\left\{\begin{aligned}
2 a & =2 c \\
a & =c
\end{aligned}\right.
$$

choose $a=c=1$

$$
2 b=2 b \quad\{\quad b=\text { anything }
$$

no unique solution because eigenvalues are degenerate
infiniticy many eiv's

$$
\left(\begin{array}{l}
1 \\
b \\
1
\end{array}\right)
$$

ber's
CHOOSE DNE ARBITRARILY $\Rightarrow b=0$

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

THENCONSTRUCT SACOND + TO FIRST

$$
\begin{aligned}
& \left(\begin{array}{lll}
a & b & a
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \\
& \begin{array}{l}
a=0 \text { angenig } \\
b=\text { ampthing }
\end{array} \\
& \Rightarrow\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { any uneder } \\
& \text { combinatem } \\
& \text { is an e } \Rightarrow
\end{aligned}
$$

vERY important stamp!!!

CIFBCK YOUR ANSWER

$$
\begin{aligned}
& \left.\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=0 \begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
2 \\
0 \\
2
\end{array}\right)=2\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right)=2\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& \text { WHEW!!! }
\end{aligned}
$$

Eigenvalue and Eigenvector Calculators

http://www.bluebit.gr/matrix-calculator/calculate.aspx
http://www.arndt-bruenner.de/mathe/scripts/engl_eigenwert.htm
http://wims.unice.fr/wims/wims.cgi?session=6S051ABAFA.2\&+lang=en\&+module=tool\%2Flinear\%2Fmatrix.en

Geometry of Eigenvalues and Eigenvectors

http://web.mit.edu/18.06/www/Demos/eigen-applet-all/eigen_sound_all.html

Fundamental Theorem of Algebra http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra

Every polynomial with complex coefficients has exactly as many complex roots as its degree, if each root is counted up to its multiplicity

The Abel-Ruffini Theorem (1824) aka, Abel's Impossibility Theorem

http://en.wikipedia.org/wiki/Abel-Ruffini_theorem
There is no general algebraic solution-that is, solution in radicals-to polynomial equations of degree five or higher

LECTURE

YESTARDAY EN's ANDEA's

$$
a=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

$$
e \vec{v}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \quad \operatorname{tov}=0
$$

$$
e z_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \quad \text { ev=2 }
$$

$$
e \hat{N}_{3}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \cos =2
$$

TODAY: MACHINERY TO CHANGE BASIS

$$
\begin{aligned}
& |4\rangle \longrightarrow U|4\rangle \\
& \Omega \longrightarrow U^{+} \Omega U
\end{aligned}
$$

$$
\begin{aligned}
& U=\text { UNITARY OP BUILT OUT OF ORTHONORMAL BASIS } \\
& \text { OF ITS E }{ }^{\text {WIS }}
\end{aligned}
$$

$\omega=2$
$\omega \geq 2$
$\omega=0$

$$
\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

$$
v=
$$

$$
\begin{gathered}
\text { HIGHEST } \ldots \text { LOWEST } \\
\text { EN }
\end{gathered}
$$

WHY DOES THIS WORM?

THE: THE EV'S OF ANY HERMITEAN OPERATOR ARE REAL
\Rightarrow AHA ANY HEAMITEAN OPERATOR HAS (AT LEAST ONE) SET OF ORTHONORMAL CZ̈'S THAT ARE A BASIS

IN THIS iSIS, Ω IS DIAGONAC WITH itS ω : ON THE DIAGONAL

GUT HOW DOES IT WORK?

$$
\begin{aligned}
& \langle w \mid v\rangle \text { inter product } \\
& \text { CHANGE } \\
& \left\langle w^{\prime} \mid w^{\prime}\right\rangle=\operatorname{SAME} \text { NUMBER } \\
& \langle w \mid w\rangle=\langle w| I|v\rangle \\
& =\langle\omega| u U^{+}|v\rangle \\
& =\left\langle\omega^{\prime} \mid w^{\prime}\right\rangle \\
& U U^{+}=I \quad \text { identity ppenster }
\end{aligned}
$$

change basis for operators

$$
\begin{aligned}
& \langle w| \Omega|v\rangle=\langle w| I \Omega I|w\rangle \\
& \langle w| v u^{+} \Omega u U^{+}|v\rangle \\
& (\langle\omega| u)\left(u^{+} \Omega u\right)\left(u^{+}|w\rangle\right) \\
& \left\langle w^{\prime}\right| \quad \Omega^{\prime} \quad\left|v^{\prime}\right\rangle \\
& u=\left(\left(e \vec{v}_{1}\right)\left(e \vec{v}_{2}\right)\left(e \vec{v}_{3}\right)\right) \\
& u^{+}=\left(u^{\top}\right)^{*} \\
& U^{+}=\left[\begin{array}{l}
\frac{\underbrace{\frac{e \hat{v}_{1}}{e \hat{v}_{2}}}}{\frac{\hat{v}_{3}}{2}}
\end{array}\right]
\end{aligned}
$$

APPLY U^{+}to THE CNN's OF Ω

$$
\begin{aligned}
& \left(\begin{array}{l}
e \vec{v}_{1} \\
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{r}
2 \vec{v}_{2}
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& \binom{e \vec{v}_{3}}{1}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

so ut changes the met basis

$$
\Rightarrow \quad \text { " } U \quad B M A \text { BASIS }
$$

$$
U^{+} \Omega U=\Omega
$$

DOES IT WORK? GALGUATE U+ GU

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & \sqrt{2} & 0 \\
1 & 0 & 1 \\
1 & 0 & -1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 1 \\
\sqrt{2} & 0 & 0 \\
0 & 1 & -1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{ccc}
0 & \sqrt{2} & 0 \\
1 & 0 & 1 \\
1 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
0 & 2 & 0 \\
2 \sqrt{2} & 0 & 0 \\
0 & 2 & 0
\end{array}\right)
\end{aligned}
$$

$$
=\frac{1}{2}\left(\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

$$
=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

SAY:
FIND EVES ANDEAVOAH
DIAGONALIZE THE H

THM 10: FOL EUEAY HERMITEAN OPERATOR, THEAE EXISTS A BASIS OF ITS OLTHONORMAL FIGENVECTORS
x, P, H pre H emmitere
\Rightarrow unipue exinumion in x
P
E

ANY COMMON EIGENVECTORS?

TUM 13: IF FrimPd Ω and 1 ane pompucting prontomea

COMMUTATOR

$$
[\Omega, \Lambda]=0=\Omega \Lambda-\Omega \Omega
$$

THRCE CASES:
(1) COMOATIGLE: SHACE AGL QM
(2) JNCOMPATIGE: SHARE NO \&
(3) mixEO: SHARE some < ~ N NOT NOT ML

$$
\Omega\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right] \quad e \overrightarrow{=} \quad e \vec{N}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad e v=2 \quad e \vec{N}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

$$
\wedge\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \quad e w=1 \quad e \vec{N}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

If they commute, then they will both be diagonal in some basis If they are both diagonal in some basis, then they commute

$$
\begin{aligned}
& \Omega \wedge=\left(\begin{array}{ccc}
1.1 & 0 & 0 \\
0 & 2.2 & 0 \\
0 & 0 & 3.2
\end{array}\right) \\
& \cap \Omega=\left(\begin{array}{ccc}
1.1 & 0 & 0 \\
0 & 2.2 & 0 \\
0 & 0 & 2.3
\end{array}\right)
\end{aligned}
$$

Operators that commute with the Hamiltonian are the quantum analogs to conserved quantities in classical mechanics

$$
\begin{aligned}
& {[\Omega, \wedge]=\Omega \wedge-\Lambda \Omega=0 \quad \Rightarrow \text { THERE EXISTS A UNICVE }} \\
& \text { SET OF CV's THAT } \\
& \text { DIAGONALIzE BOTH } \\
& C S C O \Rightarrow \text { unique expinearain | } n, I, m>
\end{aligned}
$$

Lecture 3

GEOMETRY OF HILOERT SPALGS
\Rightarrow ALCABRA OF HILEERT SPACES

OIAAC NOTATION
${ }^{-}$- Mational Brand

BRACKET
$3 d$

VECTORS

AOOUTION

$$
\vec{v}+\vec{w}
$$

$\operatorname{sut} \operatorname{tafction} \vec{v}-\vec{i}$

MULTIPLY By
a. \vec{v}

ASCALER

DOT PMODVGT
INNER PRODVGT

$$
\vec{v} \cdot \vec{\infty}
$$

real
muntren
outer pmouct

HルRERT
$|N\rangle \quad$ Two flavors
$\langle w 1 \quad$ no ancew
mot boled
$|v\rangle+|\omega\rangle$
$|v\rangle-\theta|\omega\rangle$
$a|v\rangle$
$\langle w \mid \omega\rangle$
complex
sumber

$$
|w\rangle\langle w|
$$

matrix OPERATSR

DIRAC NOTATION

ABSTRACT VECTORS

$$
\binom{\text { BASIS DEPENDENT }}{\text { REPRESENTATION }}
$$

$$
\vec{V}=\sum_{i} \alpha_{i} \hat{e}_{i}
$$

$$
\vec{v}=\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\vdots \\
\alpha_{m}
\end{array}\right)
$$

ADDITION

$$
\begin{aligned}
& \vec{v}+\vec{w} \\
& |v\rangle+|w\rangle
\end{aligned}
$$

$$
\begin{gathered}
\vec{v}=\sum \alpha_{i}+\hat{e}_{i} \\
\vec{w}=\sum \beta_{i} \hat{e}_{i} \\
\vec{v}+\vec{w}=\sum\left(\alpha_{i}+\beta_{i}\right) \hat{e}_{i} \\
\vec{v}+\vec{w}=\left(\begin{array}{c}
\alpha_{1}+\beta_{1} \\
\alpha_{2}+\beta_{2} \\
\alpha_{3}+\beta_{3} \\
\vdots \\
\alpha_{m} \\
\vdots
\end{array}\right)
\end{gathered}
$$

inner product
$\langle v \mid w\rangle$
$=\alpha_{1}^{*} \beta_{1}+\alpha_{2}^{*} \beta_{2}+\cdots+\alpha_{m}^{*} \beta_{n}$

$$
=\left(\alpha_{1}^{*}, \alpha_{2}^{*}, \alpha_{3}^{*}, \ldots, \alpha_{m}^{*}\right)\left(\begin{array}{c}
B_{1} \\
\beta_{2} \\
\beta_{3} \\
\vdots \\
\beta_{n}
\end{array}\right)
$$

DIRAC NOTATION

ASSOCIATE COLUMN VECTORS WITH $|V\rangle$
MET VECTORS

ASSOCIATE COMPLEX -CONJUGATED ROW VECTOAS WITH <Ul
BAA vectors
abstract
vectors
$1 v>$

BAA
SPACE

Pair of
ISOMORPHIC DUAL SPACES

they have
EXACTLY THE SAME GEOMETRY, ALGEBRA, ...
oiracis on
BRACKET
$\langle v \mid w\rangle$

BRACKET

OUTER PRODUCT
$|v\rangle\langle w|$ is an openater

$$
\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\vdots
\end{array}\right)\left(\beta_{1}^{*} \beta_{2}^{*} \beta_{3}^{*} \cdots\right)=\left(\begin{array}{ccc}
\alpha_{1} \beta_{1}^{*} & \alpha_{1} \beta_{2}^{*} & \alpha_{1} \beta_{3}^{*} \ldots \\
\alpha_{2} \beta_{1}^{*} & \alpha_{2} \beta_{2}^{*} & \alpha_{2} \beta_{3}^{*} \ldots \\
\vdots & & \\
\vdots &
\end{array}\right.
$$

order matters!

$$
|a\rangle\langle b \mid c\rangle
$$

vecter inven proderat $=$ scoles

$$
\begin{aligned}
& \left\langle e_{i}\right|=<i 1=(000 \ldots 00 \ldots 0) \\
& \hat{p} \\
& \text { isth place }
\end{aligned}
$$

EXPANSION IN AN ORTHONORMAL BASIS

$$
\begin{array}{ll}
|v\rangle=\sum v_{i}|i\rangle & \text { et space } \\
\langle v|=\sum v_{i}^{+}\langle i| & \text { bra space }
\end{array}
$$

WANT GEOMETRY EXACTLY THE SAME

THIS DETERMINES WHAT HAPPENS TO

| SCALARS |
| ---: | :--- |
| VECTORS |$\quad \alpha=a+b i \xrightarrow{\text { CONJUGATION }} \alpha *=a-b i$

transpose
conjugate

OPERATORS
$\theta \xrightarrow{\text { AOTONT }} \theta+$

BRA SPACE

$\left\langle v^{\prime}\right|=\langle\theta v|=\langle v| \theta^{+}$
left action

ALGEBRA

$$
\begin{aligned}
& |v\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
\vdots
\end{array}\right) \\
& \Omega=\left(\begin{array}{llll}
0 & 0 & 0 & \ldots
\end{array}\right) \quad \text { is } \Omega \text { Hermitian? } \\
& \text { No! } \quad \Omega \neq \Omega^{+}=\left(\Omega^{T}\right)^{*} \\
& \left(\begin{array}{llll}
1 & 0 & 0 \\
0 & 0 & 0 & \\
\vdots & &
\end{array}\right) \\
& \Omega|v\rangle=|w\rangle \\
& \left|{ }_{w}^{w}\right\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
\vdots
\end{array}\right) \\
& \langle v| \Omega=\left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]\left(\begin{array}{llll}
0 & 0 & 0 & \cdots \\
1 & 0 & 0 \\
0 & 0 & 0 \\
\vdots & &
\end{array}\right)=0\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
\vdots
\end{array}\right) \\
& <v|\Omega \neq<w| \\
& \langle v| \Omega^{+}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & \cdots
\end{array}\right)\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lllll}
0 & 1 & 0 & 0
\end{array}\right) \\
& \langle v| \Omega^{+}=\langle w|
\end{aligned}
$$

ANALOGY EETEEN OPARATOAS AND COMPLEX NUMEEAT

GOMPLEX CONJUGATION

ADJOINT ODERATION

- National Brand

$$
\begin{aligned}
& \alpha=a+b i \\
& \alpha^{*}=a-b i
\end{aligned}
$$

$$
\begin{aligned}
\Omega & =H-A \\
\Omega^{+} & =H^{+}+A^{+} \\
& =H-A
\end{aligned}
$$

4 IS 4AAMITEAN
A IS ANTI-HARMITEAN

Re α

$$
\begin{aligned}
& \operatorname{Ae}(\alpha)=\frac{1}{2}\left(\alpha+\alpha^{*}\right) \\
& \tan (\alpha)=\frac{1}{2}\left(\alpha-\alpha^{*}\right)
\end{aligned}
$$

IMAGINAY NUMEER

HEAMITAAN OPERATOR $H=H^{+} \quad H=\frac{1}{2}\left(\Omega+\Omega^{+}\right)$

ANTA-HERMITEAN OPARATOR $A=\frac{1}{2}\left(\Omega \rightarrow A^{t}\right)$

$$
A=-A^{t}
$$

COMPLEX NUMBER ON THE UNIT CIRCLE

$$
\beta=e^{i \varphi}
$$

$$
|\beta|=1
$$

UNITARV OPERATOR

$$
u^{+}=U^{+} U=I
$$

$$
u=\left(\begin{array}{llll}
e^{i \phi_{1}} & & & \\
& & e^{i \varphi_{2}} & \\
\\
& & & \cdots \\
& & & \cdots
\end{array}\right)
$$

EXAMPLE

$$
\Omega=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

15Ω HERMITEAN?
oofs $\quad \Omega=\Omega^{+} \quad \forall 65$
eN and evir of Ω

$$
\begin{aligned}
& \left.\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{1}=\binom{1}{1}=1+1\right)\binom{1}{1} \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{-1}=\binom{-1}{1}=(-1)\binom{1}{-1}
\end{aligned}
$$

和
NORMALIEE

$$
\begin{aligned}
& N \quad\left(\begin{array}{ll}
1 & 1
\end{array}\right)^{*}\binom{1}{1}=1 \quad 2 N=1 \quad N=\frac{1}{\sqrt{2}} \\
& e N=1 \quad e \vec{N}=\frac{1}{\sqrt{2}}\binom{1}{1} \\
& e w=-1 \quad e \vec{t}=\frac{1}{\sqrt{2}}\binom{1}{-1}
\end{aligned}
$$

PROJECTION ONTO THE $\frac{1}{\sqrt{2}}\binom{1}{1}$ SUBSPACE

$$
1 i\rangle<i 1
$$

$$
\frac{1}{\sqrt{2}}\binom{1}{1} \frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1
\end{array}\right)^{*}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

$$
\begin{gathered}
\text { ONTO THE } \frac{1}{\sqrt{2}}\binom{1}{-1} \operatorname{sossince} \\
\frac{1}{e_{0}}\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right) \frac{1}{\sqrt{2}}(1-1)^{*}=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
\end{gathered}
$$

complete basis if sum of the projection operators is the identity completE $\Rightarrow \mathbb{P}_{1}+\mathbb{P}_{2}=\mathbb{I}$
identity

$$
\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

prefect $|i\rangle\langle i \mid A\rangle$ outar proovat first complete basis

$$
\begin{aligned}
& \frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right)\binom{a}{b}=\frac{1}{2}\binom{a+b}{a+b} \rightarrow \frac{1}{\sqrt{2}}(a+b) \frac{1}{\sqrt{2}}\binom{1}{1} \\
& \frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)\binom{a}{b}=\frac{1}{2}\binom{a-b}{-a+b} \rightarrow \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}(a-b) \frac{1}{\sqrt{2}}\binom{1}{-1}
\end{aligned}
$$

PROJECT $|i\rangle\langle i \mid A\rangle$ INNER PRODUCT FIRST

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\binom{1}{1} \frac{1}{\sqrt{2}}(1,1)^{*}\binom{a}{b} \\
& =\frac{1}{2}\binom{1}{1}(a+b) \\
& \frac{1}{\sqrt{2}}\binom{1}{-1} \frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & -1
\end{array}\right)^{x}\binom{a}{b} \\
& \frac{1}{2}\binom{1}{-1}(a-b)
\end{aligned}
$$

$$
\begin{aligned}
& \langle 1 \mid A\rangle|1\rangle
\end{aligned}
$$

Eigenvalue and Eigenvector Calculators

http://www.bluebit.gr/matrix-calculator/calculate.aspx
http://www.arndt-bruenner.de/mathe/scripts/engl_eigenwert.htm
http://wims.unice.fr/wims/wims.cgi?session=6S051ABAFA.2\&+lang=en\&+module=tool\%2Flinear\%2Fmatrix.en

Geometry of Eigenvalues and Eigenvectors

http://web.mit.edu/18.06/www/Demos/eigen-applet-all/eigen_sound_all.html

Fundamental Theorem of Algebra http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra

Every polynomial with complex coefficients has exactly as many complex roots as its degree, if each root is counted up to its multiplicity

The Abel-Ruffini Theorem (1824) aka, Abel's Impossibility Theorem

http://en.wikipedia.org/wiki/Abel-Ruffini_theorem
There is no general algebraic solution-that is, solution in radicals-to polynomial equations of degree five or higher

