Lecture 15

Everything you should remember
about hydrogen forever
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Ways to solve the radial equation

(1) Solve the differential equation
Find the asymptotic form
Separate it
Differential equation for each value of |
Make the diff eq dimensionless
Put highest derivative first
Set its coefficient equal to 1
Futz around
Discover radial equation is Laguerre eqgn !!!
Declare victory
Normalize the wave functions (caution)

(2) Use the ladder operators

(3) Type “hydrogen atom wavefunctions” into
Google



As always, first solve the TISE
Find the eigenvalues aka the eigenenergies

Find the eigenfcns aka the energy eigenfcns

aka the stationary states
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The I1=0 well, aka the s-well, is the pure Coulomb potential

Because 1=0 there is no angular momentum barrier

infinite number of bound states
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The Effective Potential Depends
on the Angular Momentum

=> Series of Nested Wells

Series of States in each Well
Ground, 1st, 2nd, 3rd, ... excited

The states in different

wells line up!
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The states line up!
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The Energy Degeneracy
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Table 8.5 Spectroscopic Notation for
Atomic Shells and Subhells

n Shell Symbol £ Shell Symbol
1 K () $  sharp

2 /. I /) principal
?) M 2 (i l diffuse
4 N 3 [ fine

D 0 1 g

§ P 5 h

0 2008 Aok Cole - Thormoe

Table 8-5, p.280
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<r> increases as n increases
(for fixed I)
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Fig. 8-11b, p.285
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<r> decreases as |l increases

(for fixed n)
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To put it all together we need to

multiply the radial dependence

by the angular dependence
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The Associated

Laguerre Polynomials
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The Radial Wavefunctions

25 1 0 fF\=== O 0 P =

025 + . 0¥—-—-- - - -

(=]

_025 | e

.02 T T T

0 5 10 15 20

Fig. 13.14. Radial eigenfunctions R,.(p) for the electron in the hydrogen atom. Their zeros
are the n — / — 1 zeros of the Laguerre polynomials Lie_"’el_l(Qp/n). Here the argument of the
Laguerre polynomial is 2p/n with n being the principal quantum number and p = r/a the

distance between electron and nucleus divided by the Bohr radius a. >

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 3td ed., © 2001 by Springer-Verlag New York.
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2p, 3p, 4p, Sp

wavefunctions probability dV probability dr
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3d, 4d, 5d
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All Together

volume radial
wavefcns o opabilities probabilities

E R, (P E RZ (M) E r2RZ(r)

r >

Fig. 13.15. Radial eigenfunc-
tions Ry,(r), their squares
R%,(r), and the functions
r?R2,(r) for the lowest eigen-
states of the electron in the
hydrogen atom and the low-
est angular-momentum quan-
tum numbers ¢ = 0,1, 2.
Also shown are the en-
ergy eigenvalues as horizontal
dashed lines, the form of the
Coulomb potential V(r), and,
for ¢ # 0, the forms of the ef-
fective potential V2% (r). The
eigenvalue spectra are degen-
erate for all ¢ values, except
that the minimum value of
the principal quantum num-
ber is n =/¢+1.

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 37d ed., © 2001 by Springer-Verlag New York.
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The Radial Wavefunctions Times

the Angular Wavefunctions

in Three-Dimensions
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Three-dimensional
representations



(1) The Cut Solid Representation

Nodes
Two Representations of é @
the Hydrogen 1s, 2s, and

3s Orbitals (a)

0

(b)
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(2) The Computer Generated Dot Representation

~

5“:,

Figure 37-5 Computer-generated dot picture of the == Say
probability density ¢ for the ground state of hvdrogen.

The quantity ey” can be thought of as the electron

charge density in the atom. The density is spherically

symmetric, is greatest at the origin, and decreases

exponentially with r.

~ =&
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spectroscopic notation
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(3) The Shaded Picture with a Plot Representation

1)

Probability Distribution for
the 1s Wave Function ;

Probabelity (R

Distance from nucleus (1)

()
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(3) The Shaded Picture with a Plot Representation
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|sotropic
States only
1=0

dr

Fig. 8-9, p.282

© 2008 BrockaTole - Tharmen
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(4) Electron density contours

(#)

1s state
hydrogen, | |

atom
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Electron density contours
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hydrogen

molecule

CllAlRGE DENSITY ll\ll au



Larry
Electron density contours

Larry


Larry
ground state
hydrogen 
molecule

Larry


Larry



Electron density contours for hydrogen
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Old Fashioned and New Fangled

Artists’' Conceptions
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Beware continued

Essence of Optimal Human Movement
Recognitions

When Optimal Human
Movement first started
almost one year ago, the
Statement of Purpose
included 23
"recognitions.”

Decided to look for the
"essence" of those
recognitions, for
simplicity and ease of
review.

The term "recognition” is
used for they are truths
that one needs simply to
recognize. They're not

Hydrogen atom wave functions. handed down from any
authority.

Original Statement of Purpose can still be found on this page, and in "Notes" of
Facebook page.

1) We recognize that at the commencement of the 21st century, with exponential growth
of communications and global economic systems, that all human beings are
interdependently connected.

2) We recognize that the greatest strength of the human species is the ability to reason,
and every human being has the moral obligation to develop optimal levels of reasoning
for their own benefit and the benefit of others.
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e Hydrogen Wave Function
*robability density plots,
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Probability density 2-dimensional plots
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The Functional Form
http://panda.unm.edu/Courses/Finley/P262/Hydrogen/WaveFcns.html

The Radial Components
http://hyperphysics.phy-astr.gsu.edu/Hbase/hydwf.html#c1

The Angular Components
http://oak.ucc.nau.edu/jws8/dpgraph/Yellm.html

Radial times Angular
http://www.falstad.com/gmatom/
http://webphysics.davidson.edu/faculty/dmb/hydrogen/intro_hyd.html

The Story Continues
http://www.pha.jhu.edu/~rt19/hydro/


http://panda.unm.edu/Courses/Finley/P262/Hydrogen/WaveFcns.html
http://hyperphysics.phy-astr.gsu.edu/Hbase/hydwf.html#c1
http://oak.ucc.nau.edu/jws8/dpgraph/Yellm.html
http://www.falstad.com/qmatom/
http://webphysics.davidson.edu/faculty/dmb/hydrogen/intro_hyd.html
http://www.pha.jhu.edu/~rt19/hydro/

http://webphysics.davidson.edu/faculty/dmb/hydrogen/
http://nyperphysics.phy-astr.gsu.edu/Hbase/quantum/hydcn.html#c1
http://cronodon.com/Atomic/AtomTech4.html
http://www.evilmadscientist.com/article.php/atomiccookies

http://mareserinitatis.livejournal.com/tag/food


http://webphysics.davidson.edu/faculty/dmb/hydrogen/
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/hydcn.html#c1
http://cronodon.com/Atomic/AtomTech4.html
http://www.evilmadscientist.com/article.php/atomiccookies
http://mareserinitatis.livejournal.com/tag/food

Spherical Harmonics

The Meaning of the Spherical Harmonics
http://infovis.uni-konstanz.de/research/projects/SimSearch3D/images/harmonics _img.jpg

The Spherical Harmonics
http://oak.ucc.nau.edu/jws8/dpgraph/Yellm.html
http://www.bpreid.com/applets/poasDemo.html
http://www.du.edu/~jcalvert/math/harmonic/harmonic.htm

Encyclopedia
http://en.wikipedia.org/wiki/Spherical_harmonics
http://en.wikipedia.org/wiki/Table of_spherical harmonics
http://mathworld.wolfram.com/SphericalHarmonic.html

Applications of Spherical Harmonics
http://www.falstad.com/gmrotator/
http://www.falstad.com/gmatom/
http://www.falstad.com/gmatomrad/
http://www.falstad.com/gm2dosc/
http://www.falstad.com/gm3dosc/

Legendre Polynomials

The Meaning of the Legendre Polynomials
http://physics.unl.edu/~tgay/content/multipoles.html

Encyclopedia
http://fen.wikipedia.org/wiki/Legendre polynomials
http://mathworld.wolfram.com/LegendrePolynomial.html

Wolfram Demonstrations

http://demonstrations.wolfram.com/SphericalHarmonics/
http://demonstrations.wolfram.com/VisualizingAtomicOrbitals/
http://demonstrations.wolfram.com/HydrogenQOrbitals/

http://demonstrations.wolfram.com/PlotsOfLegendrePolynomials/

http://demonstrations.wolfram.com/PolarPlotsOfL egendrePolynomials/
http://demonstrations.wolfram.com/DipoleAntennaRadiationPattern/



http://infovis.uni-konstanz.de/research/projects/SimSearch3D/images/harmonics_img.jpg
http://oak.ucc.nau.edu/jws8/dpgraph/Yellm.html
http://www.bpreid.com/applets/poasDemo.html
http://www.du.edu/~jcalvert/math/harmonic/harmonic.htm
http://en.wikipedia.org/wiki/Spherical_harmonics
http://en.wikipedia.org/wiki/Table_of_spherical_harmonics
http://mathworld.wolfram.com/SphericalHarmonic.html
http://www.falstad.com/qmrotator/
http://www.falstad.com/qmatom/
http://www.falstad.com/qmatomrad/
http://www.falstad.com/qm2dosc/
http://www.falstad.com/qm3dosc/
http://physics.unl.edu/~tgay/content/multipoles.html
http://en.wikipedia.org/wiki/Legendre_polynomials
http://mathworld.wolfram.com/LegendrePolynomial.html
http://demonstrations.wolfram.com/SphericalHarmonics/
http://demonstrations.wolfram.com/VisualizingAtomicOrbitals/
http://demonstrations.wolfram.com/HydrogenOrbitals/
http://demonstrations.wolfram.com/PlotsOfLegendrePolynomials/
http://demonstrations.wolfram.com/PolarPlotsOfLegendrePolynomials/
http://demonstrations.wolfram.com/DipoleAntennaRadiationPattern/










Associated Laguerre Polynomials

Some wag once said the nice thing about standards is that there are so many to choose
from. I have been trying to come to grips with the difference between what I presented
in class and the formulae in Sakurai. It is easy to explain the differences on the basis of
different conventions about the associated Laguerre polynomials.

If you want to skip details, a main result is that Sakurai and Mathematica use different
conventions. If we call £I(p) the convention of Sakurai and L;,q)(p) the convention of
Mathematica, we have

LL(p)=(p+q!(-1)7L(p) .

Below are the details. They are presented somewhat in the order of my investigation
and not according to the shorted derivation of the above result.
Differential equation

I have consulted two well known books on mathematical functions that adhere to the
same index convention, but have different normalization conventions. The first book that
I consulted by Abramowitz & Stegun states on pg 778, Eqgs. (22.5.16) and (22.5.17):

LY (2) = Ln(x)

an
dx™

Also, on pg 781, in Eq. (22.6.15), the differential equation is given.

LM () = (1)~ [Losm(2)]

x@L% Nz) + (a+1— a:)%L,g N(x) +nL®(z)=0.

The differential equation is very valuable, but being linear, does not tell us anything
about the normalization.

Another well known book by Morse & Feshbach on pg 784, in an unnumbered equation
three lines from the bottom of the page gives their convention for the associated Laguerre
polynomials.

am .,

The differential equation is also given a few lines above:

Ly'(z) = (=)™

d2 a d a a
z@Ln(z) +(a+1— z)aLn(z) +nL;(z)=0.

Morse & Feshbach do not put the upper index in parentheses, otherwise, it looks like these
conventions might agree. We can be pretty certain that in these two books the Lﬁf) is a

polynomial of degree n. However, we will soon see that the normalizations don’t agree in
the two books.
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Sakurai convention
Now, let’s turn to Sakurai. On pg 454 in Eq. (A.6.4), we find

d?

Li(p) = d—pqu(p) :

This leads us to conclude that L is of degree p — ¢, and makes the result above plausible.
In fact, if the normalizations were the same, we would expect:

d?

- d—pquJr‘I(p) - (_1)qL;(7q)(P) Not quite correct! .

£Z+q(p)

Class Derivation

In class, I presented the differential equation for the associated Laguerre polynomials
as stated by Mathematica,

2 +(a+1—2)y +ny=0.

This is the same convention as Abramowitz & Stegun and Morse & Feshbach.
In class, we found we needed to solve this differential equation:

pL" + (2(l+1)—p) L'+ (A=1-1)L =0,

but A = n, the total quantum number, and n —! — 1 = n’ the radial quantum number. So,
we have
pL" +2l+1+1—p) L' =n'L=0.

In the notation of Abramowitz & Stegun, Mathematica or the Morse & Feshbach index
convention, the solution to the differential equation is

20+1 20+1
Ly (o) = LT () -

In Sakurai notation, Lgflr_l)l(p) = (—1)2l+1£ilj_rll = —Eff:’ll . This explains the indices

for R, in Sakurai in the equation above (A.6.3).
Pinning Down the Normalizations

We still need to consider normalization conventions, and that can be done from the
generating function or from what is know as Rodrigues’ formula. In fact, in retrospect, it
seems that just looking at the Rodrigues’ formulae in the three books might have been the
easiest way to proceed.

In Abramowitz & Stegun, we find on pg 785, Eq. (22.11.6)

1 ar
L (z) = =€z

e CUC IR
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On pg 784 of Morse & Feshbach, we find

Fa+n+1)e* d” _
La — s at+n —=z )
n(2) Fn+1) zvdz» |2

If we set o and a to zero, we can compare with Sakurai, which states in Eq. (A.6.5)

P

d _
Ly(p) = epd—pp(ppe 7).

We immediately see that Sakurai agrees in normalization with Morse & Feshbach, at least
for the Laguerre polynomials, if not for the associated Laguerre polynomials. However, the
two books on mathematical methods differ by a factor of (n + a)! in their normalizations
with Abramowitz & Stegun convention being smaller by division by that factor. Morse &
Feshbach include a small table of associated Laguerre polynomials at the bottom of page
784. They have L{ = n!, whereas Abramowitz & Stegun according to Eq. (22.4.7) have
L(()a) = 1. The only remaining mystery is which normalization convention Mathematica
obeys. With this command

Table[{n, LaguerreL[0, n, x|}, {n, 0,6}

you will easily find that all results are 1 and Mathematica follows the Abramowitz & Stegun
normalization.

Further, I coded up the Rodrigues’ formula with the Sakurai convention and compared
with (p + q)!(—l)qLéq) where the I used the Mathematica function LaguerreL[p,q,x].
They were in agreement.

Mystery solved! Quantum mechanics and children can now sleep soundly at night.
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