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Simple Harmonic Oscillator 2
(0) Differential Equation (last time)
(1) Qualitative Aspects

(2) Algebraic Solution
Use the Algebra of the Operators
The Operators are H, x, p, a+, a-
The Algebra is in the Commutators

Introduce the Ladder Operators

a+ and a- aka a® and a

aka, raising and lowering operators
aka, creation and destruction operators
aka, creation and annihilation operators

Evaluate [H, a+], [H, a-], [a+, a-]
By reducing them to [x, p] =i hbar
Find the eigenenergies

Find the eigenkets

Translate into position space
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Solution in Position Space
obtained by solving the
TISE differential equation
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The Qualitative Aspects of the SHO

The Dirac Delta Function
http://demonstrations.wolfram.com/RepresentationsOfTheDiracDeltafunction/

The Harmonic Oscillator

http://en.wikipedia.org/wiki/Quantum_harmonic_oscillator
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc6.html#c2
http://demonstrations.wolfram.com/QuantumClassicalCorrespondenceForTheHarmonicOscillator/
http://www-personal.umich.edu/~lorenzon/java_applets/spaceholder/applets/SHO-QM-example.html|?D1=5
http://www.quantum-physics.polytechnique.fr/en/ Section 3

http://www.falstad.com/gm1d/

http://www.falstad.com/gm2dosc/
http://demonstrations.wolfram.com/EnergylLevelsOfAQuantumHarmonicOscillatorinSecondQuantization/
http://demonstrations.wolfram.com/CoherentStatesOfTheHarmonicOscillator/

The Hermite Polynomials

http://en.wikipedia.org/wiki/Hermite_polynomials
http://functions.wolfram.com/Polynomials/


http://demonstrations.wolfram.com/RepresentationsOfTheDiracDeltafunction/
http://en.wikipedia.org/wiki/Quantum_harmonic_oscillator
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc6.html#c2
http://demonstrations.wolfram.com/QuantumClassicalCorrespondenceForTheHarmonicOscillator/
http://www-personal.umich.edu/~lorenzon/java_applets/spaceholder/applets/SHO-QM-example.html?D1=5
http://www.quantum-physics.polytechnique.fr/en/
http://www.falstad.com/qm1d/
http://www.falstad.com/qm2dosc/
http://demonstrations.wolfram.com/EnergyLevelsOfAQuantumHarmonicOscillatorInSecondQuantization/
http://demonstrations.wolfram.com/CoherentStatesOfTheHarmonicOscillator/
http://en.wikipedia.org/wiki/Hermite_polynomials
http://functions.wolfram.com/Polynomials/
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Once we have bitten the quantum apple,
our loss of innocence is permanent.

In this section, I will put the harmonic oscillator
in its place—on a pedestal.

R. Shankar
Principles of Quantum Mechanics

http://boulder .research.yale.edu/Boulder-2008/Lectures/index .html#today
http://streaming.yale.edu:8080/ramgen/cmibroadcast/boulder/lectures/publecture.rm

Every competent physicist can“do”’quantum mechanics,
but the stories we tell ourselves are as varied as
Scheherazade, and almost as implausible.

David Griffiths
Introduction to Quantum Mechanics

http://www .youtube.com/watch?v=xip-uGQx3gk

We have always had a great deal of difficulty understanding the
world view that quantum mechanics represents. At least I do,
because I'm an old enough man that I haven't got to the point

that this stuff is obvious to me. Okay, I still get nervous about it...
You know how it always is, every new idea, it takes a
generation or two until it is obvious that there's no real problem.
I cannot define the real problem, therefore I suspect there's no
real problem, but I'm not sure there's no real problem.”

Richard Feynman (1982)

http://www.youtube.com/watch?v=]545tIw55bE


http://boulder.research.yale.edu/Boulder-2008/Lectures/index.html#today
http://streaming.yale.edu:8080/ramgen/cmibroadcast/boulder/lectures/publecture.rm
http://www.youtube.com/watch?v=xip-uGQx3gk
http://www.youtube.com/watch?v=J545tIw55bE







Section 2.3: The Harmonic Oscillator 45

FIGURE 2.5: The “ladder” of states for the harmonic oscillator.

But wait! What if I apply the lowering operator repeatedly? Eventually I'm
going to reach a state with energy less than zero, which (according to the general
theorem in Problem 2.2) does not exist! At some point the machine must fail.
How can that happen? We know that a_v is a new solution to the Schrddinger
equation, but there is no guarantee that it will be normalizable —it might be zero,
or its square-integral might be infinite. In practice it is the former: There occurs a
“lowest rung” (call it vro) such that

a_yo = 0. [2.58]
We can use this to determine g(x):

1 d
— | A — + mwx =0,
S2hmo ( dx )%
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The Ladder Operator Method
a = [a,H] = aH-Ha—oh, my, gotcha!!!

The ladder operator solution to the simple harmonic oscillator problem is subtle, exquisite, and
rather slippery—so I thought you might appreciate a recapitulation of what I said in class . . . .
You might want to go through the argument line-by-line until it clicks!

There were three steps in the argument:

1. The first step was to show that the eigenvalues of the Hamiltonian H are equal to hw times %

plus the eigenvalues of the number operator N = ala (which will turn out to be n, so we will end
up with (n + 3)hw). We did this by showing that the Hamiltonian H is fiw times the sum of the
number operator plus one half the identity operator,
. find the eigenvalue
H = (ala+2) hw.
( 2) of the ground state

We showed this by defining the al and a operators, and then calculating ala. Note that once we
found that H = (aTa + 1) hw, we immediately knew that the eigenvectors of H would be the same

as the eigenvalues of ala—because every vector is an eigenvector of the identity operator! We also

immediately knew that the eigenvalues of H would be equal to iiw times the eigenvalues of the ala
operator plus %hw.

2. The second step was to show that when the ol and a operators act on any eigenvector of H,
we get back another eigenvector of H one step up or down the ladder of states. We showed this
by calculating the three commutators:

0. =+1 find all of the other
[CL,H] = +a i
ol H] = —af eigenvalues

and considering the action of the last two commutators on any eigenvector of the Hamiltonian

[a, H] |eigenvector of H> = +a |eigenvector of H>

[aT, H] |eigenvector of H> = —al leigenvector of H> .
By expanding the commutators, we found

(aH — Ha) |eigenvector of H> = +a |eigenvector of H>

(aTH - HaT) leigenvector of H> = —af |eigenvector of H> .

which allowed us to conclude that
ale>=(e—1)|e—1>
al le>=(e+1)|e+1>.
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This showed us that the eigenvalues of H are separated by +hw. Combining this with the %hw
from step one, we then concluded that the eigenvalues of the Hamiltonian are given by

By = (n+3) hw

where n is any integer (i.e., positive, negative, or zero!!!). However, in step three, we found the
smallest eigenvalue of the number operator is equal to zero.

So the only other thing we did not know yet was whether the raising and lowering operators return
normalized eigenvectors of the Hamiltonian, i.e., are the vectors ale > and aT|e > normalized
eigenvectors of H? We did know that they are eigenvectors of H with eigenvalues of (e — 1)hw and
(e + 1)hw, respectively, but we did not know whether they are normalized—and, in fact, they are
not!

3. The third step was to calculate the normalization coeflicients. To do this we started with two
adjacent normalized states, [n>= |E = (n+ 3)hiw> and |n —1>= |E = ((n — 1) + 3)fiw > and
then we calculated the expectation value of the number operator in two different ways:

(i) First, we started with the lowering operator equation calculate the normalization
aln>=cpln—1> factors for a+ and a-

and then we calculated the adjoint of this equation
<n| al =<n- 1| c;.

We combined these to evaluate the expectation value of the number operator

<n| ala n> =<n—1|cicp In—1>= |c,|* <n—1n—1>

= |len|?

(ii) Second, we replaced ala by H- % and recalculated the expectation value of N

~ 1 1 1
<n|H—§ In> = <n—1] [(n+§)+§] In>= n <n|n>
= n.
By combining these two calculations, we found

lenP=n = ¢, =vn
= aln>=+vnn—1>.

Finally, to see that the lowest eigenvalue of the number operator is zero, we considered
alo>=Vol0o—1>=0]—-1>= 0.

So |0> is the bottom rung on the ladder (lowering it we obtain the zero vector), and consequently
the lowest eigenvalue of H is %Tzw, which is the zero point energy of the oscillator.
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Step 1: Find the eigenvalues of the Hamiltonian
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To find the ground state

wavefcn in position space
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Apply Lowering Operator to the ground state
alo?> = 0

™ W

17h

XOP b 2 muwh

Translate Lowering Operator into position space

/IV\ \//v —-c’#/—'
L’K Lmwl

CHANGIZ VALIA LIz S

M

N

Change variables

to get rid of the

N m W
[ K ugly constants,
at least for a
v [ while
LR

e~ e ]

x o> =0 => fi[‘f* ]‘{Z(‘hll;):

FILST ORDBA DIFF 1Z§ '



Larry
Apply Lowering Operator to the ground state

Larry


Larry


Larry
To find the ground state 
wavefcn in position space

Larry


Larry


Larry
Change variables
to get rid of the
ugly constants,
at least for a
while

Larry


Larry


Larry


Larry


Larry


Larry
Translate Lowering Operator into position space

Larry


Larry


Larry


Larry


Larry


Larry



Solve first order diff eq by integratij
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http://demonstrations.wolfram.com/FundamentalCommutationRelationsinQuantumMechanics/

http://demonstrations.wolfram.com/SchroedingersCatOnCatnip/

http://www.fen.bilkent.edu.tr/~yalabik/applets/collapse.htmli
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