
Lecture 15

Everything you should remember 
about hydrogen forever
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Ways to solve the radial equation

(1) Solve the differential equation

Find the asymptotic form

Separate it

Differential equation for each value of l

Make the diff eq dimensionless

Put highest derivative first

Set its coefficient equal to 1

Futz around

Discover radial equation is Laguerre eqn !!!

Declare victory

Normalize the wave functions (caution)

(2) Use the ladder operators

(3) Type “hydrogen atom wavefunctions” into

Google
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As always, first solve the TISE
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Find the eigenvalues aka the eigenenergies
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Find the eigenfcns aka the energy eigenfcns
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Larry
The l=0 well, aka the s-well, is the pure Coulomb potential
Because l=0 there is no angular momentum barrier
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-13.6 eV = -13.6 / 1
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-3.4 eV = -13.6 / 4
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-1.51 eV = -13.6 / 9
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infinite number of bound states
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The effective potential
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The energy only depends on n
It does not depend on l or m
Why is this?
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The Effective Potential Depends 

on the Angular Momentum

=> Series of Nested Wells

Series of States in each Well

Ground, 1st, 2nd, 3rd, ... excited
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The states in different
wells line up!
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The s well
The l=0 well
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The p well
The l=1 well
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The d well
The l=2 well
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The Energy Degeneracy
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n = the principal
quantum number
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l = the orbital angular momentum quantum number
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Table 8-5, p.280
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1 zero crossing
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0 zero crossings
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The R_n 1's
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within dV of point r
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within dr of radius r
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Fig. 8-11b, p.285

Larry
<r> increases as n increases
(for fixed l)
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<r> decreases as l increases
(for fixed n) 

Larry


Larry


Larry




Larry
To put it all together we need to 
multiply the radial dependence 
by the angular dependence
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The probability density to find within dV of r
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The probability density to find within dr of r
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radial times angular
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depends on n, l, and r
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depends on 
l and theta
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depends on l, m, 
theta, and phi
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no phi dependence
only depends on theta
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The s state probabilities do not depend on the angles 
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Fig. 13.14. Radial eigenfunctions Rn!(ρ) for the electron in the hydrogen atom. Their zeros
are the n − " − 1 zeros of the Laguerre polynomials L2!+1

n−!−1(2ρ/n). Here the argument of the
Laguerre polynomial is 2ρ/n with n being the principal quantum number and ρ = r/a the
distance between electron and nucleus divided by the Bohr radius a.

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 3rd ed., c© 2001 by Springer-Verlag New York.
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1s, 2s, 3s, 4s, 5s
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wavefunctions
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2p, 3p, 4p, 5p
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Fig. 13.15. Radial eigenfunc-
tions Rn!(r), their squares
R2

n!(r), and the functions
r2R2

n!(r) for the lowest eigen-
states of the electron in the
hydrogen atom and the low-
est angular-momentum quan-
tum numbers ! = 0, 1, 2.
Also shown are the en-
ergy eigenvalues as horizontal
dashed lines, the form of the
Coulomb potential V (r), and,
for ! != 0, the forms of the ef-
fective potential V eff

! (r). The
eigenvalue spectra are degen-
erate for all ! values, except
that the minimum value of
the principal quantum num-
ber is n = ! + 1.

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 3rd ed., c© 2001 by Springer-Verlag New York.

Larry
All Together

Larry


Larry
wavefcns

Larry
volume
probabilities

Larry
radial
probabilities

Larry


Larry
L = 0

Larry
L = 1

Larry
L = 2

Larry


Larry




Larry
The Radial Wavefunctions Times 
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Two Representations of

the Hydrogen 1s, 2s, and

3s Orbitals
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(1) The Cut Solid Representation
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(2) The Computer Generated Dot Representation
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Probability Distribution for

the 1s Wave Function
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(3) The Shaded Picture with a Plot Representation
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Radial Probability Distribution
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(3) The Shaded Picture with a Plot Representation
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Fig. 8-9, p.282
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(4) Electron density contours
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Electron density contours for hydrogen
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The Functional Form

http://panda.unm.edu/Courses/Finley/P262/Hydrogen/WaveFcns.html

The Radial Components

http://hyperphysics.phy-astr.gsu.edu/Hbase/hydwf.html#c1

The Angular Components

http://oak.ucc.nau.edu/jws8/dpgraph/Yellm.html

Radial times Angular

http://www.falstad.com/qmatom/
http://webphysics.davidson.edu/faculty/dmb/hydrogen/intro_hyd.html

The Story Continues

http://www.pha.jhu.edu/~rt19/hydro/

http://panda.unm.edu/Courses/Finley/P262/Hydrogen/WaveFcns.html
http://hyperphysics.phy-astr.gsu.edu/Hbase/hydwf.html#c1
http://oak.ucc.nau.edu/jws8/dpgraph/Yellm.html
http://www.falstad.com/qmatom/
http://webphysics.davidson.edu/faculty/dmb/hydrogen/intro_hyd.html
http://www.pha.jhu.edu/~rt19/hydro/


http://webphysics.davidson.edu/faculty/dmb/hydrogen/

http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/hydcn.html#c1

http://cronodon.com/Atomic/AtomTech4.html

http://www.evilmadscientist.com/article.php/atomiccookies

http://mareserinitatis.livejournal.com/tag/food

http://webphysics.davidson.edu/faculty/dmb/hydrogen/
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/hydcn.html#c1
http://cronodon.com/Atomic/AtomTech4.html
http://www.evilmadscientist.com/article.php/atomiccookies
http://mareserinitatis.livejournal.com/tag/food


Spherical Harmonics

The Meaning of the Spherical Harmonics
http://infovis.uni-konstanz.de/research/projects/SimSearch3D/images/harmonics_img.jpg

The Spherical Harmonics
http://oak.ucc.nau.edu/jws8/dpgraph/Yellm.html
http://www.bpreid.com/applets/poasDemo.html
http://www.du.edu/~jcalvert/math/harmonic/harmonic.htm

Encyclopedia
http://en.wikipedia.org/wiki/Spherical_harmonics
http://en.wikipedia.org/wiki/Table_of_spherical_harmonics
http://mathworld.wolfram.com/SphericalHarmonic.html

Applications of Spherical Harmonics
http://www.falstad.com/qmrotator/
http://www.falstad.com/qmatom/
http://www.falstad.com/qmatomrad/
http://www.falstad.com/qm2dosc/
http://www.falstad.com/qm3dosc/

Legendre Polynomials

The Meaning of the Legendre Polynomials
http://physics.unl.edu/~tgay/content/multipoles.html

Encyclopedia
http://en.wikipedia.org/wiki/Legendre_polynomials
http://mathworld.wolfram.com/LegendrePolynomial.html

Wolfram Demonstrations
http://demonstrations.wolfram.com/SphericalHarmonics/
http://demonstrations.wolfram.com/VisualizingAtomicOrbitals/
http://demonstrations.wolfram.com/HydrogenOrbitals/
http://demonstrations.wolfram.com/PlotsOfLegendrePolynomials/
http://demonstrations.wolfram.com/PolarPlotsOfLegendrePolynomials/
http://demonstrations.wolfram.com/DipoleAntennaRadiationPattern/

http://infovis.uni-konstanz.de/research/projects/SimSearch3D/images/harmonics_img.jpg
http://oak.ucc.nau.edu/jws8/dpgraph/Yellm.html
http://www.bpreid.com/applets/poasDemo.html
http://www.du.edu/~jcalvert/math/harmonic/harmonic.htm
http://en.wikipedia.org/wiki/Spherical_harmonics
http://en.wikipedia.org/wiki/Table_of_spherical_harmonics
http://mathworld.wolfram.com/SphericalHarmonic.html
http://www.falstad.com/qmrotator/
http://www.falstad.com/qmatom/
http://www.falstad.com/qmatomrad/
http://www.falstad.com/qm2dosc/
http://www.falstad.com/qm3dosc/
http://physics.unl.edu/~tgay/content/multipoles.html
http://en.wikipedia.org/wiki/Legendre_polynomials
http://mathworld.wolfram.com/LegendrePolynomial.html
http://demonstrations.wolfram.com/SphericalHarmonics/
http://demonstrations.wolfram.com/VisualizingAtomicOrbitals/
http://demonstrations.wolfram.com/HydrogenOrbitals/
http://demonstrations.wolfram.com/PlotsOfLegendrePolynomials/
http://demonstrations.wolfram.com/PolarPlotsOfLegendrePolynomials/
http://demonstrations.wolfram.com/DipoleAntennaRadiationPattern/








Associated Laguerre Polynomials

Some wag once said the nice thing about standards is that there are so many to choose
from. I have been trying to come to grips with the difference between what I presented
in class and the formulae in Sakurai. It is easy to explain the differences on the basis of
different conventions about the associated Laguerre polynomials.

If you want to skip details, a main result is that Sakurai and Mathematica use different
conventions. If we call Lq

n(ρ) the convention of Sakurai and L
(q)
p (ρ) the convention of

Mathematica, we have

Lq
p+q(ρ) = (p + q)!(−1)qL(q)

p (ρ) .

Below are the details. They are presented somewhat in the order of my investigation
and not according to the shorted derivation of the above result.

Differential equation

I have consulted two well known books on mathematical functions that adhere to the
same index convention, but have different normalization conventions. The first book that
I consulted by Abramowitz & Stegun states on pg 778, Eqs. (22.5.16) and (22.5.17):

L(0)
n (x) = Ln(x)

L(m)
n (x) = (−1)m dm

dxm
[Ln+m(x)]

Also, on pg 781, in Eq. (22.6.15), the differential equation is given.

x
d2

dx2
L(α)

n (x) + (α + 1 − x)
d

dx
L(α)

n (x) + nL(α)
n (x) = 0 .

The differential equation is very valuable, but being linear, does not tell us anything
about the normalization.

Another well known book by Morse & Feshbach on pg 784, in an unnumbered equation
three lines from the bottom of the page gives their convention for the associated Laguerre
polynomials.

Lm
n (z) = (−1)m dm

dxm
[L0

n+m(z)] .

The differential equation is also given a few lines above:

z
d2

dz2
La

n(z) + (a + 1 − z)
d

dz
La

n(z) + nLa
n(z) = 0 .

Morse & Feshbach do not put the upper index in parentheses, otherwise, it looks like these
conventions might agree. We can be pretty certain that in these two books the L

(a)
n is a

polynomial of degree n. However, we will soon see that the normalizations don’t agree in
the two books.

1

Larry Sorensen


Larry Sorensen


Larry Sorensen


Larry Sorensen


Larry Sorensen




Sakurai convention

Now, let’s turn to Sakurai. On pg 454 in Eq. (A.6.4), we find

Lq
p(ρ) =

dq

dρq
Lp(ρ) .

This leads us to conclude that Lq
p is of degree p− q, and makes the result above plausible.

In fact, if the normalizations were the same, we would expect:

Lq
p+q(ρ) =

dq

dρq
Lp+q(ρ) = (−1)qL(q)

p (ρ) Not quite correct! .

Class Derivation

In class, I presented the differential equation for the associated Laguerre polynomials
as stated by Mathematica,

xy′′ + (a + 1 − x)y′ + ny = 0 .

This is the same convention as Abramowitz & Stegun and Morse & Feshbach.
In class, we found we needed to solve this differential equation:

ρL′′ + (2(l + 1) − ρ)L′ + (λ − l − 1)L = 0 ,

but λ = n, the total quantum number, and n− l− 1 = n′ the radial quantum number. So,
we have

ρL′′ + (2l + 1 + 1 − ρ)L′ = n′L = 0 .

In the notation of Abramowitz & Stegun, Mathematica or the Morse & Feshbach index
convention, the solution to the differential equation is

L
(2l+1)
n′ (ρ) = L

(2l+1)
n−l−1(ρ) .

In Sakurai notation, L
(2l+1)
n−l−1(ρ) = (−1)2l+1L2l+1

n+l = −L2l+1
n+l . This explains the indices

for Rnl in Sakurai in the equation above (A.6.3).
Pinning Down the Normalizations

We still need to consider normalization conventions, and that can be done from the
generating function or from what is know as Rodrigues’ formula. In fact, in retrospect, it
seems that just looking at the Rodrigues’ formulae in the three books might have been the
easiest way to proceed.

In Abramowitz & Stegun, we find on pg 785, Eq. (22.11.6)

L(α)
n (x) =

1
n!

exx−α dn

dxn
[xn+αe−x] .
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On pg 784 of Morse & Feshbach, we find

La
n(z) =

Γ(a + n + 1)
Γ(n + 1)

ez

zα

dn

dzn
[za+ne−z ] .

If we set α and a to zero, we can compare with Sakurai, which states in Eq. (A.6.5)

Lp(ρ) = eρ dp

dρp
(ρpe−ρ) .

We immediately see that Sakurai agrees in normalization with Morse & Feshbach, at least
for the Laguerre polynomials, if not for the associated Laguerre polynomials. However, the
two books on mathematical methods differ by a factor of (n + a)! in their normalizations
with Abramowitz & Stegun convention being smaller by division by that factor. Morse &
Feshbach include a small table of associated Laguerre polynomials at the bottom of page
784. They have Ln

0 = n!, whereas Abramowitz & Stegun according to Eq. (22.4.7) have
L

(α)
0 = 1. The only remaining mystery is which normalization convention Mathematica

obeys. With this command

Table[{n, LaguerreL[0, n, x]}, {n, 0, 6}]

you will easily find that all results are 1 and Mathematica follows the Abramowitz & Stegun
normalization.

Further, I coded up the Rodrigues’ formula with the Sakurai convention and compared
with (p + q)!(−1)qL

(q)
p where the I used the Mathematica function LaguerreL[p,q,x].

They were in agreement.
Mystery solved! Quantum mechanics and children can now sleep soundly at night.
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