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Time Independent Schrodinger Equation (TISE)
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Time Dependent Schrodinger Equation (TDSE)
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Write down [¢(t) > by inspection in energy basis
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Virtual Book 1

Chapter 5

Need a smoke. . .need a drink...no money. . .shirt reeks. . .shoes soaked. . .feet cold. ..two hours
with this stupid shadow on my tail... Other than that, things are swell, just swell. Time to meet
this clown. Yeah, the train station...past this marble corner...a moment...another moment...
about right, turn.... The timing was perfect—face to face with the“shadowman.” “Hey buddy,
can I bum a smoke?” The shadow fumbled through his overcoat, then his jacket finally producing
a pack of cigarettes. “Got a light?” He was quicker finding a lighter, but he was still so shaky
that it took five tries to produce fire. Maybe send a signal to his boss...whoever that is... “Hey,
buddy, let me tell you about Rutherford. They say he named the alpha particle...”

The Infinite Square Well

An atom in a molecule, an electron in an atom, and a nucleon in a nucleus are examples of
particles confined to limited regions. Each demonstrates energy quantization while confined. Each
limited region can be considered to be a “box” with “soft walls” formed by electrical or nuclear
forces. The first step toward describing such realistic systems is to examine a one dimensional box
with the simplest possible geometry and infinite or “hard walls”. The potential energy function
goes from zero in the region of confinement to infinity at each edge. This bit of unrealism makes
the mathematics most tractable. The second step is to model “soft walls” by examining a one
dimensional box where the potential energy function goes from zero in the region of confinement
to a finite value at each edge. Both illustrate energy quantization. In fact, a particle subject to
any type of confinement exhibits energy quantization.

Energy quantization is revealed in the form of allowed energy levels that are eigenenergies,
or energy eigenvalues. These are the observable energies. Each eigenenergy has a corresponding
eigenfunction, eigenstate, or eigenvector. A general wavefunction or state function may be an
eigenfunction but will generally be a linear superposition of eigenfunctions.

As in the last two chapters, the postulates of quantum mechanics are not necessarily obvious in
this development. The differential equation form of the time independent Schrodinger equation in
position space dominates the discussion. Remember that it is simply a convenient form of the sixth
postulate. Any eigenstate or any linear combination of eigenstates can comprise the state vector,
as described by the first postulate. Measurements yield eigenvalues per the third postulate. We
can attain probabilities for eigenstates or linear combinations of the eigenstates using the fourth
postulate, and so on. The postulates are ever present.

As you work through this chapter, notice how the techniques of boundary value problems are
used. Notice the mathematics used to attain eigenenergies and eigenfunctions. These things are
useful and recurrent. Notice that position space is only one of many representations. Energy and
momentum space representations are illustrative in this problem to further assimilate the idea that
different representations may be more useful in other problems. Notice the impact of state vectors
or wave functions that are linear combinations of eigenfunctions. Notice that results in two or
three dimensions are generalizations of results in one dimension. The three dimensional problem
may be pleasing because it is what we might first picture when we hear the phrase “particle in a
box,” which is the informal name of a square well.

1. Derive the eigenenergies of a particle in an infinite square well.
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QUANTUM BY EXAMPLE: A SELF-STUDY GUIDE FOR THE SERIOUS STUDENT

5. The Infinite Square Well

What we observe as material bodies and forces are nothing but shapes
and variations in the structure of space. Particles are just schaumkommen
(appearances). The world is given to me only once, not one existing and one
perceived. Subject and object are only one. The barrier between them cannot
be said to have broken down as a result of recent experience in the physical
sciences, for this barrier does not exist.

- Erwin Schrodinger, on Quantum Theory
In science one tries to tell people, in such a way as to be

understood by everyone, something that no one ever knew
before. But in poetry, it's the exact opposite.

- P.AM. Dirac

Particle in a Box

A model used to describe the behavior of particles of massm , such as
electrons in a metal, or plasma in a star, are constricted to a region. In this
model, the energy eigenvalues of the bound particles are quantized.

For an infinite potential, or for a potential for which V' >> F | the
potential well will have hard walls, or two regions in which the wave
function corresponding to quantized energy level within the well, will not be
able to penetrate the classically forbidden region. For a finite potential, the
potential well will have soft walls, or regions in which the quantized energy
wave function is able to decay within the classically forbidden region.

Cosine and Sine Identities

= cos(a+b)=cosacosbFsinasinb
» gsin(a+£b)= cosasinb + sinacosb

* sin’ca) = 1_ cosZa
2 2

" cos’(a) = l—f— cos 2
2 2
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72 4. SOLUTION OF THE SCHRODINGER EQUATION IN ONE DIMENSION

Figure 4.7 (a) Wave functions
and (b) probability densities of
the bound states in a square-well
potential. On the right side of

the picture an energy scale is
shown with marks for the bound-
state energies (n = 1,2, 3). The
form of the potential V(x) is
indicated by the long-dash line,
the energy E, of the bound states
by the horizontal short-dash lines.
The horizontal dashed lines also
serve as zero lines for the functions
shown.
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Problems

4.1 Solve the stationary Schrédinger equation for energy E
with a constant potential V = V.

4.2 Discuss the behavior of the solutions for energies E > V,,
E < V. Which solutions correspond to the particular
energy E = V,? These three cases play a role in the
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Immediately before the measurement, the two wavefunctions look like this

A
v (x,0)

©0 -

1
I 25

| > E
n=1 n=3 n=5

And immediately after the measurement, the two wavefunctions look like this

v (x,0%)

f‘f’\\,

N\ / \ f

> E
n=1 n=3 n=5

Remember, however that these two wavefunctions are just different representations of exactly the
same state vectors—they are just |4(07)> and |¥(0%) > in two different bases!
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