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Chapter 10 The Hydrogen Atom

There are many good reasons to address the hydrogen atom beyond its historical significance.
Though hydrogen spectra motivated much of the early quantum theory, research involving the
hydrogen remains at the cutting edge of science and technology. For instance, transitions in
hydrogen are being used in 1997 and 1998 to examine the constancy of the fine structure constant
over a cosmological time scale2. From the view point of pedagogy, the hydrogen atom merges many
of the concepts and techniques previously developed into one package. It is a particle in a box
with spherical, soft walls. Finally, the hydrogen atom is one of the precious few realistic systems
which can actually be solved analytically.

The Schrodinger Equation in Spherical Coordinates
In chapter 5, we separated time and position to arrive at the time independent Schrodinger

equation which is
H

��Ei> = Ei

��Ei>, (10− 1)

where Ei are eigenvalues and
��Ei> are energy eigenstates. Also in chapter 5, we developed a one

dimensional position space representation of the time independent Schrodinger equation, changing
the notation such that Ei → E, and

��Ei> → ψ. In three dimensions the Schrodinger equation
generalizes to �

− h̄2

2m
∇2 + V

�
ψ = Eψ,

where ∇2 is the Laplacian operator. Using the Laplacian in spherical coordinates, the Schrodinger
equation becomes

− h̄2

2m

�
1
r2

∂

∂r

�
r2 ∂

∂r

�
+

1
r2 sin θ

∂

∂θ

�
sin θ

∂

∂θ

�
+

1
r2 sin2 θ

∂2

∂φ2

�
ψ + V (r)ψ = Eψ. (10− 2)

In spherical coordinates, ψ = ψ(r, θ, φ), and the plan is to look for a variables separable solution
such that ψ(r, θ,φ) = R(r)Y (θ, φ). We will in fact find such solutions where Y (θ, φ) are the
spherical harmonic functions and R(r) is expressible in terms of associated Laguerre functions.
Before we do that, interfacing with the previous chapter and arguments of linear algebra may
partially explain why we are proceeding in this direction.

Complete Set of Commuting Observables for Hydrogen
Though we will return to equation (10–2), the Laplacian can be expressed

∇2 =
∂2

∂r2
+

2
r

∂

∂r
+

1
r2

�
∂2

∂θ2
+

1
tan θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

�
. (10− 3)

Compare the terms in parenthesis to equation 11–33. The terms in parenthesis are equal to
−L2/h̄2, so assuming spherical symmetry, the Laplacian can be written

∇2 =
∂2

∂r2
+

2
r

∂

∂r
− L2

r2h̄2 ,

2 Schwarzschild. “Optical Frequency Measurement is Getting a Lot More Precise,” Physics
Today 50(10) 19–21 (1997).
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and the Schrodinger equation becomes
�
− h̄2

2m

�
∂2

∂r2
+

2
r

∂

∂r
− L

2

r2h̄2

�
+ V (r)

�
ψ = Eψ. (10− 4)

Assuming spherical symmetry, which we will have because a Coulomb potential will be used for
V (r), we have complicated the system of chapter 11 by adding a radial variable. Without the radial
variable, we have a complete set of commuting observables for the angular momentum operators
in L

2 and Lz. Including the radial variable, we need a minimum of one more operator, if that
operator commutes with both L

2 and Lz. The total energy operator, the Hamiltonian, may be
a reasonable candidate. What is the Hamiltonian here? It is the group of terms within the square
brackets. Compare equations (10–1) and (10–4) if you have difficulty visualizing that. In fact,

�
H, L2

�
= 0, and

�
H, Lz

�
= 0,

so the Hamiltonian is a suitable choice. The complete set of commuting observables for the
hydrogen atom is H, L2, and Lz. We have all the eigenvalue/eigenvector equations, because the
time independent Schrodinger equation is the eigenvalue/eigenvector equation for the Hamiltonian
operator, i.e., the the eigenvalue/eigenvector equations are

H
��ψ> = En

��ψ>,

L
2
��ψ> = l(l + 1)h̄2

��ψ>,

Lz

��ψ> = mh̄
��ψ>,

where we subscripted the energy eigenvalue with an n because that is the symbol conventionally
used for the energy quantum number (per the particle in a box and SHO). Then the solution to
the problem is the eigenstate which satisfies all three, denoted |n, l,m> in abstract Hilbert space.
The representation in position space in spherical coordinates is

<r, θ,φ
��n, l, m> = ψnlm(r, θ,φ).

Example 10–1: Starting with the Laplacian included in equation (10–2), show the Laplacian
can be express as equation (10–3).

∇2 =
1
r2

∂

∂r

�
r2 ∂

∂r

�
+

1
r2 sin θ

∂

∂θ

�
sin θ

∂

∂θ

�
+

1
r2 sin2 θ

∂2

∂φ2

=
1
r2

�
2r

∂

∂r
+ r2 ∂2

∂r2

�
+

1
r2 sin θ

�
cos θ

∂

∂θ
+ sin θ

∂2

∂θ2

�
+

1
r2 sin2 θ

∂2

∂φ2

=
∂2

∂r2
+

2
r

∂

∂r
+

1
r2

∂2

∂θ2
+

1
r2 tan θ

∂

∂θ
+

1
r2 sin2 θ

∂2

∂φ2

=
∂2

∂r2
+

2
r

∂

∂r
+

1
r2

�
∂2

∂θ2
+

1
tan θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

�
,

which is the form of equation (10–3).

Example 10–2: Show
�
H, L2

�
= 0.

�
H, L2

�
= HL

2 − L
2
H
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Separating Radial and Angular Dependence
In this and the following three sections, we illustrate how the angular momentum and magnetic

moment quantum numbers enter the symbology from a calculus based argument. In writing
equation (10–2), we have used a representation, so are no longer in abstract Hilbert space. One of
the consequences of the process of representation is the topological arguments of linear algebra are
obscured. They are still there, simply obscured because the special functions we use are orthogonal,
so can be made orthonormal, and complete, just as bras and kets in a dual space are orthonormal
and complete. The primary reason to proceed in terms of a position space representation is to
attain a position space description. One of the by–products of this chapter may be to convince
you that working in the generality of Hilbert space in Dirac notation can be considerably more
efficient. Since we used topological arguments to develop angular momentum in the last chapter,
and arrive at identical results to those of chapter 11, we rely on connections between the two to
establish the meanings of of l and m. They have the same meanings within these calculus
based discussions.

As noted, we assume a variables separable solution to equation (10–2) of the form

ψ(r, θ, φ) = R(r)Y (θ, φ). (10− 5)

An often asked question is “How do you know you can assume that?” You do not know. You
assume it, and if it works, you have found a solution. If it does not work, you need to attempt
other methods or techniques. Here, it will work. Using equation (10–5), equation (10–2) can be
written

1
r2

∂

∂r

�
r2 ∂

∂r

�
R(r)Y (θ,φ) +

1
r2 sin θ

∂

∂θ

�
sin θ

∂

∂θ

�
R(r)Y (θ, φ)

+
1

r2 sin2 θ

∂2

∂φ2
R(r) Y (θ,φ)− 2m

h̄2

�
V (r)−E

�
R(r)Y (θ, φ) = 0

⇒ Y (θ,φ)
1
r2

∂

∂r

�
r2 ∂

∂r

�
R(r) + R(r)

1
r2 sin θ

∂

∂θ

�
sin θ

∂

∂θ

�
Y (θ, φ)

+R(r)
1

r2 sin2 θ

∂2

∂φ2
Y (θ,φ)− 2m

h̄2

�
V (r)− E

�
R(r)Y (θ, φ) = 0.

Dividing the equation by R(r)Y (θ, φ), multiplying by r2, and rearranging terms, this becomes
�

1
R(r)

∂

∂r

�
r2 ∂

∂r

�
R(r)− 2mr2

h̄2

�
V (r)− E

��

+
�

1
Y (θ,φ) sin θ

∂

∂θ

�
sin θ

∂

∂θ

�
Y (θ,φ) +

1
Y (θ, φ) sin2 θ

∂2

∂φ2
Y (θ, φ)

�
= 0.

The two terms in the curly braces depend only on r, and the two terms in the square brackets
depend only upon angles. With the exception of a trivial solution, the only way the sum of the
groups can be zero is if each group is equal to the same constant. The constant chosen is known
as the separation constant. Normally, an arbitrary separation constant, like K, is selected and
then you solve for K later. In this example, we are instead going to stand on the shoulders of
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some of the physicists and mathematicians of the previous 300 years, and make the enlightened
choice of l(l + 1) as the separation constant. It should become clear l is the angular momentum
quantum number introduced in chapter 11. Then

1
R(r)

d

dr

�
r2 d

dr

�
R(r)− 2mr2

h̄2

�
V (r)− E

�
= l(l + 1) (10− 6)

which we call the radial equation, and

1
Y (θ, φ) sin θ

∂

∂θ

�
sin θ

∂

∂θ

�
Y (θ,φ) +

1
Y (θ, φ) sin2 θ

∂2

∂φ2
Y (θ,φ) = −l(l + 1), (10− 7)

which we call the angular equation. Notice the signs on the right side are opposite so they do,
in fact, sum to zero.

The Angular Equation
The solutions to equation (10–7) are the spherical harmonic functions, and the l used in

the separation constant is, in fact, the same used as the index l in the spherical harmonics
Yl,m(θ, φ). In fact, it is the angular momentum quantum number. But where is the index m?
How is the magnetic moment quantum number introduced? To answer these questions, remember
the spherical harmonics are also separable, i.e., Yl,m(θ,φ) = fl,m(θ) gm(φ). We will use such a
solution in the angular equation, without the indices until we see where they originate. Using the
solution Y (θ,φ) = f(θ) g(φ) in equation (10–7),

1
f(θ) g(φ) sin θ

∂

∂θ

�
sin θ

∂

∂θ

�
f(θ) g(φ) +

1
f(θ) g(φ) sin2 θ

∂2

∂φ2
f (θ) g(φ) = −l(l + 1)

⇒ 1
f(θ) sin θ

∂

∂θ

�
sin θ

∂

∂θ

�
f(θ) +

1
g(φ) sin2 θ

∂2

∂φ2
g(φ) = −l(l + 1).

Multiplying the equation by sin2 θ and rearranging,

sin θ

f (θ)
∂

∂θ

�
sin θ

∂

∂θ

�
f(θ) + l(l + 1) sin2 θ +

1
g(φ)

∂2

∂φ2
g(φ) = 0.

The first two terms depend only on θ, and the last term depends only on φ. Again, the only
non–trivial solution such that the sum is zero is if the groups of terms each dependent on a single
variable is equal to the same constant. Again using an enlightened choice, we pick m2 as the
separation constant, so

sin θ

f(θ)
d

dθ

�
sin θ

d

dθ

�
f(θ) + l(l + 1) sin2 θ = m2, (10− 8)

1
g(φ)

d2

dφ2
g(φ) = −m2, (10− 9)

and that is how the magnetic moment quantum number is introduced. Again, (10–8) and (10–9)
need to sum to zero so the separation constant has opposite signs on the right side in the two
equations.
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The Azimuthal Angle Equation
The solution to the azimuthal angle equation, equation (10–9), is

g(φ) = eimφ ⇒ gm(φ) = eimφ, (10− 10)

where the subscript m is added to g(φ) because it is now clear there are as many solutions as
there are allowed values of m.

Example 10–4: Show gm(φ) = eimφ is a solution to equation (10–9).

d2

dφ2
gm(φ) =

d2

dφ2
eimφ =

d

dφ
(im)eimφ = (im)2eimφ = −m2gm(φ).

Using this in equation (10–9),

1
g(φ)

d2

dφ2
g(φ) = −m2 ⇒ 1

g(φ)

�
−m2gm(φ)

�
= −m2 ⇒ −m2 = −m2,

therefore gm(φ) = eimφ is a solution to equation (10–9).

The Polar Angle Equation
This section is a little more substantial than the last. Equation (10–8) can be written

sin θ
d

dθ

�
sin θ

d

dθ

�
f(θ) + l(l + 1) sin2 θ f (θ)−m2 f(θ) = 0.

Evaluating the first term,

sin θ
d

dθ

�
sin θ

d

dθ

�
f(θ) = sin θ

d

dθ

�
sin θ

d f(θ)
dθ

�

= sin θ

�
cos θ

d f (θ)
dθ

+ sin θ
d2 f(θ)

dθ2

�

= sin2 θ
d2 f (θ)

dθ2
+ sin θ cos θ

d f(θ)
dθ

.

Using this, equation (10–8) becomes

sin2 θ
d2 f(θ)

dθ2
+ sin θ cos θ

d f(θ)
dθ

+ l(l + 1) sin2 θ f (θ)−m2 f(θ) = 0. (10− 11)

We are going to change variables using x = cos θ, and will comment on this substitution later.
We then need the derivatives with respect to x vice θ, so

d f(θ)
dθ

=
d f(x)

dx

dx

dθ
=

d f(x)
dx

�
− sin θ

�
= − sin θ

d f(x)
dx

,
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and

d2 f (θ)
dθ2

=
d

dθ

�
− sin θ

d f(x)
dx

�
= − cos θ

d f(x)
dx

− sin θ
d

dθ

d f (x)
dx

= − cos θ
d f(x)

dx
− sin θ

d

dx

dx

dθ

d f(x)
dx

= − cos θ
d f(x)

dx
− sin θ

d

dx

�
− sin θ

�d f(x)
dx

= − cos θ
d f(x)

dx
+ sin2 θ

d2 f(x)
dx2

.

Substituting just the derivatives in the equation (10–11),

sin2 θ

�
sin2 θ

d2 f(x)
dx2

− cos θ
d f (x)

dx

�
+sin θ cos θ

�
− sin θ

d f(x)
dx

�
+l(l+1) sin2 θf(x)−m2 f(x) = 0,

which gives us an equation in both θ and x, which is not formally appropriate. This is, however,
an informal text, and it becomes difficult to keep track of the terms if all the substitutions and
reductions are done at once. Dividing by sin2 θ, we get

sin2 θ
d2 f(x)

dx2
− cos θ

d f(x)
dx

− cos θ
d f(x)

dx
+ l(l + 1) f(x)− m2

sin2 θ
f(x) = 0.

The change of variables is complete upon summing the two first derivatives, using cos θ = x, and
sin2 θ = 1− cos2 θ = 1− x2, which is

�
1− x2

� d2 f(x)
dx2

− 2x
d f(x)

dx
+ l(l + 1) f(x)− m2

1− x2
f (x) = 0.

This is the associated Legendre equation, which reduces to Legendre equation when
m = 0. The function has a single argument so there is no confusion if the derivatives are indicated
with primes, and the associated Legendre equation is often written

�
1− x2

�
f ��(x)− 2x f �(x) + l(l + 1) f(x)− m2

1− x2
f(x) = 0,

and becomes the Legendre equation,
�
1− x2

�
f ��(x)− 2x f �(x) + l(l + 1) f (x) = 0,

when m = 0. The solutions to the associated Legendre equation are the associated Legendre
polynomials discussed briefly in the last section of chapter 11. To review that in the current
context, associated Legendre polynomials can be generated from Legendre polynomials using

Pl,m(x) = (−1)m
�

(1− x2)m
dm

dxm
Pl(x),

where the Pl(x) are Legendre polynomials. Legendre polynomials can be generated using

Pl(x) =
(−1)l

2ll!
dl

dxl
(1− x2)l.
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The use of these generating functions was illustrated in example 11–26 as intermediate results in
calculating spherical harmonics.

The first few Legendre polynomials are listed in table 10–1. Our interest in those is to generate
associated Legendre functions. The first few associated Legendre polynomials are listed in table
10–2.

P0(x) = 1 P3(x) = 1
2

�
5x3 − 3x

�

P1(x) = x P4(x) = 1
8

�
35x4 − 30x2 + 3

�

P2(x) = 1
2

�
3x2 − 1

�
P5(x) = 1

8

�
63x5 − 70x3 + 15x

�

Table 10− 1. The First Six Legendre Polynomials.

P0,0(x) = 1 P2,0(x) = 1
2

�
3x2 − 1

�

P1,1(x) = −
√

1− x2 P3,3(x) = −15
�√

1− x2
�3

P1,0(x) = x P3,2(x) = 15x
�
1− x2

�

P2,2(x) = 3
�
1− x2

�
P3,1(x) = −3

2

�
5x2 − 1

�√
1− x2

P2,1(x) = −3x
√

1− x2 P3,0(x) = 1
2

�
5x3 − 3x

�

Table 10 − 2. The First Few Associated Legendre Polynomials.

Two comment concerning the tables are appropriate. First, notice Pl = Pl,0. That makes
sense. If the Legendre equation is the same as the associated Legendre equation with m = 0, the
solutions to the two equations must be the same when m = 0. Also, many authors will use
a positive sign for all associated Legendre polynomials. This is a different choice of phase. We
addressed that following table 11–1 in comments on spherical harmonics. We choose to include a
factor of (−1)m with the associated Legendre polynomials, and the sign of all spherical harmonics
will be positive as a result.

Finally, remember the change of variables x = cos θ. That was done to put the differential
equation in a more elementary form. In fact, a dominant use of associated Legendre polynomials is
in applications where the argument is cos θ. One example is the generating function for spherical
harmonic functions,

Yl,m(θ, φ) = (−1)m

�
(2l + 1)(l −m)!

4π(l + m)!
Pl,m(cos θ) eimφ m ≥ 0, (10− 10)

and
Yl,−m(θ, φ) = Y ∗

l,m(θ,φ), m < 0,

where the Pl,m(cos θ) are associated Legendre polynomials. If we need a spherical harmonic with
m < 0, we will calculate the spherical harmonic with m =

��m
��, and then calculate the adjoint.

To summarize the last three sections, we separated the angular equation into an azimuthal
and a polar portion. The solutions to the azimuthal angle equation are exponentials including the
magnetic moment quantum number in the argument. The solutions to the polar angle equation
are the associated Legendre polynomials, which are different for each choice of orbital angular
momentum and magnetic moment quantum number. Both quantum numbers are introduced into
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http://quantumrelativity.calsci.com/Physics/EandM7.html

If the boundary conditions are not separable, most likely we're hosed

Generally speaking, if the boundary conditions are 

separable, there's a good chance the solution is 

separable. If the boundary conditions are not separable, 

most likely we're hosed.

This is Bessel's equation. The solutions are Bessel 

functions, Neumann functions, and Hankel functions, 

and we've officially entered Graduate Student Hell. 

http://www.urbandictionary.com/define.php?term=hosed
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Bo E. Sernelius 4:6

SPHERICAL COORDINATES

! " " !2
2

2
2 2 2

2

2
1 1 1 0

r r
r

r r rsin
sin

sin

r R r P Q, ,# $ ! # $ # $ # $

1 1 1 02
2

2 2 2

2

2r R

d
dr

r
dR
dr r P

d
d

dP
d r Q

d Q

d
" " !

sin
sin

sin

multiply with r2 2sin :

sin sin sin
2

2
2

2
1

R
d
dr

r
dR
dr P

d
d

dP
d Q

d Q

d
" !

The left-hand side depends only on r and , while the right-hand side depends
only on . Thus the two sides must be a constant, m2.

d Q

d
m Q Q e mim

2

2
2 0 0 1 2" ! # $ !%  ;   ~   ;   , ,

Note: If the physical problem limits  to a restricted range m can be a non-
integer.

Now we return to the left-hand side and rearrange the terms:

1 12
2

2R
d
dr

r
dR
dr P

d
d

dP
d

m! "
sin

sin
sin

The new left-hand side depends only on r and the right-hand side on only .
Thus, they must be a constant, l(l+1).
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Bo E. Sernelius 4:7

We get

d
dr

r
dR
dr

l l R2 1 0!" # $

and

1 1 0
2

2sin
sin

sin
d

d
dP
d

l l
m

P! !" # $

To solve the first, we make the ansatz: R Ar$  and obtain the two solutions
rl and r-(l+1). The general solution is then

R r A r B
r

l l
l

l l" # $ ! !
1

1

For the polar-angle function P( ) it is customary to make the substitution

cos   ;   
sin

x
d

d
d
dx

1

This gives

d
dx

x
dP
dx

l l
m

x
P1 1

1
02

2

2" # ! !" # $

We will first limit ourselves to axial or azimuthal symmetry.
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Axial symmetry

1 2 1 02
2

2# $ " "# $ !x
d P

dx
x

dP
dx

l l P Legendre's equation

Note that if x=±1 are excluded from the problem l may be non-integer.

The solution is the Legendre polynomial of order l: Pl cos# $

Thus we have the general solution to Laplace's equation in spherical
coordinates for the special case of axial symmetry as:

r A r B
r

Pl
l

l l l
l

, cos# $ ! " # $"
!

1
1

0

The Legendre polynomials can be obtained from 

P x
l

d

dx
xl l

l

l
l

# $ ! # $1
2

12
!

Rodrigues' formula

or from the generating function

F x
x

P xl
l

l
,&

& &
&# $ !

"# $
! # $

!

1

1 2 2 1 2
0

or from recursion relations such as:

l P x l xP x lP xl l l"# $ # $ ! "# $ # $ # $"1 2 11 1

or

1 2
1# $ ! # $ " # $x

dP
dx

lxP x lP xl
l l
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The polynomials form a complete, orthogonal set of functions in the domain 
-1 x 1  (0 )

f x A P x

A
l

f x P x dx

l
l

l

l l

# $ ! # $

! " # $ # $

!0

1

12 1
2
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 So what is a hexacontatetrapole moment, anyway?

A sum of sines and cosines can be used to model period functions, given the correct coefficients (a Fourier series). Similarly, a

special set of polynomials known as Legendres can model functions in a spherical coordinate system: specifically, spherical

harmonics. In our lab, we care about spherical harmonics when we're talking about atomic orbitals--these charge clouds can be

modeled using a series of Legendres. The collection of necessary parameters are known as the multipole moments.

Multipoles have many uses throughout the physical sciences. One common example comes from computational chemistry:

predicting the electric potential (voltage) field due to a complex molecule. You could find the components of the field at each

point due to every atom, but this becomes a tremendous task with a large molecule. Instead, the molecule can be decomposed

into a handful of multipole moments which provide simple equations for predicting the field.

In essence, multipoles describe how much something behaves like another system that we can predict easily.

We start by asking, "How much does this act like a ball of charge?" In that case,

the potential field is distributed evenly in all directions, and our multipole moment

is an estimate of the total charge.

Next, we ask about how much the field behaves like a dipole: two opposite charges

seperated by a small distance. In this case, the field has two bulbous ends, one with

a positive potential and the other with negative potential. This multipole moment

is something like the center of charge, giving us a clue to the distance between our

origin and the center of charge. In some sense, the dipole is similar to the center of

mass for a solid object.

As more charges are arranged together, they start creating strange looking fields.

The beauty of the mathematics is that all the fields fit together to create a more

complete picture of the field. We have information about the charge and center of

mass from the first two poles, then keep adding finer and finer details until we

have an adequate idea of the field's behavior. In the case of our hexacontatetrapole,

that's seven poles deep, and we have an excellent measurement of how the system

is behaving.

In an experiment, we start with data, extract multipoles, and try to reassemble the original field. Depending on the

mathematics, this can give a single field solution or a set of solutions. While we can go backwards in some cases, the

important information is not necessarily the original field, but how that field behaves. This is again where the multipoles come

in handy: based on the multipole data, we can anticipate a reaction to the field without knowing what it true shape is, and we

can gather hints about what the shape might be.

Let's take three examples, and look at what we can predict about the fields based on the multipoles. We'll use a football, a

discus, and a bowling pin as familiar examples with differing poles. Each has a well defined axis of rotation, but differ in their

symmetries around an equatorial axis. The football is longer in the axial direction, whereas the discus is wider in the

equatorial direction than it is long. The bowling pin is not symmetric about its equator, since one end bulges out much more

than the other.

To calculate the multipoles, we took a photograph of each object, then plotted points along its outline to simulate data. Next,

we used integration to fit multipoles to the data sets, similar to the experiments in our lab. Those values are listed in the

following table:

Order Name Football Discus Bowling Pin

0 Monopole 1 1 1

1 Dipole 0 0 -3.15 x 10
-2

2 Quadrupole 2.35 x 10
-3

-4.13 x 10
-3

5.22 x 10
-3
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3 Octupole 0 0 -1.56 x 10
-4

. . .

6 Hexacontatetrapole 1.38 x 10
-7

-4.84 x 10
-7

6.61 x 10
-7

The first thing to notice is that if the object or field is symmetric, like the football and discus, all the odd-ordered multipoles

are zero. These odd multipoles are all based on Legendre polynomials that are non-symmetric, so we wouldn't expect them in

a symmetric object. Secondly, the sign of the multipole indicates whether there is an addition or subtraction from the field. The

football has positive multipoles, and continues to grow slowly in the axial direction. The discus alternates sign, causing it to

shrink a small amount more than it grows in the axial direction, making it wider in the equatorial direction.

Great, we can calculate interactions. But what about the original field?

Multipoles can give us a good idea of how the field behaves without having to know the original field. In some cases, we can

actually go backwards to create a field. For our sports balls, we can only generate one field of an infinite number of fields, but

we'll see that given some guesses about the original size, our generalizations about what multipoles come from which shape

will hold.

Again using multipoles, we can create spheres of varying density that yield pure multipole moments. A sphere with a density

that varies in the same way as a dipole will end up with only a dipole momen, nothing else. By assembling these spheres

together with the right weights, we create a new sphere that is composed of only pure multipole moments, and will thus yield

the same multipoles.

Above is a reconstruction of the football, assuming a radius of 15 cm. The index is the highest order of multipoles used in that

reconstruction, with zero being the monopole and six being the hexacontatetrapole. We've taken the mutipole spheres and

graphed radius as a function of density; these are the thick black lines. Each additional multipole is shown in grey and white,

where grey is an addition and white is a subtraction. These illustrate how the multipoles influence the overall shape. With the

football, the "shape", or the thick black line, becomes longer in the axial direction, and has the general shape of a football.

The discus is quite a bit different from the football. It gets shorter in the axial direction and slowly grows in the equatorial

direction. The shape line is complex, so it's hard to say that at this order we've got a discus, but many of the characteristics are

the same. Note that this shape gives the same multipoles as the discus we are familiar with. In this reconstruction, the bulbous

ends of the multipoles along the axis alternate positive and negative, just as the multipole moments did. However, there is

always a grey positive addition along the equatorial plane.

The bowling pin is unique in that it has both odd and even multipoles. As the reconstruction progresses, the bottom end

becomes larger and the top end becomes slightly smaller. The neck region shrinks, and the net shape resembles the beginnings

of a bowling pin. The multipoles have signs such that the grey positive addition is towards the bulbous end.

These examples illustrate that you can get a general sense of the original field based on the multipoles, but (depending on the

mathematics) the original field may not be reconstructable.

So, what is a hexacontatetrapole?

Despite the long name, it's just the 7th layer (6th order) of detail for a system represented by multipoles. It gives another level

of information for understanding exactly what's going on in an interaction. In the end, we even have a better idea of what the

charge cloud looks like in the system under study.

For our lab, and many other areas of physical science, multipoles are useful tools.
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General case, no axial symmetry.

In this case we have in general a non-zero m value and the differential equation
for P is more elaborate. The Legendre polynomials are replaced by the
associated Legendre polynomials, Pl

m cos# $. For a given l-value there are
2l+1 possible m-values: m = 0, ±1, ±2,, ±3, ... 

There is a more general Rodrigues' formula for these functions:

P x
l

x
d

dx
x l m ll

m
m

l
m l m

l m
l

# $ ! # $ # $ # $ "# $
"

"
1

2
1 12 2 2

!
  ;   

For any given m the functions Pl
m cos# $ and Pl

m
' cos# $ are orthogonal and

the associated Legendre polynomials for a fixed m form a complete set of
functions in the variable x. 

The product of P xl
m # $ and eim  forms a complete set for the expansion of an

arbitrary function on the surface of a sphere. These functions are called
spherical harmonics.

Y
l l m

l m
P el

m
l
m im, !

!
cos# $ ! " # $

"# $
# $2 1

4

They are orthonormal

Y Y d

d d Y Y

l
m

l
m

l
m

l
m

ll mm

, * ,

    sin , * ,

'
'

'
'

' '

# $ # $

! # $ # $ !
4

0
2

0
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f C Yl
m

l
m

m l

l

l
, ,# $ ! # $

!!0

and

C f Y dl
m

l
m! # $ # $, * ,

4

The general solution to Laplace's equation in terms of spherical harmonics is

r A r B
r

Yl
m l

l
m

l l
m

m l

l

l
, , ,# $ ! " # $"

!!

1
1

0
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Spherical Harmonics

The Spherical Harmonics, Y
!,m

(!, "), are functions defined on the sphere. They are used to describe the wave function of the electron in a hydrogen atom,

oscillations of a soap bubble, etc. The spherical harmonics describe non-symmetric solutions to problems with spherical symmetry.

The Y
!,m

’s are complex valued. The radius of the figure is the magnitude, and the color shows the phase, of Y
!,m

(!, "). These are the numbers on the unit

circle: 1 is red, i is purple, -1 is cyan (light blue), and -i is yellow-green.

For each value of !, there are 2! + 1 linearly independent functions Y
!,m

, where m = -!, -!+1, ... , !-1, !. I have chosen a different set of 2! + 1 functions, as

you see below.

   

Y
0,0

   

  

Re(Y
1,1

) Y
1,0

Y
1,1

  

 

Re(Y
2,2

) Re(Y
2,1

) Y
2,0

Y
2,1

Y
2,2

 

Re(Y
3,3

) Re(Y
3,2

) Re(Y
3,1

) Y
3,0

Y
3,1

Y
3,2

Y
3,3

The following figure is called “inside Y
2,2

”. My son, Michael, made this by holding down the “Page Up” key until the viewpoint gets inside the surface. (He

suggests that you set the figure rotating continuously, and move the viewpoint a bit down before zooming in.)

Oscillations of a Soap Bubble

The volume of the bubble is constant, so Y
0,0

 is not used. The center of mass of the bubble is constant, so Y
1,m

 is not used. The lowest frequency

oscillations of a soap bubble are ! = 2. The radius of the soap film is r = 1 + # Y
2,m

 (!, "). The oscillations with different m all have the same frequency. The

shape of the oscillations with m = 1 and m = 2 are the same up to a rotation, but the m = 0 oscillation is different.

Physics and Math notation

WARNING: Spherical coordinates are different in physics and mathematics. The symbols ! and " are switched! The math notation makes r and ! the same

in cylincrical and spherical coordinates. DPGraph uses math notation.

x
2
 + y

2
 + z

2
 = r

2
 (physics) = r

2
 (math)

arccos(z/r) = ! (physics) = " (math)

Spherical Harmonics http://oak.ucc.nau.edu/jws8/dpgraph/Yellm.html
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CYLINDRICAL COORDINATES

! " " !2
2

2

2

2

2
1 1 0
r r

r
r r z

r z R r Q Z z, ,# $ ! # $ # $ # $

1 1 1 02

2

2

2

2rR r
d
dr

r
dR r

dr r Q

d Q

d Z z
d Z z

dz# $
# $ "

# $
# $ "

# $
# $ !

r
R r

d
dr

r
dR r

dr
r

Z z
d Z z

dz Q
d Q

d
n

# $
# $ "

# $
# $ !

# $
# $ !

2 2

2

2

2
21

d Q

d
n Q

2

2
2 0" !

Q e nin# $ !%~   ;   , , ,0 1 2   (n may sometimes be non-integer)

1 12

2

2

2
2

rR
d
dr

r
dR
dr

n

r Z
d Z

dz
k! !

d Z

dz
k Z

2

2
2 0!

Z z e kz# $ %~

r
d
dr

r
dR
dr

k r n R" # $ !2 2 2 0
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Cylindrical symmetry and Cylindrical Harmonics

Then we may let k vanish and

r
d
dr

r
dR
dr

n R !2 0

The n = 0 term has to be treated separately

R r
A B r n

A r B
r

nn
n

n
n n

# $ !
" !# $

" !# $

0 0 0
1 1 2 3

ln ,  

,  , ,

Q
C D n

C n D n n
n

n n
# $ !

"& ' !# $
" !# $

0 0 0
1 2 3

,  
cos sin ,  , ,

General solution in cylindrical coordinates with no z-dependence.

r A B r A r B
r

C Dn
n

n n n n n n
n

, ln cos sin# $ ! " " " "& '
!

0 0
1

1

The terms are called cylindrical harmonics.
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No cylindrical symmetry and Bessel functions.

Now, we have to keep the constant k in the differential equation for R.

r
d
dr

r
dR
dr

k r n R" # $ !2 2 2 0

To solve this one usually makes the substitution

u kr
d
dr

k
d
du

! !  ;   

This leads to Bessel's equation:

u
d R

du
u

dR
du

u n R2
2

2
2 2 0" " # $ !

The solution to this equation is the so-called Bessel function of order n, Jn(u).
J-n(u) is also a solution. These are linearly dependent for integer orders but not
for non-integer orders. 

One usually introduces another function instead of J-n(u), the so-called
Neumann function or Bessel function of the second kind, Nn(u). 

N u
J u n J u

nn
n n# $ ! # $ # $cos

sin

General solution to Bessel's equation may be written as

R kr A J kr B N krn n n n n# $ ! # $ " # $

Jn(u) is regular at origin and at infinity.
Nn(u) is not regular at origin but at infinity.
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The general solution to Laplace's equation in cylindrical coordinates can be
written as the Fourier-Bessel expansion:

r z A J k r B N k r e emn n m mn n m
in k z

m n

m, , ~
,

# $ # $ " # $& ' % %

Other useful properties of the Bessel function

Let km  be the mth root of Jn(kr), i.e., Jn(km ) = 0. 

Then Jn(kmr) form a complete orthogonal set for the expansion of a function
of r in the interval 0 r .

f r D J k r nmn
m

n m# $ ! # $ # $
!1

      for any

D
J k

f r J k r rdrmn
n m

n m!
# $

# $ # $
"

2
2

1
2 0

Fourier-Bessel series

analogous to the Fourier transform.
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Discussion: If we had chosen +k2 instead of -k2:

1 12

2

2

2
2

rR
d
dr

r
dR
dr

n

r Z
d Z

dz
k! ! "

The z- dependence had been plane waves instead of exponentials and the r
dependence had been found as solutions to the modified Bessel equation:

u
d R

du
u

dR
du

u n R2
2

2
2 2 0" "# $ !

with the modified Bessel functions In(u) and Kn(u) as solutions. The first is
bounded for small arguments and the second for large.

Thus, an alternative expression for the general solution is

r z A I k r B K k r e emn n m mn n m
in ik z

m n

m, , ~
.

# $ # $ " # $& ' % %
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