Simple Harmonic Oscillator 2

(0) Differential Equation (last time)
(1) Qualitative Aspects
(2) Algebraic Solution

Use the Algebra of the Operators
The Operators are $\mathbf{H}, \mathbf{x}, \mathbf{p}, \mathbf{a +}$, aThe Algebra is in the Commutators

Introduce the Ladder Operators
a+ and a- aka $\mathbf{a}^{\text {th }}$ and a
aka, raising and lowering operators aka, creation and destruction operators aka, creation and annihilation operators

Evaluate [H, a+], [H, a-], [a+, a-]
By reducing them to [x, p] = i hbar
Find the eigenenergies
Find the eigenkets

Translate into position space

SOLVED TISA IN POSITION SPACE
$H|n\rangle=E_{n}|n\rangle$

FOUR 0

$$
a_{n}=(m+1 / 2) \hbar \omega \quad m=0,1,2,3, \ldots
$$

$$
\varphi_{m}(y)=H_{m}(y) e^{-y^{2} / 2}
$$

5 PAT $10 N A \operatorname{Ay}$ STATES
$A * 1$
an ARGY
RIGINAUNCTIONS

Solution in Position Space obtained by solving the
 TISE differential equation

GMODAR OF 宜 UNGLY SPACED STATES
$E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$
SPACING Kw

GROUND STATE

$$
E_{0}=\frac{1}{2} \hbar \omega
$$

ZERO POINT ANERGY

Heisenberg Uncertainty
Z EMO MONT mOTION
what the potential wants what the KE wants

$$
\Delta x \Delta \rho \geq \frac{\hbar}{2}
$$

$$
\begin{array}{r}
\Rightarrow S Y S T E M \text { GAN } \\
\text { NEVA STOP }
\end{array}
$$

FIND TWO LINEAR OPERATORS
$a^{+}=$RAISING OPERATOR GMGATION OPERATOR $a=\angle O W E R I N G O D A R A T O R=D E S T \angle O C T I O N$ OP

PHONON
PHOTONS

ELECTRONS

The Qualitative Aspects of the SHO

The Dirac Delta Function

http://demonstrations.wolfram.com/RepresentationsOfTheDiracDeltafunction/

The Harmonic Oscillator

http://en.wikipedia.org/wiki/Quantum_harmonic_oscillator
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc6.html\#c2
http://demonstrations.wolfram.com/QuantumClassicalCorrespondenceForTheHarmonicOscillator/
http://www-personal.umich.edu/~lorenzon/java_applets/spaceholder/applets/SHO-QM-example.html?D1=5
http://www.quantum-physics.polytechnique.fr/en/ Section 3
http://www.falstad.com/qm1d/
http://www.falstad.com/qm2dosc/
http://demonstrations.wolfram.com/EnergyLevelsOfAQuantumHarmonicOscillatorInSecondQuantization/
http://demonstrations.wolfram.com/CoherentStatesOfTheHarmonicOscillator/

The Hermite Polynomials

http://en.wikipedia.org/wiki/Hermite_polynomials
http://functions.wolfram.com/Polynomials/
8.1 The Simple Harmonic Oscillator 1 8.2 The Simple Harmonic Oscillator 2 8.3 The Simple Harmonic Oscillator 3 8.4 The Simple Harmonic Oscillator Figures 8.5 The Simple Harmonic Oscillator Summary Griffiths
Shankar

$$
\begin{aligned}
& =c \\
& B)=i k^{\prime} c \quad i k(1-B)=i k^{\prime} \\
& B=\frac{k-k^{\prime}}{k+k^{\prime}} C=\frac{2 k}{k+k^{\prime}}
\end{aligned}
$$

Once we have bitten the quantum apple, our loss of innocence is permanent.

In this section, I will put the harmonic oscillator in its place-on a pedestal.
R. Shankar

Principles of Quantum Mechanics
http://boulder.research.yale.edu/Boulder-2008/Lectures/index.html\#today http://streaming.yale.edu:8080/ramgen/cmibroadcast/boulder/lectures/publecture.rm

Every competent physicist can"do"quantum mechanics, but the stories we tell ourselves are as varied as Scheherazade, and almost as implausible.

David Griffiths
Introduction to Quantum Mechanics

http://www.youtube.com/watch?v=xip-uGQx3gk

We have always had a great deal of difficulty understanding the world view that quantum mechanics represents. At least I do, because I'm an old enough man that I haven't got to the point that this stuff is obvious to me. Okay, I still get nervous about it...

You know how it always is, every new idea, it takes a generation or two until it is obvious that there's no real problem. I cannot define the real problem, therefore I suspect there's no real problem, but I'm not sure there's no real problem."

Richard Feynman (1982)

Pecay of mivon

$$
\mu \longrightarrow e+\bar{v}_{e}+v_{\mu}
$$

$\left.(2 \pi)^{2} d^{2}\left(n=p_{s}-q\right)^{2}(2 \pi)=2\right)^{d x}$

$$
\begin{aligned}
& q \rightarrow\left(p-p_{3}\right) \ldots+2(1) \\
& M_{M}=\left[\frac{g \omega^{2}}{8(m i)^{2}}\right](\operatorname{Mis}(s) r(i+i)(i)]\left[\left(i(s)_{A}\right.\right.
\end{aligned}
$$

FIGURE 2.5: The "ladder" of states for the harmonic oscillator.
But wait! What if I apply the lowering operator repeatedly? Eventually I'm going to reach a state with energy less than zero, which (according to the general theorem in Problem 2.2) does not exist! At some point the machine must fail. How can that happen? We know that $a_{-} \psi$ is a new solution to the Schrödinger equation, but there is no guarantee that it will be normalizable -it might be zero, or its square-integral might be infinite. In practice it is the former: There occurs a "lowest rung" (call it ψ_{0}) such that

$$
\begin{equation*}
a_{-} \psi_{0}=0 . \tag{2.58}
\end{equation*}
$$

We can use this to determine $\psi_{0}(x)$:

$$
\frac{1}{\sqrt{2 \hbar m \omega}}\left(\hbar \frac{d}{d x}+m \omega x\right) \psi_{0}=0
$$

BLESS ME FATHER,
FOR I HAVE SINNED.

IT'S BEEN FOREVER SINCE MY LAST CONFESSION AND... AND...

i've been a quantum
PHYSICIST FOR YEARS NOW,...

CLASSICAL THINKING IS SO
SEDUCTIVE AND I CAN'T RESIST ITS COMMON SENSUAL TEMPtations any more.

JUST DO SOME FREE PARTICLE PROPAGATOR DERIVATIONS AND TEN HAIL MARYS. I ABSOLVE YOU.

I'VE BEEN HAVING IMPURE THOUGHTS...

... AND I STILL FIND MYSELF LAPSING BACK INTO THE DARK ABYSS OF CLASSICAL THINKING.

The Ladder Operator Method $\mathrm{a}=[\mathrm{a}, \mathrm{H}]=\mathrm{aH}-\mathrm{Ha}-\mathrm{oh}, \mathrm{my}$, gotcha!!!

The ladder operator solution to the simple harmonic oscillator problem is subtle, exquisite, and rather slippery - so I thought you might appreciate a recapitulation of what I said in class You might want to go through the argument line-by-line until it clicks!

There were three steps in the argument:

1. The first step was to show that the eigenvalues of the Hamiltonian H are equal to $\hbar \omega$ times $\frac{1}{2}$ plus the eigenvalues of the number operator $N=a^{\dagger} a$ (which will turn out to be n, so we will end up with $\left.\left(n+\frac{1}{2}\right) \hbar \omega\right)$. We did this by showing that the Hamiltonian H is $\hbar \omega$ times the sum of the number operator plus one half the identity operator,

$$
H=\left(a^{\dagger} a+\frac{1}{2}\right) \hbar \omega .
$$

find the eigenvalue
of the ground state
We showed this by defining the a^{\dagger} and a operators, and then calculating $a^{\dagger} a$. Note that once we found that $H=\left(a^{\dagger} a+\frac{1}{2}\right) \hbar \omega$, we immediately knew that the eigenvectors of H would be the same as the eigenvalues of $a^{\dagger} a$-because every vector is an eigenvector of the identity operator! We also immediately knew that the eigenvalues of H would be equal to $\hbar \omega$ times the eigenvalues of the $a^{\dagger} a$ operator plus $\frac{1}{2} \hbar \omega$.
2
2. The second step was to show that when the a^{\dagger} and a operators act on any eigenvector of H, we get back another eigenvector of H one step up or down the ladder of states. We showed this by calculating the three commutators:

$$
\begin{aligned}
{\left[a, a^{\dagger}\right] } & =+1 \\
{[a, H] } & =+a \\
{\left[a^{\dagger}, H\right] } & =-a^{\dagger}
\end{aligned}
$$

find all of the other eigenvalues

and considering the action of the last two commutators on any eigenvector of the Hamiltonian

$$
\begin{aligned}
{[a, H] \mid \text { eigenvector of } \mathrm{H}>} & =+a \mid \text { eigenvector of } \mathrm{H}> \\
{\left[a^{\dagger}, H\right] \mid \text { eigenvector of } \mathrm{H}>} & =-a^{\dagger} \mid \text { eigenvector of } \mathrm{H}>.
\end{aligned}
$$

By expanding the commutators, we found

$$
\begin{aligned}
(a H-H a) \mid \text { eigenvector of } \mathrm{H}> & =+a \text { |eigenvector of } \mathrm{H}> \\
\left(a^{\dagger} H-H a^{\dagger}\right) \mid \text { eigenvector of } \mathrm{H}> & =-a^{\dagger} \mid \text { eigenvector of } \mathrm{H}>.
\end{aligned}
$$

which allowed us to conclude that

$$
\begin{aligned}
a \mid \epsilon> & =(\epsilon-1) \mid \epsilon-1> \\
a^{\dagger} \mid \epsilon> & =(\epsilon+1) \mid \epsilon+1>.
\end{aligned}
$$

This showed us that the eigenvalues of H are separated by $\pm \hbar \omega$. Combining this with the $\frac{1}{2} \hbar \omega$ from step one, we then concluded that the eigenvalues of the Hamiltonian are given by

$$
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega
$$

where n is any integer (i.e., positive, negative, or zero!!!). However, in step three, we found the smallest eigenvalue of the number operator is equal to zero.

So the only other thing we did not know yet was whether the raising and lowering operators return normalized eigenvectors of the Hamiltonian, i.e., are the vectors $a \mid \epsilon>$ and $a^{\dagger} \mid \epsilon>$ normalized eigenvectors of H ? We did know that they are eigenvectors of H with eigenvalues of $(\epsilon-1) \hbar \omega$ and $(\epsilon+1) \hbar \omega$, respectively, but we did not know whether they are normalized-and, in fact, they are not!
3. The third step was to calculate the normalization coefficients. To do this we started with two adjacent normalized states, $|n>\equiv| E=\left(n+\frac{1}{2}\right) \hbar \omega>$ and $|n-1>\equiv| E=\left((n-1)+\frac{1}{2}\right) \hbar \omega>$ and then we calculated the expectation value of the number operator in two different ways:
(i) First, we started with the lowering operator equation calculate the normalization

$$
a\left|n>=c_{n}\right| n-1>\quad \text { factors for } \mathbf{a}+\text { and } \mathbf{a}-
$$

and then we calculated the adjoint of this equation

$$
<n\left|a^{\dagger}=<n-1\right| c_{n}^{*}
$$

We combined these to evaluate the expectation value of the number operator

$$
\begin{aligned}
<n\left|a^{\dagger} a\right| n> & =<n-1\left|c_{n}^{*} c_{n}\right| n-1>=\left|c_{n}\right|^{2}<n-1 \mid n-1> \\
& =\left|c_{n}\right|^{2}
\end{aligned}
$$

(ii) Second, we replaced $a^{\dagger} a$ by $\widehat{H}-\frac{1}{2}$ and recalculated the expectation value of N

$$
\begin{aligned}
<n\left|\widehat{H}-\frac{1}{2}\right| n> & \left.=<n-1\left|\left[\left(n+\frac{1}{2}\right)+\frac{1}{2}\right]\right| n\right\rangle=n<n|n\rangle \\
& =n .
\end{aligned}
$$

By combining these two calculations, we found

$$
\begin{aligned}
\left|c_{n}\right|^{2} & =n \Rightarrow c_{n}=\sqrt{n} \\
\Rightarrow a \mid n> & =\sqrt{n} \mid n-1>
\end{aligned}
$$

Finally, to see that the lowest eigenvalue of the number operator is zero, we considered

$$
a|0>=\sqrt{0}| 0-1>=0 \mid-1>=\overrightarrow{0} .
$$

So $\mid 0>$ is the bottom rung on the ladder (lowering it we obtain the zero vector), and consequently the lowest eigenvalue of H is $\frac{1}{2} \hbar \omega$, which is the zero point energy of the oscillator.
(2) OPLRATOR mETHOD

$$
\begin{aligned}
& H\left|E_{n}\right\rangle=E_{n}\left|E_{n}\right\rangle \\
& {\left[\frac{P_{o p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} x_{o p}^{2}\right]\left|E_{n}\right\rangle=E_{n}\left|E_{n}\right\rangle}
\end{aligned}
$$

USE THE ALGEBRA OF THE ORATORS

BASICALLY, REDUCE İVRVTHING BACK
TO THE FUNDAMENTAL COMMUTATION RELATIONSHIP canonical commutation relation

$$
\left[x_{o p}, p_{o p}\right]=i \hbar I=i \hbar
$$

This is basis indrpindindt!
$x \quad B A S I S$

$$
\begin{aligned}
x_{0 p} p_{0 p}-p_{0 \rho} x_{0 \rho} & \rightarrow x\left(-i \hbar \frac{\partial}{\partial x}\right)-\left(-i \hbar \frac{\partial}{\partial x}\right) x \\
& =i \hbar\left[-x \frac{2}{\partial x}+\frac{\partial x}{2 x}+x / \frac{\partial}{\partial x}\right] \\
& =i \hbar
\end{aligned}
$$

P BASIS

$$
\begin{aligned}
x_{o p} p_{o p}-p_{o p} x_{0 p} & \rightarrow\left(i \hbar \frac{\partial}{\partial p} p\right)-\left(p i \hbar \frac{\partial}{\partial \rho}\right) \\
& =i \hbar\left[\frac{\partial p}{\partial \rho}+p \frac{\partial}{\partial p}-p \frac{\partial}{\partial \rho}\right] \\
& =i \hbar
\end{aligned}
$$

Factor the Hamiltonian Operator

$$
H=p^{2}+x^{2}=(x+i p)(x-i p)
$$

introduce ladder operators

$$
\begin{aligned}
& a=\sqrt{\frac{m \omega}{2 \hbar}} x_{o p}+i\left(\frac{1}{2 m \omega \hbar}\right)^{1 / 2} p_{o p} \\
& a^{+}=\sqrt{\frac{m \omega}{2 \hbar}} x_{o p}-i\left(\frac{1}{2 m \omega \hbar}\right)^{1 / 2} \rho_{o p}
\end{aligned}
$$

The Ladder Operators
now $x_{0 P}$ and pop are hermitian, BUT a AND a ${ }^{+}$aRE NOT!

$$
x \quad \longleftrightarrow P
$$

$m w$

$$
\frac{1}{m w}
$$

EXPRIESS H in TERMS OF a ANP at

$$
\begin{aligned}
a^{+} a= & {\left[c x_{o p}-i d p_{o p}\right]\left[c x_{0 \rho}+i d \rho_{o p}\right] } \\
= & c^{2} x_{o p}^{2}-i^{c} d^{2} \rho_{0 \rho}^{2}+i c d\left(x_{o p} \rho_{o p}-\rho_{o p} x_{o p}\right) \\
= & \frac{m \omega}{2 \hbar} x_{o \rho}^{2}+\frac{1}{2 m \omega \hbar} \rho_{o p}^{2} \\
& +i \sqrt{\frac{m \omega}{2 \hbar} \frac{1}{2 m \omega \hbar}}\left[x_{0 \rho}, p_{o p}\right] \\
a^{+} a= & \frac{H o p}{\hbar \omega}-\frac{1}{2} \text { Hamiltonian in terms of }
\end{aligned}
$$

Step 1: Find the eigenvalues of the Hamiltonian

$$
H=\left(a+a+\frac{1}{2}\right) \hbar \omega
$$

define $\hat{H}=\frac{H}{\hbar \omega}$

$$
\hat{H}=a^{+} a+\frac{1}{2}
$$

dirianceinesse Hamietoncian dimensionless Hamiltonian

$$
E \rightarrow E=\frac{E}{\hbar \omega}
$$

solve peso ev,evproblizM for \hat{H}, then thatenter fact H

$$
\hat{H}\left|\epsilon_{n}\right\rangle=\epsilon_{m}\left|\epsilon_{n}\right\rangle
$$

Solve TISE in Hilbert space Do everything in Dirac notation

NOW WE CAN (and WILC) SOWB THIS USING only the algebra of the commutators
need 3 commutator

$$
\begin{aligned}
& {\left[a, a^{+}\right]=?} \\
& {[a, \hat{H}]=? \quad \text { Step 2: Calculate the }} \\
& {\left[a^{+}, H\right]=?}
\end{aligned}
$$

reduce each one t [$\left.x_{0}, p, p, p\right]$

FIRST ONE

$$
\begin{aligned}
{\left[a, a^{+}\right] } & =a a^{+}-a^{+} a \quad \text { commutator } 1 \\
& =(c x+i d p)(c x-i d p)-(c x-i d p)(c x+i d p) \\
& =\left[c^{2} x^{2}+d^{2} p^{2}-i c d(x p-p x)\right]
\end{aligned}
$$

$$
-\left[c^{2} x^{2}+d^{2} p^{2}+i c d(x p-p x)\right]
$$

$$
\begin{aligned}
{\left[a, a^{+}\right] } & =-2 i c d[x, p] \\
& =-2 i \sqrt{\frac{m w}{2 \hbar} \frac{1}{2 m \omega \hbar}} i \hbar \\
{\left[a, a^{+}\right] } & =1=1
\end{aligned}
$$

SECOND ONE

$$
\begin{aligned}
{[a, \hat{H}] } & =\left[a, a^{+} a+1 / 2\right] \text { commutator } 2 \\
& =\left[a, a^{+} a\right] \\
& =a+a+a-a^{+} a a=\left[a, a^{+}\right] a
\end{aligned}
$$

$$
[a, \hat{H}]=a \quad \text { commutator } 2
$$

third one

$$
\begin{aligned}
{\left[a^{+}, \hat{H}\right] } & =\left[a^{+}, a^{+} a+1 / 2\right] \text { commutator } 3 \\
& =\left[a^{+}, a^{+} a\right] \\
& =a^{+} a^{+} a-a^{+} a^{+} \\
& =a^{+}\left[a^{+}, a\right] \\
{\left[a^{+}, \hat{H}\right] } & =-a^{+1}
\end{aligned}
$$

What GOOD ARE a AND at?

GIVENANYGGNSTATE OF At,
a AND at GRNRRATETADJACRENT

STATES
Show that
at goes up the ladder
Raising Operator
a goes down the ladder
Lowering Operator

TO 5 RR $T H 1 S$, consioin an Riv of \hat{H}

$$
\hat{H}|\epsilon\rangle=\epsilon|\epsilon\rangle
$$

calculate
a $|\epsilon\rangle=$? Using a = aH -Ha
we know what H does to its eigenkets we know how H is related to a
$a^{+}|\epsilon\rangle=$? use this to determine what a does to the eigenkets of \mathbf{H}

$$
\begin{aligned}
& \hat{H}[a|\epsilon\rangle]=\left(a^{+} a+\frac{1}{2}\right)[a|\epsilon\rangle] \\
& {[a, H]=a H-H a=a \Rightarrow H a=a H-a}
\end{aligned}
$$

$H a|\epsilon\rangle=[a H-a]|\epsilon\rangle$
we want to know what Ha does to an eigenket of H
we know what H does to one of its eigenkets

$$
\begin{aligned}
& =[a \epsilon-a]|\epsilon\rangle \\
& =\cos (\epsilon-1)[a|\epsilon\rangle]
\end{aligned}
$$

$\Rightarrow a|\epsilon\rangle$ is ant $e^{\vec{v}}$ of $1+$ witt eve $6-1$!

$$
\begin{aligned}
& a|\epsilon\rangle \propto|\epsilon-1\rangle \\
& a|\epsilon\rangle=c(E)|\epsilon-1\rangle
\end{aligned}
$$

NORM COEFF

$$
c(E)=\sqrt{n}
$$

normalized

$$
a|n\rangle=\sqrt{n}|n-1\rangle
$$

lowering operator
in gust the same way

$$
\begin{aligned}
{\left[a^{+}, H\right] } & =a^{+} H-H a^{+}=-a^{+} \\
H a^{+} & =a^{+} H+a^{+} \\
a^{+}|\epsilon\rangle & =D(\epsilon)|\epsilon+1\rangle
\end{aligned}
$$

wa will SHOW O

$$
D(\epsilon)=\sqrt{n+1}
$$

$$
a^{+}|n\rangle=\sqrt{n+1}|n+1\rangle
$$

normalized
raising operator

NOTATION:
$|n\rangle$ Has elamNvacue $(n+1 / 2)$

$$
\hat{H}|n\rangle=(n+1 / 2)|n\rangle
$$

$H|n\rangle=(n+1 / 2) \hbar \omega|n\rangle$

∞ menderes of states
g.s. energy $\neq 0$! $\frac{1}{2} \hbar \omega$ ZERO POINT ENERGY \Rightarrow ZERO POINT MOTION

Heisenberg Uncertainty what the potential wants what the KE wants
to complete titi solution, wa nailed to find the ground state

$$
a|g s\rangle=a\left|\epsilon_{0}\right\rangle=\overrightarrow{0}
$$

$$
a+\overrightarrow{0}=\overrightarrow{0}
$$

$$
\begin{aligned}
& a+a\left|\epsilon_{0}\right\rangle=\overrightarrow{0} \\
& {\left[\hat{H}-\frac{1}{2}\right]\left|\epsilon_{0}\right\rangle=\overrightarrow{0}}
\end{aligned}
$$

$$
\hat{H}\left|\epsilon_{0}\right\rangle=\frac{1}{2}\left|\epsilon_{0}\right\rangle
$$

find the ground state energy

NOW WI CAN FIND TL THAR RET OF THE states by applying a^{+}

$$
\begin{aligned}
& a^{+}\left|\epsilon_{0}\right\rangle \sim\left|\epsilon_{0}+1\right\rangle \\
& a^{+} a^{+}\left|\epsilon_{0}\right\rangle \sim\left|\epsilon_{0}+2\right\rangle \\
& \left(a^{+}\right)^{n}\left|\epsilon_{0}\right\rangle \sim \sim\left|\epsilon_{0}+n\right\rangle
\end{aligned}
$$

can find the rest of the eigenstates by raising
want a nommalizizd set of higentigts
$10\rangle$
$11\rangle$
$12\rangle$$\left\{\begin{array}{l}\Rightarrow \quad\langle m \mid m\rangle=\delta_{m m} \begin{array}{l}\text { orjuo } \\ \text { NORmAL }\end{array} \\ \text { want orthonormal basis }\end{array}\right.$

CONS DER
compute the normalization coefficents

$$
\left\{\begin{array}{l}
a|n\rangle=c_{m}|n-1\rangle \\
\\
\langle n| a^{+}+ \\
\langle n-1| c_{m}^{r}
\end{array}\right.
$$

make sandwich

$$
\begin{aligned}
\langle n| a+a|n\rangle & =\langle n-1| c_{n}^{*} c_{n}|n-1\rangle \\
& =\left|c_{n}\right|^{2}\langle n-1 \mid n-1\rangle \\
\langle n| A-1 / 2|n\rangle & =\langle n|(n+1 / 2)-1 / 2|n\rangle \\
\left|c_{n}\right|^{2}=n & \text { cHoosin } c_{n}=\sqrt{n}
\end{aligned}
$$

Momentum Operator

$$
\begin{aligned}
& \rho_{o p}=i \sqrt{\frac{m \hbar \omega}{2}}\left[a^{+}-a\right] \\
& \rho_{o p}=i \sqrt{\frac{m \hbar \omega}{2}}\left[\begin{array}{rrrr}
0 & -\sqrt{1} \\
\sqrt{1} & 0 & -\sqrt{2} \\
0 & \sqrt{2} & 0 & -\sqrt{3}
\end{array}\right.
\end{aligned}
$$

Hamiltonian Operator

$$
H=\left[\begin{array}{llllll}
1 / 2 & & & & & \\
& 3 / 2 & & & \\
& & 5 / 2 & & \\
& & & 1 / 2 & \\
& & & \ddots
\end{array}\right] \hbar \hbar \omega
$$

summany

$$
\begin{aligned}
& a|n\rangle=\sqrt{n}|n-1\rangle \\
& a+|n\rangle=\sqrt{n+1}|n+1\rangle \\
& H=(a+a+1 / 2) \hbar \omega
\end{aligned}
$$

$$
\left.|n\rangle=\frac{1}{\sqrt{n!}}\left(a^{+}\right)^{n} 10\right\rangle
$$

NUMBIR OPRRATOR

$$
a^{+} a=N
$$

$$
N=\left(\begin{array}{lll}
0 & & \\
& 1 & \\
& & 2 \\
& & \\
& & \\
& &
\end{array}\right.
$$

Number Operator

To find the ground state
wavefcn in position space

$$
\text { To find } \psi_{0}(x)
$$

Apply Lowering Operator to the ground state

$$
\begin{aligned}
& a|0\rangle=0 \\
& a=\sqrt{\frac{m \omega}{2 \hbar}} x_{0 p}+i \sqrt{\frac{1}{2 m \omega \hbar}} p_{\circ p}
\end{aligned}
$$

Translate Lowering Operator into position space

CHANGE VARIABLES

$$
\begin{aligned}
& y=\sqrt{\frac{m \omega}{2 \hbar}} x \\
& d y=\sqrt{\frac{m w}{2 \hbar}} d x
\end{aligned}
$$

Change variables to get rid of the ugly constants, at least for a while

$$
\begin{aligned}
& a \rightarrow \frac{1}{\sqrt{2}}\left[y+\frac{d}{d y}\right] \\
& a|0\rangle=0 \Rightarrow \frac{1}{\sqrt{2}}\left[y+\frac{d}{d y}\right] \psi_{0}(y)=0 \\
& \text { FIRST ORDER DIFFIEQ!. }
\end{aligned}
$$

http://demonstrations.wolfram.com/FundamentaICommutationRelationsInQuantumMechanics/
http://demonstrations.wolfram.com/SchroedingersCatOnCatnip/
http://www.fen.bilkent.edu.tr/~yalabik/applets/collapse.html

