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The Shankar strategy
Teach quantum using postulates
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Shankar

Preface to the First Edition

Publish and perish—Giordano Bruno

Given the number of books that already exist on the subject of quantum mechanics,
one would think that the public needs one more as much as it does, say, the latest
version of the Table of Integers. But this does not deter me (as it didn’t my predeces-
sors) from trying to circulate my own version of how it ought to be taught. The
approach to be presented here (to be described in a moment) was first tried on a
group of Harvard undergraduates in the summer of *76, once again in the summer
of ’77, and more recently at Yale on undergraduates (*77-’78) and graduates (’78-
’79) taking a year-long course on the subject. In all cases the results were very
satisfactory in the sense that the students seemed to have learned the subject well
and to have enjoyed the presentation. It is, in fact, their enthusiastic response and
encouragement that convinced me of the soundness of my approach and impelled
me to write this book.

The basic idea is to develop the subject from its postulates, after addressing
some indispensable preliminaries. Now, most people would agree that the best way
to teach any subject that has reached the point of development where it can be
reduced to a few postulates is to start with the latter, for it is this approach that
gives students the fullest understanding of the foundations of the theory and how it
is to be used. But they would also argue that whereas this is all right in the case of
special relativity or mechanics, a typical student about to learn quantum mechanics
seldom has any familiarity with the mathematical language in which the postulates
are stated. I agree with these people that this problem is real, but I differ in my belief
that it should and can be overcome. This book is an attempt at doing just this.

It begins with a rather lengthy chapter in which the relevant mathematics of
vector spaces developed from simple ideas on vectors and matrices the student is
assumed to know. The level of rigor is what I think is needed to make a practicing
quantum mechanic out of the student. This chapter, which typically takes six to
eight lecture hours, is filled with examples from physics to keep students from getting
too fidgety while they wait for the “real physics.” Since the math introduced has to
be taught sooner or later, I prefer sooner to later, for this way the students, when
they get to it, can give quantum theory their fullest attention without having to
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battle with the mathematical theorems at the same time. Also, by segregating the
mathematical theorems from the physical postulates, any possible confusion as to
which is which is nipped in the bud.

This chapter is followed by one on classical mechanics, where the Lagrangian
and Hamiltonian formalisms are developed in some depth. It is for the instructor to
decide how much of this to cover; the more students know of these matters, the
better they will understand the connection between classical and quantum mechanics.
Chapter 3 is devoted to a brief study of idealized experiments that betray the
inadequacy of classical mechanics and give a glimpse of quantum mechanics.

Having trained and motivated the students I now give them the postulates of
quantum mechanics of a single particle in one dimension. I use the word “postulate”
here to mean “‘that which cannot be deduced from pure mathematical or logical
reasoning, and given which one can formulate and solve quantum mechanical prob-
lems and interpret the results.” This is not the sense in which the true axiomatist
would use the word. For instance, where the true axiomatist would just postulate
that the dynamical variables are given by Hilbert space operators, I would add the
operator identifications, i.e., specify the operators that represent coordinate and
momentum (from which others can be built). Likewise, I would not stop with the
statement that there is a Hamiltonian operator that governs the time evolution
through the equation i#%d|y)/0t=H|w); I would say the H is obtained from the
classical Hamiltonian by substituting for x and p the corresponding operators. While
the more general axioms have the virtue of surviving as we progress to systems of
more degrees of freedom, with or without classical counterparts, students given just
these will not know how to calculate anything such as the spectrum of the oscillator.
Now one can, of course, try to “derive” these operator assignments, but to do so
one would have to appeal to ideas of a postulatory nature themselves. (The same
goes for “deriving” the Schrodinger equation.) As we go along, these postulates are
generalized to more degrees of freedom and it is for pedagogical reasons that these
generalizations are postponed. Perhaps when students are finished with this book,
they can free themselves from the specific operator assignments and think of quantum
mechanics as a general mathematical formalism obeying certain postulates (in the
strict sense of the term).

The postulates in Chapter 4 are followed by a lengthy discussion of the same,
with many examples from fictitious Hilbert spaces of three dimensions. Nonetheless,
students will find it hard. It is only as they go along and see these postulates used
over and over again in the rest of the book, in the setting up of problems and the
interpretation of the results, that they will catch on to how the game is played. It is
hoped they will be able to do it on their own when they graduate. I think that any
attempt to soften this initial blow will be counterproductive in the long run.

Chapter 5 deals with standard problems in one dimension. It is worth mentioning
that the scattering off a step potential is treated using a wave packet approach. If
the subject seems too hard at this stage, the instructor may decide to return to it
after Chapter 7 (oscillator), when students have gained more experience. But I think
that sooner or later students must get acquainted with this treatment of scattering.

The classical limit is the subject of the next chapter. The harmonic oscillator is
discussed in detail in the next. It is the first realistic problem and the instructor may
be eager to get to it as soon as possible. If the instructor wants, he or she can discuss
the classical limit after discussing the oscillator.
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Shankar

The Postulates—a
General Discussion

Having acquired the necessary mathematical training and physical motivation, you
are now ready to get acquainted with the postulates of quantum mechanics. In this
chapter the postulates will be stated and discussed in broad terms to bring out
the essential features of quantum theory. The subsequent chapters will simply be
applications of these postulates to the solution of a variety of physically interesting
problems. Despite your preparation you may still find the postulates somewhat
abstract and mystifying on this first encounter. These feelings will, however, dis-
appear after you have worked with the subject for some time.

4.1. The Postulatesi

The following are the postulates of nonrelativistic quantum mechanics. We
consider first a system with one degree of freedom, namely, a single particle in one
space dimension. The straightforward generalization to more particles and higher
dimensions will be discussed towards the end of the chapter. In what follows, the
quantum postulates are accompanied by their classical counterparts (in the Hamil-
tonian formalism) to provide some perspective.

Classical Mechanics Quantum Mechanics
I. The state of a particle at any given 1. The state of the particle is represen- 1
time is specified by the two variables ted by a vector |y(#)) in a Hilbert
x(?) and p(?), i.e., as a point in a two- space.

dimensional phase space.

II. Every dynamical variable @ is a II. Theindependent variables x and p of
function of x and p: o = w(x, p). classical mechanics are represented 2

I Recall the discussion in the Preface regarding the sense in which the word is used here. 115


Larry Sorensen
1

Larry Sorensen


Larry Sorensen
2

Larry Sorensen


Larry Sorensen
Shankar

Larry Sorensen



116 by Hermitian operators X and P
CHAPTER 4 with the following matrix elements
in the eigenbasis of X1

x| X)x'>=x6(x—x")
{x|P|x"y=—ihd'(x—x)
The operators corresponding to
dependent variables w(x,p) are
given Hermitian operators

QX, P)=w(x—X, p—P)§

IIL. If the particle is in a state given by III. If the particle is in a state | ), meas-

x and p, the measurement| of the urement! of the variable (corre-
variable o will yield a value o(x, p). sponding to) Q will yield one of the
The state will remain unaffected. eigenvalues ® with probability

P(w)x|{w]|w)|*. The state of the
system will change from |y) to |®)
as a result of the measurement.

IV. The state variables change with time IV. The state vector |y(¢)) obeys the

according to Hamilton’s equations: Schrédinger equation
. _0X L d
X=—— iy (1)) =Hly(1)}
op dt
_ _aifi where H(X, P)=#(x—X, p—P) is
P the quantum Hamiltonian operator

and s is the Hamiltonian for the
corresponding classical problem.

4.2. Discussion of Postulates I-111

The postulates (of classical and quantum mechanics) fall naturally into two
sets: the first three, which tell us how the system is depicted at a given time, and the
last, which specifies how this picture changes with time. We will confine our attention
to the first three postulates in this section, leaving the fourth for the next.

The first postulate states that a particle is described by a ket |y) in a Hilbert
space which, you will recall, contains proper vectors normalizable to unity as well as

1 Note that the X operator is the same one discussed at length in Section 1.10. Likewise P=#K, where
K was also discussed therein. You may wish to go over that section now to refresh your memory.

§ By this we mean that Q is the same function of X and P as o is of x and P.

|| That is, in an ideal experiment consistent with the theory. It is assumed you are familiar with the ideal
classical measurement which can determine the state of the system without disturbing it in any way. A
discussion of ideal quantum measurements follows.
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CHAPTER 3

THE POSTULATES OF
QUANTUM MECHANICS. OPERATORS,
EIGENFUNCTIONS, AND EIGENVALUES

3.1 Observables and Operators

3.2 Measurement in Quantum Mechanics

3.3 The State Function and Expectation Values

3.4 Time Development of the State Function

3.5 Solution to the Initial-Value Problem in Quantum Mechanics

In this chapter we consider four basic postulates of quantum mechanics, which when
taken with the Born postulate described in Section 2.8, serve to formalize the rules of
quantum mechanics. Mathematical concepts material to these postulates are developed
along with the physics. The postulates are applied over and over again throughout the
text. We choose the simplest problems first to exhibit their significance and method of
application—that is, problems in one dimension.

3.1 OBSERVABLES AND OPERATORS

Postulate 1

This postulate states the following: To any self-consistently and well-defined observ-
able in physics (call it 4), such as linear momentum, energy, mass, angular momen-
tum, or number of particles, there corresponds an operator (call it 4) such that
measurement of A yields values (call these measured values a) which are eigenvalues
of 4. That is, the values, a, are those values for which the equation

3.1 Ap = ag an eigenvalue equation}
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3.2 MEASUREMENT IN QUANTUM MECHANICS

Postulate II

The second postulate' of quantum mechanics is: measurement of the observable A
that yields the value a leaves the system in the state ¢,, where ¢, is the eigenfunction
of A that corresponds to the eigenvalue a.

—— e e Sa PP e e e TS paT he e IO T O OIS O T e do—
not know which state the particle is in. At a given instant we measure the particle’s
momentum and find the value p = &k (with k a specific value, say 1.3 x 10 cm™!).
This measurement? leaves the particle in the state ¢,, so immediate subsequent

measurement of p 1s certain to yield hk.

Suppose that one measures the position of a free particle and the position
x = x' is measured. The first two postulates tell us the following. (1) There is an
operator corresponding to the measurement of position, call it %. (2) Measurement
of x that yields the value x leaves the particle in the eigenfunction of % corresponding
to the eigenvalue x'.

The operator equation appears as

(3.26) %6(x — x') = x'6(x — x')

Dirac Delta Function

The eigenfunction of £ has been written® §(x — x’) and is called the Dirac delta
Junction. It is defined in terms of the following two properties. The first are the
integral properties

f I8 = X dx' = f(v)
(3.27)
fw o(x —x)dx' =1

' This postulate has been the source of some discussion among physicists. For further reference, see B S DeWitt. Phys
Todar 23, 30 (September 1970).

* Measurement 1s taken in the idealized sense. More formal discussions on the theory of measurement may be found in
K. Gottfried, Quanium Mechanics. W. A Benjamuin. New York, 1966; J. Jauch, Foundations of Quanium Mechanics,
Addison-Wesley, Reading. Mass., 1968. and E. C. Kemble, The Fundamental Principles of Quantum Mechamcs with
Elementary Applications, Dover, New York, 1958,

* More accurately one says that 8(x — x’) 1s an eigenfunction of £ in the coordinate representation. This topic 1s returned
to in Section 7.4 and 1n Appendix A.
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3.3 THE STATE FUNCTION AND EXPECTATION VALUES

Postulate I11

The third postulate of quantum mechanics establishes the existence of the state
function and its relevance to the properties of a system: The state of a system at any
instant of time may be represented by a state or wave function y which is continuous
and differentiable. All information regarding the state of the system is contained in
the wavefunction. Specifically, if a system is in the state y(r, t), the average of any
physical observabie C relevant to that system at time ¢ is

(3.32) (Cy = fw*éw dr

(The differential of volume is written dr.) The average, {(C), is called the expectation
value of C.

I'he physical meaning of the average of an observable C involves the following
type of (conceptual) measurements. The observable C is measured in a specific
experiment, X. One prepares a very large number (N) of identical replicas of X. The
initial states ys(r, 0) in each such replica are all identical. At the time ¢, one measures C
in all these replica experiments and obtains the set of values C,, C,, ..., Cy. The
average of C is then given by the rule

1
N,

M=

(3.33) (CH = (oF N>1

]

1

The postulate stated above claims that this experimentally calculated average (3.33)
is the same as that given by the integral in (3.32). Another way of defining (C) is in
terms of the probability P(C;). This function gives the probability that measurement of
C finds the value C;. For (C), we then have
(3.34) (C> =) CP(C)

all C
This is a consistent formula if all the values C may assume comprise a discrete set (e.g.,
the number of marbles in a box). In the event that the values that C may assume
comprise a continuous set {e.g., the values of momentum of a free particle), {<C>
becomes

(3.35) (CY = f CP(C) dC

The integration is over all values of C. Here P(C) is the probability of finding C in the

interval C, C + dC.
The quantity <C) is also called the expectation value of C because it is repre-
sentative of the value one expects to obtain in any given measurement of C. This will
73
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3.4 TIME DEVELOPMENT OF THE STATE FUNCTION

Postulate 1V

The fourth postulate of quantum mechanics specifies the time development of the
state function (r, t): the state function for a system (e.g., a single particle) develops in
time according to the equation

0 ~
(3.45) ih Y Y(r, 1) = Hy(r, t)
This equation is called the time-dependent Schrédinger equation.'! The operator His
the Hamiltonian operator. For a single particle of mass m, in a potential field V(r), it is

given by (3.12). If A is assumed to be independent of time, we may write

(3.46) A = H()

Under these circumstances, one is able to construct a solution to the time-dependent
Schridinger equation through the technique of separation of variables. We assume a
solution of the form
(3.47) Y(r, 1) = @(n)T(1)
Substitution into (3.45) gives
T, Hep

. h— =~

(3.48) ih — -

The subscript t denotes differentiation with respect to 1. Equation (3.48) is such that
the left-hand side is a function of t only, while the right-hand side is a function of r only.
Such an equation can be satisfied only if both sides are equal to the same constant, call
it E (we do not yet know that E is the energy).

(3.49) He(r) = E@(r)
0 iE
(3.50) (5 4 7)T(r) ~ 0

The first of these equations is the time-independent Schrédinger equation (3.13).
This identification serves to label E, in (3.49), the energy of the system. That is, E, as it
appears in this equation, is an eigenvalue of H. But the eigenvalues of H are the
allowed energies a system may assume, and we again conclude that E is the energy of
the system.

' A formulation of the Schrédinger equation that has its ongin in the classical principle of least action has been offered
by R. P Feynman. Ret. Mod. Phs 60. 367 (1948). An elementary description of this derivation may be found in
S. Borowitz. Quantum Mechanics. W A Benjamin, New York. 1967

77
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B. STATEMENT OF THE POSTULATES

the corresponding function ¥(r) = {r |y >. Therefore, the quantum state of
a particle at a fixed time is characterized by a ket of the space &,. In this
form, the concept of a state can be generalized to any physical system.

First Postulate: At a fixed time ¢, the state of a physical system is defined
by specifying a ket | Y/(t,) > belonging to the state space &.

It is important to note that, since & is a vector space, this first postulate
implies a superposition principle : a linear combination of state vectors is a
state vector. We shall discuss this fundamental point and its relations to
the other postulates in §E.

2. Description of physical quantities

We have already used, in §D-1 of chapter I, a differential operator H
related to the total energy of a particle in a scalar potential. This is simply a
special case of the second postulate.

Second Postulate: Every measurable physical quantity &/ is described by an
operator A4 acting in & ; this operator is an observable.

COMMENTS :

(i) The fact that 4 is an observable (c¢f. chap. II, §D-2) will be seen below (§3)
to be essential.

(i)  Unlike classical mechanics (¢f. § A), quantum mechanics describes in a funda-
mentally different manner the state of a system and the associated physical
quantities : a state is represented by a vector, a physical quantity by an
operator.

3. The measurement of physical quantities

a. POSSIBLE RESULTS

The connection between the operator H and the total energy of the particle
appeared in §D-1 of chapter I in the following form: the only energies possible
are the eigenvalues of the operator H. Here as well, this relation can be
extended to all physical quantities.

Third Postulate : The only possible result of the measurement of a physical
quantity &/ is one of the eigenvalues of the corresponding observable A.

COMMENTS !

(i) A measurement of &/ always givec a real value, since A is by definition
Hermitian.

215
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CHAPTER il THE POSTULATES OF QUANTUM MECHANICS

(¢7) If the spectrum of A4 is discrete, the results that can be obtained by
measuring &/ are quantized (§ C-2).

b. PRINCIPLE OF SPECTRAL DECOMPOSITION

We are going to generalize and discuss in more detail the conclusions
of § A-3 of chapter I, where we analyzed a simple experiment performed on
polarized photons.

Consider a system whose state is characterized, at a given time, by the
ket | ¥ ), assumed to be normalized to 1:

ylyy=1 (B-1)

We want to predict the result of the measurement, at this time, of a physical
quantity .&/ associated with the observable A. This prediction, as we already
know, is of a probabilistic sort. We are now going to give the rules which
allow us to calculate the probability of obtaining any given eigenvalue of A.

o.  Case of a discrete spectrum

First, let us assume that the spectrum of A4 is entirely discrete. If all
the eigenvalues a, of A are non-degenerate, there is associated with each of them
a unique (to within a constant factor) eigenvector | u, »:

Alu,>=a,|u, (B-2)

Since A4 is an observable, the set of the |u,, >, which we shall take to be
normalized, constitutes a basis in &, and the state vector | > can be written:

> =, u> (B-3)
We postulate that the probability 2(a,) of finding a, when &/ is measured is:
2(a,) = le, = IGu, |9 P2 (B-4)

Fourth Postulate (case of a discrete non-degenerate spectrum ): When the
physical quantity &/ is measured on a system in the normalized state |y ),
the probability 2(a,) of obtaining the non-degenerate eigenvalue a, of the
corresponding observable A is:

Pla,) = Ku, [ I

where | 4, > is the normalized eigenvector of 4 associated with the eigenvalue
a

If, now, some of the eigenvalues a, are degenerate, several orthonormalized
eigenvectors | u} ) correspond to them :

Aluld=a,|ul)>; i=1,2 .9, (B-5)
| ¥ > can still be expanded in the orthonormal basis { [} > }:
gn :
[¥> =2 % alu> (B-6)
n i=1
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In this case, the probability 2(a,) becomes:

P@) = 3 |6 = zl ICul [ )2 (B-7)

i=1

(B-4) is then seen to be a special case of (B-7), which can therefore be
considered to be the general formula,

Fourth Postulate (case of a discrete spectrum): When the physical quantity & is
measured on a system in the normalized state | ), the probability #(a,) of
obtaining the eigenvalue a, of the corresponding observable 4 is:

Pa) = 3 [y P

where g, is the degree of degeneracy of a, and { |ui>} (i =1,2,..,9,) is an
orthonormal set of vectors which forms a basis in the eigensubspace &,
associated with the eigenvalue a, of 4.

For this postulate to make sense, it is obviously necessary that, if the eigen-
value a, is degenerate, the probability Z (a,) be independent of the choice of
the { |4} } basis in' &,. To verify this, consider the vector :

0> = 5 ey (B-8)

=1

where the coefficients ¢ are the same as those appearing in the expansion (B-6)

of |y
= lv)> (59)

| ¥, > is the part of | ¥ ) which belongs to &,, that is, the projection of | { ) onto &,.
This is, moreover, what we find when we substitute (B-9) into (B-8):

[¥a> = > v
=P, |¢> (B-10)
where :
Po= 5 > (B-11)

is the projector onto &, (§ B-3-b of chapter I1). Let us now calculate the square of
the norm of |y, >. From (B-8):

AR _ian A (B-12)

Therefore, 2 (a,) is the square of the norm of |, > = P, |y, the projection of | )
onto &,. From this expression, it is clear that a change in the basis in &, does not
affect 2 (a,). This probability is written:

Pla,) =<y |PP,Y> (B-13)
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or, using the fact that P, is Hermitian (P! = P,)and that it is a projector (P? = P,):
Pa,)=<¥I|P|¢> (B-14)

B.  Case of a continuous spectrum

Now let us assume that the spectrum of A is continuous and, for the sake
of simplicity, non-degenerate. The system, orthonormal in the extended sense, of
eigenvectors |v, > of 4:

Alva>=alva> (B_IS)

forms a continuous basis in &, in terms of which |¥ > can be expanded:
2 =Jdac(a)|v,> (B-16)

Since the possible results of a measurement of & form a continuous set, we must
define a probability density, just as we did for the interpretation of the wave
function of a particle (§ B-2 of chapter I). The probability dZ(x) of obtaining
a value included between o and o« + da is given by:

d? () = p(x) da
with :
pa) = le(@))* = [<o, ¥ > I? (B-17)

Fourth Postulate (case of a continuous non-degenerate spectrum): When the
physical quantity ./ is measured on a system in the normalized state | ),
the probability d2?(x) of obtaining a result included between « and a + da
is equal to:

d2 (@) = [{v,|¥>|* da

where |v, > is the eigenvector corresponding to the eigenvalue o of the obser-
vable A4 associated with .o/,

COMMENTS:

(#) It can be verified explicitly, in each of the cases considered above, that the
total probability is equal to 1. For example, starting with formula (B-7),
we find:

SPa) =% ¥ [ = Culv>=1 (B-13)

n i=1

since | > is normalized. This last condition is therefore indispensable if the
statements we have made are to be coherent. Nevertheless, it is not essential :
if it is not fulfilled, it suffices to replace (B-7) and (B-17), respectively, by :

—_ 1 & il2
Pa,) = TS '_; |ci| (B-19)
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over time, that is, enables us to calculate from |y(0)) the state |y(z,))
“immediately before” the measurement. If the measurement has yielded the
non-degenerate eigenvalue q,, the state ||//(t1)> at a time ¢, > f, must be
calculated from |y'(t,)> = |u, ), the state “immediately after” the measure-
ment, using the sixth postulate to determine the evolution of the state vector
between the times ¢, and ¢, (fig. 1).

(if) If we perform a second measurement of &/ immediately after the first one
(that is, before the system has had time to evolve), we shall always find the
same result a,, since the state of the system immediately before the second
measurement is |u, », and no longer | ).

When the eigenvalue a, given by the measurement is degenerate, postu-
late (B-28) can be generalized as follows. If the expansion of the state | > immedia-
tely before the measurement is written, with the same notation as in section b :

v>=%% ¢

ul > (B-29)

the modification of the state vector due to the measurement is written:

an 1 gn
9> 2 ——— ¥ alu) (B-30)
\/ iz-:g IC;IZ N

gn . R

Y. ¢ |ul > is the vector |y, ) defined above [formula (B-8)], that is, the projec-
i=1

tion of |y > onto the eigensubspace associated with a,. In (B-30), we normalized
this vector since it is always more convenient to use state vectors of norm 1
[comment (i) of §b above]. With the notation of (B-10) and (B-11), we can therefore
write (B-30) in the form :

|y > b ii v (B-31)
VY|P YD

Fifth Postulate : If the measurement of the physical quantity &/ on the system
in the state | > gives the result a,, the state of the system immediately after the

measurement is the normalized projection, Pt , of |y ) onto the
=
VY|P,

eigensubspace associated with a,,.

The state of the system immediately after the measurement is therefore
always an eigenvector of A with the eigenvalue a,. We stress the fact, however, that
it is not an arbitrary ket of the subspace &,, but the part of | ) which belongs to &,
(suitably normalized, for convenience). In the light of § 3-b-y above, equation (B-28)
can be seen to be a special case of (B-30). When g, = 1, the summation over /
disappears from (B-30), which becomes:

u, > (B-32)

_|_2_| c, | u, > — eiArgc,.
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This ket indeed describes the same physical state as |u, ).

4. Time evolution of systems

We have already presented, in § B-2 of chapter I, the Schrodinger equation
for one particle. Here we shall write it in the general case.

Sixth Postulate: The time evolution of the state vector |y(z)) is governed
by the Schrédinger equation:

m% | w(0) > = H() | ¥() )

where H(t) is the observable associated with the total energy of the system.

H is called the Hamiltonian operator of the system, as it is obtained from
the classical Hamiltonian (appendix III and §5 below).

5. Quantization rules

We are finally going to discuss how to construct, for a physical quantity &/
already defined in classical mechanics, the operator 4 which describes it in quantum
mechanics.

a. STATEMENT

Let us first consider a system composed of a single particle, without spin,
subject to a scalar potential. In this case:

With the position r(x, y, z) of the particle is associated the observable R(X, Y, Z).
With the momentum p(p,, p,, p,) of the particle is associated the obser-
vable P(P,, P, P,).

Recall that the components of R and P satisfy the canonical commutation rela-
tions [chap. II, equations (E-30)]:

[Ris Rj] = [Pi’Pj] =0

[R;, P;] = iho; (B-33)

Any physical quantity .« related to this particle is expressed in terms of the
fundamental dynamical variables r and p: /(r, p, ¢). To obtain the corresponding

observable A4, one could simply replace, in the expression for (r, p, ¢), the
variables r and p by the observables R and P*:

At) = (R, P, 1) (B-34)

* See, in complement B,,. the definition of a function of an operator.
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However, this mode of action would be, in general, ambiguous. Assume, for
example, that in </ (r, p, ¢) there appears a term of the form :

r.p=xp, +yp, + zp, (B-35)

In classical mechanics, the scalar product r . p is commutative, and one can just
as well write :

p.r=pXx+py+pz (B-36)

But when r and p are replaced by the corresponding observables R and P, the
operators obtained from (B-35) and (B-36) are not identical [see relations (B-33)]:

R.P#P.R (B-37)
Moreover, neither R . P nor P . R is Hermitian:
(R.P)' = (XP, + YP, + ZP,)'=P.R (B-38)

To the preceding postulates, therefore, must be added a symmetrization rule.
For example, the observable associated with r . p will be :

%(R.P + P.R) (B-39)

which is indeed Hermitian. For an observable which is more complicated than R . P,
an analogous symmetrization is to be performed.

The observable 4 which describes a classically defined physical quantity o/
is obtained by replacing, in the suitably symmetrized expression for &/, r and p
by the observables R and P respectively.

We shall see, however, that there exist quantum physical quantities which
have no classical equivalent and which are therefore defined directly by the cor-
responding observables (this is the case, for example, for particle spin).

COMMENT:

The preceding rules, and commutation rules (B-33) in particular, are
valid only in cartesian coordinates. It would be possible to generalize them
to other coordinate systems; however, they would no longer have the same
simple form as they do above.

b. IMPORTANT EXAMPLES

o. The Hamiltonian of a particle in a scalar potential

Consider a (spinless) particle of charge ¢ and mass m, placed in an electric
field derived from a scalar potential U(r). The potential energy of the particle is
therefore V(r) = qU(r), and the corresponding classical Hamiltonian is writ-
ten [appendix III, formula (29)]:

2
AP =2+ Vi) (B-40)
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CHAPTER 3

Griffiths

FORMALISM

3.1 HILBERT SPACE

In the last two chapters we have stumbled on a number of interesting properties of
simple quantum systems. Some of these are “accidental” features of specific poten-
tials (the even spacing of energy levels for the harmonic oscillator, for example),
but others seem to be more general, and it would be nice to prove them once and
for all (the uncertainty principle, for instance, and the orthogonality of stationary
states). The purpose of this chapter is to recast the theory in a more powerful form,
with that in mind. There is not much here that is genuinely new; the idea, rather,
is to make coherent sense of what we have already discovered in particular cases.

Quantum theory is based on two constructs: wave functions and operators. The
state of a system is represented by its wave function, observables are represented
by operators. Mathematically, wave functions satisfy the defining conditions for
abstract vectors, and operators act on them as linear transformations. So the
natural language of quantum mechanics is linear algebra.!

But it is not, I suspect, a form of linear algebra with which you are immediately
familiar. In an N-dimensional space it is simplest to represent a vector, |«), by the
N-tuple of its components, {a,}, with respect to a specified orthonormal basis:

a
) —a=| . |. [3.1]

r you have never studied linear algebra, you should read the Appendix belore continuing.
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The inner product, (@|8), of two vectors (generalizing the dot product in three
dimensions) is the complex number,

(@|B) = ayb) +a3br+ - - -+ ayby. [3.2]

Linear transformations, T, are represented by matrices (with respect to the specified
basis), which act on vectors (to produce new vectors) by the ordinary rules of matrix
multiplication:

nr fHa - NN a
fy fha -+ DnhnN az

B)=Tle) >b=Ta=] . . . .- [3.3]
INL IN2 - INN aN

But the “vectors™ we encounter in quantum mechanics are (for the most part)
functions, and they live in infinite-dimensional spaces. For them the N-tuple/matrix
notation is awkward, at best, and manipulations that are well-behaved in the finite-
dimensional case can be problematic. (The underlying reason is that whereas the
finite sum in Equation 3.2 always exists, an infinite sum—or an integral —may not
converge, in which case the inner product does not exist, and any argument involving
inner products is immediately suspect.) So even though most of the terminology and
notation should be familiar, it pays to approach this subject with caution.

The collection of all functions of x constitutes a vector space, but for our
purposes it is much too large. To represent a possible physical state, the wave
function ¥ must be normalized:

f |\Il|2d.\‘ = 1.

The set of all square-integrable functions, on a specified interval,

b
f(x) such that f | F(O)? dx < oo. [3.4]

a
constitutes a (much smaller) vector space (see Problem 3.1(a)). Mathematicians
call it L, (a. b); physicists call it Hilbert space.® In quantum mechanics, then,

Wave functions live in Hilbert space. 1 [3.5]

ZFor us. the limits (a and b) will almost always be + 0o, but we might as well keep things more
general for the moment.

Mechnically. a Hilbert space i$ a complete inner product space, and the collection of square-
integrable Tunctions is only one example of a Hilbert space—indeed, every finite-dimensional vector
space is trivially a Hilbert space. But since L3> is the arena of quantuin mechanics, it's what physieists
generally mean when they say “Hilbert spacc.” By the way, the word complete here means that any
Cauchy sequence of functions in Hilbert space converges o a function that is also in the space: it has no
“holes” in iL. just as the set of all real numbers has no holes (by contrast, the space of all polynomials,
for example, like the sct of all rational numbers. certainly does have holes in it). The completeness
of a space has nothing o do with the completeness (same word. unfortunately) of a ser of functions.
which is the property that any other function can be expressed as a linear combination of them.
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We define the inner product of two functions, f(x) and g(x), as follows:

b

(fley= | Fx)*glx)dx. [3.6]

If f and g are both square-integrable (that is, if they are both in Hilbert space),
their inner product is guaranteed to exist (the integral in Equation 3.6 converges to
a finite number).* This follows from the integral Schwarz inequality:>

b b b
f f(x)*g(x) d-’c" < \[f | f ()2 dxf lg(x)? dx. [3.7]

You can check for yourself that Equation 3.6 satisfies all the conditions for an inner
product (Problem 3.1(b)). Notice in particular that

(glf) = {flg)*. [3.8]

Moreover, the inner product of f(x) with itself,

b
FIF) = f 00 dx, [3.9]

is real and non-negative; it’s zero only® when f(x) = 0.

A function is said to be normalized if its inner product with itself is 1; two
functions are orthogonal if their inner product is 0; and a set of functions, {f;},
is orthonormal if they are normalized and mutually orthogonal:

(fm'fn) = ‘Snm- [3-10]

Finally, a set of functions is complete if any other function (in Hilbert space) can
be expressed as a linear combination of them:

SO =" cn fuld). [3.11]

n=l|

*In Chapter 2 we were obliged on occasion to work with functions that were nor normalizable.
Such functions lic outside Hilbert space, and we are going Lo have to handle them with special care, as
you will see shortly. For the moment, I shall assume that all the functions we encounter are in Hilbert
space.

SFor a proot, see F. Riesz and B. Sz.-Nagy. Funcrional Analysis (Unger, New York, 1955),
Section 21. In a finite dimensional vector space the Schwarz inequality, l((xlﬂ)l2 =< {a]a){B8IB). is

casy Lo prove (see Problem A.5). But that proof assumes the existence of the inner products, which is
precisely what we are trying to establish here.

6What about a function that is zero everywhere except at a few isolated points? The integral
(Equation 3.9) would still vanish, cven though the function itself does not. If this bothers you, you
should have been a math major. In physics such pathological functions do not occur, but in any case, in
Hilbert space two functions that have the same square integral are considered equivalent. Technically,
vectors in Hilbert space represent equivalence classes of functions.
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Now, the outcome of a measurement has got to be real, and so, a fortiori, is the
average of many measurements:

(Q) =(0)". [3.14]
But the complex conjugate of an inner product reverses the order (Equation 3.8), so
(WIQW) = (QW|¥). [3.15]

and this must hold true for any wave function W. Thus operators representing
observables have the very special property that

(FI0F) =(QfIf) forall f(x). [3.16]

We call such operators hermitian.
Actually, most books require an ostensibly stronger condition:

(F10g) = (O flg) forall f(x)and all g(x). [3.17]

But it turns out, in spite of appearances, that this is perfectly equivalent to my
definition (Equation 3.16), as you will prove in Problem 3.3. So use whichever
you like. The essential point is that a hermitian operator can be applied either to
the first member of an inner product or to the second, with the same result, and
hermitian operators naturally arise in quantum mechanics because their expectation
values are real:

Observables are represented by hermitian operators. 2 [3.18]

Well, let’s check this. Is the momentum operator, for example, hermitian?
o hd h * (hdf\* . ,
B k= +f (fi) gdv=(pflg). [3.19]
—eo L dx i dx

I used integration by parts, of course, and threw away the boundary term for the
usual reason: If f(x) and g(x) are square integrable, they must go to zero at +o0.8

space into a function outside it (see Problem 3.2(b)). and in this cuse the domain of the operator may
have 1o be restricted.

h‘Actually. this is not quite true. As I mention in Chapter . there exist pathological functions
that are square-integrable but deo nor go to zero at infinity, However, such functions do not arise in
physics. and if you are worried about it we will simply restrict the domain of our operators to exclude
them. On fuiite intervals. though. you really do have to be more carcful with the boundary terms,
and an operator that is hermitian on (—o0. 00) may nor be hermitian on (0. co) or (—x, x). If you're
wondering about the infinite square well. it’s safest to think of these wave functions as residing on the
infinite line—they just happen to be zer outside (0. a).
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Notice how the complex conjugation of i compensates for the minus sign picked
up from integration by parts—the operator d/dx (without the 7) is not hermitian,
and it does not represent a possible observable.

«Problem 3.3 Show that if (h|Qh) = (Qh|h) for all functions / (in Hilbert space),
then (f |Qg) = (Of lg) for all f and g (i.e., the two definitions of “hermi-
tian”—Equations 3.16 and 3.17—are equivalent). Hint: First let h = f 4+ g, and
then let h = f +ig.

Problem 3.4

(a) Show that the sum of two hermitian operators is hermitian.

(b) Suppose 0 is hermitian, and « is a complex number. Under what condition
(on @) is & Q hermitian?

(c) When is the product of two hermitian operators hermitian?

(d) Show that the position operator (X = x) and the hamiltonian operator (H =
—(h? /2m)d?/dx* + V (x)) are hermitian.

Problgm 3.5 The hermitian conjugate (or adjoint) of an operator 0 is the oper-
ator Q" such that

(f108) = (0" flg) (for all f and g). [3.20]
(A hermitian operator, then, is equal to its hermitian conjugate: Q = o
(a) Find the hermitian conjugates of x, i, and d/dx.

(b) Construct the hermitian conjugate of the harmonic oscillator raising operator,
a4 (Equation 2.47).

(c) Show that (QI'\;)T = IQTQJF.

3.2.2 Determinate States

Ordinarily, when you measure an observable Q on an ensemble of identically
prepared systems, all in the same state W, you do not get the same result each
time—this is the indeterminacy of quantum mechanics.® Question: Would it be
possible to prepare a state such that every measurement of Q is certain to return
the same value (call it ¢)? This would be, if you like, a determinate state, for
the observable Q. (Actually, we already know one example: Stationary states are
determinate states of the Hamiltonian; a measurement of the total energy, on a

I'm talking about competent measurements, of course—it's always possible to make a mistake.
and simply get the wrong answer, but that’s not the fault of quantum mechanics.
ply g q
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particle in the stationary state W¥,, is certain to yield the corresponding *“‘allowed”
energy E,.)

Well, the standard deviation of Q, in a determinate state, would be zero, which
is to say,

o? = ((Q — (0N*) = (¥I(Q — 9)*¥) = (O — P¥I(Q — )¥) =0. [3.21]

(Of course, if every measurement gives ¢, their average is also ¢g: (Q) = ¢q. I also
used the fact that O, and hence also 0 — g, is a hermitian operator, to move one
factor over to the first term in the inner product.) But the only function whose inner
product with itself vanishes is 0, so

OV =qW. 3.22]

This is the eigenvalue equation for the operator O; ¥ is an eigenfunction of 0.
and ¢ is the corresponding eigenvalue. Thus

Determinate states are eigenfunctions of Q 3 [3.23]

Measurement of Q on such a state is certain to yield the eigenvalue, .

Note that the eigenvalue is a number (not an operator or a function). You can
multiply any eigenfunction by a constant, and it is still an eigenfunction, with the
same eigenvalue. Zero does not count as an eigenfunction (we exclude it by defi-
nition—otherwise every number would be an eigenvalue, since 00= q0 =0 for
any operator Q and all ¢). But there’s nothing wrong with zero as an eigenvalue.
The collection of all the eigenvalues of an operator is called its spectrum. Some-
times two (or more) linearly independent eigenfunctions share the same eigenvalue;
in that case the spectrum is said to be degenerate.

For example, determinate states of the total energy are eigenfunctions of the
Hamiltonian: R

Hy = Ey. [3.24]

which is precisely the time-independent Schrédinger equation. In this context we
use the letter E for the eigenvalue, and the lower case ¥ for the eigenfunction (tack
on the factor exp(—i Et/h) to make it W, if you like; it’s still an eigenfunction
of H).

Example 3.1 Consider the operator
Q=i—, [3.25]
where ¢ is the usual polar coordinate in two dimensions. (This operator might arise

in a physical context if we were studying the bead-on-a-ring; see Problem 2.46.)
Is Q hermitian? Find its eigenfunctions and eigenvalues.
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That’s why the stationary states of the infinite square well, for example, or the
harmonic oscillator, are orthogonal —they are eigenfunctions of the Hamiltonian
with distinct eigenvalues. But this property is not peculiar to them, or even to the
Hamiltonian—the same holds for determinate states of any observable.
Unfortunately, Theorem 2 tells us nothing about degenerate states (¢’ = ¢).
However, if two (or more) eigenfunctions share the same eigenvalue, any lin-

ear combination of them is itself an eigenfunction, with the same eigenvalue

(Problem 3.7(a)), and we can use the Gram-Schmidt orthogonalization proce-
dure (Problem A .4) to construct orthogonal eigenfunctions within each degenerate
subspace. It is almost never necessary to do this explicitly (thank God!), but it can
always be done in principle. So even in the presence of degeneracy the eigenfunc-
tions can be chosen to be orthogonal, and in setting up the formalism of quantum
mechanics we shall assume that this has already been done. That licenses the use
of Fourier’s trick, which depends on the orthonormality of the basis functions.

In a finite-dimensional vector space the eigenvectors of a hermitian matrix
have a third fundamental property: They span the space (every vector can be
expressed as a linear combination of them). Unfortunately, the proof does not
generalize to infinite-dimensional spaces. But the property itself is essential to the
internal consistency of quantum mechanics, so (following Dirac!'!) we will take it
as an axiom (or, more precisely, as a restriction on the class of hermitian operators

that can represent observables):

Axiom: The eigenfunctions of an observable operator are complete: Any
function (in Hilbert space) can be expressed as a linear combination of
them.!?

Problem 3.7

(a) Suppose that f(x) and g(x) are two eigenfunctions of an operator Q, with
the same eigenvalue ¢. Show that any linear combination of f and g is itself
an eigenfunction of Q. with eigenvalue gq.

(b) Check that f(x) = exp(x) and g(x) = exp(—x) are eigenfunctions of the
operator d>/dx>, with the same eigenvalue. Construct two linear combina-
tions of f and g that are orthogonal eigenfunctions on the interval (—1. 1).

'p A. M. Dirac. The Principles of Quanium Meclanics. Oxford University Press, New York
(1958).

I . . . N

PIn some specific cases completeness is provable (we know that the siationary states of the
infinite square well. for example. ure complete, because of Dirichlet’s theorem). It is a little awk-
ward (o call something an “axiom™ that is provable in some cases. but | don’t know a better way to
handle it
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Chapter 1

Operator Methods In Quantum

Mechanics

1.1 Introduction

The purpose of the first two lectures is twofold. First, to review the mathematical formalism of
elementary non-relativistic quantum mechanics, especially the terminology. The second purpose is
to present the basic tools of operator methods, commutation relations, shift operators, etc. and
apply them to familiar problems such as the harmonic oscillator. Before we get down to the operator
formalism, let’s remind ourselves of the fundamental postulates of quantum mechanics as covered

in earlier courses. They are:

e Postulate 1: The state of a quantum-mechanical system is completely specified by a function

1 U(r,t) (which in general can be complex) that depends on the coordinates of the particles
(collectively denoted by r) and on the time. This function, called the wave function or the

state function, has the important property that ¥*(r,¢)¥(r,t) dr is the probability that the

system will be found in the volume element dr, located at r, at the time ¢.

2 e Postulate 2: To every observable A in classical mechanics, there corresponds a linear Her-

mitian operator A in quantum mechanics.

3 e Postulate 3: In any measurement of the observable A, the only values that can be obtained

are the eigenvalues {a} of the associated operator A, which satisfy the eigenvalue equation

AV, = aV,
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2 CHAPTER 1. OPERATOR METHODS IN QUANTUM MECHANICS

where U, is the eigenfunction of A corresponding to the eigenvalue a.

e Postulate 4: If a system is in a state described by a normalised wavefunction ¥, and the
eigenfunctions {¥,} of A are also normalised, then the probability of obtaining the value a

in a measurement of the observable A is given by

P(a) = ‘/ T dr

(Recall that a function ®(r) such that

2

oo
/ O*Pdr =1
—o0
is said to be normalised.)

e Postulate 5: As a result of a measurement of the observable A in which the value a is
obtained, the wave function of the system becomes the corresponding eigenfunction ¥,. (This

is sometimes called the collapse of the wave function.)

e Postulate 6: Between measurements, the wave function evolves in time according to the
time-dependent Schrédinger equation
7 A
— =——HVU
ot h

where H is the Hamiltonian operator of the system.

The justification for the above postulates ultimately rests with experiment. Just as in geometry one
sets up axioms and then logically deduces the consequences, one does the same with the postulates
of QM. To date, there has been no contradiction between experimental results and the outcomes

predicted by applying the above postulates to a wide variety of systems.

We now explore the mathematical structure underpinning quantum mechanics.

1.1.1 Mathematical foundations

In the standard formulation of quantum theory, the state of a physical system is described by a
vector in a Hilbert space H over the complex numbers. The observables and dynamical variables
of the system are represented by linear operators which transform each state vector into another
(possibly the same) state vector. Throughout this course (unless stated otherwise) we will adopt
Dirac’s notation: thus a state vector is denoted by a ket |¥). This ket provides a complete de-
scription of the physical state. In the next section we will explore the mathematical properties of
the Hilbert space and learn why it plays such a central role in the mathematical formulation of

quantum mechanics.
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more Dirac stories:

Paul Dirac publiéﬁed the first of his papers on
“The Quantum Theory of the Electron”
seventy years ago this month. The Dirac
eqguation, derived in those papers, is one of
the most important equations in physics

Paul Dirac:
the purest
soul in
physics

Michael Berry

EACH day, I walk past the road where Paul Adrien Maurice
Diraclived as a child. It is pleasant to have even this tenuous
association with one of the greatest intellects of the 20th
century. Paul Dirac was born at 15 Monk Road in Bishops-
ton, Bristol, on 8 August 1902, and educated at the nearby
Bishop Road Primary School. The family later moved to
Cotham Road, near the University of Bristol, and in 1914 the
young Dirac joined Cotham Grammar School, formerly the
Merchant Venturers.

Dirac was a student at Bristol University between 1918 and
1923, first in electrical engineering and then in applied ma-
thematics. Much later, he said: “I owe a lot to my engineering
training because it [taught] me to tolerate approximations.
Previously to that I thought...one should just concentrate on
exact equations all the time. Then I got the idea that in the
actual world all our equations are only approximate. We must
just tend to greater and greater accuracy. In spite of the equa-
tions being approximate, they can be beautiful.”

Because Dirac was a quiet man — famously quiet, indeed —
he is not well known outside physics, although this is slowly
changing. In 1995 a plaque to Dirac was unveiled at West-
minster Abbey in London and last year Institute of Physics
Publishing, which is based in Bristol, named its new building
Dirac House.

It is hard to give the flavour of Dirac’s achievements in a
non-technical article, because his work was so mathematical.
He once said: “A great deal of my work is just playing with
equations and seeing what they give.”
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Early days

When Dirac went to Cambridge in 1923, the physics of mat-
ter on the smallest scales — in those days this was the physics of
the atom —was in ferment. It had been known for more than
a decade that the old mechanics of Newton — “classical”
mechanics, as it came to be called — does not apply in the
microscopic world. In particular, evidence from the light
coming out of atoms seemed to indicate that some quantities
that in classical mechanics can take any values are actually
restricted to a set of particular values: they are “quantized”.
One of these quantities is the energy of the electrons in an
atom. This was strange and shocking, Imagine being told that
when your car accelerates from 0 to 70 miles per hour it does
so in a series of jumps from one speed to another (say in steps
of one thousandth of a mph), with the intermediate speeds
simply not existing, It did not make sense, and yet observa-
tions seemed to demand such an interpretation.

In the first attempts at a theoretical understanding, physicists
tried to find the general rules for imposing these restrictions on
classical mechanics — that is rules for quantization. It seemed
that in order to quantize, it was necessary first to identify those
quantities that do not change when their environment is
slowly altered. If a pendulum is slowly shortened, for example,
it swings farther and also faster, in such a way that its energy
divided by its frequency stays constant. These rules worked for
simple atoms and molecules but failed for complicated ones.

Dirac entered physics at the end of this baroque period.
One of his first papers was an attempt at a general theory of
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these unchanging quantities. ThlS isa dchcate problem in clas—
sical mechanics, not solved even now. It is amazing today to
read that paper. In its mathematics it is quite unlike any of
Dirac’s later works (for example, he brings in fine differences
between rational and irrational numbers), and “pre-invents”
techniques developed by other people only decades later. (Isay
pre-invents because the paper was forgotten until recently.)

At this time the situation in atomic physics resembled that
at the end of the 16th century, when the old Earth-centred
astronomy had to be made ever more elaborate in the face of
more accurate observations, The difficulties of the 16th and
20th centuries were resolved in the same way: by a complete
shift of thought. In atomic physics this happened suddenly, in
1925, with the discovery by Heisenberg of quantum mechan-
ics. This seemed to throw out classical mechanics completely,
though it was built in as a limiting case to ensure that, on
larger scales, the new mechanics agreed with more familiar
experience. The quantum rules emerged automatically, but
from a mathematical framework that was peculiar. For exam-
ple, it involved multiplication where the result depends on the
order in which the multiplication is done. It is as though 2
multiplied by 3 is different from 3 multiplied by 2. Heisenberg
found this ugly and unsatisfactory. Dirac disagreed, and just a
few months after Heisenberg he published the first of a series
of papers in which quantum mechanics took the definitive
form we still use today.

The main idea is that the mult]phed objects — objects that
represent variables we can measure in experiments — should

Puysics WorLD Fesruary 1998

be thought of as operations. An experiment is an operation,
of course, even though its result is a number. With this inter-
pretation, it is not surprising that the order matters: we all
know that putting on our socks and then our shoes gives a
result different from putting on our shoes and then our socks.
Dirac found the one simple rule by which a multiplied by &
differed from & multiplied by a, and from which the whole of
quantum mechanics follows.

The same unification was soon found to include
Schrodinger’s way of doing quantum mechanics, where the
state of a system is represented by a wave whose strength gives
the probabilities of the different possible results of measure-
ments on it. For a while this seemed completely different from
the framework that Heisenberg had used, but it quickly
emerged that in fact each represents Dirac’s operators in a
different way. It seemed miraculous.

The Dirac equation

Although brilliant — in Einstein’s words, “the most logically
perfect presentation of quantum mechanics” — this was a
reformulation of physics that had, admittedly only just,
been discovered. Dirac’s main contribution came several
years later, when (still in his mid-twenties) he made his most
spectacular discovery.

Before quantum mechanics, there had been another re-
volution in physics, with Einstein’s discovery in 1905 that
Newton’s mechanics fails for matter moving at speeds
approaching that of light. To get things right, time had to be
regarded as no longer absolute: before-and-after had to be
incorporated as a fourth co-ordinate like the familiar three
spatial co-ordinates that describe side-to-side, forward-and-
backward and up-and-down. Just as what is side-to-side and
what is forward-and-backward change when you turn, so
time gets mixed in with the other three co-ordinates when you
move fast. Now, in the 1920s, came quantum mechanics,
showing how Newton’s mechanics failed in a different way:
on microscopic scales. The question arose: what is the physics
of particles that are at the same time small and moving fast?

This was a practical question: the electrons in atoms are
small, and they move fast enough for the new quantum
mechanics to be slightly inaccurate, since it had been con-
structed to have as its large-scale limit Newton’s mechanics
rather than Einstein’s. From the start people tried to con-
struct a quantum theory concordant with relativity, but failed
to overcome technical obstructions: in particular, their
attempts gave probabilities that were negative numbers —
something that is nonsense, at least in the usual meaning of
probability. The question boiled down to this: what are the
right sort of quantum waves describing electrons? And what
is the wave equation that governs the dynamics of these
waves, while satisfying the requirements of relativity and giv-
ing sensible physical predictions?

Dirac’s construction of his wave equation for the electron —
published in two papers in the Proceedings of the Royal Society
(London) in February and March 1928 — contained one of
those outrageous leaps of imagination shared by all great
advances in thought. He showed that the simplest wave satis-
fying the requirements was not a simple number but had four
components (see box overleaf). This seemed like a complica-
tion, especially to minds still reeling from the unfamiliarity of
the “ordinary” quantum mechanics. Four components! Why
should anybody take Dirac’s theory seriously?
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N The Dirac equation

The Dirac equation for an electron moving in an arbitrary electromagnetic
field can be written in many ways. In Dirac's original papers it is written as

y=0

e 2 [
Po* E’Ao*'(h(p;"' %A1)+“2(02+ EA2)+(I3(I'J3 o %Aa) +ome

where p, =ihd/cdt (the energy operator), e is the charge on the electron, Ay
is the scalar potential associated with the electromagnetic field, c is the
speed of light, o, are 4x4 matrices derived from the Pauli matrices,
py=-ihd/dx is a momentum operator (p, = -ihd/dy, p;=-ihd/dz), A are the
three components of the electromagnetic vector potential, m is the mass of
the electron and v is the wavefunction of the electron.

The wavefunction y is a 4x1 column vector (also known as a spinor)and
each element is a function of space and time, representing the spin state
(up or down) of the electron and the associated positron solution. As
explained in the main text, the equation was able to explain the results of all
of the experiments at the time, to explain the origin of electron spin and to
predict the existence of antimatter.

The equation can be written in more compact form. In §67 of The
Principles of Quantum Mechanics (4th edn, Oxford University Press) it is
written as

. y \
{.00"' EAO—IFMLU‘ pt %A) —p;;mC]tlI= 0

where p, and p; are 4x4 matrices (related to «, and the Pauli matrices), o is
a three-component vector of 4x4 matrices, and p is a three-component

vector of momentum operators. The version of the equation in Westminster
Abbey is even more compact and reads iy- dy = my where yis a 4x4 matrix

Dirac with Werner Heisenberg in Chicago in 1929.

First, and above all for Dirac, the logic thatled to the theory
was, although deeply sophisticated, in a sense beautifully sim-
ple. Much later, when someone asked him (as many must
have done before) “How did you find the Dirac equation?” he
is said to have replied: “Ifound it beautiful.” Second, it agreed
with precise measurements of the energies of light emitted
from atoms, in particularly where these differed from ordin-
ary (non-relativistic) quantum mechanics.

There are two more reasons why the Dirac equation was
compelling as the correct description of electrons. To under-
stand them, you should realize that any great physical theory
gives back more than is put into it, in the sense that as well as
solving the problem that inspired its construction, it explains
more and predicts new things. Before the Dirac equation, it
was known that the electron spins. The spin is tiny on the
scale of everyday but is always the same and plays a central
part in the explanation through quantum mechanics of the
rules of chemistry and the structure of matter. This spin was a
property of the electron, like its mass and its electric charge,
whose existence simply had to be assumed before quantum
mechanics could be applied. In Dirac’s equation, spin did not
have to be imported: it emerged — along with the magnetism
of the electron —as an inevitable property of an electron that
was both a quantum particle and a relativistic one.

So, electron spin was the third reason for believing Dirac’s
mathematically inspired equation. The fourth came from a
consequence of the equation that was puzzling for a few years
at first. Related to its four components was the fact that any
solution of the equation where the electron had a positive
energy had a counterpart where the energy was negative. It
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and d is a 4-vector.

gradually became clear that these counterpart solutions
could be interpreted as representing a new particle, similar to
the electron but with positive rather than negative charge;
Dirac called it an “anti-electron”, but it soon came to be
known as the positron. If an electron encounters a positron,
Dirac predicted, the two charges cancel and the pair annihil-
ates, with the combined mass transforming into radiation in
the most dramatic expression of Einstein’s celebrated equa-
tion E=m¢”. Thus was antimatter predicted. When the
positron was discovered by Anderson in 1932, Dirac’s immor-
tality was assured. Dirac and Schrodinger shared the Nobel
Prize for Physics in 1933.

Nowadays, positrons are used every day in medicine, in
PET (positron emission tomography) scanners that pinpoint
interesting places in the brain (e.g. places where drugs are
chemically active). These work by detecting the radiation as
the positrons emitted from radioactive nuclei annihilate with
ordinary electrons nearby.

Other achievements

Having explained spin, it was natural for Dirac to try to
explain electric charge, and in particular the mysterious fact
that it is quantized: all charges found in nature are multiples
of the charge on the electron. In classical electricity, there is
no basis for this: charges can have any value,

In 1931 Dirac gave a solution of this problem in an appli-
cation of quantum mechanics so original that it still astounds
us to read it today. He combined electricity with magnetism,
in a return to the 18th-century notion of a magnet being a
combination of north and south magnetic poles (magnetic
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The 1927 Soivay Congress in Brussels was attended by most of the leading physicists of the time. Dirac is in the second row, on Einstein’s right.The other
delegates are (left to right): front row; | Langmuir, M Planck, Madame Curie, H A Lorentz, A Einstein, P Langevin, Ch E Guye, CT R Wilson, O W Richardson;

second row; P Debye, M Knudsen, W L Bragg, H A Kramers, P A M Dirac, A H Compton, L V de Broglie, M Born, N Bohr; back row; A Piccard, E Henriot, P Ehrenfest,
E D Herzen, T Hde Donder, E Schrodinger, E Verschaffelt, W Pauli, W Heisenberg, R H Fowler, L Brillouin.

charges). in the same way that a charged body contains pos-
itive and negative electric charges. That symmetry was lost in
the 19th century with the discoveries of Oersted, Ampere and
Faraday. culminating in Maxwell's synthesis of all electro-
magnetic and - in another example of getting out more than
vou put in — optical phenomena. In its place came a greater
\l]]l])ll(l[\ there are only electric charges, whose movement
generates magnetsm | (and now the motive power for much of
our civilisation). The absence of isolated magnetc poles
magnetic monopoles —was built into classical electromagnet-
ism. and also the quantum mechanics that grew out of it

Dirac wondered if there was any way that magnetic
monopoles could be brought into quantum ph\’s‘i('ﬂ without
spoiling everything that had grown out of assuming that they
did not exist. He found that this could be done, l)ullml\ if the
strength of the monopole (the “magnetic charge” )was linked
to that of the electric charge, and if both were quantized. This
solved the original problem: for consistency with quantum
mechanics, the existence of even one monopole anywhere in
the universe would suffice to ensure that electric charge must
be quantized. The implication is compelling: to account for
the quantization of electricity, magnetic poles must exist. After
this, Pauli referred to Dirac as “Monopoleon™

Alas, no magnetic monopole has ever been found. Perhaps
they do not exist, or [}('l'hiip\ (and there are hints of this in the
theory) positive and negative monopoles are so tightly bound
toge ther that the v have not been separated. Much Inlvz Dirac
referred to this the ‘ory as “just a disappointment”. However,
the mathematics he invented to study the monopole
bining gcometry with analysis — now forms the basis of
modern theories of fundamental particles.

There were two other seminal contributions to physics in
those carly years. 1 have space only to mention them. Dirac
.||||)|u ‘d quantum mechanics to the way light and matter
interact. This made him realize that 1t was necessary to
quantize not only particles but the electromagnetic field itself,
and led him to the first consistent theory of photons (which

com-
" the

had been discovered several decades previously in the begin-
nings of quantum mechanics). This led to the elaborate and
rlm\ ing quantum field theories of today.

Dirac also showed how (uantum waves for manv clectrons
had to be constructed, mcorporating the 1_)[11I:)\(|[)}11{.|]|}
intriguing fact that any two of these particles are absolutely
identical and so cannot be distinguished in any way. This pro-
duced the definitive understanding ol earlier rules about how
quantum mechanics explains the periodic table of the ele-
ments, and provided the basis for the theory of metals and the
mterior ol stars.

Like all scientists at the highest level, Dirac was not atraid to
descend from the pinnacle and discuss more down-to-carth
matters. Here are two examples. Much ol our knowledge
comes from light scattered by matter; in particular., th
we see. In a clever stroke of lateral thinking, Dirac realized
that the quantum symmetry between waves of light and
waves of matter implied that it is also possible for material
particles to be scattered by light. a ghostly possibility that
could be observed, as he showed i 1933 ina paper with Peter
Kapitza. This was observed for the first time about ten years
ago and the manipulation of atoms by laser beams is now a
thriving arca of apphed quantum mechanics
nized with a Nobel prize last yvear (Physics World November
1997 pal ).

The second example is his Second World War work. In the
Manhattan Project 1<>(lr\'('lnp the first nuclear bombs, 1t was
necessary to scparate isotopes ol uranium. One class of
methods involved the centrifugal effects of (luid streams that
were made to bend. Dirac put the theory of these techniques
on a firm basis, and indeed his work i this field has been
described as seminal.

at1s how

a fact recog-

Dirac stories

It is not my intention to write about what sort of person Dirac
was. But I must mention the genre of “Dirac stories™
so unusual in the logic and precision of his interaction with

. He was

we now know there are no magnetic monopoles because of gauge symmetry
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The Quantum Theory of the Electron.

By P. A. M. Dinac, 8t. Jobn's College, Cambridge.
(Communicated by R. H. Fowler, F.R.S.~Received January 2, 1928.}

The new quantum mechanies, when applied to the problem of the structure
of the atom with point-charge electrons, does not give results in agreement
with experiraent. The discrepencies consist of ** duplesity ™ phenomens, the
observed number of statienary states for an electron in an atom being twice
the number given by the theory. To meet the difficulty, Goudsmit and Ullen-
beck have introduced the idea of an electzon with & spin angular momenturn
of balf & quantum and a magnetic moment of one Bohr magneton. This model
{ot the electron hos been fitted into the new mechanics by Pauli,* and Darwin,
working with an equivalent theory, bes shown that it gives results in agreement
with experiment for hydrogen-like spectra o the first erder of accuracy.

The guestion remaing as to why Nature shonld have chosen this particalar

model for the electron instead of being satisfied with the point-charge. One
would Jike to find some insompleteness in the previous methods of applying
quantum mechsnies to the point-charge electron such that, when removed,
the whole of the duplexity phenomena foliow without arbitrary assumptions.
In the present paper it is shown that this is the case, the incompleteness of
the previous theories lying in their disagreement with relativity, or, alternate-
tively, with the general transformation theory of quantum mechanics. It
appears that the simplest Hamiltonian for & point-charge electron satisfying
the requirements of both relativity and the general transformation theory
lesds to an explanstion of all duplexity phenomena without further assumption.
All the same there is a great desl of truth in the spinning eectron model, at
Jeast a3 & first approximation. The most important; failure of the model seema
o be that the magnitude of the resultant orbital angalar momentum of sn
eleotron moving in an orbit in a central field of force is not & constant, as the
medel lesds one to expest.

* Paali, *Z. £. Physik,’ vol. 43, p. 601 (1627).
% Dexwin, * Roy. Soc. Proc.,” A, vol. 116, p. 227 (1827).
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The Quantum Theory of the Electron. Part 11,
By P. A. M. Drmac, 8t. John'n College, Cambridge,

[Communicated by R. H. Fowler, P.R.B.—Received February 2, 1928,)

In & previous paper by the author® it is shown that the general theory of
quantum mechanics together with relativity require the wave equation for sn
electzon moving in an arbitvary electromagnetic Seld of potentials, A, A,
A, A, to be of the form

Fo=[r0t £ At m(mn o+ £ 8) 0 pa+ £ 44)

+¢a(?s+%53)+"lm]¢‘=o' a

The o8 are pew dynamical variables which it is necessary to introduce fn order
to satisfy the conditions of the problem. They may be regarded as descyibing
some internal motion of the electron, which for most purposes may be taken
to be the spin of the electron postulsted in previous theories. We shall call
them the epin varinbles.

The «'s roust satisty the conditions

aof=1 e tez=0 {o#w

They may conveniently be expressed in terms of six varisbles p;, py, pp oy

G, Gy that satisfy
(r,a=1,223)
}. @

G0y = 6y = — g5,

=1 =1L po=o;.

and
PiPz = 13 = — pybus

together with the relations obtained from thess by eyelic parmutation of the
suffizes, by means of the equations

Q=P TP =0 % =Py
The varisbles o;, a,, 0, now form the three components of a vector, which
corresponds (apart from o constant factor) to the spin angolar momentum vector
that appesrs in Pauli'a theory of the spinning electron. The ¢'s and o's vary
with the time, Like other dynamical variables. Their equstiona of motion,
written in the Poisson Bracket notation [ }, are

5f=o[PnF]' 5f=¢[0n1’l
* * Roy. Boc, Proc.,' A, vol. 117, p. 810 (1928), This in referred to later Yy Joc. et

Dirac's papers on the quantum theory of the electron were published in the Proceedings of the Royal Society (London ) A in 1928 (see further reading).

the world, both in and out of physics, that tales have become
attached to him and have acquired a life of their own. I sup-
pose it matters to a historian whether they are true or apo-
cryphal (or as Norman Mailer says, “factoids”™), but to us they
have a deeper resonance that transcends fact. Resisting temp-
tation, I retell just two less well known ones.

Like many scientists, Dirac was known to sleep during
(other people’s) lectures, and then wake and suddenly make a
penetrating remark. Once a speaker stopped, scratched his
head and declared: “Here is a minus where there should be a
plus. I seem to have made an error of sign.” Dirac opened
one eye and said: “Or an odd number of them.” Another
time, Dirac was at a meeting in a castle, when another guest
remarked that a certain room was haunted: at midnight, a
ghost appeared. In his only reported utterance on matters
paranormal, Dirac asked: “Is that midnight Greenwich time,
or daylight saving time?”

Dirac’s writing was famous for its clarity and simplicity.
Every physicist knows his Principles of Quantum Mechanics —
such a perfect and complete summary of his views that in
later years his lectures consisted of readings from it. There is
the story that he was once present when Niels Bohr was wri-
ting a scientific papér —~ with many hesitations and redraftings,
as was his custom. Bohr stopped: “I do not know how to finish
this sentence.” Dirac replied: “I was taught at school that you
should never start a sentence without knowing the end of it.”
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Many physicists have spoken of Dirac with awe. john
Wheeler, referring to the sharp light of his intelligence, said
“Dirac casts no penumbra.” Niels Bohr said: “Of all physi-
cists, Dirac has the purest soul.” He is also reported as saying
(I cannot now find this quotation): “Dirac did not have a triv-
ial bone in his body.”

The mathematician Mark Kac divided geniuses into two
classes. There are the ordinarv geniuses, whose achievements
one imagines other people might emulate, with enormous
hard work and a bit of luck. Then there are the magicians,
whose inventions are so astounding, so counter to all the intu-
itions of their colleagues, that it is hard to see how any human
could have imagined them. Dirac was a magician.
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