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Your Academic Geneology
Synopsis

Some Stories

Some Math



Quantum Mechanics Books

Principles of Quantum Mechanics

R. Shankar

The book | was using when we wrote the virtual book
Mathematics and Postulates are from the First edition

Introduction to Quantum Mechanics
D. Griffiths

The most popular junior level QM book

in UW bookstore under Physics 325

Introductory Quantum Mechanics
R. Liboff

More detailed than Giriffiths'

Excellent junior level QM book

Quantum Mechanics

Cohen-Tannoudji, Diu, Laloe

Encyclopedic

Previous students have found it exhausting to read



QM Is a Linear Theory

Study Linear Operators
If sq and s2 are solutions, then so

are a-sq, b'sg, a'sq+b-s9, etc.

Usually nonlinear effects occur as
the solutions get large

Linear Algebra

matrices and vectors
eigenvalues and eigenvectors
Live in a vector space

Functional Analysis

differential operators and functions
eigenvalues and eigenfunctions
Live in a Hilbert space



Hilbert spaces are the generalization of finite-dimensional vector spaces to the infinite dimensional limit.
Much of the important and extremely useful machinery of the finite-dimensional case still applies in the

infinite dimensional limit.

Linear Algebra

Linear vector spaces
numbers

vectors

matrices

tensors

Basis of vectors
change of basis
diagonalization
eigenvalues
eigenvectors

To learn more about Hilbert spaces:

Read Shankar's Mathemetics Chapter

Functional Analysis

Hilbert spaces
numbers
functions
operators

tensor operators

Basis of functions
change of basis
diagonalization
eigenvalues
eigenfunctions

To learn more details, read Paul Halmos' appendix---it's on the class website:

What's the difference between a Hilbert space and a finite-dimensional vector space?

And consult the following web resources:
http://en.wikipedia.org/wiki/Hilbert_space

http://mathworld.wolfram.com/HilbertSpace.html

http://terrytao.wordpress.com/2009/01/17/254a-notes-5-hilbert-spaces/

http://en.wikipedia.org/wiki/Terence_Tao

(also check out his homepage and his blog)


http://en.wikipedia.org/wiki/Hilbert_space
http://mathworld.wolfram.com/HilbertSpace.html
http://terrytao.wordpress.com/2009/01/17/254a-notes-5-hilbert-spaces/
http://en.wikipedia.org/wiki/Terence_Tao

APPENDIX

HILBERT SPACE

Probably the most useful and certainly the best developed generalization
of the theory of finite-dimensional inner product spaces is the theory of
Hilbert space. Without going into details and entirely without proofs
we shall now attempt to indicate how this generalization proceeds and
what are the main difficulties that have to be overcome.

The definition of Hilbert space is éasy: it is an inner product space satisfy-
ing one extra condition. That this condition (namely, completeness) is
automatically satisfied in the finite-dimensional case is proved in ele-
mentary analysis. In the infinite-dimensional case it may be possible that
for a sequence (z,) of vectors || 2 — Zm || — 0 as n, m — o, but still
there is no vector z for which || z, — z || — 0; the only effective way of
ruling out this possibility is explicitly to assume its opposite. In other
words: a Hilbert space is a complete inner product space. (Sometimes the
concept of Hilbert space is restricted by additional conditions, whose
purpose is to limit the size of the space from both above and below. The
most usual conditions require that the space be infinite-dimensional and
separable. In recent years, ever since the realization that such additional
restrictions do not pay for themselves in results, it has become customary
to use “Hilbert space” for the concept we defined.)

It is easy to see that the space ® of polynomials with the inner product

1 -
defined by (z, y) = f z(t)y(t) dt is not complete. In connection with the
0

completeness of certain particular Hilbert spaces there is quite an extensive
mathematical lore. Thus, for instance, the main assertion of the celebrated
Riesz-Fischer theorem is that a Hilbert space manufactured out of the

1
set of all those functions = for which f |z(t)[*dt < = (in the sense of
0

Lebesgue integration) is a Hilbert space (with formally the same definition
of inner product as for polynomials). Another popular Hilbert space,
189
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reminiscent in its appearance of finite-dimensional coordinate space, is
the space of all those sequences (£,) of numbers (real or complex, as the
case may be) for which D_,|£,|? converges.

Using completeness in order to discuss intelligently the convergence of
some infinite sums, one can proceed for quite some time in building the
theory of Hilbert spaces without meeting any difficulties due to infinite-
dimensionality. Thus, for instance, the notions of orthogonality and of
complete orthonormal sets can be defined in the general case exactly as we
defined them. Our proof of Bessel’s inequality and of the equivalence of
the various possible formulations of completeness for orthonormal sets
have to undergo slight verbal changes only. (The convergence of the
various infinite sums that enter is an automatic consequence of Bessel’s
inequality.) Our proof of Schwarz’s inequality is valid, as it stands, in
the most general case. Finally, the proof of the existence of complete
orthonormal sets parallels closely the proof in the finite case. In the
unconstructive proof Zorn’s lemma (or transfinite induction) replaces
ordinary induction, and even the constructive steps of the Gram-Schmidt
process are easily carried out.

In the discussion of manifolds, functionals, and transformations the
situation becomes uncomfortable if we do not make a concession to the
topology of Hilbert space. Good generalizations of all our statements for
the finite-dimensional case can be proved if we consider closed linear
manifolds, continuous linear functionals, and bounded linear transformations.
(In a finite-dimensional space every linear manifold is closed, every linear
functional is continuous, and every linear transformation is bounded.) If,
however, we do agree to make these concessions, then once more we can
coast on our finite-dimensional proofs without any change most of the
time, and with only the insertion of an occasional e the rest of the time.
Thus once more we obtain that 0 = M @ an?, that 9n = awtL, and that
every linear functional of z has the form (z, y); our definitions of self-
adjoint and of positive transformations still make sense, and all our theo-
rems about perpendicular projections (as well as their proofs) carry over
without change.

The first hint of how things can go wrong comes from the study of orthog-
onal and unitary transformations. We still call a transformation U
orthogonal or unitary (according as the space is real or complex) if UU*
= U*U = 1, and it is still true that such a transformation is isometric,
that is, that || Uz || = || z || for all z, or, equivalently, (Uz, Uy) = (z, y)
for all z and y. It is, however, easy to construct an isometric transforma-
tion that is not unitary; because of its importance in the construction of
counterexamples we shall describe one such transformation. We consider
& Hilbert space in which there is a countable complete orthonormal set,
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say {zo, Z1, %3, ---}. A unique bounded linear transformation U is
defined by the conditions Uz, = z,4q for n =0, 1,2, --- . This U is
isometric (U*U = 1), but, since UU*zo = 0, it is not true that UU* = 1.

It is when we come to spectral theory that the whole flavor of the develop-
ment changes radically. The definition of proper value as a number A
for which Az = Az has a non-zero solution still makes sense, and our theo-
rem about the reality of the proper values of a self-adjoint transformation
is still true. The notion of proper value loses, however, much of its sig-
nificance. Proper values are so very useful in the finite-dimensional case
because they are a handy way of describing the fact that something goes
wrong with the inverse of A — X, and the only thing that can go wrong is
that the inverse refuses to exist. Essentially different things can happen
in the infinite-dimensional case; just to illustrate the possibilities, we
mention, for example, that the inverse of A — X\ may exist but be un-
bounded. That there is no useful generalization of determinant, and
hence of the characteristic equation, is the least of our worries. The
whole theory has, in fact, attained its full beauty and maturity only after
the slavish imitation of such finite-dimensional methods was given up.

After some appreciation of the fact that the infinite-dimensional case
has to overcome great difficulties, it comes as a pleasant surprise that the
spectral theorem for self-adjoint transformations (and, in the complex
case, even for normal ones) does have a very beautiful and powerful
generalization. (Although we describe the theorem for bounded trans-
formations only, there is a large class of unbounded ones for which it is
valid.) In order to be able to understand the analogy, let us re-examine
the finite-dimensional case.

Let A be a self-adjoint linear transformation on a finite-dimensional
inner product space, and let A = D _;\;F; be its spectral form. If M is
an interval in the real axis, we write E(M) for the sum of all those F; for
which \; belongs to M. 1t is clear that E() is a perpendicular projection
for each M. The following properties of the projection-valued interval-
function E are the crucial ones: if M is the union of a countable collection
{M,} of disjoint intervals, then

M E(M) = 2.0 E(My),

and if M is the improper interval consisting of all real numbers, then
E(M) = 1. The relation between A and E is described by the equation

4 = 2 NE(ND,

where, of course, {)\;} is the degenerate interval consisting of the single
number A;. Those familiar with Lebesgue-Stieltjes integration will recog-
nize the last written sum as a typical approximating sum to an integral of
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the form f A dE(\) and will therefore see how one may expect the general-

ization to go. The algebraic concept of summation is to be replaced by
the analytic concept of integration; the generalized relation between A and
E is described by the equation

@) A= f NAEQ).

Except for this formal alteration, the spectral theorem for self-adjoint
transformations is true in Hilbert space. We have, of course, to interpret
correctly the meaning of the limiting operations involved in (1) and (2).
Once more we are faced with the three possibilities mentioned in § 91.
They are called uniform, strong, and weak convergence respectively, and
it turns out that both (1) and (2) may be given the strong interpretation.
(The reader deduces, of course, from our language that in an infinite-di-
mensional Hilbert space the three possibilities are indeed distinet.)

We have seen that the projections F; entering into the spectral form of A
in the finite-dimensional case are very simple functions of 4 (§ 82). Since
the E (M) are obtained from the F; by summation, they also are functions
of A, and it is quite easy to describe what functions. We write gy (¢) =
1if ¢ isin M and gy (¢) = O otherwise; then E(M) = gy (A4). This fact
gives the main clue to a possible proof of the general spectral theorem.
The usual process is to discuss the functional calculus for polynomials,
and, by limiting processes, to extend it to a class of functions that includes
all the functions gy. Once this is done, we may define the interval-
function E by writing E(M) = ga(A); there is no particular difficulty in
establishing that E and A satisfy (1) and (2).

After the spectral theorem is proved, it is easy to deduce from it the
ge neralized versions of our theorems concerning square roots, the functional
ca leulus, the polar decomposition, and properties of commutativity, and,
in fact, to answer practically every askable question about bounded normal
tr ansformations.

The chief difficulties that remain are the considerations of non-normal
and of unbounded transformations. Concerning general non-normal trans-
formations, it is quite easy to describe the state of our knowledge; it is
non-existent. No even unsatisfactory generalization exists for the tri-

ngular form or for the Jordan canonical form and the theory of elementary
ivisors. Very different is the situation concerning normal (and par-
icularly self-adjoint) unbounded transformations. (The reader will
ympathize with the desire to treat such transformations if he recalls
hat the first and most important functional operation that most of us
earn is differentiation.) In this connection we shall barely hint at the



APPENDIX 193

main obstacle the theory faces. It is not very difficult to show that
if a self-adjoint linear transformation is defined for all vectors of Hilbert
space, then it is bounded. In other words, the first requirement con-
cerning transformations that we are forced to give up is that they be de-
fined everywhere. The discussion of the precise domain on which a self-
adjoint transformation may be defined and of the extent to which this
domain may be enlarged is the chief new difficulty encountered in the
study of unbounded transformations.



http://scidiv.bellevuecollege.edu/Math/halmos.htmli

http://zalafilms.com/films/halmospsynopsis.html
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Stories about Physicists
Frauenfelder was a great story teller

Feynman
Dirac
Schrodinger
Heisenberg



Four Degrees of Separation

One Branch of your Academic Family Tree

Wolfgang Pauli (your great-grand-teacher)
Hans Frauenfelder (your grand-teacher)
Larry Sorensen (your teacher)

{ your name here goes here }

http://en.wikipedia.org/wiki/Six_degrees_of separation
http://en.wikipedia.org/wiki/Six_Degrees_of Kevin_Bacon
http://en.wikipedia.org/wiki/Erdos_number


http://en.wikipedia.org/wiki/Six_degrees_of_separation
http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon
http://en.wikipedia.org/wiki/Erdos_number

Michael S. Pierce

University of Washington (2006)

r

Larry B. Sorensen

University of lllinois Urbana-

Peter Debye
Munich U. (1908)

Champaign
|

Hans Frauenfelder
Zurich, ETH (1950)

Arnold Sommerfeld

Konigsberg U. (1891)

Paul Scherrer

Gottingen U. (1916)

Carl L.F. von Lindemann
Erlangen-Nuremberg U. (1873)

—

C. Felix Klein
Bonn U. (1868)

Rudolf Lipschitz

Humboldt U., Berlin (1853)

Julius Plucker

Phillips U. Marburg (1823)

\

Gustav Dirichlet
Bonn U. (1827)

N

Christian Ludwig Gerling
Goettingen U. (1812)

Ecole Polytechnique

Simeon Poisson ]
(1800)

o~

Jean B. Fourier
Ecole Polytechnique

N

J. Carl Freidrich Gauss
Helmstedt U. (1799)

Joseph Louis Lagrange
Unknown

Johann Freidrich Pfaff
Goettingen U. (1786)

yd

Leonhard Euler
Basel U. (1726)

Abraham Gotthelf Kastner

Leipzig U. (1739)

Johann Bernoulli
Basel U. (1694)

Christian August Hausen

Unknown

Jacob Bernoulli
Unknown

Johann C. Wichmannshausen

Unknown

Gottfried Wilhelm Leibniz
Leipzig U. (1667)

Otto Mencke
Leipzig U. (1668)

Erhard Weigel
Leipzig U. (1650)




Four Degrees of Separation

One Branch of your Academic Family Tree

Enrico Fermi (your great-grand-teacher)
Darragh Nagle (your grand-teacher)
Larry Sorensen (your teacher)

{ your name here goes here }

http://en.wikipedia.org/wiki/Six_degrees_of separation
http://en.wikipedia.org/wiki/Six_Degrees_of Kevin_Bacon
http://en.wikipedia.org/wiki/Erdos_number
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The Four Primary Formulations
of
Quantum Mechanics

Matrix Mechanics
Heisenberg (1925; age 23)

Wave Mechanics
Schrodinger (1926; age 38)

Transformation Theory
Dirac (1925; age 23)

Path Integral
Feynman (1941; age 23)



Matrix Mechanics
Heisenberg (1925; age 23)

xp — pxr # 0

xp — pr = 1h

di
HvY = —1h—
Y= —th

Matrix formulation
H, X, and p are matrices
| is a vector

Ej Is a number



1. The Birth of Quantum Me chanics

It was June 7, 1925, that Werner Heisenberg left for the North Sea island of Helgoland wanting to find
some rest after a bad attack of hay fever. Heisenberg was working at that time on the spectral lines of
hydrogen, trying to find a manner to calculate these lines in a consistent way. In Helgoland, although
he went there to rest, he got completely obsessed by the problem, and he hardly slept, deviding his
time between working on his problem, engaging in mountain climbing and learning by heart poems
from Goethe's West Osticher Divan.

It was one of these nights that Heisenberg 'invented' modern quantum mechanics. He wrote later in his
book 'Der Teil und das Ganze' [1]: "It was about three o' clock at night when the final result of the
calculation lay before me. At first I was deeply shaken. I was so excited that I could not think of sleep.
So I left the house and awaited the sunrise on the top of a rock."

On June 9 Heisenberg returned to Gottingen and sent a copy of his results to Wolfgang Pauli,
commenting in the accompanying letter: "Everything is still vague and unclear to me, but it seems as if
the electrons will nomore move on orbits".

On July 25, Heisenberg's paper announcing the invention of quantum mechanics is received by the
Zeitschrift fur Physik [2]. Before that he had also given a copy of the paper to Max Born commenting
"that he had written a crazy paper and did not dare to send it in for publication, and that Born should
read it and advice him on it."

Born mentiones that at first he was completely astonished by the strangeness of the calculations that
Heisenberg proposes in the paper. But then, one morning, on July 10, Born suddenly realized that the
type of calculation that Heisenberg proposes corresponds exactly to the matrix calculation that had
been invented by mathematicians a long time before. Then Born reformulates, together with one of his
students Pascual Jordan, Heisenberg's results in formal matrix language, to give rise to the first formal
formulation of the new quantum mechanics [3].

It is amazing to know that shortly after Born received a copy of a paper written by a young British
physicist that he did not know, Paul Adrien Dirac, which contained many of the results that he and
Jordan just derived from Heisenberg's calculations [4]. Dirac had already in this first paper on quantum
mechanics introduced a much more abstract mathematical language than matrix mechanics, it were the
first steps finally leading to von Neumann's abstract Hilbert space formulation.

When Heisenberg wrote the first paper on quantum mechanics he had not known about matrix
mathematics, but rapidly caught up, and started to work together with Born and Jordan on elaborating
further the mathematical aspects of the theory, and also Pauli got caught up in the new physics. In the
fall of 1925 he derived for the first time the complete Balmer formula for the hydrogyn atom (the set of
discrete energy levels of an electron bound in hydrogen) [5].

Erwin Schroedinger did not know anything of all these happenings. He was also working on the
problem of the hydrogyn atom but starting from a completely different approach. Schroedinger was,
already long before he came with the 'second' invention' of quantum mechanics, actively interested in
the problem of the description of the atom. He was inspired in his approach by work of Louis de



Broglie and Albert Einstein, considering the wave aspects of quantum particles. His goal was to
formulate quantum mechanics as a part of classical wave mechanics, where the particle behavior of
quantum entities would correspond to the behavior of singularities of the waves.

And so Schrodinger indeed manages to present a wave model of the atom and to also derive the
complete Balmer formula, as Pauli did at the same time by means of matrix mechanics: the foundations
of Schrodinger's wave mechanics was laid [6]. During the next half year, Schrodingers paper on the
foundations of wave mechanics was followed by three other papers, containing elaborations of the
mathematical aspects of the formalism and applications to new problems [7, 8, 9]. It became clear that
wave mechanincs and matrix mechanics gave identical results, also in problems other than the
description of the hydrogen atom. And of course the question arose: what do these theories, founded
on completely different conceptual assumptions, have in common? Schrodinger [10] investigated the
similarities of matrix mechanics and wave mechanics, and could show that indeed they will lead to
similar results in all conceivable situations.

The mystery of how such conceptually completely different theories, expressed in formalism
formulated by means of a completely different mathematical appratus, could give rise to identical
results was only completely understood however after John von Neumann formulated the operator
algebra version of quantum mechanics in 1932 [11]. That is also the place where Hilbert space, as a
mathematical structure, was introduced into the formulation of quantum mechanics.

References

N~

W. Heisenberg, "Der Teil un das Ganze", Piper, Munich, (1969).

&

W. Heisenberg, Zeitschr. Phys., 33, 879, (1925).

a

M. Born and P. Jordan, Zeitschr. Phys., 34, 858, (1925).
8. P.A.M. Dirac, Proc. Roy. Soc. A, 109642, (1925).
9.

10. W. Pauli, Zeitschr. Phys., 36, 336, (1926).
11.

12. E. Schrodinger, Ann. der Phys., 79361, (1926).
13.



Wave Mechanics
Schrodinger (1926; age 38)

The Schrodinger Equation

di
Hy = —in %Y
Y= —th

Differential equation formulation
H is an operator
| is a function

Ej is a number



Schrodinger: Life and Thought By Walter Moore

A few days before Christmas, 1925, Schrodinger, a Viennese-born professor of physics
at the University of Zurich, took off for a two-and-a-half-week vacation at a villa in the Swiss
Alpine town of Arosa. Leaving his wife in Zurich, he took along de Broglie's thesis, an old
Viennese girlfriend (whose identity remains a mystery) and two pearls. Placing a pearl in
each ear to screen out any distracting noise, and the woman in bed for inspiration,
Schrodinger set to work on wave mechanics. When he and the mystery lady emerged
from the rigors of their holiday on Jan. 9, 1926, the great discovery was firmly in hand.

Schrodinger's wave equation, published only a few weeks later, was immediately accepted
as "a mathematical tool of unprecedented power in dealing with problems of the structure of
matter," according to Mr. Moore. By 1960, more than 100,000 scientific papers had
appeared based on the application of the equation. Schrodinger lavishly thanked his
physicist friend Hermann Weyl for his help with the mathematics. (He was perhaps
indebted to Weyl for an even greater favor: Weyl regularly bedded down Schrodinger's
wife, Anny, so that Schrodinger was free to seek elsewhere the erotic inspiration he needed
for his work.) Three more papers followed in quick succession, each an arrow to the hearts of
the likes of Heisenberg, Born and Bohr, who had labored so long and so unsuccessfully on
the problem. Schrodinger's equations were easy for physicists to solve. More important,
for the first time, one could visualize what was happening to particles in the atom.

The physical basis of Schrodinger's theory was this: Ordinarily, one can think of a particle as
a dot; but one should really visualize it as a little clump of waves, a "standing wave" in
today's parlance. Don't bother thinking of electrons as particles, Schrodinger said, and forget
about this quantum-leap business. Just apply rules of wave interactions. Beyond
constructing a mechanism for particle interactions, Schrodinger linked the quantum world of
the microscopic to the classical world of macroscopic objects. Waves now existed,
figuratively speaking, in atoms as well as in oceans. Physicists could understand waves,
which they had endlessly studied. Schrodinger's wave mechanics saved quantum theory
and at the same time threatened its underpinnings. It utilized continuous phenomena,
waves, to explain the discontinuous quantum world of the atom.

For this, Schrodinger earned the Nobel Prize in Physics (in 1933) and the undying enmity of
the great Werner Heisenberg. Schrodinger had destroyed Heisenberg's precious matrices.
Schrodinger was old. He was an outsider from Zurich, not part of the Gottingen-
Copenhagen quantum clique. Worst of all, he was right. The clique felt compelled to
retaliate. Pauli referred to Schrodinger's views as "Zurich superstitions." Heisenberg was
less charitable, calling the theory "abominable" and worse. Heisenberg would later eat his
words. In 1927 he incorporated Schrodinger's wave functions as an integral part of his
uncertainty principle.

How does one explain Schrodinger's sudden burst of genius, uncommon even in that
post-World War | era of uncommon geniuses? The man appears to have been
extraordinarily common. The picture of Schrodinger that emerges from Mr. Moore's book is
one of a conceited, selfish, childish, hopelessly middle-class nerd, one who worried about
his awards and medals and was obsessed with his pension and salary.
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THE LONE RANGER OF QUANTUM MECHANICS

By DICK TERESI; Dick Teresi is the co-author of '"The Three-Pound Universe'' and the forthcoming '"Would the Buddha
Wear a Walkman?,'"' about Eastern mysticism and Western technology.

SCHRODINGER

Life and Thought.

By Walter Moore.

Illustrated. 513 pp. New York:
Cambridge University Press. $39.50.

Theoretical physicists are the shooting stars of science. They do their best work in their 20's, then seemingly
burn out. Theorists commonly retire, intellectually speaking, by their 30's to become "elder statesmen" of
physics. Four of the giants of quantum mechanics - Paul Dirac, Werner Heisenberg, Wolfgang Pauli and
Niels Bohr - all crafted their greatest theories as very young men. (Dirac and Heisenberg, in fact, were
accompanied by their mothers to Stockholm to accept their Nobel Prizes.) Dirac summed up the
phenomenon in a poem he once wrote, the sentiment of which is that a physicist is better off dead once past
his 30th birthday.

How, then, does one explain Erwin Schrodinger? At the age of 38, positively geriatric for a theorist,
Schrodinger changed forever the face of physics with four exquisite papers, all written and published in a
six-month period of theoretical research that is without parallel in the history of science. During this time he
discovered wave mechanics, which greatly accelerated the progress of quantum theory. J. Robert
Oppenheimer called Schrodinger's theory "perhaps one of the most perfect, most accurate, and most lovely
man has discovered," and the great physicist and mathematician Arnold Sommerfeld said wave mechanics
"was the most astonishing among all the astonishing discoveries of the twentieth century."

Yet, until this flurry of activity, Schrodinger was nothing more than a competent, undistinguished physicist
who had revealed no hint of his extraordinary brilliance early in his career. After his great discovery, he
never again exhibited this brilliance. And in the 1920's world of theoretical physics in which collaboration
was the norm, Schrodinger chose to work alone. Moreover, he had no love for the branch of physics he had
saved. He was the Lone Ranger of quantum mechanics - a stranger who rode into town, saw a problem,
solved it, then virtually rode away from it all.

Walter Moore has written an admirable book about this intriguing man. Mr. Moore, an emeritus professor of
physical chemistry at the University of Sydney, Australia, and the author of the textbook "Physical
Chemistry," sets out to do more than chronicle Schrodinger's life and work. He attempts to find the roots of
genius in a man's life; in this case, he is searching for the secret behind the greatest six-month burst of
creativity in scientific history.

By 1925 quantum theory had already modified, if not supplanted, the classical Newtonian view that

everything was a continuum: that energy could be emitted in an infinite range of amounts, that light
undulated in continuous waves, and so forth. Quantum theory, on the other hand, held that everything is
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quantized, or expressed in multiples of a basic unit. Energy and matter are distributed in discrete amounts;
you must have multiples of certain minimum quantities. The universe is lumpy - a pile of rice as opposed to
a scoop of mashed potatoes. Niels Bohr had extrapolated this theory to the arena of the atom. The electrons
in an atom, he said, occupy quantized orbits. They can leap from one fixed orbit to another, but may not rest
between these states. This made the theorists uneasy. Where, for instance, do the electrons go between
orbits? And what are the rules that govern their quantum leaps?

Enter Werner Heisenberg, at the age of 24 already considered, next to Einstein, the most brilliant physicist
in the world. Heisenberg, with help from Max Born and Pascual Jordan, came up with a matrix theory,
which supposedly explained the travels of the electron by a complex form of mathematics called matrices.
There remained some problems, however. Heisenberg's solution did not allow one to visualize what was
happening inside the atom. Also, the smartest physicists in the world found the equations impossible to
solve.

Along came Louis de Broglie. This young French physicist presented a most unusual thesis for his doctoral
degree at the University of Paris. He put forth the proposition that, at certain velocities, an electron behaves
more like a wave than a particle. De Broglie's thesis examiners couldn't make head or tail out of this concept
and neither could most theorists, with the exception of two: Albert Einstein, who applauded it, and Erwin
Schrodinger, who exploited it.

A few days before Christmas, 1925, Schrodinger, a Viennese-born professor of physics at the University of
Zurich, took off for a two-and-a-half-week vacation at a villa in the Swiss Alpine town of Arosa. Leaving
his wife in Zurich, he took along de Broglie's thesis, an old Viennese girlfriend (whose identity remains a
mystery) and two pearls. Placing a pearl in each ear to screen out any distracting noise, and the woman in
bed for inspiration, Schrodinger set to work on wave mechanics. When he and the mystery lady emerged
from the rigors of their holiday on Jan. 9, 1926, the great discovery was firmly in hand.

Schrodinger's wave equation, published only a few weeks later, was immediately accepted as "a
mathematical tool of unprecedented power in dealing with problems of the structure of matter," according to
Mr. Moore. By 1960, more than 100,000 scientific papers had appeared based on the application of the
equation. Schrodinger lavishly thanked his physicist friend Hermann Weyl for his help with the
mathematics. (He was perhaps indebted to Weyl for an even greater favor: Weyl regularly bedded down
Schrodinger's wife, Anny, so that Schrodinger was free to seek elsewhere the erotic inspiration he needed
for his work.) Three more papers followed in quick succession, each an arrow to the hearts of the likes of
Heisenberg, Born and Bohr, who had labored so long and so unsuccessfully on the problem. Schrodinger's
equations were easy for physicists to solve. More important, for the first time, one could visualize what was
happening to particles in the atom.

The physical basis of Schrodinger's theory was this: Ordinarily, one can think of a particle as a dot; but one
should really visualize it as a little clump of waves, a "standing wave" in today's parlance. Don't bother
thinking of electrons as particles, Schrodinger said, and forget about this quantum-leap business. Just apply
rules of wave interactions. Beyond constructing a mechanism for particle interactions, Schrodinger linked
the quantum world of the microscopic to the classical world of macroscopic objects. Waves now existed,
figuratively speaking, in atoms as well as in oceans. Physicists could understand waves, which they had
endlessly studied. Schrodinger's wave mechanics saved quantum theory and at the same time threatened its
underpinnings. It utilized continuous phenomena, waves, to explain the discontinuous quantum world of the
atom.

For this, Schrodinger earned the Nobel Prize in Physics (in 1933) and the undying enmity of the great
Werner Heisenberg. Schrodinger had destroyed Heisenberg's precious matrices. Schrodinger was old. He
was an outsider from Zurich, not part of the Gottingen-Copenhagen quantum clique. Worst of all, he was
right. The clique felt compelled to retaliate. Pauli referred to Schrodinger's views as "Zurich superstitions."
Heisenberg was less charitable, calling the theory "abominable" and worse. Heisenberg would later eat his
words. In 1927 he incorporated Schrodinger's wave functions as an integral part of his uncertainty principle.
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How does one explain Schrodinger's sudden burst of genius, uncommon even in that post-World War I era
of uncommon geniuses? The man appears to have been extraordinarily common. The picture of Schrodinger
that emerges from Mr. Moore's book is one of a conceited, selfish, childish, hopelessly middle-class nerd,
one who worried about his awards and medals and was obsessed with his pension and salary. (He didn't
accept an offer from Princeton University because it wouldn't give him parity with Einstein.) He even drove
a BMW. Mr. Moore is exhaustive in his research of Schrodinger's life, but, as in a scientific paper, he is
heavy on data and parsimonious in his explanation of that data. Mr. Moore is a chemist and - if you'll
forgive the cheap shot - the book is more of a quantitative analysis than a deep psychological portrait. On
the other hand, his objectivity allows him to study candidly, and nonjudgmentally, two major obsessions of
Schrodinger's life - the Eastern philosophy of Vedanta and sex.

Mr. Moore informs us that Schrodinger kept a series of "little black books" in which he recorded the names
of all his loves with a code to indicate "the denouement," as the author puts it, of each affair. He unbuttons
Schrodinger's code and reveals a life of stunning promiscuity. Schrodinger admitted he detested his wife,
Anny, sexually, and took on a series of mistresses, three of whom bore him illegitimate daughters.
Immediately after his triumph in wave mechanics, he agreed to tutor 14-year-old twin girls named Withi
and Ithi Junger. Schrodinger called the latter "Ithy-bitty" and regularly fondled her during their math
lessons. He finally seduced her when she was 17, assuring her she wouldn't get pregnant. She did,
Schrodinger immediately lost interest in her, and the girl underwent a disastrous abortion that left her
sterile. He then took on Hilde March, the wife of his assistant Arthur March, as his mistress, and she bore
him a daughter. March, ever the dutiful assistant, agreed to be named the father, while his wife moved
eventually into the Schrodinger household to serve as Schrodinger's "second wife." Well, the great man's
sordid affairs go on and on, and Mr. Moore faithfully serves up all of the titillating details. He concludes that
Schrodinger needed "tempestuous sexual adventures" to inspire his great discoveries. Unfortunately, the
notebook for the critical year 1925 has disappeared, so the woman who erotically guided Schrodinger to his
famous wave equation, "like the dark lady who inspired Shakespeare's sonnets," the biographer tells us,
"may remain forever mysterious."

As for Vedanta, the recent rash of new-age physics writers will be chagrined to learn that Schrodinger
himself rejected the idea that philosophical conclusions can be drawn from wave mechanics or any work in
theoretical physics. But Mr. Moore believes that Vedanta - which holds that through the Self one can
comprehend the essence of the universe - may have been instrumental in Schrodinger's discovery of wave
mechanics. Much has been written about Schrodinger's insistence that the electron is not a particle; it doesn't
just behave like a wave, he said, but rather is a wave, as real as a radio wave or an ocean wave. This belief
of Schrodinger's, soon discarded by other physicists, is played down by Mr. Moore, who points out that
Schrodinger actually wavered on this point very early on.

After wave mechanics, Schrodinger attempted, and failed (as did Einstein), to forge a unified field theory,
but he did write a bizarre and wonderful book entitled "What Is Life?" in which he was the first to suggest
that a chromosome is nothing more than a message written in code. The book inspired at least two young
scientists to seek careers in biology - James Watson and Francis Crick, who eventually were given the
Nobel Prize in Physiology or Medicine for decoding DNA.

Schrodinger never accomplished his greatest dream, to reinstate classical physics with its almost Vedantic
continuity over the lumpiness of quantum mechanics. Perhaps as a revenge against his quantum enemies, he
did leave behind a paradox that torments scientists to this day. The paradox of Schrodinger's cat links the
squishy quantum microworld, with its statistical probabilities that replace cause and effect, to the Newtonian
macroworld of everyday objects that obey hard-and-fast rules of causality. Put a cat in a box, Schrodinger
said, with a flask of lethal acid. In a Geiger tube, place a small quantity of radioactive material, so little that
in the course of an hour one atom has a 50-50 chance of disintegrating, setting off the Geiger counter, which
will trigger a hammer that shatters the flask of acid that will kill the cat. So, after one hour is the cat dead or
alive? Schrodinger said that if one used the quantum wave function to describe the entire system, "the living
and the dead cat" would be "smeared out (pardon the expression) in equal parts." Schrodinger intended his
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paradox as a sarcastic comment on quantum probability or "blurred variables." One can resolve the
uncertainty, he explained, by looking in the box.

Schrodinger himself, however, must always remain somewhat blurred, despite Walter Moore's heroic efforts
in this important book about the century's most enigmatic scientist. For the average reader, "Schrodinger"
may be tough going, but it serves up a wonderfully frank and unglamorized, albeit narrow, history of the
development of quantum mechanics. Much of the science in this book is only opaquely explained, but
explaining science is not the book's main function. It is an attempt to analyze a soul, and in that respect, it
surpasses even "The Double Helix" by James Watson in its examination of the most visceral drives of a
great scientist.

Erwin Schrodinger in 1911 during his one-year military service inthe army. (From "Schrodinger)
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Dirac at the University of Wisconsin

Paul Adrien Maurice Dirac (1902-1984)
From: Dirac: A Scientific Biography by Helge Kragh

Dirac’s introversive style and his interest in abstract theory were rather foreign to the
scientists at the University of Wisconsin. They recognized his genius but had difficulties
in comprehending his symbolic version of quantum theory. The Americans also found
him a bit of a strange character. A local newspaper, the Wisconsin State Journal,
wanted to interview the visiting physicist from Europe and assigned this task to a
humorous columnist known as ‘Roundy’. His encounter with Dirac is quoted here

in extenso because it not only reveals some characteristic features of Dirac’s
personality but also is an amusing piece of journalism:

| been hearing about a fellow they have up at the U. this spring—a mathematical physicist,
or something, they call him—who is pushing Sir Isaac Newton, Einstein and all the others
off the front page. So | thought | better go up and interview him for the benefit of the
State Journal readers, same as | do all the other top notchers. His name is Dirac and

he is an Englishman. He has been giving lectures for the intelligensia of the math and
physics department—and a few other guys who got in by mistake.

So the other afternoon | knocks at the door of Dr. Dirac’s office in Sterling Hall and a
pleasant voice says, “Come in.” And | want to say here and now that this sentence
‘come in” was about the longest one emitted by the doctor during our interview.

He sure is all for efficiency in conversation. It suits me. | hate a talkative guy.

| found the doctor a tall youngish-looking man, and the minute | see the twinkle in his
eye | knew | was going to like him. His friends at the U. say he is a real fellow too and
good company on a hike — if you can keep him in sight, that is.

The thing that hit me in the eye about him was that he did not seem to be at all busy.
Why if | went to interview an American scientist of his class—supposing | could find
one—l would have to stick around an hour first. Then he would blow in carrying

a big briefcase, and while he talked he would be pulling lecture notes, proof, reprints,
books, manuscripts, or what have you, out of his bag. But Dirac is different. he seems
to have all the time there is in the world and his heaviest work is looking out the window.
If he is a typical Englishman it’s me for England on my next vacation!

Then we sat down and the interview began. “Professor,” says I, “I notice you have
quite a few letters in front of your last name. Do they stand for anything in particular?”

“No.” says he.

“You mean | can write my own ticket?”

“Yes,” says he.

“Will it be all right if | say that P. A. M. stands for Poincare Aloysius Mussolini?”

“Yes,” says he.



‘Fine,” says |, “We are getting along great! Now doctor will you give me in a few
words the low-down on all your investigations?”

“No,” says he.

“Good,” says . “Will it be all right if | put it this way—‘Professor Dirac solves all

the problems of mathematical physics, but is unable to find a better way of figuring
out Babe Ruth’s batting average’?”

“Yes,” says he.

“What do you like best in America?” says |.

“Potatoes,” says he.

“Same here,” says |. “What is your favorite sport?”

“Chinese chess,” says he.

That knocked me cold! It sure was a new one to me! Then | went on: “Do you go
to the movies?”

“Yes,” says he.

“When?” says |.

“In 1920—perhaps also 1930,” says he.

“Do you like to read the Sunday comics?”

“Yes,” says he, warming up a bit more than usual.

“This is the most important thing yet Doctor,” says I. “It shows that me and you are
more alike than | thought. And now | want to ask you something more: They tell me
that you and Einstein are the only two real sure-enough high-brows and the only
ones who can really understand each other. | won’t ask you if this is straight stuff for
| know you are too modest to admit it. But | want to know this—Do you ever run
across a fellow that even you can’t understand?”

“Yes,” says he.

“This will make great reading for the boys down at the office,” says I. “do you mind
releasing to me who he is?”

“Weyl,” says he.

The interview came to a sudden end just then for the doctor pulled out his watch and
| dodged and jumped for the door. But he let loose a smile as we parted and | knew
that all the time he had been talking to me he was solving some problem no one
else could touch.

But if that Professor Weyl ever lectures in this town again | sure am going to take a
try at understanding him! A fellow ought to test his intelligence once in a while.



Atrue story about the physcist/mathematician Paul Dirac.

Dirac was apparently a very hard person to get along with. Soon after he was awarded the
Nobel Prize in Physics, Dirac went on a speaking tour of the country, visiting different
universities and talking about his research. In those days, it was more convenient for him to
travel by car, so he had a big car and a driver who took him from one speaking engagement to
the next.

Dirac and his driver got to be very good friends after awhile and at one point, his driver
remarked, "You know, | am so sick and tired of hearing the same lecture over and over again. |
easily give it myself!"

Dirac thought about this for a moment, and then decided that his driver could give the next
speaking engagement at U. Michigan in Ann Arbor, Michigan. Before reaching the university,
Dirac and his driver switched clothes. When the reached the university, the driver went up to
the podium and delivered Dirac's seminar flawlessly. After he was finished, an upstart
graduate student asked a question, snottily pointing out a perceived mistake in the talk.

The Driver gave the student a long look of contempt and then exclaimed, "That question is so
stupid that even my driver could answer it!", and Dirac stepped forward and proceeded to do
sO.

Today, if you go to U Mich and see a picture on the wall of Dirac and his driver, you would
have to know this story to realize that the two are switched.



Path Integral Formulation

Sum over Histories Formulation
Lagrangian Formulation
Amplitude Formulation

Feynman (1941; age 23)

The probability to go from a to b is the square
of an amplitude

P(b,a) =| Amp(b,a) |?

The amplitude is the weighted sum over all
possible ways to go to b from a

Amp(b, a) = constant Z exp(iS/h)

all paths

S is the classical action



I went to a beer party in the Nassau Tavern in Princeton. There was a
gentleman, newly arrived from Europe (Herbert Jehle) who came and sat
next to me. Europeans are much more serious than we are in America
because they think a good place to discuss intellectual matters is a beer
party. So he sat by me and asked, "What are you doing" and so on, and I
said, "I'm drinking beer." Then I realized that he wanted to know what
work I was doing and I told him I was struggling with this problem, and I
simply turned to him and said "Listen, do you know any way of doing
quantum mechanics starting with action--where the action integral comes
into the quantum mechanics?" "No," he said, "but Dirac has a paper in
which the Lagrangian, at least, comes into quantum mechanics. I will show
it to you tomorrow."

Next day we went to the Princeton Library (they have little rooms on the
side to discuss things) and he showed me this paper. Dirac's short paper in
the Physikalische Zeitschrift der Sowjetunion claimed that a mathematical
tool which governs the time development of a quantal system was
"analogous" to the classical Lagrangian.

Professor Jehle showed me this; I read it; he explained it to me, and I said,
"What does he mean, they are analogous; what does that mean,
analogous? What is the use of that?" He said, "You Americans! You
always want to find a use for everything!" I said that I thought that Dirac
must mean that they were equal. "No," he explained, "he doesn't mean
they are equal." "Well," I said, "let's see what happens if we make them
equal."

So, I simply put them equal, taking the simplest example . . . but soon
found that I had to put a constant of proportionality A in, suitably adjusted.
When I substituted . . . and just calculated things out by Taylor-series
expansion, out came the Schrodinger equation. So I turned to Professor
Jehle, not really understanding, and said, "Well you see Professor Dirac
meant that they were proportional." Professor Jehle's eyes were bugging
out -- he had taken out a little notebook and was rapidly copying it down
from the blackboard and said, "No, no, this is an important discovery."

Feynman's thesis advisor, John Archibald Wheeler (age 30), was equally
impressed. He believed that the amplitude formulation of quantum
mechanics--although mathematically equivalent to the matrix and wave
formulations--was so much more natural than the previous formulations
that it had a chance of convincing quantum mechanics's most determined
critic. Wheeler writes:



Visiting Einstein one day, | could not resist telling him about Feynman's
new way to express quantum theory. "Feynman has found a beautiful
picture to understand the probability amplitude for a dynamical system
to go from one specified configuration at one time to another specified
configuration at a later time. He treats on a footing of absolute equality
every conceivable history that leads from the initial state to the final
one, nho matter how crazy the motion in between. The contributions of
these histories differ not at all in amplitude, only in phase. And the phase
is nothing but the classical action integral, apart from the Dirac factor h.
This prescription reproduces all of standard quantum theory. How could
one ever want a simpler way to see what quantum theory is all about!

Doesn’t this marvelous discovery make you willing to accept the
quantum theory, Professor Einstein?"

Einstein replied in a serious voice, "l still cannot believe that God plays
dice. But maybe”, he smiled, “l have earned the right to make my
mistakes."

John Wheeler



Thus it would have pleased Richard to know (and perhaps he did know,
without my being aware of it) that there are now some indications that his
PhD dissertation may have involved a really basic advance in physical theory
and not just a formal development. The path integral formulation of quantum
mechanics may be more fundamental than the conventional one, in that there
is a crucial domain where it may apply and the conventional one may fail.
That domain is quantum cosmology.

For Richard’s sake (and Dirac’s too), | would rather like it to turn out that the
path integral method is the real foundation of quantum mechanics and thus of
physical theory. This is true despite the fact that, having an algebraic turn of
mind, | have always personally preferred the operator approach, and despite
the added difficulty, in the absence of a Hilbert-space formalism, of
interpreting the wavefunction or density matrix of the universe (already a bit
difficult to explain in any case, as anyone attending my classes will attest). If
notions of transformation theory, unitarity and causality really emerge from
the mist only after a fairly clear background metric appears (that metric itself
being the result of a quantum mechanical probabilistic process), then we may
have a little more explaining to do. Here Dick Feynman’s talents and clarity of
thought would have been a help.

Murray Gell-Mann



Thirty-one years ago, Dick Feynman told me
about his “sum over histories” version of
quantum mechanics.

“The electron does anything it likes,” he said.
‘“It just goes in any direction at any speed, . ..
however it likes, and then you add up the
amplitudes and it gives you the wave function.”

| said to him, “You’re crazy.” But he wasn’t.

Freeman Dyson



The Five Stages to Learning Quantum Mechanics

You don’t know how to calculate
You don’t know what it means
It doesn’t bother you (now)

You don’t know how to calculate
You don’t know what it means
It bothers you (soon)

You know how to calculate
You don’t know what it means
It bothers you (end of this class)

You know how to calculate

You don’t know what it means

It doesn’t bother you (most physicists)
You know how to calculate

You know what it means

It doesn’t bother you (Nirvana)

or maybe it still does (Samsara)

from the Preface to the Virtual Book



Nine formulations of quantum mechanics

Daniel F. Styer,? Miranda S. Balkin, Kathryn M. Becker, Matthew R. Burns,
Christopher E. Dudley, Scott T. Forth, Jeremy S. Gaumer, Mark A. Kramer,
David C. Oertel, Leonard H. Park, Marie T. Rinkoski, Clait T. Smith,

and Timothy D. Wotherspoon

Department of Physics, Oberlin College, Oberlin, Ohio 44074

(Received 18 July 2001; accepted 29 November 2001)

Nine formulations of nonrelativistic quantum mechanics are reviewed. These are the wavefunction,
matrix, path integral, phase space, density matrix, second quantization, variational, pilot wave, and

Hamilton—Jacobi formulations.

Also mentioned are

the many-worlds and transactional

interpretations. The various formulations differ dramatically in mathematical and conceptual

overview, yet each one makes identical predictions for all experimental results.

Association of Physics Teachers.

[DOLI: 10.1119/1.1445404]

I. WHY CARE ABOUT VARIOUS FORMULATIONS?

A junior-level classical mechanics course devotes a lot of
time to various formulations of classical mechanics—
Newtonian, Lagrangian, Hamiltonian, least action, and so
forth (see Appendix A). But not a junior-level quantum me-
chanics course! Indeed, even graduate-level courses empha-
size the wavefunction formulation almost to the exclusion of
all variants. It is easy to see why this should be so—Ilearning
even a single formulation of quantum mechanics is difficult
enough—yet at the same time students must wonder why it
is so important to learn several formulations of classical me-
chanics but not of quantum mechanics. This article surveys
nine different formulations of quantum mechanics. It is a
project of the Spring 2001 offering of Oberlin College’s
Physics 412, “Applied Quantum Mechanics.”

Why should one care about different formulations of me-
chanics when, in the end, each provides identical predictions
for experimental results? There are at least three reasons.
First, some problems are difficult in one formulation and
easy in another. For example, the Lagrangian formulation of
classical mechanics allows generalized coordinates, so it is
often easier to use than the Newtonian formulation. Second,
different formulations provide different insights.! For ex-
ample, the Newtonian and least action principles provide
very different pictorializations of “what’s really going on” in
classical mechanics. Third, the various formulations are vari-
ously difficult to extend to new situations. For example, the
Lagrangian formulation extends readily from conservative
classical mechanics to conservative relativistic mechanics,
whereas the Newtonian formulation extends readily from
conservative classical mechanics to dissipative classical me-
chanics. In the words of the prolific chemist E. Bright
Wilson:?

“T used to go to [J. H. Van Vleck] for quantum me-
chanical advice and found him always patient and
ready to help, sometimes in a perplexing flow of mixed
wave mechanical, operator calculus, and matrix lan-
guage which often baffled this narrowly Schrodinger-
equation-oriented neophyte. I had to learn to look at
things in these alternate languages and, of course, it
was indispensable that I do so.”

Any attempt to enumerate formulations must distinguish
between ‘‘formulations” and ‘“‘interpretations” of quantum
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mechanics. Our intent here is to examine only distinct math-
ematical formulations, but the mathematics of course influ-
ences the conceptual interpretation, so this distinction is by
no means clear cut,3 and we realize that others will draw
boundaries differently. Additional confusion arises because
the term “Copenhagen interpretation” is widely used but
poorly defined: For example, of the two primary architects of
the Copenhagen interpretation, Werner Heisenberg main-
tained that™ “observation of the position will alter the mo-
mentum by an unknown and undeterminable amount,”
whereas Niels Bohr’® “warned specifically against phrases,
often found in the physical literature, such as ‘disturbing of
phenomena by observation.” ”

II. CATALOG OF FORMULATIONS

A. The matrix formulation (Heisenberg)

The matrix formulation of quantum mechanics, developed
by Werner Heisenberg in June of 1925, was the first formu-
lation to be uncovered. The wavefunction formulation, which
enjoys wider currency today, was developed by Erwin Schro-
dinger about six months later.

In the matrix formulation each mechanical observable
(such as the position, momentum, or energy) is represented
mathematically by a matrix (also known as “an operator”).
For a system with N basis states (where in most cases N
=o0) this will be an NX N square Hermitian matrix. A quan-
tal state |¢) is represented mathematically by an NX 1 col-
umn matrix.

Connection with experiment. Suppose the measurable

quantity A is represented by the operator A. Then for any
function f(x) the expectation value for the measurement of
f(A) in state |#) is the inner product

(UIF(A)] ). (1

Because the above statement refers to f(.A) rather than to
A alone, it can be used to find uncertainties [related to
f(A)=A2] as well as expectation values. Indeed, it can even
produce the eigenvalue spectrum, as follows:® Consider a set

of real values a, ,a, ,as ,..., and form the non-negative func-
tion
- 2 2 2
gx)=(x—a;)"(x—ay)"(x—az)™ . 2
© 2002 American Association of Physics Teachers 288



Oberlin’s 9 Formulations

1 Matrix Mechanics (Heisenberg)

2 Wave Mechanics (Schrodinger)
Transformation Theory (Dirac)

3 Path Integral (Feynman)

4 Phase Space (Wigner)

5 Density Matrix

6 Second Quantization

7 Variational

8 Pilot Wave (Bohm)

9 Hamilton-Jacoby
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The QM professor’s escape:

I have taught graduate courses in quantum
mechanics at Columbia, Stanford, Oxford, and
Yale, and for almost all of them have dealt with
measurement in the following manner. On
beginning the lectures | told the students,
“You must first learn the rules of calculation

in quantum mechanics, and then | will discuss
the theory of measurement and discuss the
meaning of the subject.” Almost invariably, the
time allotted to the course ran out before | had
to fulfill my promise.

Willis Lamb



Dedication

To all students of quantum mechanics past, present, and future, but
especially to the first students who will learn quantum mechanics not as a
mystery which cannot be understood, but as reality which must be
experienced, explored, and harnessed.
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