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large number of such repetitions into our teaching. It may
bore a few poor students, but almost all benefit.

IX. THE IMPORTANCE OF CALCULATING WITH
NUMBERS

The world has changed quite a bit in the past 30 or 40
years. When I was an undergraduate we learned that there
are only four angles in this world, namely, 30°, 45°, 60°, and
90°. Furthermore, all measurements are divisible by 2, of-
ten by 3 and 4, and, curiously, not infrequently by 49. It
came as something of a surprise, when I embarked on ex-
perimental research, to find that most measurements are
embarrassingly inelegant numbers, and that angles, as of-
ten as not, wander somewhere between those canonical val-
ues we learned in class.

I understand why my student problems had such
remarkably simple numbers. It was just that nobody liked
long division, and the alternatives were few.

Of course, we did have pocket calculators, or, more ac-
curately, hip calculators. But they were hard to use, re-
quired a fair amount of manual dexterity to get results ac-
curate to three figures. They were slow, and very expensive.
My present shirt pocket calculator, whose batteries have
already lasted two years, not only gives me nine figures and
hyperbolic functions, but even does arithmetic in hexadeci-
mal. It cost $14.29. When students grumble about the ex-
pense, I delight to tell them that my 1945 log log duplex trig
calculator, required on every test, cost me $176 (in 1985
dollars, using an average inflation rate of 5% per annum).

What is spin?

Hans C. Ohanian

Rensselaer Polytechnic Institute, Troy, New York 12180

My point is this. Calculating power today is dirt cheap.
It costs far less than textbooks and it lasts from one course
to another. It gives us the opportunity to teach the physics
of the real world rather than the physics of the textbook.
Our students, furthermore, at least our technically inclined
students, will spend their lives making use of these calcula-
tors.

This needs to be recognized in what we do in our calcu-
lus-based physics. Thirty, 60, and 90 ought to be reduced to
their proper place. In my classes, tests, if not textbook
problems, have angles like 27.6°. Automobiles have speeds
of 37 km/h. Electrons move in orbits of radius 0.26 centi-
meters. The only difficulties students have with this is that
too frequently their calculations seem to be accurate to one
part in ten to the ninth.

All this is fine for the science and engineering students.
What about the liberal arts students? Years ago, I would
not have dreamed of asking them to buy slide rules. I hesi-
tate now to ask them to have calculators, yet I note that
almost all do. I continue to give them problems with nice
numbers, yet I find them using a calculator to divide 8 by 4.
I’m beginning to think that they too should always deal
with real-world numbers. If they have to use a calculator to
divide 8 by 4, they might as well be dividing 8.63 by 4.79.

By now I have run the device of numbers into the
ground. It has given me a handy framework to air my grie-
vances about and my hopes for physics teaching. I hope I
will hear more about these dirty problems of physics teach-
ing in less than ideal circumstance from the rest of you. Let
me thank the AAPT once again for giving me this award.
Thank you all for hearing me out.

{Received 5 February 1984; accepted for publication 1 May 1985)

According to the prevailing belief, the spin of the electron or of some other particle is a mysterious
internal angular momentum for which no concrete physical picture is available, and for which
there is no classical analog. However, on the basis of an old calculation by Belinfante [ Physica 6,
887 (1939)], it can be shown that the spin may be regarded as an angular momentum generated
by a circulating flow of energy in the wave ficld of the electron. Likewise, the magnetic moment
may be regarded as generated by a circulating flow of charge in the wave field. This provides an
intuitively appealing picture and establishes that neither the spin nor the magnetic moment are
“internal”—they are not associated with the internal structure of the electron, but rather with the
structure of its wave field. Furthermore, a comparison between calculations of - angular
momentum in the Dirac and electromagnetic fields shows that the spin of the electron is entirely
analogous to the angular momentum carried by a classical circularly polarized wave.

I. INTRODUCTION

When Goudsmit and Uhlenbeck proposed the hypothe-
sis of the spin of the electron, they had in mind a mechani-
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cal picture of the electron as a small rigid body rotating
about its axis. Such a picture had earlier been considered by
Kronig and discarded on the advice of Pauli, Kramers, and
Heisenberg, who deemed it a fatal flaw of this picture that

© 1986 American Association of Physics Teachers 500



the speed of rotation—calculated from the magnitude of
the spin and a plausible estimate of the radius of the elec-
tron—was in excess of the speed of light. However, the
great success of the spin hypothesis in explaining the Zee-
man effect and the doublet structure of spectral lines quick-
ly led to its acceptance.! Since the naive mechanical picture
of spin proved untenable, physicists were left with the con-
cept of spin minus its physical basis, like the grin of the
Cheshire cat. Pauli pontificated that spin is “an essentially
quantum-mechanical 2property,...a classically not describ-
able two-valuedness”* and he insisted that the lack of a
concrete picture was a satisfactory state of affairs:

After a brief period of spiritual and human confusion,
caused by a provisional restriction to ‘Anschaulichkeit’,
a general agreement was reached following the substitu-
tion of abstract mathematical symbols, as for instance
psi, for concrete pictures. Especially the concrete picture
of rotation has been replaced by mathematical charac-
teristics of the representations of rotations in three-di-
mensional space.’

Thus physicists gradually came to regard the spin as an
abstruse quantum property of the electron, a property not
amenable to physical explanation.

Judging from statements found in modern textbooks on
atomic physics and quantum theory, one would think our
understanding of spin (or the lack thereof) has not made
any progress since the early years of quantum mechanics.
The spin is usually said to be a nonorbital, “internal,” “in-
trinsic,” or “inherent” angular momentum (the words are
often used interchangeably, although they should not be),
and it is often treated as an irreducible entity that cannot be
explained further. Sometimes the (unsubstantiated) sug-
gestion is made that the spin is due to an (unspecified)
internal structure of the electron.* And sometimes the con-
solation is offered that the spin arises in a natural way from
Dirac’s equation® or from the analysis of the representa-
tions of the Lorentz group. It is true that the Dirac equa-
tion contains a wealth of information about spin: The equa-
tion tells us that the spinor wavefunctions are indeed
endowed with a spin angular momentum of #i/2, it supplies
the mathematical description of the kinematics of a free-
electron or other particle of spin one-half, and—in con-
junction with the principle of minimal coupling—it sup-
plies the equations governing the dynamics of a charged
particle immersed in a electromagnetic field, equations
which directly yield the correct value of the gyromagnetic
ratio for the electron. It is also true that the analysis of the
representations of the Lorentz group is very informative:
The analysis tells us that the quantum-mechanical wave-
functions must be certain types of tensors or spinors char-
acterized by a value of the mass and (if the mass is not
negative) an integer or half-integer value of the spin. But in
all of this the spin merely plays the role of an extra, nonor-
bital angular momentum of unknown etiology. Thus the
mathematical formalism of the Dirac equation and of
group theory demands the existence of the spin to achieve
the conservation of angular momentum and to construct
the gencrators of the rotation group, but fails to give us any
understanding of the physical mechanism that produces
the spin.

The lack of a concrete picture of the spin leaves a griev-
ous gap in our understanding of quantum mechanics. The
prevailing acquiescence to this unsatisfactory situation be-
comes all the more puzzling when one realizes that the

501 Am. J. Phys., Vol. 54, No. 6, June 1986

means for filling this gap have been at hand since 1939,
when Belinfante® established that the spin could be regard-
ed as due to a circulating flow of energy, or a momentum
density, in the electron wave field. He established that this
picture of the spin is valid not only for electrons, but also
for photons, vector mesons, and gravitons—in all cases the
spin angular momentum is due to a circulating energy flow
in the fields. Thus contrary to the common prejudice, the
spin of the electron has a close classical analog: It is an
angular momentum of exactly the same kind as carried by
the fields of a circularly polarized electromagnetic wave.
Furthermore, according to a result established by Gordon’
in 1928, the magnetic moment of the electron is due to the
circulating flow of charge in the electron wave field. This
means that neither the spin nor the magnetic moment are
internal properties of the electron—they have nothing to
do with the internal structure of the electron, but only with
the structure of its wave fieid.

Unfortunately, this clear picture of the physical origin of
the spin and of the magnetic moment has not received the
wide recognition it deserves, perhaps because neither Be-
linfante nor Gordon loudly proclaimed that their calcula-
tions provided a new physical explanation of the spin and
of the magnetic moment. These calculations are sometimes
reproduced in texts on quantum field theory,® but usually
without any commentary on their physical interpretation.
In the present paper, it is my objective to revive these for-
gotten explanations of the spin and the magnetic moment
in the hope that the intuitive picture of circulating energy
and charge will become part of the lore learned by all stu-
dents of physics. I want to emphasize that, in contrast to
some other attempts at explaining the spin,® the present
explanation is completely consistent with the standard in-
terpretation of quantum mechanics.

A crucial ingredient in Belinfante’s calculation of the
spin angular momentum is the use of the symmetrized en-
ergy-momentum tensor. It is well known that in a field
theory we can construct several energy-momentum ten-
sors, all of which satisfy the conservation law 3, T#* = 0,
and all of which yield the same net energy (f 7% d °x) and
momentum (§ T *° d>x) as the canonical energy-momen-
tum tensor. ' These diverse energy-momentum tensors dif-
fer by terms of the form 4, U***, which are antisymmetric
in the last two indices (U*** = — U*®V), and therefore
identically satisfy the conservation law d, d, U*"™* = 0. Be-
linfante showed that by a suitable choice of the term
a3, "™, it is always possible to construct a symmetrized
energy-momentum tensor (T#* =T"). The symme-
trized energy-momentum tensor has the distinctive advan-
tage that the angular momentum calculated directly from
the momentum density 7" *° is a conserved quantity (in the
absence of external torques). This means that the momen-
tum density gives rise to both orbital angular momentum
and spin angular momentum. Ifinstead of the symmetrized
energy-momentum tensor, we were to use the unsymme-
trized canonical energy-momentum tensor, then the mo-
mentum density would not give rise to the spin angular
momentum. This does not mean that the spin would vanish
from the theory—an examination of the conservation law
for angular momentum shows that the spin emerges as a
mysterious extra quantity that must be added to the orbital
angular momentum to achieve conservation—but the sim-
ple and clear physical mechanism underlying spin would
vanish. I will take it for granted that the symmetrized ener-
gy-momentum tensor is the correct energy-momentum
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electron:”!3
—ecPpy = — (eh/2mi) [§0, ¢ —
— (ehi/2m)d, (Yo™y). (20)

Here the first term is a convection current density associat-
ed with the translational motion of the electron. For an
electron in a state with orbital angular momentum, this
convection current density gives rise to an orbital magnetic
moment. The second term is a spin current density, which
is nonzero even in the rest frame of the electron.'* For ex-
ample, if the electron is in the state specified by Eq. (14),
the flow lines for the spin current are closed circles, as they
are for the momentum density, but of the opposite direc-
tion.'s Obviously, such a current will generate a magnetic
moment of the opposite direction as the spin.

To establish the general relationship between this mag-
netic moment and the spin, we decompose the spin current
density into two terms:

Ji=— f:—av(@a"a/:)

(3 DY)

efi . 5 ei d -
= 2.3 — = = (Po*° 21
5 s YU e ) (21
This can be rewritten as
s _va+%‘i 22)
where
M = — (efi/2m)y'Y oy (23)
and
P = (iefi/2mc) ¢! ay. (24)

Thus js is the sum of a magnetization current density
and a polarization current density. The former is associat-
ed with a magnetic moment per unit volume
M = — (e#i/2m)y'y°oy and the latter with an electric di-
pole moment per unit volume P = (iefi/2mc)y'’a ¢.
Equation (23) implies that the magnetic moment of the
electron is

=J'Md3x= —%j¢*wa¢d3x.

[ Alternatively, the magnetic moment can be calculated as
the moment of the magnetization current,

m= -;—J.XX(VXM)d’x.

(25)

(26)

An integration by parts shows that this expression is equi-
valent to Eq. (25).]

Comparing Eq. (25) with (18) we see that, apart
from the factor of 7" the magnetic moment coincides with
— e/m times the spin. More precisely, the magnctlc-mo-
ment operator coincides with — ey°/m times the spin op-
erator,

m,, = — (e/m))’os‘,IJ 27

This is, of course, the usual result for the magnetic moment
of the electron. The standard derivation'® of this result
does not proceed via the definitions (25) or (26) of the
magnetic moment; instead, it proceeds via the Dirac equa-
tion by investigating the response of the electron to an ex-
ternal magnetic field, a response that is found to have form
expected for a magnetic moment. Thus the standard deri-
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vation fails to provide a physical picture of the mechanism
underlying the magnetic moment. Incidentally, the stan-
dard derivation explicitly invokes the principle of minimal
coupling. This principle enters the above calculation impli-
citly, through the assumption that the relevant current
density is simply — eyy* ¢, rather than some more compli-
cated expression with, say, an extra term proportionat to
d, Yo** ¥ (such extra terms are required to account for the

“anomalous” magnetic moments of the proton and the
neutron).

Finally, what about the electric dipole moment, Eq.
(24)? In the nonrelativistic limit, ¥°a is an “odd” operator
whose matrix elements are of order 1/m. Hence P is of
order 1/m?, which must be neglected in the nonrelativistic
limit. This means that the electron has no electric dipole
moment in its own rest frame. However, a moving electron
has an electric dipole moment in the laboratory frame. This
electric dipole moment can be regarded as arising from the
relativistic transformation law for electromagnetic fields:
A moving magnetic moment gives rise to an electric mo-
ment (and vice versa).

V. CONCLUSIONS

The calculations in the preceding sections should lay to
rest the common misconception that spin is an essentially
quantum-mechanical property. What these calculations
show is that spin is essentially a wave property, but whether
the wave is classical or quantum mechanical is of secon-
dary importance. The only fundamental difference
between the spins of a classical wave and a quantum-me-
chanical wave is that the spin of the former is a continuous
macroscopic parameter, whereas the spin of the latter is
quantized and is represented by a quantum-mechanical op-
erator. The argument is often made that since the spin of a
quantum-mechanical particle—such as photon—has a
fixed magnitude, it is not possible to proceed to the classical
limit of large quantum numbers, and consequently the spin
must be regarded as a quantum property without classical
analog. But this argument is flawed: Although we cannot
proceed to the limit of large quantum numbsers for a single
particle, we can proceed to the limit of large occupation
numbers for a system of many particles. A circularly polar-
ized light wave is an example of a system in which the
classical macroscopic spin angular momentum arises from
the addition of a large number of quantum spins. Such a
classical limit is also possible for electrons, but we must
take the precaution of placing the electrons in different or-
bital states whenever we place them in the same spin state.
The Einstein—de Haas effect and the magnetization found
in permanent magnets involve classical limits brought
about by a large number of clectron spins and magnetic
moments.

The physical picture of spin presented in the preceding
sections has great intuitive appeal because it confirms our
deep prejudice that angular momentum ought to be due to
some kind of rotational motion. But the rotational motion
consists of a circulation of energy in the wave fields, rather
than a rotation of some kind of rigid body. The spin is
intrinsic, or inherent, i.e., it is a fixed feature of the wave
field that does not depend on environmental circum-
stances. But it is not internal, i.e., it is not within the inter-
nal structure of the electron or photon (of course, the
structure of the wave field is crucial to the spin, but this is
not what is usually meant by internal structure).
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A conspicuous feature of the above physical picture is
the close kinship of spin and orbital angular momentum:
Both are due to the energy flow in the wave fields, and the
distinction between them hinges on the mathematical sepa-
ration of the angular momentum associated with the flow
into two independent portions. Since this physical picture
treats the spin and the orbital angular momentum in the
same way, it gives us as good an understanding of spin as of
orbital angular momentum. We no longer need to regard
the spin as a mysterious entity.

IFor the early history of spin, see the article by B. L. van der Waerden in
Theoretical Physics in the Twentieth Century, edited by M. Fierzand V.
F. Weisskopf (Interscience, New York, 1960); Wolfgang Pauli: Wis-
senschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., edited
by A. Hermann, K. V. Meyenn, and V. F. Weisskopf (Springer, New
York, 1979); M. Jammer, The Conceptual Develop t of O
Mechanics (McGraw-Hill, New York, 1966); and the articles by S. A.
Goudsmitand G. E. Uhlenbeck in Phys. Today 29 (6),40 (June, 1976).
2M. Jammer, Ref. 1, pp. 152 and 153.

3B. L. van der Waerden, Ref. 1, p. 216.

*For instance, P. A. M. Dirac, The Principles of Quantum Mechanics
(Oxford U. P., Oxford, 1958), p. 142; D. S. Saxon, Elementary Quan-
tum Mechanics (Holden-Day, San Francisco, 1968), p. 191,

SA. Beiser, Perspectives of Modern Physics (McGraw-Hill, New York,
1969), p. 225, goes so far as to claim that «...Dirac was able to show on
the basis of a relativistic quantum-mechanical treatment that particles
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having the charge and mass of the electron must have just the intrinsic
angular momentum and magnetic moment attributed to them by
Goudsmit and Uhlenbeck”. This is somewhat of an exaggeration since,
without prior knowledge of the spin of the electron, we cannot know that
Dirac’s equation is applicable.

SR, J. Belinfante, Physica 6, 887 (1939).

W. Gordon, Z. Phys. 50, 630 (1928).

*For example, G. Wentzel, Quantum Theory of Fields (Interscience, New
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12The notation for spinors employed hereis that of J. D. Bjorken and S. D.
Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York,
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3The Gordon decomposition is often used in spinor calculations (see,
¢.g., Ref. 12), but its importance in cstablishing a physical picture for
the origin of spin scems to have been forgotten.

“Note thiat the convection curreat and the spin current are scparately
conserved:
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This is an immediate consequence of the antisymmetry of o*".

15Within the nonrelativistic approximation, the “small” components can
be ignored when cvaluating the right-hand side of Eq. (20), but they
cannot be ignored when evaluating the left-hand side.

16Reference 12.
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(Received 11 February 1985; accepted for publication 22 May 1985)

A categorization is given of all the methods for accelerating particles. It is shown that in principle
one can employ the large fields of a laser for this purpose as well as the wake fields of intense low-
energy particle beams. Discussion is given of four acceleration schemes which offer the possibility
of attaining very high-energy particles; namely, the inverse free-electron laser accelerator, the
beat-wave accelerator, the wake-field accelerator, and the two-beam accelerator.

1. INTRODUCTION

Ever since Cockeroft and Walton first produced nuclear’

reactions by means of a particle accelerator, in that case an
electrostatic accelerator, physicists have bent their ingenu-
ity to the development of ever-more powerful machines.
The devices which have been developed include some re-
markable machines, such as the cyclotron and the beta-
tron, and some truly innovative concepts such as strong
focusing and stochastic cooling.’™

Of course, the driving force behind this effort has been
the ever-opening science which ever-higher energy has
made possible. The machines on the forefront of elemen-
tary particle physics are truly marvels of engineering. One
thinks of the Tevatron at Fermilab or the CERN Super

505 Am. J. Phys. 54 (6), Junc 1986

Proton Synchrotron (SPS), with which the intermediate
bosons were discovered in 1983. Today, the physics of ele-
mentary particles demands very large machines such as
these two, and under construction are even larger machines
such as the Large Electron Positron Collider (LEP) which
will have a circumference of 27 km. Under serious consi-
deration is the Superconducting Super Collider (SSC), the
arguments for which have been presented recently.’
Although the arguments for the SSC are most compel-
ling, and we believe that it should be built, it is clear that the
progression of ever-larger machines cannot go on forever.
Yet, one can be sure that the scientific desire for ever-high-
er energies will continue unabated. In fact, if one looks
back over the last five decades, then one sees an almost
exponential rise in the available particle energy, as is de-

© 1986 American Association of Physics Teachers 505



Virtual probability current associated with the spin
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A simple derivation of the spin probability current density from the expectation value of the spin
operator is given. The properties of the spin probability current density are then examined in detail.
We show that the spin probability current is solenoidal, virtual, and gives null contribution to the
momentum of the particle. Expressions of the spin probability current density are derived for the
Gaussian wave packet and the s states of the hydrogen atom. © 2000 American Association of Physics

Teachers.

I. INTRODUCTION

The spin current is a concept not often treated in textbooks
of quantum mechanics, appearing in a very small number of
texts. In the text by Landau and Lifshitz, the spin current
density is derived, without mentioning its name, in an analy-
sis of the current densit?/ for a charged particle moving in an
external magnetic field.” In a more recent text, Greiner intro-
duces the spin current density ad hoc, and without an ex-
ample, drawing an analogy with the magnetization current
density of classical electromagnetic theory.”

The lack of coverage is also reflected in this journal. We
again find only a couple of papers on the spin current. Parker
derived the hyperfine structure Hamiltonian for hydrogen by
evaluating the magnetic field at the nucleus due to the elec-
tron’s spin current density.’ In an attempt to obtain a con-
crete physical picture of the spin, Ohanian used the spin
current to argue that ‘‘the spin may be regarded as an angular
momentum generated by a circulating flow of energy in the
wave field of the electron.” * His discussion is based on the
momentum density of the Dirac field obtained from the sym-
metrized energy-momentum tensor. Though Ohanian’s pic-
ture of the spin is intuitively appealing, it unfortunately goes
beyond the level of undergraduate quantum mechanics, and
is difficult to introduce in a classroom setting.

Except for Ohanian’s paper, in all of the references previ-
ously cited, the spin current is introduced in conjunction with
a magnetic field, whether the field is external or the elec-
tron’s own. From this situation, one may acquire the impres-
sion that the spin current exists only in the context of the
magnetic properties of the electron. Such is not the case.

In this article, we offer a straightforward derivation of the
spin probability current, within the scope of nonrelativistic
quantum mechanics, without relying on the magnetic prop-
erties of the electron (Sec. IT). We then investigate the prop-
erties of the spin probability current (Sec. IIT). We will show
that the spin probability current is solenoidal, virtual, and
gives null contribution to the particle’s momentum. Finally,
expressions of spin probability current densities are derived
for the Gaussian wave packet and the s states of the hydro-
gen atom, and their physical properties are examined (Sec.
IV).

II. DERIVATION OF THE SPIN PROBABILITY
CURRENT DENSITY

For a quantum particle of mass m, the expectation value of
the orbital angular momentum operator L. can be written in
the form

259 Am. J. Phys. 68 (3), March 2000

(L>=mfv rXjdir, (1)

where j is the probability current density defined by
i *V \2a 2
i= o (VY= gV ), @

and V|, denotes the entire space. The probability current den-
sity j satisfies the equation of continuity

d
SV =0, )

expressing the local conservation of probability. Equation (1)
expresses the orbital angular momentum of a quantum par-
ticle in terms of the circulating probability current. Equation
(1) is derived in Appendix A.

For a particle with spin #/2, we will rewrite the expecta-
tion value of the spin operator

h
=5 | vover @

in the same form as the orbital probability current, as ex-
pressed in Eq. (1). Following Ohanian, the idea is that the
spin is another form of angular momentum due to another
kind of circulating ‘‘current.”” The nature of this current is
investigated in Sec. IIl. In Eq. (4), # denotes a two-
component spinor.

To carry this out, first observe the vector identity

V(A-B)=(B-V)A+(A-V)B+BX(VXA)
+AX(VXB), (5)

and let A=r and B= ¢ o in Eq. (5). Then we obtain

g oy= X [VX (¥ ay)]— s Ve (¢ oyp)]

1

3
19 +
+ 21 o L o)l (6)

!

Integrating Eq. (6) over the entire space, we have
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Gyroscopes

http://www.eng.umd.edu/HAMLET/Gyro
http://www.um.es/fem/Ejs/EjsExamples3.3/Simulations/Gryscope.html
http://www.stuleja.org/vscience/osp/contents/osp3d/gyroscope.html
http://faculty.ifmo.ru/butikov/Applets/Gyroscope.html

NMR

http://mutuslab.cs.uwindsor.ca/schurko/nmrcourse/animations.html
http://mutuslab.cs.uwindsor.ca/schurko/nmrcourse/old/downloads.htm
http://mutuslab.cs.uwindsor.ca/schurko/nmrcourse/animations/precess/precess.htm
http://mutuslab.cs.uwindsor.ca/schurko/nmrcourse/animations/eth anim/hahnecho.gif
http://mutuslab.cs.uwindsor.ca/schurko/nmrcourse/animations/eth anim/puls evol.gif
http://mutuslab.cs.uwindsor.ca/schurko/nmrcourse/animations/animated gifs/Fid one line.gif
http://mutuslab.cs.uwindsor.ca/schurko/nmrcourse/animations/animated gifs/Fid two lines.gif
http://mutuslab.cs.uwindsor.ca/schurko/nmrcourse/animations/movies/spinecho90x180x.mov

Rabi Oscillations
http://jdhosts.net/michaud/RabiOscillations.html

Real chemistry
http://www.files.chem.vt.edu/chem-dept/hbell/simulation/hb2/ftsimstuff/simulateinfo.htm
http://vam.anest.ufl.edu/forensic/nmr.html
http://www.bruker-nmr.de/guide/eNMR/chem/NMRnuclei.html

NMR and MRI Videos
http://www.magritek.com/videos.html
http://www.youtube.com/watch?v=ctwXQ5xK4PU

Just for fun
http://web.mit.edu/8.13/www/JLExperiments/Hooray.mp3
http://web.mit.edu/8.13/www/JLExperiments/Twinkle.mp3
http://www.youtube.com/watch?v=GFIvXVMbII0&feature=related
http://www.youtube.com/watch?v=Smwl zwGMMwc&feature=related
http://www.youtube.com/watch?v=YI1UXHZR3ZA&feature=related
http://www.youtube.com/watch?v=SXx2VVSWDMo&feature=related
http://www.youtube.com/watch?v=8wHDn8LDks8&feature=related
http://www.youtube.com/watch?v=pmTXtbRR7c0&feature=related
http://www.youtube.com/watch?v=v9QW0ruiCJo&feature=fvw
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http://faculty.ifmo.ru/butikov/Applets/Gyroscope.html
http://mutuslab.cs.uwindsor.ca/schurko/nmrcourse/animations.html
http://mutuslab.cs.uwindsor.ca/schurko/nmrcourse/old/downloads.htm
http://mutuslab.cs.uwindsor.ca/schurko/nmrcourse/animations/precess/precess.htm
http://mutuslab.cs.uwindsor.ca/schurko/nmrcourse/animations/eth_anim/hahnecho.gif
http://mutuslab.cs.uwindsor.ca/schurko/nmrcourse/animations/eth_anim/puls_evol.gif
http://mutuslab.cs.uwindsor.ca/schurko/nmrcourse/animations/animated_gifs/Fid_one_line.gif
http://mutuslab.cs.uwindsor.ca/schurko/nmrcourse/animations/animated_gifs/Fid_two_lines.gif
http://mutuslab.cs.uwindsor.ca/schurko/nmrcourse/animations/movies/spinecho90x180x.mov
http://jdhosts.net/michaud/RabiOscillations.html
http://www.files.chem.vt.edu/chem-dept/hbell/simulation/hb2/ftsimstuff/simulateinfo.htm
http://vam.anest.ufl.edu/forensic/nmr.html
http://www.bruker-nmr.de/guide/eNMR/chem/NMRnuclei.html
http://www.magritek.com/videos.html
http://www.youtube.com/watch?v=ctwXQ5xK4PU
http://web.mit.edu/8.13/www/JLExperiments/Hooray.mp3
http://web.mit.edu/8.13/www/JLExperiments/Twinkle.mp3
http://www.youtube.com/watch?v=GFIvXVMbII0&feature=related
http://www.youtube.com/watch?v=SmwlzwGMMwc&feature=related
http://www.youtube.com/watch?v=YIlUXHZR3ZA&feature=related
http://www.youtube.com/watch?v=SXx2VVSWDMo&feature=related
http://www.youtube.com/watch?v=8wHDn8LDks8&feature=related
http://www.youtube.com/watch?v=pmTXtbRR7c0&feature=related
http://www.youtube.com/watch?v=V9QW0ruiCJo&feature=fvw
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Magnetic Resonance Imaging (MRI)
http://www.cis.rit.edu/htbooks/mri/
http://www.mritutor.org/mritutor/index.html

http://www.e-mri.org/nmr/learning-objectives.html

Nuclear Magnetic Resonance (NMR)
http://en.wikipedia.org/wiki/Nuclear_magnetic_resonance
http://en.wikipedia.org/wiki/NMR_spectroscopy
http://en.wikipedia.org/wiki/Magnetic_resonance_imaging

http://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging

From nobelprize.org
http://nobelprize.org/nobel_prizes/medicine/laureates/2003/lauterbur-interview.html
http://nobelprize.org/nobel_prizes/medicine/laureates/2003/mansfield-interview.html
http://nobelprize.org/nobel_prizes/medicine/laureates/2003/illpres/

http://www.chemheritage.org/exhibits/online_exhibits/lauterbur/index.html

http://nobelprize.org/educational_games/medicine/mri/index.html
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http://en.wikipedia.org/wiki/Nuclear_magnetic_resonance
http://en.wikipedia.org/wiki/NMR_spectroscopy
http://en.wikipedia.org/wiki/Magnetic_resonance_imaging
http://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging
http://nobelprize.org/nobel_prizes/medicine/laureates/2003/lauterbur-interview.html
http://nobelprize.org/nobel_prizes/medicine/laureates/2003/mansfield-interview.html
http://nobelprize.org/nobel_prizes/medicine/laureates/2003/illpres/
http://www.chemheritage.org/exhibits/online_exhibits/lauterbur/index.html
http://nobelprize.org/educational_games/medicine/mri/index.html

Rotations Quantum mechanics Classical mechanics

Operator eigenvalues Larmor precession Uniform precession

<jmiJ, | jm>=0

<jmlJdy)jm>=0 G=doz = <J > xB/B Time averages
-:jmlJﬂjm:-:m J¢I=ﬂ J.:].r':u'
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Associated Laguerre Polynomials

Some wag once said the nice thing about standards is that there are so many to choose
from. I have been trying to come to grips with the difference between what I presented
in class and the formulae in Sakurai. It is easy to explain the differences on the basis of
different conventions about the associated Laguerre polynomials.

If you want to skip details, a main result is that Sakurai and Mathematica use different
conventions. If we call £I(p) the convention of Sakurai and Lg,q)(p) the convention of
Mathematica, we have

Ly (p) = (p+ )N (=1)ILE (p) .
Below are the details. They are presented somewhat in the order of my investigation
and not according to the shorted derivation of the above result.
Differential equation

I have consulted two well known books on mathematical functions that adhere to the
same index convention, but have different normalization conventions. The first book that
I consulted by Abramowitz & Stegun states on pg 778, Eqgs. (22.5.16) and (22.5.17):

L0 (z) = Ly(x)
an
dx™

Also, on pg 781, in Eq. (22.6.15), the differential equation is given.

LM () = (1)~ [Losm(2)]

d? d
r—— Ly () + (@ +1—x)—LY(z) + nLy" (x) =0 .

The differential equation is very valuable, but being linear, does not tell us anything
about the normalization.

Another well known book by Morse & Feshbach on pg 784, in an unnumbered equation
three lines from the bottom of the page gives their convention for the associated Laguerre
polynomials.

dm
da:—m[L?L*m(z)] .

The differential equation is also given a few lines above:

Ly'(z) = (=)™

d2 a d a a
z@l)n(z) +(a+1— z)aLn(z) +nL;(z)=0.

Morse & Feshbach do not put the upper index in parentheses, otherwise, it looks like these

conventions might agree. We can be pretty certain that in these two books the LE{” is a
polynomial of degree n. However, we will soon see that the normalizations don’t agree in
the two books.
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Sakurai convention
Now, let’s turn to Sakurai. On pg 454 in Eq. (A.6.4), we find

d?

Li(p) = d—pqu(p) :

This leads us to conclude that L is of degree p — ¢, and makes the result above plausible.
In fact, if the normalizations were the same, we would expect:

d?

- d—pquJr‘I(p) - (_1)(1[’1(;])(0) Not quite correct! .

£Z+q(p)

Class Derivation

In class, I presented the differential equation for the associated Laguerre polynomials
as stated by Mathematica,

2y +(a+1—2)y +ny=0.

This is the same convention as Abramowitz & Stegun and Morse & Feshbach.
In class, we found we needed to solve this differential equation:

pL" +(2(l+1)—p)L'+(A—=1-1)L=0,

but A = n, the total quantum number, and n — [ — 1 = n’ the radial quantum number. So,
we have
pL" +2l+1+1—p) L' =n'L=0.

In the notation of Abramowitz & Stegun, Mathematica or the Morse & Feshbach index
convention, the solution to the differential equation is

20+1 20+1
Ly (o) = LT () -

In Sakurai notation, Lfflr_l)l(p) = (—1)2“1526‘:[1 = —Effi’ll . This explains the indices

for R,; in Sakurai in the equation above (A.6.3).

IPinning Down the Normalizations

We still need to consider normalization conventions, and that can be done from the
generating function or from what is know as Rodrigues’ formula. In fact, in retrospect, it
seems that just looking at the Rodrigues’ formulae in the three books might have been the
easiest way to proceed.

In Abramowitz & Stegun, we find on pg 785, Eq. (22.11.6)

1 ar
L (z) = =€z

e CUC IR
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On pg 784 of Morse & Feshbach, we find

Fa+n+1)e* d” _
La — s a+n z )
n(2) Fn+1) zvdz» C

If we set o and a to zero, we can compare with Sakurai, which states in Eq. (A.6.5)

P

d _
Ly(p) = epd—pp(ppe 7).

We immediately see that Sakurai agrees in normalization with Morse & Feshbach, at least
for the Laguerre polynomials, if not for the associated Laguerre polynomials. However, the
two books on mathematical methods differ by a factor of (n + a)! in their normalizations
with Abramowitz & Stegun convention being smaller by division by that factor. Morse &
Feshbach include a small table of associated Laguerre polynomials at the bottom of page
784. They have L{ = n!, whereas Abramowitz & Stegun according to Eq. (22.4.7) have
L(()a) = 1. The only remaining mystery is which normalization convention Mathematica
obeys. With this command

Table[{n, LaguerreL[0, n, x|}, {n, 0,6}

you will easily find that all results are 1 and Mathematica follows the Abramowitz & Stegun
normalization.

Further, I coded up the Rodrigues’ formula with the Sakurai convention and compared
with (p + q)!(—l)qLSI) where the I used the Mathematica function LaguerreL[p,q,x].

Th J.\J\Jll].‘./ll;}-
| Mystery solved! Quantum mechanics and children can now sleep soundly at night.
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Chapter 10 The Hydrogen Atom

There are many good reasons to address the hydrogen atom beyond its historical significance.
Though hydrogen spectra motivated much of the early quantum theory, research involving the
hydrogen remains at the cutting edge of science and technology. For instance, transitions in
hydrogen are being used in 1997 and 1998 to examine the constancy of the fine structure constant
over a cosmological time scale?. From the view point of pedagogy, the hydrogen atom merges many
of the concepts and techniques previously developed into one package. It is a particle in a box
with spherical, soft walls. Finally, the hydrogen atom is one of the precious few realistic systems
which can actually be solved analytically.

The Schrodinger Equation in Spherical Coordinates

In chapter 5, we separated time and position to arrive at the time independent Schrodinger
equation which is
H|E> = E;|E;>, (10-1)

where F; are eigenvalues and ‘Ei> are energy eigenstates. Also in chapter 5, we developed a one
dimensional position space representation of the time independent Schrodinger equation, changing
the notation such that E; — F, and ‘Ei> — 1. In three dimensions the Schrodinger equation

generalizes to )
(-3mvr+v)u-ps| TISE

where V2 is the Laplacian operator. Using the Laplacian in spherical coordinates, the Schrodinger
equation becomes

RP1a(,0 1 9 (. ,0 1 92
5 [ (750) + g aw (055 ) + s ge ) v+ Ve = Be [ (0-2

In spherical coordinates, ¢ = (7,0, ), and the plan is to look for a variables separable solution
such that (r,0,¢) = R(r)Y (0,¢). We will in fact find such solutions where Y (6,¢) are the
spherical harmonic functions and R(r) is expressible in terms of associated Laguerre functions.
Before we do that, interfacing with the previous chapter and arguments of linear algebra may
partially explain why we are proceeding in this direction.

Complete Set of Commuting Observables for Hydrogen

Though we will return to equation (10-2), the Laplacian can be expressed

V=

2 2 2
9 20 1(5 19 1 a>' (10— 3)

= t+t-=+=5 |55+ = +

or2  ror r2\00%2 tanf 00  sin? 0 Op>
Compare the terms in parenthesis to equation 11-33. The terms in parenthesis are equal to
-L?/ B2, so assuming spherical symmetry, the Laplacian can be written

radial plus angular o9 20 £ angular => spherical
S or2  ror p2p?’

harmonics

2 Schwarzschild. “Optical Frequency Measurement is Getting a Lot More Precise,” Physics
Today 50(10) 19-21 (1997).

330


Larry Sorensen


Larry Sorensen


Larry Sorensen


Larry Sorensen
TISE

Larry Sorensen


Larry Sorensen


Larry


Larry


Larry


Larry


Larry


Larry


Larry


Larry


Larry
radial plus angular

Larry


Larry
angular => spherical
harmonics

Larry



and the Schrodinger equation becomes

[_% ( o 20 ‘—2> V()| v =B, (10— 4)

i

Assuming spherical symmetry, which we will have because a Coulomb potential will be used for
V(r), we have complicated the system of chapter 11 by adding a radial variable. Without the radial
variable, we have a complete set of commuting observables for the angular momentum operators
in £2 and £.. Including the radial variable, we need a minimum of one more operator, if that
operator commutes with both £? and £,. The total energy operator, the Hamiltonian, may be
a reasonable candidate. What is the Hamiltonian here? It is the group of terms within the square
brackets. Compare equations (10-1) and (10-4) if you have difficulty visualizing that. In fact,

H commutes with

[H, [,2] =0, and [H, EZ] =0,

angular momentum
so the Hamiltonian is a suitable choice. The complete set of commuting observables for the

hydrogen atom is H, £2, and L£,. We have all the eigenvalue/eigenvector equations, because the
time independent Schrodinger equation is the eigenvalue/eigenvector equation for the Hamiltonian
operator, i.e., the the eigenvalue/eigenvector equations are

simultaneous eigenvalue H|p> = Eyfv>,
L3> =11+ 1)h*[y>,

and eigenvector problem L. |y = mh|g>,

where we subscripted the energy eigenvalue with an n because that is the symbol conventionally
used for the energy quantum number (per the particle in a box and SHO). Then the solution to
the problem is the eigenstate which satisfies all three, denoted |n,l,m> in abstract Hilbert space.
The representation in position space in spherical coordinates is

from Hilbert space | nlm > to

I <r,0, ¢‘n> lym> = wnlm(n 0, QS)

position space < r theta phi |

Example 10-1: Starting with the Laplacian included in equation (10-2), show the Laplacian
can be express as equation (10-3).

VQ—ig 7“22 + L 0 sinﬁg +;8—2
Cr29r or r2sin6 00 00 r2 sin? 6 O¢?

(27"2 +r28—2> + L (cos 02 + sin08—2> + #8—2
or or? r2sin 6 00 002 2 sin? 6 ¢

_® 209 192 1 9 1 9

T T ror T 20 T Ptan0 9 T 12sin? 0047

orz " ror
P20 (10 1@
T or2 rar  r2\ 002 ' tanf 00 ' sin260¢2 )’

which is the form of equation (10-3).

Example 10-2: Show [H, [,2] =0.
(M, L2 =HL>-L°H
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(9?20 L2 s o R [0* 20 L2
= I:% <W+;§r2h2>+‘/(7‘)]ﬁ *,C [% <w+;ar2h2>+‘/(’r):|

nt 9* ., K20 ., B LY R

_ e e~ A 2
2m8r2£ 2mr8r£ +2mr2h2 +2mV(T)£
n? .9 B .20 KLY R
e e e S AP V4
+2m 8r2+2m ror  2mr2p®  2m (r)
o , K20 , K , h* .8 h* ,208 RBP
= amart " amrart Tam' O Tonter Tant vy a0

where the third and seventh terms in £* sum to zero. The spherical coordinate representation of

L% is o2 5 o2
1 1
L= (= + —+
002 tan 0 00 sin“ 6 8¢2
and has angular dependence only. The partial derivatives with respect to the radial variable act
only on terms without radial dependence. Partial derivatives with respect to angular variables do
not affect the potential which is a function only of the radial variable. Therefore, the order of the
operator products is interchangeable, and

o, 0% B ,20 R L, 9% R ,20 R
2 2 2 2 2 2 2
S Sy S R ) 7 Sy BT =0.
[H’ £ ] 2m£ or? 2m£ r Or * 2m£ () + 2m£ or? + 2m 1 Or 2m£ V(r) =0
Instead of the verbal argument, we could substitute the angular representation of £2, form the
18 resultant terms, explicitly interchange nine of them, and get the same result.

Example 10-3: Show [H, L’Z] =0.

(M, L.|=HL.—L.H

B /92 20 L2 R2 /92 290 L2
=g (ot 2o ya) V0| s [ (G 2 i) + V0

_ moe, n2o,  nLeL, n
2mor2”"  2mror " 2m r2R?  2m ?
R? 97 R 20 BPL.LP R
T e T i i T A
h? 02 h? 20 h? P92 h 20 B
= a0 amror e o B T e b am Vet er T 2V

where the third and seventh terms in £2 £, sum to zero because we already know those two
operators commute. The spherical coordinate representation of L, is
0
L, =—th—
z 8¢
and has angular dependence only. Again there are no partial derivatives which affect any term of
the other operator, or the potential V(r), in any of the operator products. Therefore, the order
of the operator products is interchangeable, and

B2 92 K: 20 R B2 92 K2 20 R?

L] = —onbegm “ oS TS VO 2l am Y am e T am

% EzV(r) =0.
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Separating Radial and Angular Dependence

In this and the following three sections, we illustrate how the angular momentum and magnetic
moment quantum numbers enter the symbology from a calculus based argument. In writing
equation (10-2), we have used a representation, so are no longer in abstract Hilbert space. One of
the consequences of the process of representation is the topological arguments of linear algebra are
obscured. They are still there, simply obscured because the special functions we use are orthogonal,
so can be made orthonormal, and complete, just as bras and kets in a dual space are orthonormal
and complete. The primary reason to proceed in terms of a position space representation is to
attain a position space description. One of the by—products of this chapter may be to convince
you that working in the generality of Hilbert space in Dirac notation can be considerably more
efficient. Since we used topological arguments to develop angular momentum in the last chapter,
and arrive at identical results to those of chapter 11, we rely on connections between the two to
establish the meanings of of [ and m. They have the same meanings within these calculus
based discussions.

As noted, we assume a variables separable solution to equation (10-2) of the form

product ansatz I U(r,0,¢) = R(r) Y (0, <Z>)-I (10 - 5)

An often asked question is “How do you know you can assume that?” You do not know. You
assume it, and if it works, you have found a solution. If 1t does not work, you need to attempt
other methods or techniques. Here, it will work. Using equation (10-5), equation (10-2) can be

written
19 (,0 1 9 0
put it in 29 (7"2§> R(r)Y (6, )+ 2sind 00 <Sin9%> R(r)Y(6,9)

1 0? = 2m
ooy sl Y @0 S V) - B[RG) Y 6. 9)f= 0

10 0 1 a(. 0

futz around = Y(%¢) 55 <r25> R(r) + R(r) 53— 25 (Sm9@> Y (8, 9)

0? m

+R(r)@%zyw, 6) - =3 V)~ B| R0 Y (0,6) =0,

Dividing the equation by R(r)Y (6, ¢), multiplying by 72

Find it works! L 0 (20, 2
{R(T)E <T E) ) ==z

, and rearranging terms, this becomes

[V(r) - E}}? depends only on r

depends only 1 pe

1 0 0
N0 O 0 an inf— | Y (6 Y (0 —0.
on angles i [Y(H,qb) sin6 96 (Sm ae> 6.0) + S5 )50 007 L | wb)] 0

The two terms in the curly braces depend only on 7, and the two terms in the square brackets
depend only upon angles. With the exception of a trivial solution, the only way the sum of the
groups can be zero is if each group is equal to the same constant. The constant chosen is known
as the separation constant. Normally, an arbitrary separation constant, like K, is selected and
then you solve for K later. In this example, we are instead going to stand on the shoulders of

=> they must be constant 333
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some of the physicists and mathematicians of the previous 300 years, and make the enlightened
choice of [(l+ 1) as the separation constant. It should become clear [ is the angular momentum
quantum number introduced in chapter 11. Then

1 d ([ 5d 2mr? B
R(r) dr (7’ E) R(r) = = [V(T) - E} =1(+1) (10 — 6)
which we call the radial equation, and
1 0 1o} 1 92
Y (6, ¢)sin 6 60 79, Y Y =— 1 10 —
Y (6, $)sin 6 00 (Slnea(;) 6.9+ Yo aymtaag &9 = -+, (10— 7)

which we call the angular equation. Notice the signs on the right side are opposite so they do,

in fact cnm o Zaro

The Angular Equation | ansatz

The solutions to equation (10-7) are the spherical harggbnic finctions, and the [ used in
the separation constant is, in fact, the same used as the/index [ \in the spherical harmonics
Yi.m(0,¢). In fact, it is the angular momentum quantm number. But where is the index m?
How is the magnetic moment quantum number introddced? To answern\these questions, remember
the spherical harmonics are also separable, i.e., Y)£,(0,¢) = fim(0) g (¢). We will use such a
solution in the angular equation, without the in 'ces until we see where\they originate. Using the
solution Y'(0,¢) = f(0) g(¢) in equation (10

7(6) g() sind <¢>> sin 6 06 (Sln‘)ae)- s’ a%. i+l

1 0 o 1 8
Multiplying the equation by sin?# and rearranging, only on phi
sinf 0 (. 0O 1 o
only on theta ——» (0) 96 <s1n9%) f(0) +1(1+1) sin® 6 + Wa&g(@

The first two terms depend only on 6, and the last term depends only on ¢. Again, the only
non—trivial solution such that the sum is zero is if the groups of terms each dependent on a single

variable is equal to the same constant. Again using an enlightened choice, we pick m? as the
separation constant, so
sinf d d
— | sing 0) +1(1+ 1) sin® 0 = m? 10 -8
o g (0045 ) J0) 4100+ 1) sin 6 = i, (10~ %)
simple phi equation 1
pie p q —) ‘ d¢29(¢) —m?, ‘ (10-9)

and that is how the magnetic moment quantum number is introduced. Again, (10-8) and (10-9)
need to sum to zero so the separation constant has opposite signs on the right side in the two
equations.
m is "enlightened”
334
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aka, the phi equation,

the magnetic quantum

The Azimuthal Angle Equation number equation, ...

The solution to the azimuthal angle equation, equation (10-9), is

9(d) =™ = | gunl$) = €™, | (10 - 10)

where the subscript m is added to ¢(¢) because it is now clear there are as many solutions as
there are allowed values of m.

Example 10-4: Show g,,(¢) = ¢™™? is a solution to equation (10-9).

d? d? d

2530m(6) = 25 = i)™ = (im)e ™ = g, (6).
Using this in equation (10-9),
1 2 1 2 2 2 _ 2
Gat @ =t = (@) = mt =t =,

therefore g,,(¢) = ™% is a solution to equation (10-9).

The Polar Angle Equationl aka, the theta equation

This section is a little more substantial than the last. Equation (10-8) can be written

sin@dio <sin9%) f(0) 4+ 11+ 1) sin®6 f(6) —m? f(A) = 0.

Evaluating the first term,

cod (o dN . d (. dfo)
51119@ <31n0@> f(@)-sm@de <s1n9 20 )

=sinf (cose ) + sinf . f(9)>

do d6?
d f(0) d f(0)
) .
=sin“ 0 102 + sinf cos @ 0
Using this, equation (10-8) becomes
2
sin? 6 dd“zge) + sinf cos 6 %ém +1(1+1) sin®6 () —m? f(0) = 0. (10 —11)

We are going to change variables using z = cosf, and will comment on this substitution later.
We then need the derivatives with respect to = vice 6, so

df(x)
dv

—sinf

dfo) df(@)ds df(z), . .
0 G 40~ dx (o Snf) =
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d2d£ge) 0 (— sin 6 d‘zgcx)> = —cos@—dz:(f) —sin 6 di; —d‘Z;x)
B flx) . ddvdf(z) df(x)y . ~d . df(x)
——cosﬁw—sm9%@ T ——COSHW—SIH0%<—SIDQ) .
2
——cosﬁ%f)—i—sifQ%xg@.

Substituting just the derivatives in the equation (10-11),

d? d d
sin? 9 (sim2 0 dJ;(f) —cosf %) +siné cos 0 (— sin 0%) +1(1+1) sin? O f (x) —m? f(z) =0,
which gives us an equation in both # and =z, which is not formally appropriate. This is, however,
an informal text, and it becomes difficult to keep track of the terms if all the substitutions and
reductions are done at once. Dividing by sin®6, we get

d* f(z)

dxz?

m2

sin’ 0

d f(x) d f(z)
—cosed— —cost— +IU(1+1) f(x) —

€T T sin? Qf(x) =0

. The change of variables is complete upon summing the two first derivatives, using cosf = x, and
associated 29 -1 cos?9=1— x2, which is

Legendre
equation dz dz 1

This is the associated Legendre equation, which reduces to Legendre equation when
m = 0. The function has a single argument so there is no confusion if the derivatives are indicated
with primes, and the associated Legendre equation is often written

m2

" H (@) =0,

(1-2) f"(@) =20 /@) + 10+ 1) f(2) - 7

and becomes the Legendre equation, Legendre equation when m=0

(1-2%) £"(@) = 20 /(&) + 10 +1) f(z) =0,

when m = 0. The solutions to the associated Legendre equation are the assyciated Legendre
polynomials discussed briefly in the last section of chapter 11. To review thad in the current
context, associated Legendre polynomials can be generated from Legendre polynoryials using

dm

Pn(@) = (~1)" T = )" T Pi(a),

where the Pj(z) are Legendre polynomials. Legendre polynomials can be generated us\ng

The solutions are Bi(z) = (;l;,) ldd—;l(l — %)’ Solutions are
the associated 436 the Legendre

Legendre polynomials polynomials
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The use of these generating functions was illustrated in example 11-26 as intermediate results in

calculating spherical harmonics.

The first few Legendre polynomials are listed in table 10—-1. Our interest in those is to generate
associated Legendre functions.

symmetry around

z-axis (m = 0)

The first few associated Legendre polynomials are listed in table

no symmetry

Spherical

Harmonics

10-2.
Py(z) =1 Py(z) = 5(52° - 3x) Legendre
Pi(z)==x Py(z) = £(35a* — 3022 4 3) ]
Py(z) = $(32% = 1) Ps(z) = £(632° — 7023 + 152) Polynomials
Table 10 — 1. The First Six Legendre Polynomials.
P()’()(.’,E) =1 szo(.’,E) ( 1) .
Pia(z) = —vI—22 Pys(a) = _15( T-22)° associated
Pio(z) == Ps5(z) = 15z (1 — 2?) L
- ’ egendre
around z-axis Pyo(x) = 3(1 —2?) P3q(z) = ——(5x 1)V1 — a2 9
Pyq(z) = -3z V1 —2? Pso(z) = 1 (523 — 3x) polynomials
Table 10 — 2. The First Few Associated Legendre Polynomials.
Two comment concerning the tables are appropriate. First, notice P, = P, . That makes

sense. If the Legendre equation is the same as the associated Legendre equation with m = 0, the
solutions to the two equations must be the same when m = 0. Also, many authors will use
a positive sign for all associated Legendre polynomials. This is a different choice of phase. We
addressed that following table 11-1 in comments on spherical harmonics. We choose to include a
factor of (—1)™ with the associated Legendre polynomials, and the sign of all spherical harmonics
will be positive as a result.

Finally, remember the change of variables = = cosf. That was done to put the differential
equation in a more elementary form. In fact, a dominant use of associated Legendre polynomials is
in applications where the argument is cosf. One example is the generating function for spherical
harmonic functions,

(00 = (_1)m\/(2l4jr<1z)f %)Tzn)! Py (cos ) €™

m >0, (10 — 10)

and

Yi,-m(0,0) =Y5,(0,0),  m <O,

where the P, (cosf) are associated Legendre polynomials. If we need a spherical harmonic with
m < 0, we will calculate the spherical harmonic with m = , and then calculate the adjoint.

To summarize the last three sections, we separated the angular equation into an azimuthal
and a polar portion. The solutions to the azimuthal angle equation are exponentials including the
magnetic moment quantum number in the argument. The solutions to the polar angle equation
are the associated Legendre polynomials, which are different for each choice of orbital angular
momentum and magnetic moment quantum number. Both quantum numbers are introduced into
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the respective differential equations as separation constants. Since we assumed a product of the
two functions to get solutions to the azimuthal and polar parts, the solutions to the original angular
equation (10-7) are the products of the two solutions P, ,,,(cos ) e?™?. These factors are included
in equation (10-10). All other factors in equation (10-12) are simply normalization constants. The
products P ,,(cosf) e’™? are the spherical harmonic functions, the alternating sign and radical
just make the orthooonal set orthongrmal

Associated Laguerre Polynomials and Functions

The azimuthal equation was easy, the polar angle equation a little more substantial, but you
will likely percieve the solution to the radial equation as plain, old heavy! There is no easy way to
do this. Our approach will be to relate the radial equation to the associated Laguerre equation,
for which the associated Laguerre functions are solutions. A popular option to solve the radial
equation is a power series solution, for which we will refer you to Griffiths®, or Cohen-Tannoudji*.

Laguerre polynomials are solutions to the Laguerre equation
xLj(x)+ (1—x) L;j(xz)+j Lj(z) =0.

The first few Laguerre polynomials are listed in table 10-3.

Lol' =1
Li(x) =—x+1
Ly(x) = 2% — 42 + 2

Laguerre

L

Polynomials Ly(z) = 2* — 162% + 722 — 967 + 24
L
L

Table 10 — 3. The First Seven Laguerre Polynomials.

Laguerre polynomials of any order can be calculated using the generating function

The Laguerre polynomials do not form an orthogonal set. The related set of Laguerre functions,
¢j(x) = e "*L;(x) (10 —13)

is orthonormal on the interval 0 < x < co.  The Laguerre functions are not solutions to the
Laguerre equation, but are solutions to an equation which is related.

Just as the Legendre equation becomes the associated Legendre equation by adding an ap-
propriate term containing a second index, the associated Laguerre equation is

:L‘L;?”(:U) + (1 -z +k) L;?l(ﬂf) +J Lf(fﬁ) =0, (10 — 14)

3 Griffiths, Introduction to Quantum Mechanics (Prentice Hall, Englewood Cliffs, New Jersey,
1995), pp. 134-141.

4 Cohen-Tannoudji, Diu, and Laloe, Quantum Mechanics (John Wiley & Sons, New York,
1977), pp. 794-797.
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which reduces to the Laguerre equation when k£ = 0. The first few associated Laguerre polyno-

mials are
Ly(z) = Lo(x) Li(x) =2
associated LY(x) = L1 () L§(x) = La(x)
Li(z) = —2x+4 Li(z) = —4x3 + 482% — 144z + 96
Laguerre Li(z) =1 L3(z) = 6022 — 600z 4 1200
LY(z) = La(x) L3(z) = —1202% + 216022 — 10800z + 14400
polynomials Li(z) =322 — 18z +18  L3(z) = —202% + 30022 — 1200z + 1200
L3(x) = 122% — 96z + 144  L3(z) = —242 + 96
L3(z) = —6x+ 18 L3(x) =6
Table 10 — 4. Some Associated Laguerre Polynomials.

Notice L? = L;. Also notice the indices are all non-negative, and either index may assume any
integral value. We will be interested only in those associated Laguerre polynomials where k < j
for hydrogen atom wave functions.

Associated Laguerre polynomials can be calculated from Laguerre polynomials using the gen-
erating function

g dF

Lj(z) = (- 1) gk Liti(@).

Example 10-5: Calculate Li(z) starting with the generating function.

We first need to calculate L4(x), because

k 1
L) = () L) > L) = (1) ey Ly (@) =~ Ly(a).

Similarly, if you want to calculate L%, you need to start with Ls, and to calculate L3, you
need to start with L7. So using the generating function,

d4
Ly(z) = ew@ e xt
d3
= ewﬁ ( — 6_1:5174 + 6—1: 4%3)
T
d? d?
=e'— (e*"’jw4 — e T 4rd — e " 4ad 4 7" 123:2) =e'— (e*"’jw4 —e %8 +e " 12x2)
dx? dx?
d
= ezd— ( —e Trt e 4t e 8% —e T 2% — e T 1222 + 77 2495)
T
d
= e”d— ( —e Tt e 1223 —e 3622 + 7 24x)
T

=¢e” <e*’”a:4 —e T 4x? — e 1222 + e 3622 + 73622 —e T2 —e T 24x e ® 24)
— P (a:4 — 1623 + 7222 — 962 + 24)
=zt — 162 + 7227 — 962 + 24,
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per table 10-4. Then to get L3i(x),

d
L} = - Ly(z)

d
_%(
= —(4a® — 482% + 144z — 96)

= —da® + 4822 — 144z + 96,

z* — 162° + 722” — 96z + 24)

perdable 102

Associated Laguerre polynomials are not orthogonal but associated Laguerre functions of
the type
K —x/2, k/2Tk
oi(z) =e o/2pk/ Li(x)

are orthogonal on the interval 0 < x < 0o, so can beJmade an orthonormal set. Again, the CIJé‘f ()
are not solutions to the associated Laguerre equatio but are solutions to a related equation.

We are specifically interested in a slightly differepit associated Laguerre function than the usual
first choice indicated above, i.e., we are interested i

yf(:v) = e*x/Qac(kH)mLf(:L‘). (10 — 15)

These are also not solutions to the associated Laguerre equation, but they are solutions to

" 1 2j+k+1 k-1
v} (”’)+(_Z+ o 4x2>y§“(:c):0. (10 — 16)

The reason for our interest in (10-16) and its solutions (10-15), is that equation (10-16) is a form
of the radial equation, so the radial functions R(r) we seek are R, ;(r) = Ayl (r), where A is
simply a normalization constant.

Example 10-6: Show equation (10-15) satisfies equation (10-16).

Unlike some of the toy problems given as examples, this example is a critical connection...unless
you take our word for it, and then you should skip this. We are going to use the result of this
example as a direct link to the solution of the radial equation. We are going to simplify the notation
to minimize clutter, and will explain as we go.

To attain the second derivative, we need the first derivative, and use the notation

Yy = eia“/Qx(kJrl)/QrU,

for equation (10-15) where v = L¥(z), because the indices do not change and only serve to add
clutter, and we can remember the independent variable is x. The first derivative is

Y = _%efx/2x(k+l)/2,u g <E> 2 E=1/2 o= /2, (1) /2,

2
_ —lv—l— k+1 v 4o | eme/2p(k41)/2
2 2z
N (ex/Qxf(k+1)/2> Y = _1U+ k+1 S
2 2z
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Notice we adjusted the second term on the right to do the factoring. Using the same adjustment
technique, will factor these terms out of the second derivative as we go. These are also factors
common to equation (10-15). Since the right side of equation (10-16) is zero, after we substitute
the second derivative and the function into (10-16), we will simplify the equation by dividing
the equation by common factors, therefore, none of the common factors will enter into the final
solution. The exponentials and powers still need to be considered in differentiation, but their
inverses will appear on the left and only the terms which have impact will appear on the right.
Proceeding....

!/ 1
1V VTRV T ey Vo o Vo Vvt g v

(em/gf(kﬂ)ﬂ) y = lk+1 1, 1k+1 k+1k—-1 k+1 , 1, k+1

Substituting the second derivative and the function into equation (10-16),

1 2j+k+1 k-1
y”+<——+ J - >y=0,

4 2z 422

and dividing by the common factor of e~%/22*+1)/2 the remaining terms are

LS VS SO SRS 0 SRR et WU AR s SRS SRR et SR
1V 7970 VT2V Tty VT oy Taop VT oy VTl T v Y

(L 2tk 1N
4 2z w2 )T
y /1{” 1k+1 1, 1k+1 k27é1 k+1, 1, k+1

/
v

2 20 2" 7 T vt Ty VT Ty
1 27 +k+1 k2 /1

——Jv+ s v 7L v=20
2z Y2

kAL 1,k711 AR I TS

= — — 4+ = =0
Y T /11: T 2v+$v+ z |
kE+1 j
= v"—v’+ivl+l:0
x x
= zv' —zv+(k+1)v +jv=0
= zv'+(1-az+k)v +jv=0 (10— 17)

which is the associated Laguerre equation. Since v = L? (), and the L;“(:c) are solutions to the
associated Laguerre equation, equation (10-17) is equivalent to

L5 (@) + (1 -2+ k) LY (@) +j LF(x) =0,

which is the associated Laguerre, which we know to be a true statement, so
y = e~ ¥/ 2p kD72,

e—z/2w(k+l)/2L;€(x)

are solutions to equation (10-16).
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The Reduced Mass

Equation (10-2) describes a single particle in a central potential. The hydrogen atom is a two
body problem, and the potential is not central but is dependent upon the distance between the
nucleus and the electron. Were we able to anchor the nucleus to a stationary location we could
designate an origin, equation (10-2) would be an accurate description. This is not possible, but
we can reach a similar end by picturing the center of mass being anchored to a fixed location. If
we use the reduced mass in place of the electron mass,

My Mme
n= ’
mp + Me

the radial coordinate r accurately describes the distance between the nucleus and the electron.
The effect in equation (10-2) is cosmetic; where there was an m representing m,, it is replaced
by w. Because the proton is about 1836 times more massive than the electron, the reduced mass
is nearly identically the electron mass. Many authors simply retain the electron mass. Since the
center of mass is not actually anchored, a second set of coordinates is required to track the center
of mass using this scheme. This consideration and other details of reducing a two particle problem
to a one particle problem are adequately covered in numerous texts, including Chohen-Tannoudji®,
. 6 . .

~{c

Solution of the Radial Equation |

The radial equation (10-6) using the reduced mass and the Coulomb potential, V(r) = —e?/r,
is

2

w76 B - [ 5 - E] -0 =
= g (73 mo B [ S e mo e o
> (P o P R ] rn =0, o)

The plan is to get (10-18) into a form comparable to equation (10-16), and we already know the
solutions are equation (10-15). We will be able to glean additional information by comparing the
equations term by term. The energy levels of the hydrogen atom and the meaning of the indices
of the associated Laguerre polynomials, which will be quantum numbers for the hydrogen atom,
will come from the comparison of individual terms.

We will make three substitutions to get the last equation into the form of equation (10-16).
The first is

y(r)=rR(r) = R(r)= @ (10 — 19)

5 Cohen-Tannoudji, Diu, and Laloe, Quantum Mechanics (John Wiley & Sons, New York,
1977), pp. 784-788.

6 Levine, Quantum Chemistry (Allyn and Bacon, Inc., Boston, Massachusetts, 1983), pp. 101
106.
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Making this substitution in the first term and evaluating the derivatives

(2)m-3 (3) e

d o -2 _1y dy(r
=7 [(r Yy(r)+ (r1) Zi)]
= % [—y(r) +r dgc/iir)]

_dy(r) | dy(r) | dPy(r)
T dr + dr T dr?
_ .yl

dr?

The substitution serves to eliminate the first derivative. We would have both a first and second
derivative if we had evaluated the first term using R(r).  With this and the substitution of
equation (10-19), equation (10-18) becomes

Ey(r) | r2pre? | 2’ y(r)

= y(r) =0.

d?y(r) N {2ue2 2uE I+ 1)}
d,'a2 r h2 h2 712
The second substitution is essentially to simplify the notation, and is

€\2 2uk

-) =2 10 —20
where the negative sign on the right indicates we are looking for bound states, states such that

E < 0, so including the negative sign here lets us have an € which is real. The last equation
becomes

y(r) =0.

d?y(r) [2,u62 e I(l+1)
dr? rh? 4 r2
The third substitution is a change of variables, and notice it relates radial distance and energy
through equation (10-20),

r=T€ = r:£7 (10—21)
€
dx Py(r)  ddy(r) d dy(z)  ,d*y(z)
d _- = — — €— =
- € = dr? dr dr “dz < dx Az

so our radial equation becomes

2 d?y(x) [Z,ueze e Lll+1)

da? e *Z*ET]?/("”):O

=

ddg;(f) {_ 1 N 2pe” U1+ 1)} y(z) = 0, (10 — 22)

4 hlex 2
and equation (10-22) is equation (10-16) where

K2 —1

(+1) = ——,

(10 — 23)

343



and
2ue? _2j+k+1

hle 2 ’

Per example 10-6, the solutions are equation (10-15),

(10 — 24)

yf(a:) = e_m/zx(k+1)/2L§(x).

Eigenenergies from the Solution of the Radial Equation

Equation (10-23) tells us k= 20 + 1.

Example 10-7: Show k= 2]+ 1.
Equation (10-23) is

k2 —1
=1(l+1
1 (I+1)
= E2=4(+1)+1
=42 + 41 +1

— (20+1)
=k=20+1
We are going to take what appears to be a slight diversion to evaluate a particular set of

factors in equation (10-24), R /ue?, which recurs repeatedly. Going back to the old quantum
theory, this is called the Bohr radius, that is

52
ag = —5 = 0.529A. (10 — 25)
e
We want to express lengths in terms of the Bohr radius because it is a natural length for the
hydrogen atom.

Example 10-8: Show ag = 0.529 A, using both the electron mass and the reduced mass.

This example is intended to illustrate three simple things. First, ao = 0.529 A, second is to
work out the CGS units for e2?, and then to show the electron mass is a very good approximation
to the reduced mass in hydrogen. The electrostatic force in MKS and CGS systems is defined

2 2
L evks _ F - fcas

dmeg T2 72

2
= elas = IS8 — (1602 x 10717C)* (8.988 x 10° N - m?/C?)
0

=2.307 x 1072 N - m? = 2.307 x 107 dyne - em?
=2.307 x 1072 erg - em = 14.42¢V - A.

So
2 2 4 L R)2
oo S L e 1 (L2A0xI0'VAP o
mee?  Am2mec?e?  4m? (0.5110 x 106 eV)(14.42€V - A)
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The reduced mass is

_ MpMme 1.673 x 10~%4 B
2 2
e d _ 052864 0.5288 A.

ez 0.9995m.e?  0.9995

There is 0.03% difference between the electron mass and reduced mass values. Many authors
simply use the electron mass and it yields a good approximation. The CGS value of e? can
be mysterious for those who have worked primarily in MKS units. By the way, the square root

e =3.797 (eV - A)I/Q can be a convenient way to express the charge on the electron in CGS units.

Equation (10-24) gives us the eigenenergies of the hydrogen atom, but requires some devel-
opment. Since k =2[+1,

2j +k+1 2+ ((20+1)+1

=j+1+1
5 5 J+Hi+

From the discussion on associated Laguerre polynomials, the indices j and k are non—negative.
The sum j + 141 can, therefore, assume any integer values of 1 or greater. We are going to
rename it n, or

n=j+0+1 (10 — 26)

The new integer index m is known as the principal quantum number. Using the principal
quantum number, it follows that the eigenenergies of the hydrogen atom are

K2 13.6¢eV
En = _2 2.9 2 ’
pagn n

(10 — 27)

where the quantity 13.6eV is called the Rydberg, usually denoted R or Ry. The ground state
energy is Fy = —13.6eV when n = 1. It is often convenient to express excited state energies
in terms of the ground state energy.

Example 10-9: Show equation (10-27) follows from equation (10-24).

2ue® 2 +k+1

h%e 2
2 2
= j4l+l=n="F1"
h<e
2162
Lo
h*n
4p’et
2 _
= € _h4n2.

Substituting equation (10-20) to eliminate e and insert energy,

2ul 4pet
n: o htn2
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pleth® B <,u62>2 R

= E=-— = —
2uhi*n? R? ) 2un?
52
= E,=——5—.
" 2pa3n?
Inserting numerical values,
po__ M1 (h)?
" 2uadn?  4w? 2(uc?)an?
1 (1.24 x 10* eV - A)? 1366V
n2

472 2(0.511 x 106 eV)(0.529 A)2n2

so eigenenergies do follow from the solution of the radial equation.
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