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Finish Free Particle
(1) Qualitative
(2) Quantitative

Start Simple Harmonic Oscillator
(1) Solve Differential Equation (today)
(2) Use the Algebra of the Operators
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Non-relativistic propagators [edit]

In non-relativistic gquantum mechanics the propagator gives the amplitude for a particle to travel from
one spatial point at one time to another spatial point at a later time. It is a Green's function for the
Schrodinger equation. This means that if a system has Hamiltonian H then the appropriate

propagator is a function K(x,t;x",#') satisfying

H, — ih% K(z, t;2', ") = —ihd(x — 2")o(t — t')

where Hx denotes the Hamiltonian written in terms of the x coordinates and &(x) denotes the Dirac

delta-function.

This can also be written as

Iyt F LAY,
Kz, t;2', 1) = (z|U(t,1t)|2)
where f] (t’ ¥ ) is the unitaryldisambiguation needed ¢] time-evolution operator for the system taking

states at time ¢ to states at time 7'

Path integral in quantum mechanics [edit]

The quantum mechanical propagator may also be found by using a path integral.

K(atia' t) = [exp|* [ Lid.q.t)dt| Dlg(0)

where the boundary conditions of the path integral include q(t)=x, q(t')=x". Here L denotes the
Lagrangian of the system. The paths that are summed over move only forwards in time.



Using the quantum mechanical propagator [edit]

In non-relativistic quantum mechanics, the propagator lets you find the state of a system given an initial state
and a time interval. The new state is given by the equation:

20
Uz, t) = [ (' K (x,t; 2 t')da'.
—00
It K(x,t:x',t') only depends on the difference x — x" this is a convolution of the initial state and the propagator.

Propagator of Free Particle and Harmonic Oscillator [edit]

For time translational invariant system, the propagator only depends on the time difference (t-1'), thus it may be
rewritten as

K(x,r.x't) = K(xx';it - 1').

The propagator of one-dimensional free particle, with the far-right expression obtained via saddle-point

(1]

approximation® *, is then

o0 1/2
K(I,.’B';t) — 21_7r/+ Al e.ik(:z—_—,;')e_-ih.k%/(zm) _ (2;;1ht) / e—'m(:l:—:c')Q/(Q‘iht)

The propagator of one-dimensional harmonic oscillator is

1/2 2 12 B ;
K(z, 2" t) = ( mow ) exp _mw((a: +CIT‘ ).coswt 2xx’) |
2th sin wt

2mth sin wt
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Cartoon: Not to Scale
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Shankar S

Simple Problems in One Dimension

Now that the postulates have been stated and explained, it is all over but
for the applications. We begin with the simplest class of problems—con-
cerning a single particle in one dimension. Although these one-dimensional
problems are somewhat artificial, they contain most of the features of
three-dimensional quantum mechanics but little of its complexity. One
problem we will not discuss in this chapter is that of the harmonic oscillator.
This problem is so important that a separate chapter has been devoted
to its study.

5.1. The Free Particle

The simplest problem in this family is of course that of the free particle.
The Schrodinger equation is

P2
9> = H|p> = |9 G.1.1)

The normal modes or stationary states are solutions of the form
| p) = | Epe—iftn (5.1.2)
Feeding this into Eq. (5.1.1), we get the time-independent Schrédinger
equation for | E):
2
HIEy=X _|ey—E|B) (5.1.3)
2m

This problem can be solved without going to any basis. First note that
any eigenstate of P is also an eigenstate of P2 So we feed the trial solution
| p> into Eq. (5.1.3) and find

P2
2m

|p>=E|p>

159
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160 Chap. 5 e Simple Problems in One Dimension

or

(L-—E)im=0 |0 (5.1.4)

2m
Since | p> is not a null vector, we find that the allowed values of p are
p = +(2mE)"? (5.1.5)
In other words, there are two orthogonal eigenstates for each eigenvalue E:

| E, +> = |p = QmE)'?) (5.1.6)
|E, —> = |p = —CmE)'%) (5.1.7)

Thus, we find that to the eigenvalue E there corresponds a degenerate two-
dimensional eigenspace, spanned by the above vectors. Physically this
means that a particle of energy E can be moving to the right or to the left
with momentum |p | = (2mE)V% Now, you might say, “This is exactly
what happens in classical mechanics. So what’s new?”” What is new is the
fact that the state

|E> =B |p= CmE)2) + y|p=—(2mE)'2) (5.1.8)

is also an eigenstate of energy E and represents a single particle of energy
E that can be caught moving either to the right or to the left with mo-
mentum (2mE )V

To construct the complete orthonormal eigenbasis of H, we must pick
from each degenerate eigenspace any two orthonormal vectors. The obvious
choice is given by the kets | E, +)> and | E, —) themselves. In terms of the
ideas discussed in the past, we are using the eigenvalue of a compatible
variable P as an extra label within the space degenerate with respect to
energy. Since P is a nondegenerate operator, the label p by itself is adequate.
In other words, there is no need to call the state | p, E = p?2m), since the
value of E = E(p) follows, given p. We shall therefore drop this redundant
label.

The propagator is then

U(t) = '[ | p>{p | e EPutdp

—oo

= [ 1peplemima (5.19)
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Exercise 5.1.1. Show that Eq. (5.1.9) may be rewritten as an integral over
E and a sum over the + index as

s m .
00 = 3 || | BBl

Exercise 5.1.2.* By solving the eigenvalue equation (5.1.3) in the X basis,
regain Eq. (5.1.8), i.e., show that the general solution of energy E is

expli(2mE)2x/h] exp[—i(2mE )V2x/#]

ve(x) = f Qnh) Y (Qah)t

[The factor (2a#)-Y? is arbitrary and may be absorbed into 8 and y.] Though
we(x) will satisfy the equation even if E < 0, are these functions in the Hilbert
space?

The propagator U(¢) can be evaluated explicitly in the X basis. We
start with the matrix element

Ulx, t; xy=<x | U@) | X' = —[w x| pd<p | x'Se-wtuzmh g

1 o
- iplz—a) k|, p—ipPt/2mh
= Sk ‘me e dp

m 2 .
N A iml{z—a’)*/ 2kt .1.10

( 2kt ) ¢ (5.1.10)
using the result from Appendix A.2 on Gaussian integrals. In terms of this
propagator, any initial-value problem can be solved, since

wix, t) = J Ulx, t; xYp(x', 0) dx’ (5.1.11)

Had we chosen the initial time to be ¢’ rather than zero, we would have
gotten

px, 1) = J Ulx, t; x', t wp(x', t') dx’ (5.1.12)

where U(x, t;x',t') = {x | U(t — t') | x>, since U depends only on the
time interval + — ¢’ and not the absolute values of ¢ and ¢'. [Had there
been a time-dependent potential such as V(t) = Vye=** in H, we could
have told what absolute time it was by looking at ¥(¢). In the absence of
anything defining an absolute time in the problem, only time differences
have physical significance.] Whenever we set ¢’ = 0, we will resort to our
old convention and write U(x, ¢; x', 0) as simply U(x, t; x").
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A nice physical interpretation may be given to U(x, t; x', t') by con-
sidering a special case of Eq. (5.1.12). Suppose we started off with a particle
localized at x' = x,, that is, with w(x',¢") = 8(x" — x,"). Then

p(x, 1) = Ulx, t; x), t) (5.1.13)

In other words, the propagator (in the X basis) is the amplitude that a particle
starting out at the space—time point (x,', t') ends with at the space-time point
(x, t). {It can obviously be given such an interpretation in any basis:
(w | U(t,t') | @'y is the amplitude that a particle in the state | w') at ¢’
ends up with in the state | w) at 1.] Equation (5.1.12) then tells us that the
total amplitude for the particle’s arrival at (x, ¢) is the sum of the contribu-
tions from all points x’ with a weight proportional to the initial amplitude
w(x', t') that the particle was at x” at time ¢'. One also refers to U(x, t; x,'t")
as the “fate” of the delta function p(x', t') = 6(x" — x,').

Time Evolution of the Gaussian Packet

There is an unwritten law which says that the derivation of the free-
particle propagator be followed by its application to the Gaussian packet.
Let us follow this tradition.

Consider as the initial wave function the wave packet

—z2/24%

,(p(xr, 0) — P2’ /h Wﬁ

(5.1.14)

This packet has mean position (X = 0, with an uncertainty 4X = A4/2V%,
and mean momentum p, with uncertainty #/2V24. By combining Egs.
(5.1.10) and (5.1.12) we get

= (]l i

X exp[ IZO (x— 127;2 )] (5.1.15)

The corresponding probability density is

1 —[x — (po/m)t]?
P(x, 1) = T T R AT .exp{ A2+h212‘;mw } (5.1.16)

The main features of this result are as follows:
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(1) The mean position of the particles is

Pt (POt
A= m  om

In other words, the classical relation x = (p/m)t now holds between average
quantities. This is just one of the consequences of the Ehrenfest theorem
which states that the classical equations obeyed by dynamical variables will
have counterparts in quantum mechanics as relations among expectation
values. The theorem will be proved in the next chapter.

(2) The width of the packet grows as follows:

A t A h212 1/2
AX(t) = 21(/2) = 5 (1 + m2A4> (5.1.17)

The increasing uncertainty in position is a reflection of the fact that any
uncertainty in the initial velocity (that is to say, the momentum) will be
reflected with passing time as a growing uncertainty in position. In the
present case, since AV(0) = AP(0)/m = £/2V?mA, the uncertainty in X
grows approximately as AX ~ #1/22mA which agrees with Eq. (5.1.17)
for large times. Although we are able to understand the spreading of the
wave packet in classical terms, the fact that the initial spread A¥(0) is
unavoidable (given that we wish to specify the position to an accuracy A)
is a purely quantum mechanical feature.

If the particle in question were macroscopic, say of mass | g, and we
wished to fix its initial position to within a proton width, which is approx-
imately 10~ cm, the uncertainty in velocity would be

fi

0 cm/sec

It would be over 300,000 years before the uncertainty A(¢) grew to one
millimeter! We may therefore treat a macroscopic particle classically for
any reasonable length of time. This and similar questions will be taken up
in greater detail in the next chapter.

Exercise 5.1.3. (Another Way to Do the Gaussian Problem). We have seen
that there exists another formula for U(t), namely, U(r) = e-##", For a free
particle this becomes

i [k d? N | iht \* d*"
U@i) = exp[%— (E 71'}2_” =3 —(—) — (5.1.18)
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Hi(¥) =2¢ Hermite
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FIGURE 4
Wave functions associated with the first three levels of a harmonic oscillator.
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FIGURE 5
Probability densities associated with the first three levels of a harmonic escillator.
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' % Shape of the wave function (fig. a) and of the
- > probability density (fig. b) for the » = 10
b - Xy —-10123 +x level of a harmonic oscillator.




The Harmonic Oscillator

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc.html

http://www.falstad.com/gm1d/
http://www-personal.umich.edu/~lorenzon/java_applets/spaceholder/applets/SHO-QM-example.html?D1=5
http://www.quantum-physics.polytechnique.fr/en/

Hermite Polynomials
http://mathworld.wolfram.com/HermitePolynomial.html
http://www.efunda.com/math/Hermite/index.cfm

http://www.sci.wsu.edu/idea/quantum/hermite.htm
http://functions.wolfram.com/Polynomials/

Coherent States

http://cat.sckans.edu/physics/Quantum%20Wave%20Ppacket.htm



http://demonstrations.wolfram.com/FundamentalCommutationRelationsinQuantumMechanics/

http://demonstrations.wolfram.com/SchroedingersCatOnCatnip/

http://www.fen.bilkent.edu.tr/~yalabik/applets/collapse.htmli
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