Finish Free Particle
 (1) Qualitative
 (2) Quantitative

Start Simple Harmonic Oscillator
 (1) Solve Differential Equation (today)
 (2) Use the Algebra of the Operators

position space
A plane wave

times
A Gaussian

is equal to

A wavepacket

momentum space
A delta function at $p=p_{0}$

convolved with
A Gaussian at $\mathbf{p}=0$

is equal to

A Gaussian at $\mathbf{p}=\mathbf{p o}_{\mathbf{o}}$

Cartoon Version of the Free Particle

http://www.st-andrews.ac.uk/~qmanim/embed_item_3.php?anim_id=10
http://www.st-andrews.ac.uk/~qmanim/embed_item_3.php?anim_id=1 http://www.physics.nus.edu.sg/einstein/lect14/applets/propa.html http://www.brainflux.org/java/classes/Schrodinger1D.html http://demonstrations.wolfram.com/WavepacketForAFreeParticle/
http://demonstrations.wolfram.com/EvolutionOfAGaussianWavePacket/

Quantitative Evolution

(1) FINISN HELE WIVE DAGAET
QUANTITATIVE
(2) STAAT WARMONIG OSGIGLATOR

$$
\begin{aligned}
& \psi(x, 0)=e^{i p_{0} x / 4}\left(\pi \Delta^{2}\right)^{-1 / 4} e^{-x^{2} / 2 \Delta^{2}} \\
& j \\
& \text { RAANC } \\
& \text { WAVE } \\
& \text { GAUSSIAN } \\
& \text { anvatope } \\
& \langle p\rangle=p_{0} \\
& \langle x\rangle=0 \\
& \Delta p=\frac{\hbar}{\sqrt{2} \Delta} \\
& \Delta x=\frac{\Delta}{\sqrt{2}} \\
& \Delta x \Delta p=\frac{\hbar}{2} \\
& \text { MINIMUM UNCERTAINY AT } t=0
\end{aligned}
$$

INGGUDE THE TIME-DAPANDENT PNASE AACTORS

$$
e^{-i a_{n} t / \hbar}=e^{-i\left(P^{2} / 2 \mathrm{~m}\right) t / h}
$$

$\operatorname{PaOAGATOR} \quad U\left(x, t ; t^{\prime}, t^{\prime}\right)=\sqrt{m / 2 t i\left(t-t^{\prime}\right)}$

$$
e^{-i m\left(x-x^{4}\right) / 2\left(\hbar\left(t-t^{4}\right)\right.}
$$

$$
\begin{aligned}
v(t) & =\int_{-\infty}^{\infty}|p\rangle\langle p| e^{-i E(p) t / \hbar} \\
& =\int_{-\infty}^{\infty}|p\rangle\langle p| e^{-i\left(p^{2} / 2 m\right) t / \hbar}
\end{aligned}
$$

STILL IN THE HILBERT SPACE

$$
\text { IN } X-S P A<E
$$

$$
\begin{aligned}
\langle x| v(t)\left|x^{\prime}\right\rangle & =\int\langle x \mid p\rangle\left\langle p \mid x^{\prime}\right\rangle e^{-i p^{2} t / 2 m \hbar} d \rho \\
& =\int e^{i p\left(x-x^{\prime}\right) / \hbar} e^{-i p^{2} t / 2 m \hbar} d p
\end{aligned}
$$

propagator in
position space

$$
\begin{aligned}
& =\left(\frac{m}{2 \pi \hbar i t}\right)^{1 / 2} e^{i m\left(x-x^{\prime}\right) / 2 \hbar t} \\
& =U\left(x, t ; x^{\prime}, 0\right) \\
& =U\left(x, t ; x^{\prime}, t^{\prime}\right) \quad t \rightarrow t-t^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \langle\omega| U(t)\left|\omega^{\prime}\right\rangle \quad \text { matrix ecemints } \\
& \nabla^{2} T=k \frac{\partial T}{\partial t} \quad \text { heat equation }
\end{aligned}
$$

$$
\nabla^{2} \psi=\gamma \frac{d \psi}{d(i t)} \quad \begin{aligned}
& \text { TDSE is the heat eq } \\
& \text { in imaginary time }
\end{aligned}
$$

the wavepacket spreads like heat spreads => like a Gaussian

Non-relativistic propagators

In non-relativistic quantum mechanics the propagator gives the amplitude for a particle to travel from one spatial point at one time to another spatial point at a later time. It is a Green's function for the Schrödinger equation. This means that if a system has Hamiltonian H then the appropriate propagator is a function $K\left(x, t ; x^{\prime}, t^{\prime}\right)$ satisfying

$$
\left(H_{x}-i \hbar \frac{\partial}{\partial t}\right) K\left(x, t ; x^{\prime}, t^{\prime}\right)=-i \hbar \delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right)
$$

where H_{x} denotes the Hamiltonian written in terms of the x coordinates and $\delta(x)$ denotes the Dirac delta-function.

This can also be written as

$$
K\left(x, t ; x^{\prime}, t^{\prime}\right)=\langle x| \hat{U}\left(t, t^{\prime}\right)\left|x^{\prime}\right\rangle
$$

where $\hat{U}\left(t, t^{\prime}\right)$ is the unitary[disambiguation needed time-evolution operator for the system taking states at time t to states at time t^{\prime}.

Path integral in quantum mechanics

The quantum mechanical propagator may also be found by using a path integral.

$$
K\left(x, t ; x^{\prime}, t^{\prime}\right)=\int \exp \left[\frac{i}{\hbar} \int_{t}^{t^{\prime}} L(\dot{q}, q, t) d t\right] D[q(t)]
$$

where the boundary conditions of the path integral include $q(t)=x, q\left(t^{\prime}\right)=x^{\prime}$. Here L denotes the Lagrangian of the system. The paths that are summed over move only forwards in time.

Using the quantum mechanical propagator

In non-relativistic quantum mechanics, the propagator lets you find the state of a system given an initial state and a time interval. The new state is given by the equation:

$$
\psi(x, t)=\int_{-\infty}^{\infty} \psi\left(x^{\prime}, t^{\prime}\right) K\left(x, t ; x^{\prime}, t^{\prime}\right) d x^{\prime}
$$

If $K\left(x, t ; x^{\prime}, t^{\prime}\right)$ only depends on the difference $x-x^{\prime}$ this is a convolution of the initial state and the propagator.

Propagator of Free Particle and Harmonic Oscillator

For time translational invariant system, the propagator only depends on the time difference ($t-t^{\prime}$), thus it may be rewritten as

$$
K\left(x, t ; x^{\prime}, t^{\prime}\right)=K\left(x, x^{\prime} ; t-t^{\prime}\right)
$$

The propagator of one-dimensional free particle, with the far-right expression obtained via saddle-point approximation ${ }^{[1]}$, is then

$$
K\left(x, x^{\prime} ; t\right)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} d k e^{i k\left(x-x^{\prime}\right)} e^{-i \hbar k^{2} t /(2 m)}=\left(\frac{m}{2 \pi i \hbar t}\right)^{1 / 2} e^{-m\left(x-x^{\prime}\right)^{2} /(2 i \hbar t)}
$$

The propagator of one-dimensional harmonic oscillator is

$$
K\left(x, x^{\prime} ; t\right)=\left(\frac{m \omega}{2 \pi i \hbar \sin \omega t}\right)^{1 / 2} \exp \left(-\frac{m \omega\left(\left(x^{2}+x^{\prime 2}\right) \cos \omega t-2 x x^{\prime}\right)}{2 i \hbar \sin \omega t}\right)
$$

Time evolution of the wavefunction

apply propagator to starting wavefunction

$$
\psi(x, t)=\int_{\text {propagator }}^{v\left(x, t ; x^{\prime}, t^{\prime}\right)} \underset{\text { starting wavefen }}{v\left(x^{\prime}, t^{\prime}\right) \alpha x^{\prime}}
$$

time-dependent wavefon \int propagator starting wavefon

$$
\text { if } \psi\left(x^{\prime}, t^{\prime}\right)=\delta\left(x-x^{\prime}\right)
$$

Gaussian
spread

$$
P(x, t)=|\psi(x, t)|^{2} \quad \text { Probability }=\text { wavefcn squared }
$$

expectation value of position

$$
\begin{aligned}
\langle x(t)\rangle & =\frac{p_{0}}{m} t=\frac{\langle p\rangle}{m} t \quad \text { Theorem } \\
\Delta x(t)=\frac{\Delta}{\sqrt{2}}\left(1+\frac{\hbar^{2} t^{2}}{m^{2} \Delta^{4}}\right)^{1 / 2} & \Delta p(t)=\frac{\hbar}{\sqrt{2} \Delta}
\end{aligned}
$$

uncertainty in position

$$
\begin{aligned}
& \text { So AT LONG TIMES } \\
& \qquad \Delta x(t)=\frac{\Delta}{\sqrt{2}} \frac{\hbar t}{m \Delta^{2}}=A t
\end{aligned}
$$

linear in time

$$
\Delta x(t) \rightarrow \Delta v(0) t \text { chemical spear }
$$

Ehrenfest's Theorem: The expectation values of the quantum variables follow the classical equations of motion

$$
\mathbf{x}=\mathbf{v} \mathbf{t}
$$

Start with a Gaussian envelope in x

$$
\begin{aligned}
\psi(x, 0) \sim & e^{-x^{2} / 2 \Delta^{2}} \\
& G A U S S, A N \\
& E N U E C O P E \\
\operatorname{sesN} \text { wiDTH } \Rightarrow & \Delta X=\frac{\Delta}{\sqrt{2}}
\end{aligned}
$$

the position distribution depends on time

$$
\begin{aligned}
& \text { TIME-DEPENDENT WIDTH } \\
& \Delta x(E)=\frac{\Delta}{\sqrt{2}} \sqrt{1+\frac{\hbar^{2} t^{2}}{m^{2} \Delta^{4}}} \\
& \text { AT } t=0 \quad \Delta x=\frac{\Delta}{\sqrt{2}}
\end{aligned}
$$

$$
\begin{aligned}
w H E N \frac{\hbar^{2} t^{2}}{m^{2} \Delta^{4}} \gg 1 \quad \Delta x(t) & =\left(\frac{\Delta}{\sqrt{2}} \frac{\hbar}{m \Delta^{2}}\right) t \\
& \sim \frac{t}{\Delta} \quad \operatorname{SMALL} \triangle D
\end{aligned} \quad \text { FASTER SPRAT }
$$

the momentum distribution is independent of time

$$
\begin{aligned}
& \Delta p(t)=\frac{\hbar}{\sqrt{2} \Delta} \operatorname{CONSTANT} \\
& \Delta V=\frac{\hbar}{\sqrt{2} M \Delta}
\end{aligned}
$$

$$
\text { SMALLER } \triangle \text { LARGE } \triangle V
$$

$$
\begin{gathered}
\text { CLASSICAL SPREAD } \\
\Delta x(t)=\Delta v t
\end{gathered}
$$

at long times the quantum spread is the same as the classical spread

Cartoon: Not to Scale

not to sCale!

if the minimum width is small, then the spread is fast if the minimum width is large, then the spread is slow

Dispersion
=> Delta x changes

$$
\begin{aligned}
& \text { free particle => no forces } \\
& \text { => Delta p stays fixed }
\end{aligned}
$$

FABE PARTILLE

OPGRATOR
ef's ew's
IN

POR POSITION SPACE

$$
X_{0 p} f(x)=x f(x)
$$

$$
p_{0 p} f(x)=-i \hbar \frac{\partial}{\partial x} f(x)
$$

DO X AND P COMMUTE?
is $[x, P]=0 ?$

$$
X P-P X
$$

FORM IN ANY GASIS
POSITION SPACE = POSATION GASN

MOMENTUM SPACE $=$ MOMANTUM 6A515

TWO CLASSICRC OBSARUARLES
poscrion Xep cois ef's momantum Pop eon's ef's

$$
x_{o p} P_{o p}-p_{o p} x_{o p}=i \hbar I
$$

X and p ame complatulv incompatidle

$$
[,] \sim I \text { compincompatioir }
$$

$$
[,]=0 \text { COMP COMPATIBLE }
$$

IN MOMENTUM SPACE
$g(p)$
$x_{0 p} g(p)=i \hbar \frac{\partial}{\partial p} g(p)$

$$
p \circ p g(p)=p g(p)
$$

DO THEY COMMUTE?
$N 0$

$$
\begin{aligned}
& \left(p \frac{\partial}{\partial p}\right) g \neq\left(\frac{\partial}{\partial p} p\right) g \\
& {\left[x_{o p}, p_{o p}\right]=i \hbar I}
\end{aligned}
$$

complerial incompatible
the commutator does not depend on the basis! it tells us something fundamental about the operators

WHAT MRE THE Ef's OF XOP EOR THE RRGE PARTIGLE
before you measure

after you measure

THIS IS CAGLED A IIRAC DALTA ECN
∞ HIGH
∞ NARROU

$$
\int 4 d x=1
$$

```
WHAT ARE THE Ef'S OL THE POP
```

before you
wavered
meas ure

after you measure


```
MEASURE X ALWAYS \(S\left(x_{0}\right)\)
```

A G wars $\delta\left(\rho_{0}\right)$

WHAT DOES $\delta\left(x_{0}\right)$ LOOK LIKE IN P-Space?
a delta function in position space

$\cos (\rho \times / \hbar)+i \sin (\rho \times / \hbar)$

is a helix in momentum space

The probability density for a helix

equal probability to find o with any P !

MEASURE P

EQUAL PROEAKITV TO FINO At CuRRy X
before in \mathbf{x}

before in \mathbf{p}

ideal

$$
\Delta x \Delta p \geq \hbar / 2
$$

Simple Problems in One Dimension

Now that the postulates have been stated and explained, it is all over but for the applications. We begin with the simplest class of problems-concerning a single particle in one dimension. Although these one-dimensional problems are somewhat artificial, they contain most of the features of three-dimensional quantum mechanics but little of its complexity. One problem we will not discuss in this chapter is that of the harmonic oscillator. This problem is so important that a separate chapter has been devoted to its study.

5.1. The Free Particle

The simplest problem in this family is of course that of the free particle. The Schrödinger equation is

$$
\begin{equation*}
i \hbar|\dot{\psi}\rangle=H|\psi\rangle=\frac{P^{2}}{2 m}|\psi\rangle \tag{5.1.1}
\end{equation*}
$$

The normal modes or stationary states are solutions of the form

$$
\begin{equation*}
|\psi\rangle=|E\rangle e^{-i E t / \hbar} \tag{5.1.2}
\end{equation*}
$$

Feeding this into Eq. (5.1.1), we get the time-independent Schrödinger equation for $|E\rangle$:

$$
\begin{equation*}
H|E\rangle=\frac{P^{2}}{2 m}|E\rangle=E|E\rangle \tag{5.1.3}
\end{equation*}
$$

This problem can be solved without going to any basis. First note that any eigenstate of P is also an eigenstate of P^{2}. So we feed the trial solution $|p\rangle$ into Eq. (5.1.3) and find

$$
\frac{P^{2}}{2 m}|p\rangle=E|p\rangle
$$

or

$$
\begin{equation*}
\left(\frac{p^{2}}{2 m}-E\right)|p\rangle=0 \quad(=|0\rangle) \tag{5.1.4}
\end{equation*}
$$

Since $|p\rangle$ is not a null vector, we find that the allowed values of p are

$$
\begin{equation*}
p= \pm(2 m E)^{1 / 2} \tag{5.1.5}
\end{equation*}
$$

In other words, there are two orthogonal eigenstates for each eigenvalue E :

$$
\begin{align*}
& |E,+\rangle=\left|p=(2 m E)^{1 / 2}\right\rangle \tag{5.1.6}\\
& |E,-\rangle=\left|p=-(2 m E)^{1 / 2}\right\rangle \tag{5.1.7}
\end{align*}
$$

Thus, we find that to the eigenvalue E there corresponds a degenerate twodimensional eigenspace, spanned by the above vectors. Physically this means that a particle of energy E can be moving to the right or to the left with momentum $|p|=(2 m E)^{1 / 2}$. Now, you might say, "This is exactly what happens in classical mechanics. So what's new?" What is new is the fact that the state

$$
\begin{equation*}
|E\rangle=\beta\left|p=(2 m E)^{1 / 2}\right\rangle+\gamma\left|p=-(2 m E)^{1 / 2}\right\rangle \tag{5.1.8}
\end{equation*}
$$

is also an eigenstate of energy E and represents a single particle of energy E that can be caught moving either to the right or to the left with momentum $(2 m E)^{1 / 2}$!

To construct the complete orthonormal eigenbasis of H, we must pick from each degenerate eigenspace any two orthonormal vectors. The obvious choice is given by the kets $|E,+\rangle$ and $|E, \rightarrow\rangle$ themselves. In terms of the ideas discussed in the past, we are using the eigenvalue of a compatible variable P as an extra label within the space degenerate with respect to energy. Since P is a nondegenerate operator, the label p by itself is adequate. In other words, there is no need to call the state $\left|p, E=p^{2} / 2 m\right\rangle$, since the value of $E=E(p)$ follows, given p. We shall therefore drop this redundant label.

The propagator is then

$$
\begin{align*}
U(t) & =\int_{-\infty}^{\infty}|p\rangle\langle p| e^{-i E(p) t / \hbar} d p \\
& =\int_{-\infty}^{\infty}|p\rangle\langle p| e^{-i p^{2} t / 2 m \hbar} d p \tag{5.1.9}
\end{align*}
$$

Exercise 5.1.1. Show that Eq. (5.1.9) may be rewritten as an integral over E and a sum over the \pm index as

$$
U(t)=\sum_{\alpha= \pm} \int_{0}^{\infty}\left[\frac{m}{(2 m E)^{1 / 2}}\right]|E, \alpha\rangle\langle E, \alpha| e^{-i E t / \hbar} d E
$$

Exercise 5.1.2.* By solving the eigenvalue equation (5.1.3) in the X basis, regain Eq. (5.1.8), i.e., show that the general solution of energy E is

$$
\psi_{E}(x)=\beta \frac{\exp \left[i(2 m E)^{1 / 2} x / \hbar\right]}{(2 \pi \hbar)^{1 / 2}}+\gamma \frac{\exp \left[-i(2 m E)^{1 / 2} x / \hbar\right]}{(2 \pi \hbar)^{1 / 2}}
$$

[The factor ($2 \pi \hbar)^{-1 / 2}$ is arbitrary and may be absorbed into β and γ.] Though $\psi_{E}(x)$ will satisfy the equation even if $E<0$, are these functions in the Hilbert space?

The propagator $U(t)$ can be evaluated explicitly in the X basis. We start with the matrix element

$$
\begin{align*}
U\left(x, t ; x^{\prime}\right) & \equiv\langle x| U(t)\left|x^{\prime}\right\rangle=\int_{-\infty}^{\infty}\langle x \mid p\rangle\left\langle p \mid x^{\prime}\right\rangle e^{-i p^{2} t / 2 m \hbar} d p \\
& =\frac{1}{2 \pi \hbar} \int_{-\infty}^{\infty} e^{i p\left(x-x^{\prime}\right) / \hbar} \cdot e^{-i p^{2} t / 2 m \hbar} d p \\
& =\left(\frac{m}{2 \pi \hbar i t}\right)^{1 / 2} e^{i m\left(x-x^{\prime}\right)^{2} / 2 \hbar t} \tag{5.1.10}
\end{align*}
$$

using the result from Appendix A. 2 on Gaussian integrals. In terms of this propagator, any initial-value problem can be solved, since

$$
\begin{equation*}
\psi(x, t)=\int U\left(x, t ; x^{\prime}\right) \psi\left(x^{\prime}, 0\right) d x^{\prime} \tag{5.1.11}
\end{equation*}
$$

Had we chosen the initial time to be t^{\prime} rather than zero, we would have gotten

$$
\begin{equation*}
\psi(x, t)=\int U\left(x, t ; x^{\prime}, t^{\prime}\right) \psi\left(x^{\prime}, t^{\prime}\right) d x^{\prime} \tag{5.1.12}
\end{equation*}
$$

where $U\left(x, t ; x^{\prime}, t^{\prime}\right)=\langle x| U\left(t-t^{\prime}\right)\left|x^{\prime}\right\rangle$, since U depends only on the time interval $t-t^{\prime}$ and not the absolute values of t and t^{\prime}. [Had there been a time-dependent potential such as $V(t)=V_{0} e^{-x t^{2}}$ in H, we could have told what absolute time it was by looking at $V(t)$. In the absence of anything defining an absolute time in the problem, only time differences have physical significance.] Whenever we set $t^{\prime}=0$, we will resort to our old convention and write $U\left(x, t ; x^{\prime}, 0\right)$ as simply $U\left(x, t ; x^{\prime}\right)$.

A nice physical interpretation may be given to $U\left(x, t ; x^{\prime}, t^{\prime}\right)$ by considering a special case of Eq. (5.1.12). Suppose we started off with a particle localized at $x^{\prime}=x_{0}{ }^{\prime}$, that is, with $\psi\left(x^{\prime}, t^{\prime}\right)=\delta\left(x^{\prime}-x_{0}{ }^{\prime}\right)$. Then

$$
\begin{equation*}
\psi(x, t)=U\left(x, t ; x_{0}^{\prime}, t^{\prime}\right) \tag{5.1.13}
\end{equation*}
$$

In other words, the propagator (in the X basis) is the amplitude that a particle starting out at the space-time point $\left(x_{0}{ }^{\prime}, t^{\prime}\right)$ ends with at the space-time point (x, t). [It can obviously be given such an interpretation in any basis: $\langle\omega| U\left(t, t^{\prime}\right)\left|\omega^{\prime}\right\rangle$ is the amplitude that a particle in the state $\left|\omega^{\prime}\right\rangle$ at t^{\prime} ends up with in the state $|\omega\rangle$ at t.] Equation (5.1.12) then tells us that the total amplitude for the particle's arrival at (x, t) is the sum of the contributions from all points x^{\prime} with a weight proportional to the initial amplitude $\psi\left(x^{\prime}, t^{\prime}\right)$ that the particle was at x^{\prime} at time t^{\prime}. One also refers to $U\left(x, t ; x_{0}{ }^{\prime} t^{\prime}\right)$ as the "fate" of the delta function $\psi\left(x^{\prime}, t^{\prime}\right)=\delta\left(x^{\prime}-x_{0}{ }^{\prime}\right)$.

Time Evolution of the Gaussian Packet

There is an unwritten law which says that the derivation of the freeparticle propagator be followed by its application to the Gaussian packet. Let us follow this tradition.

Consider as the initial wave function the wave packet

$$
\begin{equation*}
\psi\left(x^{\prime}, 0\right)=e^{i p_{0} x^{\prime} / \hbar} \frac{e^{-x^{\prime 2} / 2 \Delta^{2}}}{\left(\pi \Delta^{2}\right)^{1 / 4}} \tag{5.1.14}
\end{equation*}
$$

This packet has mean position $\langle X\rangle=0$, with an uncertainty $\Delta X=\Delta / 2^{1 / 2}$, and mean momentum p_{0} with uncertainty $\hbar / 2^{1 / 2} \Delta$. By combining Eqs. (5.1.10) and (5.1.12) we get

$$
\begin{align*}
\psi(x, t)= & {\left[\pi^{1 / 2}\left(\Delta+\frac{i \hbar t}{m \Delta}\right)\right]^{-1 / 2} \cdot \exp \left[\frac{-\left(x-p_{0} t / m\right)^{2}}{2 A^{2}\left(1+i \hbar t / m \Delta^{2}\right)}\right] } \\
& \times \exp \left[\frac{i p_{0}}{\hbar}\left(x-\frac{p_{0} t}{2 m}\right)\right] \tag{5.1.15}
\end{align*}
$$

The corresponding probability density is

$$
\begin{equation*}
P(x, t)=\frac{1}{\pi^{1 / 2}\left(\Delta^{2}+\hbar^{2} t^{2} / m^{2} \Lambda^{2}\right)^{1 / 2}} \cdot \exp \left\{\frac{-\left[x-\left(p_{0} / m\right) t\right]^{2}}{\Delta^{2}+\hbar^{2} t^{2} / m^{2} \Delta^{2}}\right\} \tag{5.1.16}
\end{equation*}
$$

The main features of this result are as follows:
(1) The mean position of the particles is

$$
\langle X\rangle=\frac{p_{0} t}{m}=\frac{\langle P\rangle t}{m}
$$

In other words, the classical relation $x=(p / m) t$ now holds between average quantities. This is just one of the consequences of the Ehrenfest theorem which states that the classical equations obeyed by dynamical variables will have counterparts in quantum mechanics as relations among expectation values. The theorem will be proved in the next chapter.
(2) The width of the packet grows as follows:

$$
\begin{equation*}
\Delta X(t)=\frac{\Delta(t)}{2^{1 / 2}}=\frac{\Delta}{2^{1 / 2}}\left(1+\frac{\hbar^{2} t^{2}}{m^{2} \Delta^{4}}\right)^{1 / 2} \tag{5.1.17}
\end{equation*}
$$

The increasing uncertainty in position is a reflection of the fact that any uncertainty in the initial velocity (that is to say, the momentum) will be reflected with passing time as a growing uncertainty in position. In the present case, since $\Delta V(0)=\Delta P(0) / m=\hbar / 2^{1 / 2} m \Delta$, the uncertainty in X grows approximately as $\Delta X \simeq \hbar t / 2^{1 / 2} m A$ which agrees with Eq. (5.1.17) for large times. Although we are able to understand the spreading of the wave packet in classical terms, the fact that the initial spread $\Delta V(0)$ is unavoidable (given that we wish to specify the position to an accuracy 4) is a purely quantum mechanical feature.

If the particle in question were macroscopic, say of mass 1 g , and we wished to fix its initial position to within a proton width, which is approximately $10^{-13} \mathrm{~cm}$, the uncertainty in velocity would be

$$
\Delta V(0) \simeq \frac{\hbar}{2^{1 / 2} m A} \simeq 10^{-14} \mathrm{~cm} / \mathrm{sec}
$$

It would be over 300,000 years before the uncertainty $\Delta(t)$ grew to one millimeter! We may therefore treat a macroscopic particle classically for any reasonable length of time. This and similar questions will be taken up in greater detail in the next chapter.

Exercise 5.1.3. (Another Way to Do the Gaussian Problem). We have seen that there exists another formula for $U(t)$, namely, $U(t)=e^{-i H t / \hbar}$. For a free particle this becomes

$$
\begin{equation*}
U(t)=\exp \left[\frac{i}{\hbar}\left(\frac{\hbar^{2} t}{2 m} \frac{d^{2}}{d x^{2}}\right)\right]=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{i \hbar t}{2 m}\right)^{n} \frac{d^{2 n}}{d x^{2 n}} \tag{5.1.18}
\end{equation*}
$$

hecture1s

SOMVE SHO DIFR EA

$$
H\left|\varphi_{n}\right\rangle=\varepsilon_{n}\left|\varphi_{n}\right\rangle
$$

TISE in Dirac notation for the SHO

or get x-apace, dat with < $\mid 1$ bus

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} k x^{2}\right] \varphi_{n}(x)=E_{n} \varphi_{m}(x)
$$

TISE in position
Find $e n$ N's E_{n} eigenvalues
F ind $e f^{\prime} s \quad \varphi_{n}(x)$ eigenfunctions

TELL'AM WHAT YOU'AE GONNA TELG'AM
akeo
ceoss intar

2

1

0

second excited state has 2 zeros
ground state has no zeros

LIND ASYPTOTIG RORM OUTSIOE $=6$ AUSSIAN

SOLUTIION = GANSSAANX POLVNOMRALS

Lecture 11

FOUND

$$
\varepsilon_{n}=(n+1 / 2) \hbar \omega \quad m=0,1,2,3, \ldots
$$

in position space $\varphi_{m}(y) * H_{m}(y) e^{-y^{2} / 2}$

Eigenfunction of H are a complete set of functions
http://www.st-andrews.ac.uk/~qmanim/animations_2/
THE GHENGUNGTIONS OF THE HAMILTONIAN
ARE A COMPLETE ORTHONORMAL SET OE BASIS FUNCTIONS ROM THE SPACE
sQuare with
inTerval:

11

Square Well
ANY FUNCTION space $=$ interval weight fans $=$ constant

$$
\psi(x)=\sum_{n} a_{n} e^{i k_{n} x}
$$

Free Particle

LiNA: FAG PARTIES E space $=$ line

weight fans = constant ANY FUNCTION

11

FOURIER INTEGAM4

$$
\begin{aligned}
& \psi(x)=\int \hat{\psi}(p) \frac{e^{i p x / k}}{\sqrt{2 \pi \hbar}} d p \\
& \psi(x)=(2 \pi)^{-1 / 2} \int a(k) e^{i k x} d k \\
& \int e^{-i \alpha x} e^{i \alpha^{\prime} x} d x=\delta\left(k^{\prime}-\alpha\right)
\end{aligned}
$$

$$
\text { TODAY: SHO-2 POWER SERIES, } \quad \begin{aligned}
& \text { ORTHOGONAL POLYNOMIALS, } \\
& \text { DIFFERENTIAL EQUATIONS, } \\
& \text { AND ALL THAT.... }
\end{aligned}
$$

WE WANT TO SOLVE TOE

$$
H|\psi\rangle=i \hbar \frac{d}{d t}|t\rangle \quad \text { To solve TDSE }
$$

SO WE FIRST SOLVE TINE
$H\left|E_{m}\right\rangle=E_{m}\left|E_{m}\right\rangle \quad$ First solve TISE

Then use the time-dependent phase factors of
THEN USE the energy eigenkets/eigenvectors/eigenfunctions

$$
\begin{aligned}
&|\psi(t)\rangle=\sum_{\text {Propagator U(t) }}^{\sum_{n}\left|E_{n}\right\rangle\left\langle E_{m}\right| e^{-i E_{n} t / \hbar}|\psi(0)\rangle} \\
&=\sum_{n}\left|E_{n}\right\rangle\left\langle E_{n} \mid \psi(0)\right\rangle e^{-i E_{m} t \mid \hbar} \\
& \text { so, TO SOLVE TISE... }
\end{aligned}
$$

LECTURE /I: THO II
power semites, oIfFEQ'S, AND ALC THAT
T, E in Dirac notation
in the Hilbert space

$$
H\left|\varphi_{n}\right\rangle=E_{n}\left|\varphi_{n}\right\rangle
$$

The TISE is a differential
using position basis: equation in position space Divots

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} k x^{2}\right] \varphi_{m}(x)=\operatorname{En}_{n} \varphi_{m}(x)
$$

OUR JOB: FIND φ_{m} 's eigenfunction FIND Em's eigenvalues

REWRITE TISE

$$
\begin{aligned}
& \frac{d^{2} \psi}{d x^{2}}+\left(\lambda-\alpha^{2} x^{2}\right) \psi=0 \\
& \lambda=\frac{2 m E}{\hbar^{2}} \\
& \alpha=\frac{m / K}{\hbar^{2}}
\end{aligned}
$$

make a bunch of variable changes to make it look like some old dead guy's differential equation, then we will pretend to solve it

FIRST STEP: FIND ASYMPTOTIC SOLUTION

FOR LARGE $x, \quad \alpha^{2} x^{2} \gg \lambda$

$$
\frac{\alpha^{2} \psi}{d x^{2}}-\alpha^{2} x^{2} \psi=0
$$

Trial solutions from the freshman physics professors

$$
\psi=A e^{-\frac{1}{2} \alpha x^{2}}+B e^{+\frac{1}{2} \alpha x^{2}}
$$

$$
\frac{\alpha \psi}{d x}=-\alpha x A e^{-1 / 2 \alpha x^{2}}+\alpha x B e^{+1 / 2 \alpha x^{2}}
$$

$$
\frac{d^{2} \psi}{d x^{2}}=\alpha^{2} x^{2} A e^{-1 / 2 \alpha x^{2}}+\alpha^{2} x^{2} B e^{+1 / 2 \alpha x^{2}}
$$

$$
\rightarrow \alpha A e^{-1 / 2 \alpha x^{2}}+\alpha B / e^{+1 / 2 \alpha x^{2}}
$$

Yes, they are indeed solutions to the asymptotic equation!

$$
\alpha^{2} x^{2} \gg \alpha
$$

not physical $\psi(x)=B e^{+1 / 2 \alpha x^{2}}$

SO, AT LARGE X, WI HAVE GAUSSIAN DECAY

LOOK FOR SOLUTIONS OF THE FORM

$$
\psi(x)=e^{-1 / 2 \alpha^{2} x^{2}} f(x)
$$

Trial solution to remove the asymptotic part

$$
\frac{\alpha^{2} \psi t}{d x^{2}}+\left(\lambda-\alpha^{2} x^{2}\right) \psi=0
$$

Put in the trial solution and do all of the spatial derivatives

$$
\begin{aligned}
\frac{d \psi}{d x} & =\frac{d}{d x}\left[e^{-1 / 2 \alpha x^{2}} f(x)\right] \\
& =-\alpha x e^{-1 / 2 \alpha x^{2}} f(x)+e^{-1 / 2 \alpha x^{2}} \frac{d A}{d x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d^{2} \psi}{d x^{2}}=-\alpha e^{-\frac{1}{2} \alpha x^{2}} f(x)+\alpha^{2} x^{2} e^{-1 / 2 \alpha x^{2}} f^{2} f(x) \\
&-\alpha x e^{-1 / 2 \alpha x^{2}} \frac{d f}{d x}-\alpha x e^{-1 / 2 \alpha x^{2}} \frac{d f}{d x} \\
&+e^{-\frac{1}{2} \alpha x^{2}} \frac{d^{2} f}{d x^{2}} \\
& \frac{\alpha^{2} \psi}{d x^{2}} \Rightarrow\left[\begin{array}{ll}
\frac{\alpha^{2} f}{d x^{2}}-2 \alpha x \frac{d f}{d x}+\left(\alpha^{2} / x^{2}-\alpha\right) f
\end{array}\right. \\
&+\left(\lambda-\alpha^{2} x^{2}\right) \psi=0+\left(\lambda-\alpha^{2} / x^{2}\right) f e^{-1 / 2 \alpha x^{2}}=0
\end{aligned}
$$

Okay, the equation inside the [] must be zero

$$
0=\left[\frac{d^{2} f}{d x^{2}}-2 \alpha x \frac{d f}{d x}+(\lambda-a) f\right] e^{-y / \alpha \alpha x^{2}}
$$

It doesn't look exactly like the $\xi=\sqrt{\alpha} \times$ old dead guy's differential equation, so make some more variable changes

$$
f(x) \rightarrow H(\rho)
$$

$$
\begin{aligned}
& \frac{d}{d x} f(x)=\frac{d}{d x} H(\xi)=\frac{\alpha}{d \xi} H(\xi) \frac{\alpha \xi}{d x} \\
& =\frac{\alpha H(\xi)}{d \xi} \sqrt{\alpha} \\
& \frac{d^{2} A}{d x^{2}}=\alpha \frac{d^{2} H}{d \xi^{2}} \\
& \frac{d^{2} f}{d x^{2}}-2 \alpha x \frac{d f}{d x}+(\lambda-\alpha) f=0 \\
& \frac{1}{\alpha}\left[\frac{d^{2} H}{d \xi^{2}}-2 \alpha x \frac{d H}{d \xi} \sqrt{\alpha}+(\lambda-\alpha) H\right]=0
\end{aligned}
$$

Success!!! Now it looks exactly like the old dead guy's equation!!!

$$
\frac{\alpha^{2} H}{d \xi^{2}}-2 \xi \frac{d H}{d \xi}+\left(\frac{\lambda}{\alpha}-1\right) H=0
$$

HERMITESS EQ

Now we pretend to solve the old dead guy's equation
SOLVE USING POWER SERIES...

$$
\begin{aligned}
& H(\xi)=a_{0}+a_{1} \xi+a_{2} \xi^{2}+a_{3} \xi^{3}+\cdots \\
& \frac{d H}{d \xi}=0+a_{1}+2 a_{2} \xi+3 a_{3} \xi^{2}+\cdots \\
& \frac{d^{2} H}{d \xi^{2}}=0+0+1.2 a_{2} \xi+2.3 a_{3} \xi
\end{aligned}
$$

know

$$
\frac{d^{2} H}{d \xi^{2}}-2 \xi \frac{d H}{d \xi}+\left(\frac{\lambda}{\alpha}-1\right) H=0 \quad \text { For } A L C \xi!
$$

\Rightarrow each coafficint $\&$ of ξ must vanish
$\xi^{0} \quad 1 \cdot 2 a_{2}+\left(\frac{\lambda}{\alpha}-1\right) a_{0}=0$
ξ^{\prime}

$$
\begin{aligned}
& 2 \cdot 3 a_{3}+\left(\frac{\lambda}{\alpha}-1-2\right) a_{1}=0 \\
& 3.4 a_{4}+\left(\frac{\lambda}{\alpha}-1-2.2\right) a_{2}=0 \\
& 4.5 a_{5}+\left(\frac{\lambda}{\alpha}-1-2.3\right) a_{3}=0
\end{aligned}
$$

$$
\Rightarrow \text { GOFF OF } \xi^{m}
$$

$$
(m+1)(m+2) a_{m+2}+\left(\frac{\lambda}{\alpha}-1-2 m\right) a_{m}=0
$$

$$
a_{m+2}=\frac{-\left(\frac{\lambda}{\alpha}-2 m-1\right)}{(m+2)(m+1)} a_{m}
$$

Recursion

RECURSION RELATION
$\Delta m=2$
$a_{0} \Rightarrow$ all even coff's
$a_{1} \Rightarrow$ all ODD CORAF'S

FOR EACH m:
when $\quad\left(+\frac{\lambda}{\alpha}-2 m-1\right)=0$
all higher torres vanish!

SPECIAL VALUES OF $\lambda \Rightarrow$ FINITE POLYNOMIALS

$$
\lambda=\frac{2 m E}{\hbar}
$$

$$
\Rightarrow E I G E N E N G R G I E S!
$$

TWO GLASSES OF SOLUTIONS
in id, even and odd solutions
in Sd, even and odd turn into parity
EVEN spatial inversion

$$
H(\xi)=a_{0}+a_{L} \xi^{L}+a_{4} \xi^{4}+\ldots
$$

$O 00$

$$
H(\xi)=a_{1} \xi+a_{3} \xi^{3}+a_{5} \xi^{5}+\cdots
$$

OD AND VEN COMR FROM SYMMETRY OF THE PROBLEM
N. B., FOR AN ARBITRARY ENERGY, NO STATIONARY

$$
a_{m+2}=\frac{-\left[\frac{\lambda}{\alpha}-2 m-1\right]}{(m+2)(m+1)} a_{m}
$$

CAN CHOOSE A TO TERMINATE GUIN OR DOD SERIES, BUT NOT BOTH.

LARGE m

$$
a_{m+2}=\frac{-\left[\frac{\lambda}{\alpha}-2 m-1\right]}{(m+L)(m+1)} a_{m}
$$

COMPARE WITI POWRR SHRIES FOR A

GAUSSIAN

$$
\begin{aligned}
& e^{2}= \sum_{n=0}^{\infty} \frac{\left(\xi^{2}\right)^{n}}{n!}=1+\xi^{2}+\frac{1}{2!} \xi^{4}+\frac{1}{3!} \xi^{6} \\
&+\frac{\xi^{m}}{\left(\frac{m}{2}\right)!}+\frac{\xi^{m+2}}{\left(\frac{m+2}{2}\right)!} \\
& \frac{b_{m+2}}{b_{m}}=\left(\frac{2}{m}\right)=7 \operatorname{san} E!
\end{aligned}
$$

calculate tia eigentanergies

$$
\left[\frac{\lambda}{\alpha}-2 m-1\right]=0
$$

$$
\frac{\lambda}{\alpha}=2 m+1
$$

$$
\lambda=(2 m+1) \alpha
$$

$$
\frac{2 m E}{\hbar^{2}}=(2 n+1) \sqrt{\frac{m k}{\hbar^{2}}}
$$

$$
E=(2 m+1) \frac{\hbar^{2}}{2 m} \sqrt{\frac{m \pi}{\hbar^{2}}}
$$

$$
=(n+1 / 2) \hbar \sqrt{\frac{k}{m}}
$$

$$
=(n+1 / 2) \hbar \omega
$$

$$
\begin{aligned}
& H_{0}(\xi)=1 \\
& H_{1}(\xi)=2 \xi \\
& H_{2}(\xi)=4 \xi^{2}-2 \\
& H_{3}(\xi)=8 \xi^{3}-12 \xi \\
& H_{4}(\xi)=16 \xi^{4}-48 \xi^{2}+12 \\
& H_{5}(\xi)=32 \xi^{5}-160 \xi^{3}+120 \xi \\
& H_{6}(\xi)=64 \xi^{6}-480 \xi^{4}+720 \xi^{2}-120 \\
& H_{7}(\xi)=128 \xi^{7}-1344 \xi^{5}+3360 \xi^{3}-1680 \xi \\
& H_{8}(\xi)=256 \xi^{8}-3584 \xi^{6}+13440 \xi^{4}-13440 \xi^{2}+1680 \\
& H_{9}(\xi)=512 \xi^{9}-9216 \xi^{7}+48384 \xi^{5}-80640 \xi^{3}+30240 \xi \\
& H_{10}(\xi)=1024 \xi^{10}-23040 \xi^{8}+161280 \xi^{6}-403200 \xi^{4}+302400 \xi^{2}
\end{aligned}
$$

figure 4
Wave functions associated with the first three levels of a harmonic oscillator.

FIGURE 5
Probability densities associated with the first three levels of a harmonic oscillator.

figure 6
Shape of the wave function (fig. a) and of the probability density (fig. b) for the $n=10$ level of a harmonic oscillator.

The Harmonic Oscillator

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc.html
http://www.falstad.com/qm1d/
http://www-personal.umich.edu/~Iorenzon/java_applets/spaceholder/applets/SHO-QM-example.htmI?D1=5
http://www.quantum-physics.polytechnique.fr/en/

Hermite Polynomials

http://mathworld.wolfram.com/HermitePolynomial.html
http://www.efunda.com/math/Hermite/index.cfm
http://www.sci.wsu.edu/idea/quantum/hermite.htm
http://functions.wolfram.com/Polynomials/

Coherent States

http://cat.sckans.edu/physics/Quantum\ Wave\ Ppacket.htm
http://demonstrations.wolfram.com/FundamentaICommutationRelationsInQuantumMechanics/
http://demonstrations.wolfram.com/SchroedingersCatOnCatnip/
http://www.fen.bilkent.edu.tr/~yalabik/applets/collapse.html

