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Chapter 10 The Hydrogen Atom

There are many good reasons to address the hydrogen atom beyond its historical significance.
Though hydrogen spectra motivated much of the early quantum theory, research involving the
hydrogen remains at the cutting edge of science and technology. For instance, transitions in
hydrogen are being used in 1997 and 1998 to examine the constancy of the fine structure constant
over a cosmological time scale?. From the view point of pedagogy, the hydrogen atom merges many
of the concepts and techniques previously developed into one package. It is a particle in a box
with spherical, soft walls. Finally, the hydrogen atom is one of the precious few realistic systems
which can actually be solved analytically.

The Schrodinger Equation in Spherical Coordinates

In chapter 5, we separated time and position to arrive at the time independent Schrodinger
equation which is
H|E> = E;|E;>, (10-1)

where F; are eigenvalues and ‘Ei> are energy eigenstates. Also in chapter 5, we developed a one
dimensional position space representation of the time independent Schrodinger equation, changing
the notation such that F; — E, and ‘E,-> — 1. In three dimensions the Schrodinger equation

generalizes to
h2
(-5-v*+v)v=rs.| TISE

where V? is the Laplacian operator. Using the Laplacian in spherical coordinates, the Schrodinger
equation becomes

RP1a(,0 1 9 (. ,0 1 92
“m [_a_ < a) g o0 (Sm%) +ﬂ%] pvine =g (10-2)

In spherical coordinates, ¥ = (7,0, ), and the plan is to look for a variables separable solution
such that (r,0,¢) = R(r)Y (0,¢). We will in fact find such solutions where Y (6,¢) are the
spherical harmonic functions and R(r) is expressible in terms of associated Laguerre functions.
Before we do that, interfacing with the previous chapter and arguments of linear algebra may
partially explain why we are proceeding in this direction.

Complete Set of Commuting Observables for Hydrogen

Though we will return to equation (10-2), the Laplacian can be expressed

V=

2 2 2
9 20 1(3 19 1 a>' (10— 3)

= t+t-=+—=5 |55+ = +

or2  ror r2\00%2 tanf 00  sin? 0 Op>
Compare the terms in parenthesis to equation 11-33. The terms in parenthesis are equal to
-L?/ B2, so assuming spherical symmetry, the Laplacian can be written

9 20 L2

2 —_ S —
v _3T2+rar r2p?’

2 Schwarzschild. “Optical Frequency Measurement is Getting a Lot More Precise,” Physics
Today 50(10) 19-21 (1997).
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and the Schrodinger equation becomes

[_% ( o 20 ‘—2> V()| v =B, (10— 4)

i

Assuming spherical symmetry, which we will have because a Coulomb potential will be used for
V(r), we have complicated the system of chapter 11 by adding a radial variable. Without the radial
variable, we have a complete set of commuting observables for the angular momentum operators
in £2 and £.. Including the radial variable, we need a minimum of one more operator, if that
operator commutes with both £? and £,. The total energy operator, the Hamiltonian, may be
a reasonable candidate. What is the Hamiltonian here? It is the group of terms within the square
brackets. Compare equations (10-1) and (10-4) if you have difficulty visualizing that. In fact,

[H,£2]=0, and [H £.]=0,| commute

so the Hamiltonian is a suitable choice. The complete set of commuting observables for the
hydrogen atom is H, £2, and L£,. We have all the eigenvalue/eigenvector equations, because the
time independent Schrodinger equation is the eigenvalue/eigenvector equation for the Hamiltonian
operator, i.e., the the eigenvalue/eigenvector equations are

simultaneous
H > = Ep|p>,
[’2|¢> =1+ 1)h2’1/}>, E|genva|ue
L|¢> = mh|y>, eigenvector

where we subscripted the energy eigenvalue with an n because that is the symbol conventionally
used for the energy quantum number (per the particle in a box and SHO). Then the solution to
the problem is the eigenstate which satisfies all three, denoted |n,l,m> in abstract Hilbert space.
The representation in position space in spherical coordinates is

I <r,0, ¢‘n7 l,m> = wnlm(r7 0, QS)

Example 10-1: Starting with the Laplacian included in equation (10-2), show the Laplacian
can be express as equation (10-3).

VQ—ig 7‘22 + L 0 sin92 +;6—2
Cr29r or r2sin6 00 00 r2 sin? 6 O¢?

= 1 (27"2 +r28—2> + ! (cos&2 + sin08—2> + #8—2
r2 or or2 r2sinf 00 002 r2 sin? 0 02
0?2 290 1 02 1 0 1 0?

“ o7 " ror "0 T tan6 00 | 12 sin26 042

_ P 20 1 10 1 P
Tor2 rar  r2\ 002 ' tanf 90 ' sin200¢2 )’

which is the form of equation (10-3).

Example 10-2: Show [H, L',Q] =0.
(M, L2 =HL>-L°H
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(9?20 L2 s o R [0* 20 L2
= I:% <W+;§r2h2>+‘/(7‘)]ﬁ *,C [% <w+;ar2h2>+‘/(’r):|

nt 9* ., K20 ., B LY R

_ e e~ A 2
2m8r2£ 2mr8r£ +2mr2h2 +2mV(T)£
n? .9 B .20 KLY R
e e e S AP V4
+2m 8r2+2m ror  2mr2p®  2m (r)
o , K20 , K , h* .8 h* ,208 RBP
= amart " amrart Tam' OF Tanter Tat vy a0

where the third and seventh terms in £* sum to zero. The spherical coordinate representation of

L% is o2 5 o2
1 1
L= (= + —+
002 tan 0 00 sin“ 6 8¢2
and has angular dependence only. The partial derivatives with respect to the radial variable act
only on terms without radial dependence. Partial derivatives with respect to angular variables do
not affect the potential which is a function only of the radial variable. Therefore, the order of the
operator products is interchangeable, and

o, 0% B ,20 R L, 9% R ,20 R
2 2 2 2 2 2 2
S Sy S R ) 7 Sy BT =0.
[H’ £ ] 2m£ or? 2m£ r Or * 2m£ () + 2m£ or? + 2m 1 Or 2m£ V(r) =0
Instead of the verbal argument, we could substitute the angular representation of £2, form the
18 resultant terms, explicitly interchange nine of them, and get the same result.

Example 10-3: Show [H, L’Z] =0.

(M, L.|=HL.—L.H

B /92 20 L2 R2 /92 290 L2
=g (ot 2o ya) V0| s [ (G 2 i) + V0

_ moe, n2o,  nLeL, n
2mor2”"  2mror " 2m r2R?  2m ?
R? 97 R 20 BPL.LP R
T e T i i T A
h? 02 h? 20 h? P92 h 20 B
= a0 amror e o B T e b am Vet er T 2V

where the third and seventh terms in £2 £, sum to zero because we already know those two
operators commute. The spherical coordinate representation of L, is
0
L, =—th—
z 8¢
and has angular dependence only. Again there are no partial derivatives which affect any term of
the other operator, or the potential V(r), in any of the operator products. Therefore, the order
of the operator products is interchangeable, and

B2 92 K: 20 R B2 92 K2 20 R?

L] = —onbegm “ oS TS VO 2l am Y am e T am

% EzV(r) =0.
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Separating Radial and Angular Dependence

In this and the following three sections, we illustrate how the angular momentum and magnetic
moment quantum numbers enter the symbology from a calculus based argument. In writing
equation (10-2), we have used a representation, so are no longer in abstract Hilbert space. One of
the consequences of the process of representation is the topological arguments of linear algebra are
obscured. They are still there, simply obscured because the special functions we use are orthogonal,
so can be made orthonormal, and complete, just as bras and kets in a dual space are orthonormal
and complete. The primary reason to proceed in terms of a position space representation is to
attain a position space description. One of the by—products of this chapter may be to convince
you that working in the generality of Hilbert space in Dirac notation can be considerably more
efficient. Since we used topological arguments to develop angular momentum in the last chapter,
and arrive at identical results to those of chapter 11, we rely on connections between the two to
establish the meanings of of [ and m. They have the same meanings within these calculus
based discussions.

As noted, we assume a variables separable solution to equation (10-2) of the form

An often asked question is “How do you know you can assume that?” You do not know. You
assume it, and if it works, you have found a solution. If 1t does not work, you need to attempt
other methods or techniques. Here, it will work. Using equation (10-5), equation (10-2) can be
written

~—

10 (5,0 1 o (. 0

+m 88¢2 R(r) Y (0,0 — 2h—m [V(r) —EJR(r Y (6,6)f=0

10 (,0 1 9/ 0
= V0.0 o (1) R+ RO) o (sino 2 ) (0,0
1 02 2m

2

Dividing the equation by R(r)Y (6, ¢), multiplying by 7*, and rearranging terms, this becomes

1 0 0 2mr?

{ R(r) or <T25> R(r) = = [V(T) - E}} depends only on r
1 0?

Y (6, ¢) sin? § 0¢?

The two terms in the curly braces depend only on 7, and the two terms in the square brackets
depend only upon angles. With the exception of a trivial solution, the only way the sum of the
groups can be zero is if each group is equal to the same constant. The constant chosen is known
as the separation constant. Normally, an arbitrary separation constant, like K, is selected and
then you solve for K later. In this example, we are instead going to stand on the shoulders of

depends only on angles + [; 0 (sinf)ﬁ) Y(0,¢) + Y(Wb)} =0.

Y (0, ¢) sin0 00 90
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some of the physicists and mathematicians of the previous 300 years, and make the enlightened
choice of [(l+ 1) as the separation constant. It should become clear [ is the angular momentum
quantum number introduced in chapter 11. Then

1 d ([ 5d 2mr? B
R(r) dr (7’ E) R(r) = = [V(T) - E} =1(+1) (10 — 6)
which we call the radial equation, and
1 0 1o} 1 92
Y (6, ¢)sin 6 60 79, Y Y =— 1 10 —
Y (6, $)sin 6 90 (Slnea(;) 6.9+ Yo ymtaag &9 =+, (10— 7)

which we call the angular equation. Notice the signs on the right side are opposite so they do,
in fact, sum to zero.

The Angular Equation

The solutions to equation (10-7) are the spherical harmonic functions, and the [ used in
the separation constant is, in fact, the same used as the index [ in the spherical harmonics
Yi.m(0,¢). In fact, it is the angular momentum quantum number. But where is the index m?
How is the magnetic moment quantum number introduced? To answer these questions, remember
the spherical harmonics are also separable, i.e., Y}, (60,0) = fim(0) gm(¢). We will use such a
solution in the angular equation, without the indices until we see where they originate. Using the
solution Y (0, ¢) = f(0) g(¢) in equation (10-7),

76)g(0) sinod <¢>> s 00 (‘51“%0)- T sin? e%. W+t

10 ) 19
~ F(0) sn6 00 (Sme%> JO) + o) sz e 952

(@) = Il +1).

Multiplying the equation by sin?# and rearranging,

(¢) =0. only on phi

only on theta 299 (

0 1 02

20 9(9) 927

The first two terms depend only on 6, and the last term depends only on ¢. Again, the only
non—trivial solution such that the sum is zero is if the groups of terms each dependent on a single

variable is equal to the same constant. Again using an enlightened choice, we pick m? as the
separation constant, so
sinf d d
— | sing 0) +1(1+ 1) sin® 0 = m? 10 -8
o g (0045 ) J0) 4100+ 1) sin 6 = i, (10~ %)

‘ ﬁjﬁgw) = —m?, ‘ (10— 9)

and that is how the magnetic moment quantum number is introduced. Again, (10-8) and (10-9)
need to sum to zero so the separation constant has opposite signs on the right side in the two
equations.
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The Azimuthal Angle Equation

The solution to the azimuthal angle equation, equation (10-9), is

9(¢) =™ = gm(e) =", (10 - 10)

where the subscript m is added to ¢(¢) because it is now clear there are as many solutions as
there are allowed values of m.

Example 10-4: Show g,,(¢) = ¢™? is a solution to equation (10-9).

d? d? d - 4
2529 (@) = dTSQG”W = d—¢(im)€’m¢ = (im)?e™? = —m?gin(¢).
Using this in equation (10-9),
1 2 1 2 2 2 _ 2
mﬁg(¢)__m = M(—m gm(q§)> =—-m = —-m=-m,

therefore g,,(¢) = ™% is a solution to equation (10-9).

The Polar Angle Equation

This section is a little more substantial than the last. Equation (10-8) can be written

sin@die (sinQ%) f(0) 411+ 1) sin® 6 f(6) —m? f(8) = 0.

Evaluating the first term,

cod (o dN . d (. dfo)
51119@ <81n0@> f(@)-sm@de <s1n9 20 )

: afe) . d*f(o)
:s1n0<cos€W+s1n0 102
o, d2f(0) | d f(0)
= sin? 0 102 + sinf cos @ 0
Using this, equation (10-8) becomes
2
sin? 6 ddégﬁ) + sinf cos 6 %é@ +1(1+1) sin®6 () —m? f(0) = 0. (10 —11)

We are going to change variables using z = cosf, and will comment on this substitution later.
We then need the derivatives with respect to = vice 6, so

dfo) df(x)de _ df(w)(_sine) _

df(x)
dv

—sinf

do de df  dx
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> fo) d . adf()Y df(z) . d df(x)
do? _@(_Sme dx >_ dx Sme@ dx
B f(z) d dv df(r) df(z) . . d . \df(x)
——COSQW—Sln9dx 0 do —COSHW—SIHQ%<—SIDQ) .
2
:—COSQ%:(;C)—}-Sin29%x(;).

Substituting just the derivatives in the equation (10-11),

d? d d
sin? 9 (sim2 0 d{c(f) —cosf J;SU)> +siné cos 0 (— sin 0%) +I(I41) sin® 0 f (z) —m® f(z) =
which gives us an equation in both # and =z, which is not formally appropriate. This is, however,
an informal text, and it becomes difficult to keep track of the terms if all the substitutions and
reductions are done at once. Dividing by sin®6, we get

d? d d 2
% cos@% COSG% +I(1+1) f(z)— 51?29

sin’ 0

f(x)=0.

The change of variables is complete upon summing the two first derivatives, using cosf = x, and
sin?f = 1 — cos?f = 1 — x2, which is

dx? * dx

(1-22)  fx) , df(z) m’®

Ul +1) fl@) = 7o f(2) = 0.

This is the associated Legendre equation, which reduces to Legendre equation when
m = 0. The function has a single argument so there is no confusion if the derivatives are indicated
with primes, and the associated Legendre equation is often written

2

1—22

(1-2%) (@) = 20 /() + 10+ 1) f(2) - flz) =0

and becomes the Legendre equation,

(1-2%) £"(@) = 20 /(&) + 10 +1) f(z) =0,

when m = 0. The solutions to the associated Legendre equation are the associated Legendre
polynomials discussed briefly in the last section of chapter 11. To review that in the current
context, associated Legendre polynomials can be generated from Legendre polynomials using

Pin(e) = (-1 T— 2 P()

where the Pj(z) are Legendre polynomials. Legendre polynomials can be generated using

(_1)l dl
i) = g g (0 =)
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The use of these generating functions was illustrated in example 11-26 as intermediate results in
calculating spherical harmonics.

The first few Legendre polynomials are listed in table 10—-1. Our interest in those is to generate
associated Legendre functions. The first few associated Legendre polynomials are listed in table

10-2.
Py(z) =1 Py(z) = 5(52° — 3) Legendre
symmetry around | .y _, Py(z) = 1(352 — 3022 + 3) _
z-axis (m = 0) Py(z) = 1(322 —1) Ps(x) = £(632° — 7023 + 152) Polynomials
Table 10 — 1. The First Six Legendre Polynomials.

P()’()(.’,E) =1 szo(.’,E) ( 1)
/1 — 32 _ — 2 =
no symmetry Pra(r) = —v1-u Pra(w) = —15(Vi—2 )’ Spherical
Pio(z) == Ps5(z) = 15z (1 — 2?) i
around z-axis Poo(z) = 3(1 — 2?) Psi(z) = f_(5x 1)VI— a2 Harmonics
Pyq(z) = -3z V1 —2? Pso(z) = 1 (523 — 3x)
Table 10 — 2. The First Few Associated Legendre Polynomials.

Two comment concerning the tables are appropriate. First, notice P, = P, . That makes
sense. If the Legendre equation is the same as the associated Legendre equation with m = 0, the
solutions to the two equations must be the same when m = 0. Also, many authors will use
a positive sign for all associated Legendre polynomials. This is a different choice of phase. We
addressed that following table 11-1 in comments on spherical harmonics. We choose to include a
factor of (—1)™ with the associated Legendre polynomials, and the sign of all spherical harmonics
will be positive as a result.

Finally, remember the change of variables = = cosf. That was done to put the differential
equation in a more elementary form. In fact, a dominant use of associated Legendre polynomials is
in applications where the argument is cosf. One example is the generating function for spherical
harmonic functions,

Yim(0,9) = (—1)’"\/(2l4;(1l)$n;)71)!ﬂ,m(cos 0) ™ m >0, (10 — 10)

and
Yi,—m(0,9) =Y, (0,9), m <0,

where the P, (cosf) are associated Legendre polynomials. If we need a spherical harmonic with
m < 0, we will calculate the spherical harmonic with m = , and then calculate the adjoint.

To summarize the last three sections, we separated the angular equation into an azimuthal
and a polar portion. The solutions to the azimuthal angle equation are exponentials including the
magnetic moment quantum number in the argument. The solutions to the polar angle equation
are the associated Legendre polynomials, which are different for each choice of orbital angular
momentum and magnetic moment quantum number. Both quantum numbers are introduced into
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the respective differential equations as separation constants. Since we assumed a product of the
two functions to get solutions to the azimuthal and polar parts, the solutions to the original angular
equation (10-7) are the products of the two solutions P, ,,,(cos ) e?™?. These factors are included
in equation (10-10). All other factors in equation (10-12) are simply normalization constants. The
products P ,,(cosf) e’™? are the spherical harmonic functions, the alternating sign and radical
just make the orthogonal set orthonormal.

Associated Laguerre Polynomials and Functions

The azimuthal equation was easy, the polar angle equation a little more substantial, but you
will likely percieve the solution to the radial equation as plain, old heavy! There is no easy way to
do this. Our approach will be to relate the radial equation to the associated Laguerre equation,
for which the associated Laguerre functions are solutions. A popular option to solve the radial
equation is a power series solution, for which we will refer you to Griffiths®, or Cohen-Tannoudji*.

Laguerre polynomials are solutions to the Laguerre equation
xLj(x)+ (1—x) L;j(xz)+j Lj(z) =0.

The first few Laguerre polynomials are listed in table 10-3.

Lol’ =1
Li(x) =—x+1
Ly(x) = 2% — 42 + 2

Table 10 — 3. The First Seven Laguerre Polynomials.

Laguerre polynomials of any order can be calculated using the generating function

The Laguerre polynomials do not form an orthogonal set. The related set of Laguerre functions,
¢j(x) = e "*L;(x) (10 —13)

is orthonormal on the interval 0 < x < co.  The Laguerre functions are not solutions to the
Laguerre equation, but are solutions to an equation which is related.

Just as the Legendre equation becomes the associated Legendre equation by adding an ap-
propriate term containing a second index, the associated Laguerre equation is

xL;?”(:U) + (1 -z +k) L;?l(x) +3j Lj(x) =0, (10 — 14)

3 Griffiths, Introduction to Quantum Mechanics (Prentice Hall, Englewood Cliffs, New Jersey,
1995), pp. 134-141.

4 Cohen—Tannoudji, Diu, and Laloe, Quantum Mechanics (John Wiley & Sons, New York,
1977), pp. 794-797.
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which reduces to the Laguerre equation when k£ = 0. The first few associated Laguerre polyno-
mials are

L3(x) = Lo(x) L3(x) =2
L(z) = Li(z) L§(z) = Ls()
Li(z) = —2x+4 Li(z) = —4x3 + 482% — 144z + 96
Li(z)=1 L3(x) = 6022 — 600z + 1200
LY(z) = La(x) L3(z) = —1202% + 216022 — 10800z + 14400
Li(z) =322 =182+ 18  L3(x) = —2023 + 30022 — 1200z + 1200
L3(x) = 122% — 96z + 144  L3(z) = —242 + 96
L3(z) = —6x+ 18 L3(x) =6

Table 10 — 4. Some Associated Laguerre Polynomials.

Notice L? = L;. Also notice the indices are all non-negative, and either index may assume any
integral value. We will be interested only in those associated Laguerre polynomials where k < j
for hydrogen atom wave functions.

Associated Laguerre polynomials can be calculated from Laguerre polynomials using the gen-
erating function

g dF

Li(z) = (-1) gk Liti(@).

Example 10-5: Calculate Li(z) starting with the generating function.

We first need to calculate L4(x), because

k 1
L) = () L) > L) = (1) ey Ly (@) =~ Ly(a).

Similarly, if you want to calculate L%, you need to start with Ls, and to calculate L3, you
need to start with L7. So using the generating function,

d4
Ly(z) = ew@ e xt
d3
= ewﬁ ( — 6_1:5174 + 6_1: 4333)
T
d? d?
=e'— (e*"’jw4 — e T 4rd — e " 4ad 4 7" 123:2) =e'— (e*"’jw4 —e %8 +e " 12x2)
dx? dx?
d
= ezd— ( —e Trt e 4t e 8% —e T 2% — e T 1222 + 77 2495)
T
d
= exd— ( —e Tt e 1223 —e 3622 + 7 24x)
T

=¢e” <e*’3x4 —e T 4x? — e 1222 + e 3622 + 73622 —e T2 —e T 24x e ® 24)
— P (x4 — 1623 + 7222 — 962 + 24)
=zt — 162 + 7227 — 962 + 24,
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per table 10-4. Then to get L3i(x),

d
L} = - Ly(z)

d
_%(
= —(4a® — 482% + 144z — 96)

= —da® + 4822 — 144z + 96,

zt — 162" + 722° — 96z + 24)

pertable 102

Associated Laguerre polynomials are not orthogonal but associated Laguerre functions of
the type
K - k/27k
oi(z) =e /2y /2Lj (x)

are orthogonal on the interval 0 < x < 0o, so can be made an orthonormal set. Again, the <I>§f ()
are not solutions to the associated Laguerre equation but are solutions to a related equation.

We are specifically interested in a slightly different associated Laguerre function than the usual
first choice indicated above, i.e., we are interested in

yf(:v) = e*x/Qac(kH)mLf(x). (10 — 15)

These are also not solutions to the associated Laguerre equation, but they are solutions to

" 1 2j+k+1 k-1
v} ($)+<_Z+ o 4x2)y§“(z):0. (10 — 16)

The reason for our interest in (10-16) and its solutions (10-15), is that equation (10-16) is a form
of the radial equation, so the radial functions R(r) we seek are R, ;(r) = Ayl (r), where A is
simply a normalization constant.

Example 10-6: Show equation (10-15) satisfies equation (10-16).

Unlike some of the toy problems given as examples, this example is a critical connection...unless
you take our word for it, and then you should skip this. We are going to use the result of this
example as a direct link to the solution of the radial equation. We are going to simplify the notation
to minimize clutter, and will explain as we go.

To attain the second derivative, we need the first derivative, and use the notation

Yy = eia"/zx(kJ”l)/Qv,

for equation (10-15) where v = L¥(z), because the indices do not change and only serve to add
clutter, and we can remember the independent variable is x. The first derivative is

Y = _%efx/2x(k+l)/2,u g <E> 2 E=1/2 o= /2, (1) /2,

2
_ —lv—i— k+1 v 4o | eme/2p(k41)/2
2 2x
N <€x/2mf(k+1)/2> Y = —lfu+ k+1 S
2 2x
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Notice we adjusted the second term on the right to do the factoring. Using the same adjustment
technique, will factor these terms out of the second derivative as we go. These are also factors
common to equation (10-15). Since the right side of equation (10-16) is zero, after we substitute
the second derivative and the function into (10-16), we will simplify the equation by dividing
the equation by common factors, therefore, none of the common factors will enter into the final
solution. The exponentials and powers still need to be considered in differentiation, but their
inverses will appear on the left and only the terms which have impact will appear on the right.
Proceeding....

!/ 1
1V VTRV T ey Vo o Vo Vvt g v

(em/gf(kﬂ)ﬂ) y = lk+1 1, 1k+1 k+1k—-1 k+1 , 1, k+1

Substituting the second derivative and the function into equation (10-16),

1 2j+k+1 k-1
y”+<——+ J - >y=0,

4 2z 422

and dividing by the common factor of e~%/22*+1)/2 the remaining terms are

LS VS SO SRS 0 SRR et WU AR s SRS SRR et SR
1V 7970 VT2V Tty VT oy Taop VT oy VTl T v Y

(L 2tk 1N
4 2z w2 )T
y /1{” 1k+1 1, 1k+1 k27é1 k+1, 1, k+1

/
v

2 20 2" 7 T vt Ty VT Ty
1 27 +k+1 k2 /1

——Jv+ s v 7L v=20
2z Y2

kAL 1,k711 AR I TS

= — — 4+ = =0
Y T /11: T 2v+$v+ z |
kE+1 j
= v"—v’+ivl+l:0
x x
= zv' —zv+(k+1)v +jv=0
= zv'+(1-az+k)v +jv=0 (10— 17)

which is the associated Laguerre equation. Since v = L? (), and the L;“(:c) are solutions to the
associated Laguerre equation, equation (10-17) is equivalent to

L5 (@) + (1 -2+ k) LY (@) +j LF(x) =0,

which is the associated Laguerre, which we know to be a true statement, so
y = e~ ¥/ 2p kD72,

e—z/2w(k+l)/2L;€(x)

are solutions to equation (10-16).
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The Reduced Mass

Equation (10-2) describes a single particle in a central potential. The hydrogen atom is a two
body problem, and the potential is not central but is dependent upon the distance between the
nucleus and the electron. Were we able to anchor the nucleus to a stationary location we could
designate an origin, equation (10-2) would be an accurate description. This is not possible, but
we can reach a similar end by picturing the center of mass being anchored to a fixed location. If
we use the reduced mass in place of the electron mass,

My Mme
n= ’
mp + Me

the radial coordinate r accurately describes the distance between the nucleus and the electron.
The effect in equation (10-2) is cosmetic; where there was an m representing m,, it is replaced
by w. Because the proton is about 1836 times more massive than the electron, the reduced mass
is nearly identically the electron mass. Many authors simply retain the electron mass. Since the
center of mass is not actually anchored, a second set of coordinates is required to track the center
of mass using this scheme. This consideration and other details of reducing a two particle problem
to a one particle problem are adequately covered in numerous texts, including Chohen-Tannoudji®,
Levine®, and many classical mechanics texts.

Solution of the Radial Equation

The radial equation (10-6) using the reduced mass and the Coulomb potential, V(r) = —e?/r,
is

w76 B - [ 5 - E] -0 =
= g (73 mo B [ S e mo e o
> (P o P R ] rn =0, o)

The plan is to get (10-18) into a form comparable to equation (10-16), and we already know the
solutions are equation (10-15). We will be able to glean additional information by comparing the
equations term by term. The energy levels of the hydrogen atom and the meaning of the indices
of the associated Laguerre polynomials, which will be quantum numbers for the hydrogen atom,
will come from the comparison of individual terms.

We will make three substitutions to get the last equation into the form of equation (10-16).
The first is
_ _y(r)
y(r)=rR(r) = R(r)= . (10— 19)
r

5 Cohen-Tannoudji, Diu, and Laloe, Quantum Mechanics (John Wiley & Sons, New York,
1977), pp. 784-788.

6 Levine, Quantum Chemistry (Allyn and Bacon, Inc., Boston, Massachusetts, 1983), pp. 101
106.
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Making this substitution in the first term and evaluating the derivatives

(2)m-3 (3) e

d o -2 _1y dy(r
=7 [(r Yy(r)+ (r1) Zi)]
= % [—y(r) +r dgc/iir)]

_dy(r) | dy(r) | dPy(r)
T dr + dr T dr?
_ .yl

dr?

The substitution serves to eliminate the first derivative. We would have both a first and second
derivative if we had evaluated the first term using R(r).  With this and the substitution of
equation (10-19), equation (10-18) becomes

Ey(r) | r2pre? | 2’ y(r)

= y(r) =0.

d?y(r) N {2ue2 2uE I+ 1)}
d,'a2 r h2 h2 712
The second substitution is essentially to simplify the notation, and is

€\2 2uk

-) =2 10 —20
where the negative sign on the right indicates we are looking for bound states, states such that

E < 0, so including the negative sign here lets us have an € which is real. The last equation
becomes

y(r) =0.

d?y(r) [2,u62 e I(l+1)
dr? rh? 4 r2
The third substitution is a change of variables, and notice it relates radial distance and energy
through equation (10-20),

r=T€ = r:£7 (10—21)
€
dx Py(r)  ddy(r) d dy(z)  ,d*y(z)
d _- = — — €— =
- € = dr? dr dr “dz < dx Az

so our radial equation becomes

2 d?y(x) [Z,ueze e Lll+1)

da? e *Z*ET]?/("”):O

=

ddg;(f) {_ 1 N 2pe” U1+ 1)} y(z) = 0, (10 — 22)

4 hlex 2
and equation (10-22) is equation (10-16) where

K2 —1

(+1) = ——,

(10 — 23)
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and
2ue? _2j+k+1

hle 2

Per example 10-6, the solutions are equation (10-15),

, (10 — 24)

yf(x) = e_x/zq:(k+1)/2L§(x).

IEigenenergies from the Solution of the Radial Equation

Equation (10-23) tells us k= 20 + 1.

Example 10-7: Show k= 2]+ 1.
Equation (10-23) is

k2 —1
=1(l+1
1 (I+1)
= E2=4(+1)+1
=42 + 41 +1

— (20+1)
=|k=20+1
We are going to take what appears to be a slight diversion to evaluate a particular set of

factors in equation (10-24), R /ue?, which recurs repeatedly. Going back to the old quantum
theory, this is called the Bohr radius, that is

52
ag = —5 = 0.529A. (10 — 25)
e
We want to express lengths in terms of the Bohr radius because it is a natural length for the
hydrogen atom.

Example 10-8: Show ag = 0.529 A, using both the electron mass and the reduced mass.

This example is intended to illustrate three simple things. First, ao = 0.529 A, second is to
work out the CGS units for e2?, and then to show the electron mass is a very good approximation
to the reduced mass in hydrogen. The electrostatic force in MKS and CGS systems is defined

2 2
L evks _ F - fcas

dmeg T2 72

2
= elas = IS8 — (1602 x 10717C)* (8.988 x 10° N - m?/C?)
0

=2.307 x 1072 N - m? = 2.307 x 107 dyne - em?
=2.307 x 1072 erg - em = 14.42¢V - A.

So
2 2 4 L R)2
oo S L e 1 (L2A0xI0'VAP o
mee?  Am2mec?e?  4m? (0.5110 x 106 eV)(14.42€V - A)
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The reduced mass is

_ MpMme 1.673 x 10~%4 B
2 2
e d _ 052864 0.5288 A.

ez 0.9995m.e?  0.9995

There is 0.03% difference between the electron mass and reduced mass values. Many authors
simply use the electron mass and it yields a good approximation. The CGS value of e? can
be mysterious for those who have worked primarily in MKS units. By the way, the square root

e =3.797 (eV - A)I/Q can be a convenient way to express the charge on the electron in CGS units.

Equation (10-24) gives us the eigenenergies of the hydrogen atom, but requires some devel-
opment. Since k =2[+1,

2j +k+1 2+ ((20+1)+1

=j+1+1
5 5 J+Hi+

From the discussion on associated Laguerre polynomials, the indices j and k are non—negative.
The sum j + 141 can, therefore, assume any integer values of 1 or greater. We are going to
rename it n, or

n=j+0+1 (10 — 26)

The new integer index m is known as the principal quantum number. Using the principal
quantum number, it follows that the eigenenergies of the hydrogen atom are

K2 13.6¢eV
En = _2 2.9 2 ’
pagn n

(10 — 27)

where the quantity 13.6eV is called the Rydberg, usually denoted R or Ry. The ground state
energy is Fy = —13.6eV when n = 1. It is often convenient to express excited state energies
in terms of the ground state energy.

Example 10-9: Show equation (10-27) follows from equation (10-24).

2ue® 2 +k+1

h%e 2
2 2
= j4l+l=n="F1"
h<e
2162
Lo
h*n
4p’et
2 _
= € _h4n2.

Substituting equation (10-20) to eliminate e and insert energy,

2ul 4pet
n: o htn2
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pleth? B <,u62>2 R

= E=-— = (£
2uhi*n? R? ) 2un?
52
= Ey=-——'
" 2pa3n?
Inserting numerical values,
po__ M 1 (h?
" 2uadn?  4w? 2(uc?)an?
1 (1.24 x 10* eV - A)? 1366V
472 2(0.511 x 106eV)(0.529 A)2n2 ~ n2 '

so eigenenergies do follow from the solution of the radial equation.
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Bo E. Sernelius 4:6

SPHERICAL COORDINATES

1 9°®

1 d( 2 861)) 1 J ( : 8@)
Vie=—2 2 | sin6 =0
r2 or (r ar ’ r2 sin6 96 . 20 T r? sin? 0 8(,02

@(r,6,0) = R(r)P(6)Q(¢)

2
L d’o_,

1 d( 2dR 1 d(. .dP
e Ll R st B LU o~ b vy p
r°Rdr\ dr) y“Psin@d6 d6) r°Qsin“0dg

multiply with 77 sin” 6:

sin® @ d( ) de sin@ d ( . dP) 1 d*0
—|rT— |+ —|sinf0— |=———
R dr\ dr de do)  Qdg?

The left-hand side depends only on r and 6, while the right-hand side depends
2

only on ¢. Thus the two sides must be a constant, m

2 .
d_Q+m2Q:() ; Q((p)~ei1m(p ;. m=0,1,2...

d(p2

Note: If the physical problem limits ¢ to a restricted range m can be a non-

integer.
Now we return to the left-hand side and rearrange the terms:

2

1 d( 2 dR) 1 d ( . dP) m
——|r"—|==————2|sinf— |+
R dr dr Psin@ do sin? 0

The new left-hand side depends only on r and the right-hand side on only 6.

Thus, they must be a constant, /(/+1).
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Bo E. Sernelius 4:7

We get
i(rzd—R)—l(lH)R:o
dr dr
and
2
1 i(sined—P)+ (+1)-—""—|P=0
sin@ dO do sin” @

To solve the first, we make the ansatz: R = Ar%® and obtain the two solutions
L and r(+1)_ The general solution is then

! 1
Rl(r)zAlr +Blﬂ
r

For the polar-angle function P(6) it is customary to make the substitution

1 d d
cos@—»>x ; ————> —
sin@ d6@  dx
This gives
d 2\ dP m?
—[(l—x )—}r (1+1)-—"— |P=0
dx dx 1—x

We will first limit ourselves to axial or azimuthal symmetry.


Larry Sorensen



Bo E. Sernelius

4:8

Axial symmetry

—5 —2x—+I(I+1)P=0

2
(e

Legendre's equation

Note that if x=+1 are excluded from the problem / may be non-integer.

The solution is the Legendre polynomial of order I: P;(cos6)

Thus we have the general solution to Laplace's equation in spherical
coordinates for the special case of axial symmetry as:

[e ]

d(r,0) = Z[Alrl + B, %}PZ (cosB)
[=0

Legendre

Polynomial

The Legendre polynomials can be obtained from

)
1 d ) [
P(x)= 4 (24
/(%) 2ll!dxl( )

or from the generating function

1
(1—2x,u+,u2)

F(x,pu) =

or from recursion relations such as:
(I+1)Py (x) = (21 + 1)xP (x) ~ 1Py (x)
or

(1 —x? )ﬁ =—IxP(x)+1P_;(x)
dx

12 ~ Z#IPZ(X)
=0

Rodrigues' formula
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Bo E. Sernelius 4:9

The polynomials form a complete, orthogonal set of functions in the domain
-15x<1 (0<6<nm)

()= 3 AR ()

=0

Al=21

+1 ;
S [FOR(x)dx
-1
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Bo E. Sernelius 4:10

General case, no axial symmetry.

In this case we have in general a non-zero m value and the differential equation
for P is more elaborate. The Legendre polynomials are replaced by the

associated Legendre polynomials, le(cos 0). For a given [-value there are
2l+1 possible m-values: m =0, +1,+2,, £3, ...

There is a more general Rodrigues’ formula for these functions:

_1)m (1 ~ xz)m/z dl+m

o (+? —1)l L (<l <m<+)

For any given m the functions P (cos6@) and P;"(cos@) are orthogonal and

the associated Legendre polynomials for a fixed m form a complete set of
functions in the variable x.

The product of le (x) and ¢ forms a complete set for the expansion of an

arbitrary function on the surface of a sphere. These functions are called
spherical harmonics.

1 e.e)= \/ ax (emyl (OS0F

They are orthonormal

[, Y000 *(0.9)dQ

2r T . .
= JO d(ij Sin QdOYlm (0,(P)Ylum * (0,('0) = 6”1 5mm’

complete set of orthonormal

functions on the sphere
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Bo E. Sernelius 4:11

f6.0)=3 iclmylm(e,(p) | f > = sum sum C(I,m) | I, m >
F=om==! dot with < theta, phi |

and

=], f0.01"*(6.0)aQ C(lm)=<l,m|f>

The general solution to Laplace's equation in terms of spherical harmonics is

S
1
O(r.0,0)= > > [A;"r’ +B" }Yl’"(e,(p)
1=0m=—1 r
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C(l,m) = <l, m | f >
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separation in other

coordinate systems

428 LETTERS TO

In the Annals of Mathematics for April, 1934, I derive the
conditions for the Stickel result in such a form that I have
been able to determine all the real type forms so that the

space with the fundamental form
ds?= H12dx12 + szdxzz + Hagdxsz (4)

is euclidean, and I have shown that they satisfy the
condition (3). These forms and the relation between the
coordinates x; and cartesian coordinates are as follows:

Hom frresn] W

Hy=H,=1, H3=x,4 cylindrical polar coordinates;l (I1)
(111)

H,=1, Hy=x,, H;=x, sin %3, polar coordinates;

Hz2=1, H?=Hj?=a? (cosh 2x;— cos 2x3),

I elliptic cylinder coordinates;l

x=x1; ¥y=a cosh x; cos x3, 2=a sinh x; sin x3; (IV)
H2=1, H?=H?=x2x4,
I parabolic cylinder coordinates;l
X=X, Y=%X22— X352 Z=02X9X3; V)
He2=1, H?=H=x2[k%n2(x., k) +k"2cn?(x;, k') ],
R2+k2=1, x =x1dn(x2, k)snx;, k'),
y=xi1sn(xs, k)dn(xs, k'), 2=x1cn(x2, k)en(xs, k'); (VI)
H?=Hg2=x2+x, H?=x2%5,
l parabolic coordinates, I
X=X1%35 COS X2, ¥ =X1%3 sin xs, 3=5(x2—x3?); (VII)

H?2=H=a? (sinh? x;+ sin? x3),

Hj?=a? sinh? x; sin? x3,

I prolate spheroidal coordinates,l

THE EDITOR

x = sinh x; sin x3 cos x2, y=a sinh x; sin x; sin x.,

z=a cosh x, cos x2; (VIII)
H2=H;?=a? (cosh? x; — sin? x3),
H»?=a? cosh? x; sin? x3,
oblate spheroidal coordinates,
x=a cosh x; sin x; cos x2, ¥y=a cosh x; sin x; sin x,
2=a sinh x; cos x3; (IX)

H2=(xi — ;) (i —x) [f (5:),
floi) =4(a—x:)(B—x:) (v —x:), (G, J, k),
lconfocal ellipsoidal coordinates; I (X)
H? = (s —x;) (i —x1) /f(5:),
f(xl) =4(a—'xi) (b_xf)) (ir jy k#):
I confocal parabolic coordinates,l
x=(x1+ws+x3—a—b)/2,
¥ =(a—x1)(@a—x)(a—xs5)/(b—a)
2= (b—x1)(b—x2)(b—x3)/(@—0b), x:: >b>x:>a>x;3 (XI)

In each case the coordinate surfaces consist of confocal
quadrics including the cases when one or more families
consist of planes. All such systems yield solutions and only
these. Consequently |the only orthogonal systemsl of
coordinates in which the three-dimensional Schrédinger
equation can be solved by separation of the variables are
the above types.

LuTHER PFAHLER EISENHART
Fine Hall,
Princeton, New Jersey,
February 24, 1934,

On the Inversion of Doublets in Alkali-Like Spectra

In a recent paper! we considered the effect of the polari-
zation of the core on the doublet separations in alkali-like
spectra. We are indebted to Professor Van Vleck for
pointing out to us that such an effect may be formulated as
a third order perturbation in a systematic application of
perturbation theory. If H is the Hamiltonian the third
order correction to the energy of the state 7 is

s H.‘,'H,‘eri'i .
" (Hu—H ) (Ha—Hjr )

0E;=— (1)

A careful examination shows that, for our case, and for both
the coupling schemes which we considered for the excited
core states, the terms in (1) reduce to those calculated by
us. But whereas (1) is clearly independent of the repre-
sentation chosen for the excited core states, our results,

based on two different assumptions for this representation,
differed by a factor of two. We have found that in the table
of doublet separations on p. 646 the values given for terms
arising from triplet parents are incorrect: the coefficients
of & for these three doublets should all be reduced by a
factor of three. When this is done, and the corresponding
correction is made in Table III, the result, on the assump-
tion of LS coupling, reduces to SE=—(F,G/E®)&
—2(fG+gFo)/3E,, in complete agreement with that given
on p. 648 for the other coupling scheme considered.
MELBA PHILLIPS
Department of Physics,
University of California,
February 22, 1934,

t Melba Phillips, Phys. Rev. 44, 644 (1933).

Artificial Radioactivity Produced by Deuton Bombardment

Following the discovery by I. Curie and F. Joliot! that
radionitrogen is formed when boron is bombarded with
alpha-particles, it seemed probable, as they in fact suggest,
that this new radioactive element might be formed by

bombarding carbon with high speed protons and deutons.
Indeed, in the light of our recent experiments in which

1 Curie and Joliot, Nature 133, 201 (1934).
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82 4. The Quantum Mechanical Hydrogen Atom

4.5. The Nature of the Spherical Eigenfunctions

It is instructive to examine the energy eigenfunctions that arise from the separation
of variables in spherical coordinates because, as will be discussed, the hydrogen
atom problem can also be solved using separation of variables in parabolic coor-
dinates. (In fact, it can also be solved in spheroidal coordinates,” but this solution
is of limited use.) This separability of the Schrédinger equation in more than one
coordinate system is indicative of the additional symmetry that leads to the acci-
dental degeneracy, that is, symmetry beyond the spherical symmetry of any central
potential. This additional symmetry manifests itself by permitting separability in
parabolic coordinates. It should be clear that the spatial symmetry of a central po-
tential is the symmetry that permits separation of variables in spherical coordinates
for any central potential.

The complete energy eigenfunctions in spherical coordinates, sometimes re-
ferred to as spherical eigenfunctions or “orbital” eigenfunctions, are

Vnem (r, 0, @) = Ry (r) Yem (6, @) (4.30)

The probability densily is, as usual, ||>. The angular par} of ¥ is the spherical
harmonics (see Section 2.6),

Yem (6, @) = Py (6) - exp (im¢p) (4.31)

where the P,,,(6) are the associated Legendre functions. Upon taking the absolute
square, the ¢-dependence disappears. The probability density is therefore cylin-
drically symmetric about the z-axis. Now || represents the probability per unit
volume so that |{|*> multiplied by the volume element is the probability of find-
ing the electron somewhere in the volume element. Thus, the probability density
(multiplied by the electronic charge) is the charge density of a given eigenstate. A
convenient way to depict the charge density is by using a density plot in which the
regions of the highest density of dots are the locations at which the electron would
be more likely to be found. FIGURE 4.3 issuchaplotforthen =4, £ =2,m =0
state.

The cylindrical symmetry discussed above is apparent. In contrast with the
charge densities that will be obtained using parabolic coordinates it should be
noted that the charge distribution for orbital eigenstates is symmetric about the
xy-plane.

4.6. Separation of the Schrodinger Equation in Parabolic
Coordinates

We follow the same procedure to effect the separation of variables in parabolic
coordinates that was used to separate the Schrodinger equation in spherical co-
ordinates. The treatment is standard and can be found in the books by Bethe
and Salpeter,® Landau and Lifshitz,® and by Schiff.* The relationship between
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n=4:,=2-m=0

FIGURE 4.3. Density plot of the spherical wave function indicated. The maximimum on
each axis is 50 a.u.

parabolic coordinates and spherical coordinates is given by the following transfor-
mation equations.

E=r—z=r(l—cosh)
n=r+z=r(l+cosf)
p=¢ (4.32)

The angular coordinate ¢ is seen to be the same azimuthal angle as in spherical
coordinates. This coordinate defines position with respect to the x-axis of a point
in the xy-plane. The surfaces of constants £ and # are paraboloids of revolution
about the z-axis as shown in FIGURE 4.4.

The Coulomb potential in parabolic coordinates in SI units is

% e 2 433
(S‘n)——(47f€())($+'1) (4.52)

Using the Laplacian operator in parabolic coordinates,’ the Schrodinger equation
is

(_ n? )( 4 )[i (Saw<s,n.¢))+1(, W (&, n-¢))
om, J\E+9) | o8 dE an \"" an

1 PYEng
En  9¢?

e’ 2
( )(E+n)‘/’(€' n.¢)=Ey (&, n.¢9) (434

dreg

To separate this equation we let

V& n. )= f(&E)g(n)P(¢) (4.35)
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L
=

\
\J

i

symmetry axis

surfaces of surfaces of
constant £ constant 77

FIGURE 4.4. Parabolic coordinates and their relation to other coordinate systems.

After a considerable amount of algebra we obtain

B 1 d*®(¢)
F(§,n) = _W a0
= —m? (4.36)

where the function F(&, 1) does not contain ¢ and m? is a separation constant
that has been judiciously chosen to be the same azimuthal (magnetic) quantum
number that represents the z-component of the angular momentum. This equation
obviously leads to the same solution that was obtained in spherical coordinates for
the ® part of the wave function

1
D, (P) = exp(imp) m =0, +1,+2,... (4.37)
Y
The remaining equation, F(&, ) = —m?, can also be separated. We obtain

Li(sdf(s))_m_z_mfllileﬁt&.( e )
f&)de \° d& 4& M2 ° 0 nE \dme

I d dg(n)) m?>  m,|E| ]
— | 4 ( demy _m" 438
[g(n)dn (" dn an o (435)
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FIGURE 2.9. The coordinate curves £ = const., = const.
of the parabolic coordinate system in the half-plane where
@ = 0 are parabolas.

2.6. Special Topic: Parabolic Coordinates

The Schrédinger equation for the hydrogen atom also separates in parabolic
coordinates. This observation is important because it remains true in the
presence of an additional constant electric field in the z-direction (Stark
effect).

The parabolic coordinates of a point (z,y, z) in R? are given by (£,7, ¢),
where

§=r+2=r(1+cosv), z = \/€n cos,
n=r—z=r(l-cosd), y= \/671 sin g, (2.115)
Y=, z=(§—n)/2

Here, (r, 7, ¢) are the spherical coordinates of the point (z,y, z). The coor-
dinates £ and 7 are non-negative, and ¢ is the familiar azimuthal angle. The
parabolic coordinate system is an orthogonal, right-handed system. Hence,
the coordinate curves meet at right angles. Figure 2.9 shows a few coordinate
curves in the half-plane where ¢ = 0 (the zz-plane). The coordinate surfaces
with constant £ or n are obtained by rotating the corresponding parabolas
of Figure 2.9 about the z-axis. In Figure 2.10, we see the coordinate surfaces
for € =1and n=1.
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FIGURE 2.10. The surfaces with £ = 1 (upper paraboloid)
and n = 1 (lower paraboloid) are obtained by rotating the
corresponding parabolas of Figure 2.9 about the z-axis.

The unit vectors along the coordinate lines are given by

- (oosgp) \/T ( cOS p ) (—sincp)
€=, /—— |sing |, e=4/— sing |, e,=| cosp |.
Ve+rn \ verm S0\~ /e 0

The gradient in parabolic coordinates reads

" 1/_5_3?_ ‘98 1 @
V =2 £+n6§+2e" £+nan+e¢ma¢. (2.116)

From this it is not difficult to obtain the expression for the Coulomb Hamil-
tonian (2.39) in parabolic coordinates

8,8\ 8, 0 2
e —Ei—n (0—5(53—6) ) %("%)) N 2;71 002 642-77' &0

The stationary Schrodinger equation (H — E)Y¥ = 0 can be separated by
writing

v(&,m,¢) = N £(£) g(n) €™, (2.118)
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where n must be & non-negative integer. We consequently find as the energy levels the infinite
set of equidistant values

E, = Ay/(Bf2m){dn424 {2+ 1)+ 8mA/M)), 5 = 0,1,2,....

§37. Motion in a Coulomb field (parabolic coordinates)

The separation of the variables in Schrddinger’s equation written in
spherical polar coordinates is always possible for motion in any centrally
symmetric field. In the case of a Coulomb field, the separation of the variables
is also possible in what are called parabolic coordinates. The solution of the
problem of motion in a Coulomb field in terms of parabolic coordinates is
useful in investigating a number of problems where a certain direction in
space is distinctive; for example, for an atom in an external electric field

The parabolic coordinates £, v, ¢ are defined by the formulae

x = (fn)cosp, y = V({n)sing, z ={—n), } (37.1)
r = V(s4y+3?) = }é+n), '
or conversely
§ =r+z, 7 =r—z ¢ =tnY(yx); (372)

§ and 7 take values from 0 to oo, and ¢ from 0 to 2». The surfaces { =
constant and 7 == constant are paraboloids of revolution about the z-axis,
with focus at the origin. This system of coordinates is orthogonal. The
element of length is given by the expression

= £ 2o+ S oy ey, (37.3)
and the element of volume is
dV = }(£+n)dfdnds. (37.4)
From (37.3) we have the Laplacian operator
&= ?-T-;[ae( af) a-,(’ta;)] fn o 79

Schrédinger’s equation for a particle in an attractive Coulomb field with
U= =1fr=<2/({+7)is
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Ref. Zettili §6.2.4, §6.3.4

1 Separation in two different coordinate systems

For some problems the Schrodinger equation can be separated in more than one coordinate sys-
tem. In these cases it turns out that there is some “dynamical” symmetry in the problem. That is,
an additional symmetry beyond the “geometrical” symmetries such as translations, rotations, and
inversions, which lead to conserved quantities such as momentum, angular momentum and parity.
Corresponding to the additional symmetry is an additional conservation law and an additional
degeneracy.

A well-known example is the non-relativistic hydrogen atom, which can be separated in both
spherical and parabolic coordinates, and in which there is an “accidental” degeneracy in the orbital
quantum number. That is, the energy depends on n but not on [. The same situation occurs in the

I isotropic harmonic oscillator, which can be separated in both rectangular and spherical coordinates.l
In both the Coulomb and the oscillator problems the classical orbit is a closed ellipse, and there
are many orbits with the same energy but different angular momentum.

2 Separation in rectangular coordinates

This is very simple. We have H = K + V with

P’ L 5 2 2
K=r - =
oo 5 (P + 0y + 1)
1 1
V= §mw2r2 = §mw2(:£2 +y? + 2%)

so that H = H, + H, + H, with each term being the hamiltonian for a one-dimensional harmonic
oscillator. Thus there are three uncoupled equations. The results for the eigenfunctions and
eigenvalues are

¢nz,ny,nz ($7y7 Z) = an (CC) Yny(y) an (Z) (1)
E, = (nz +3)hw + (ny +3)hw + (. +3)hw (2)
= (n—i—g)hw; n=mng+n,+n,=0,1,2,--- (3)

Degeneracy

The energy F, depends on only one integer, but the wavefunction depends on three. For
example there are six states with energy Fs. If we label each state by the set of three numbers
(ng,ny,n2), then the six states with n=2 are

(2,0,0), (0,2,0), (0,0,2), and (1,1,0), (1,0,1), (0,1,1).

Zettili (p 439) shows that the degree of degeneracy for the energy level given by the quantum
number n is

g = 5t n+2). 4
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order differential operators. Hamiltonians that can be expressed as bilinear combi-
nations of these operators will leave invariant any finite-dimensional representation
space of the symmetry algebra and as a result, the corresponding part of their spectra
can be computed through a finite-matrix eigenvalue problem. In one dimension, more
specifically, one uses the su(2) realization

T =5 +108 3
[r®,T%) = £7¢, [T+, 7] =27

8 a
+ e A o
TT=2z-2 P T 32’ )

which for j as emi-integer, entails a (2; +1)—dimensional representation over the space
spanned by the monomials 1,z,...,2z%/. One then takes for Hamiltonians

= Y carr+ ) cr. (2)

a,b=0,%+ e=0,1

Through a similarity transformation and posubly, a change of variable z = z(z),
these Hamiltonians can be cast in the form "H’ + V(z) and a list of quasi-exactly
solvable Schrodinger operators is thus obtained. We may remark that exactly solvable
systems result if the parameter j does not appear in the Hamiltonian. This happens
for instance in the case of the Morse potential V(z) = A(e™2°* — 2¢~*) which plays
an important réle in molecular physics. The simplest example of a quasi-exactly
solvable problem in one dimension is provided by the anharmonic oscillator with
potential V(z) = jw?z® — 28w?z* + [28%w? — w(4j + })|z*. This system, as it turns
out, is related to the two-dimensional umotroplc oscillator with Hamiltonian H =

(Px +P2) +3 2[31 +4(=2 =B8] ,pi= —l,,. y="1 2 Indeed owing to the higher

A 4 adi ion H(z:,72) = Ev(z1,22)
scparates in pa.rabohc coord.\nntcs as well in Cutuum coordmltes’ We shall see that
When parabolic coordinates are used, the separated equations comcide exactly with
the one-dimensional equation associated to the anharmonic oscillator with potential
V(z).

We take great pleasure in dedicating this paper to Franco Iachello who has so
brilliantly applied algebraic methods to domains as diverse as nuclear, high energy,
atomic, and molecular physics. We hope that he will find interesting the occurrence
of quadratic algebras in quantum mechanics. Let us also recall that Professor lachello
himself studied (among others) the dynamical symmetries of the Morse Hamiltonian®.
He has shown that these can be traced back to the su(2) symmetry of the two-
dimensional isotropic harmonic oscillator Schrédinger equation. In this case, one
separates the variables in polar coordinates and after a change of variables, identifies
the radial part as the Schrodinger equation for the particle in the one-dimensional
Morse potential. It is in close analogy with this approach that the relation between
the quasi-exactly anharmonic oscillator and the two-dimensional anisotropic oscillator
with a 2 to 1 frequency ratio is established here.

The remainder of the paper is organized as follows. We first set our notation
and identify the accidental degenaracies of a generalized 2-d anisotropic oscillator.
We then present the quadratic dynamical algebra and show how the dynamics is re-
solved by constructing the representations of this algebra. We indicate in particular
how the degeneracies are explained in this framework. Finally, we make the connec-

tion between the 2-d anisotropic oscillator and the quasi-exactly solvable anharmonic
oscillator. Conclusions follow.

THE GENERALIZED 2-D ANISOTROPIC OSCILLATOR

We shall be considering a two-dimensional quantum system with Hamiltonian

H =H, + Ha, (3)

where 1 1 1 )
H, = 5(?3 +wa]) + g(az = 1);3‘ ) (4a)

Ha =3 [(9} + 4%z - BY] , (45)

P = —i% ,i = 1,2, and a,B8,w € R. In the special case a = 1, H governs the
dynamics of an anisotropic oscillator with a 2 to 1 frequency ratio.
It will be convenient to introduce the annihilation and creation operators

a; = \/%(sz +iPl)» “I = ﬁ(“’zl “.Pl): (5¢)

w=vVE[@-ftam|. d=vE[E-g-Ltm],

that satisfy the commutation relations

(ar,0]] = k6u  [o,ar] = [al,al] =0 k1=1,2. (6)

In terms of these operators,
%_a!a,+ HC) R (7a)
%’ =afa +1. (76)

The spectrum of H = H, + H; is easily obtained by separating the Schrodinger
equation in Cartesian coordinates. With ¥(z1,z2) = ¢(z1)x(z2), the equation Hy =
E4 amounts to Hy¢(z1) = Ei¢(z1) and Hax(z2) = Eax(z2) with E = E; + E;.
We recognized in H, the Hn.milt.oma.n of a 1-d harmonic oscillator; its eigenfunctions
are of the form < z;|n; >x< z;l(az)"’|0 > and have energy E; = 2n; + 1. The
eigenvalues of H; can be determined by exploiting the conformal symmetry of this
operator. Indeed, define the operators

Bf = (af)? - 3(a® - 1)(a +af)?

(8a)
—n,(ax+u1)——+§
By =(Bht. (8b)
Clearly,
[Hy, Bf] = +2wBf . (9)

It is also straightforward to check that

pi57 = (2 7y + By sn- 3], (10)


Larry Sorensen


Larry Sorensen
2d anisotropic harmonic oscillator
cartesian and parabolic

Larry Sorensen


Larry Sorensen


Larry Sorensen



JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 5 MAY 1999

Superintegrability on the|two-dimensional hyperboloid] I
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the other separates in 2

(Received 14 December 1998; accepted for publication 7 Japdary 1999}

This work is devoted to the investigation of the quantumsfiechanical systems on the
two-dimensional hyperboloid which admits separatioff of variables in at least two
coordinate systems| Here we consider two potentials jintroduced in a paper of C. P.
Boyer, E. G. Kalnins, and P. Winternitz [J. Math. Phys. 24, 2022 (1983)], which
have not yet been studied. We give an example of an interbasis expansion and work
out the structure of the quadratic algebra generated by the integrals of motion.
© 1999 American Institute of Physics. [S0022-2488(99)00505-8]

I. INTRODUCTION

Superintegrable systems on the two-dimensional hyperboloid were introduced and developed
in Refs. 1-3. In distinction to the cases ofltwo-dimensional Euclidean space and the two-spherel
the classification of superintegrable systems on the hyperboloid is difficult. To date only the four
potentials studied in Ref. 3 and two more listed in Ref. 1 are known. In the present paper two
potentials are considered, which were constructed in Ref. 1 but have not previously been inves-
tigated. These potentials both have only a finite number of bound states. At this point we have
treated all the potentials that arise by restriction from Hermitean hyperbolic space. We follow the
approach of Ref. 3, which contains an introduction and motivation.

The two-dimensional hyperboloid is characterized via the Cartesian coordinates wg, w|, @,
where w%— w%— w%z 1, wg>1. The requirement w,>1 means that we consider only the upper
sheet of the double-sheet hyperboloid. Throughout this paper we will consider the Schrodinger
equation on the hyperboloid in the form (A=m=1)

HVY=(—3A s+ V)V =EV, (1)
where V is a potential function and the Laplace—Beltrami operator A; g is written as
Ag=K3+K5—M3. (2)
Here K5, K, , M| generate the Lie algebra so(2,1) (Refs. 4 and 5):

K3=wyd, twd Kry=wgd,,t 030,, M=wd, —wd,, 3)

(4)07

and

[K3, K ]=M,, [K,,.M,]=—K;, [K;,M]=K,. 4)

IThe Schrodinger equation (1) for V=0 separates in nine coordinate systems.f Introduction of a
potential breaks the symmetry and, in general, reduces the number of coordinate systems permit-
ting separability, usually to zero. We consider the following two potentials (see Table I), con-
structed in Ref. 1, for which (1) is superintegrable.

0022-2488/99/40(5)/2291/16/$15.00 2291 © 1999 American Institute of Physics
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http://quantumrelativity.calsci.com/Physics/EandM7.html

If the boundary conditions are not separable, most likely we're hosed

Generally speaking, if the boundary conditions are
separable, there's a good chance the solution is
separable. If the boundary conditions are not separable,
most likely we're hosed.

This is Bessel's equation. The solutions are Bessel

functions, Neumann functions, and Hankel functions,
and we've officially entered Graduate Student Hell.

http://www.urbandictionary.com/define.php?term=hosed
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Coordinate
System

Cartesian

circular
cylindrical

conical
ellipsoidal
elliptic cylindrical

oblate
sphergidal

parabolic

parabolic
cylindrical

paraboloidal

prolate
spheroidal

spherical

Variables

XY (WZiz)

R(NBOMZ(z)

AYM (N (v)

U)Vv)ZI(z)

AMM (N ()

L () V(v & ()

AM (N ()

R(NO (P (d)

Solution Functions

exponential functions, circular functions,
hyperbolic functions

Bessel functions, exponential functions,
circular functions

ellipsoidal harmonics, power
ellipsoidal harmonics

Mathieu function, circular functions

Legendre polynomial, circular functions

Bessel functions, circular functions

parabolic cylinder functions, Bessel functions,
circular functions

circular functions

Legendre polynomial, circular functions

Legendre polynomial, power, circular
functions

Laplace's equation can be solved by separation of variables in all 11 coordinate
systems that the Helmholiz differential equation can. The form these solutions take is

summarized in the table above. In addition to these 11 coordinate systems, separation
can be achieved in two additional coordinate systems by introducing a multiplicative
factor. In these coordinate systems, the separated form is
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