Lecture 15

Everything you should remember
about hydrogen forever
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Ways to solve the radial equation

(1) Solve the differential equation
Find the asymptotic form
Separate it
Differential equation for each value of |
Make the diff eq dimensionless
Put highest derivative first
Set its coefficient equal to 1
Futz around
Discover radial equation is Laguerre eqgn !!!
Declare victory
Normalize the wave functions (caution)

(2) Use the ladder operators

(3) Type “hydrogen atom wavefunctions” into
Google
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The Effective Potential Depends
on the Angular Momentum

=> Series of Nested Wells

erp

Series of States in each Well
Ground, 1st, 2nd, 3rd, ... excited
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Table 8-5, p.280
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Probability Distribution for
the 1s Wave Function



Radial Probability Distribution









Probability Distribution

v square of the wave function

v probability of finding an electron at a given
position

v Radial probability distribution is the

probability distribution 1n each spherical
shell.
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Probability Distribution Functions

= R(r) and P(r) for the
lowest-lying states of
the hydrogen atom.



Fig. 8-11b, p.285
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Fig. 8-11c, p.285






Two Representations of
the Hydrogen 1s, 2s, and
3s Orbatals
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Hydrogen 2p Radial
Probability
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Hydrogen 3s Radial
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e Hydrogen Wave Function
*robability density plots,
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Probability density 2-dimensional plots
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The Functional Form
http://panda.unm.edu/Courses/Finley/P262/Hydrogen/WaveFcns.htmi

The Radial Components
http://hyperphysics.phy-astr.gsu.edu/Hbase/hydwf.html#c1

The Angular Components
http://oak.ucc.nau.edu/jws8/dpgraph/Yellm.html

Radial times Angular
http://www.falstad.com/gmatom/
http://webphysics.davidson.edu/faculty/dmb/hydrogen/intro_hyd.html

The Story Continues
http://www.pha.jhu.edu/~rt19/hydro/


http://panda.unm.edu/Courses/Finley/P262/Hydrogen/WaveFcns.html
http://hyperphysics.phy-astr.gsu.edu/Hbase/hydwf.html#c1
http://oak.ucc.nau.edu/jws8/dpgraph/Yellm.html
http://www.falstad.com/qmatom/
http://webphysics.davidson.edu/faculty/dmb/hydrogen/intro_hyd.html
http://www.pha.jhu.edu/~rt19/hydro/

http://webphysics.davidson.edu/faculty/dmb/hydrogen/
http://nyperphysics.phy-astr.gsu.edu/Hbase/quantum/hydcn.html#c1
http://cronodon.com/Atomic/AtomTech4.html
http://www.evilmadscientist.com/article.php/atomiccookies

http://mareserinitatis.livejournal.com/tag/food


http://webphysics.davidson.edu/faculty/dmb/hydrogen/
http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/hydcn.html#c1
http://cronodon.com/Atomic/AtomTech4.html
http://www.evilmadscientist.com/article.php/atomiccookies
http://mareserinitatis.livejournal.com/tag/food

Spherical Harmonics

The Meaning of the Spherical Harmonics
http://infovis.uni-konstanz.de/research/projects/SimSearch3D/images/harmonics_img.jpg

The Spherical Harmonics
http://oak.ucc.nau.edu/jws8/dpgraph/Yellm.html
http://www.bpreid.com/applets/poasDemo.html
http://www.du.edu/~jcalvert/math/harmonic/harmonic.htm

Encyclopedia
http://en.wikipedia.org/wiki/Spherical_harmonics
http://en.wikipedia.org/wiki/Table of_spherical harmonics
http://mathworld.wolfram.com/SphericalHarmonic.html

Applications of Spherical Harmonics
http://www.falstad.com/gmrotator/
http://www.falstad.com/gmatom/
http://www.falstad.com/gmatomrad/
http://www.falstad.com/gm2dosc/
http://www.falstad.com/gm3dosc/

Legendre Polynomials

The Meaning of the Legendre Polynomials
http://physics.unl.edu/~tgay/content/multipoles.html

Encyclopedia
http://fen.wikipedia.org/wiki/Legendre polynomials
http://mathworld.wolfram.com/LegendrePolynomial.html

Wolfram Demonstrations

http://demonstrations.wolfram.com/SphericalHarmonics/
http://demonstrations.wolfram.com/VisualizingAtomicOrbitals/
http://demonstrations.wolfram.com/HydrogenOrbitals/

http://demonstrations.wolfram.com/PlotsOfLegendrePolynomials/

http://demonstrations.wolfram.com/PolarPlotsOfL egendrePolynomials/
http://demonstrations.wolfram.com/DipoleAntennaRadiationPattern/



http://infovis.uni-konstanz.de/research/projects/SimSearch3D/images/harmonics_img.jpg
http://oak.ucc.nau.edu/jws8/dpgraph/Yellm.html
http://www.bpreid.com/applets/poasDemo.html
http://www.du.edu/~jcalvert/math/harmonic/harmonic.htm
http://en.wikipedia.org/wiki/Spherical_harmonics
http://en.wikipedia.org/wiki/Table_of_spherical_harmonics
http://mathworld.wolfram.com/SphericalHarmonic.html
http://www.falstad.com/qmrotator/
http://www.falstad.com/qmatom/
http://www.falstad.com/qmatomrad/
http://www.falstad.com/qm2dosc/
http://www.falstad.com/qm3dosc/
http://physics.unl.edu/~tgay/content/multipoles.html
http://en.wikipedia.org/wiki/Legendre_polynomials
http://mathworld.wolfram.com/LegendrePolynomial.html
http://demonstrations.wolfram.com/SphericalHarmonics/
http://demonstrations.wolfram.com/VisualizingAtomicOrbitals/
http://demonstrations.wolfram.com/HydrogenOrbitals/
http://demonstrations.wolfram.com/PlotsOfLegendrePolynomials/
http://demonstrations.wolfram.com/PolarPlotsOfLegendrePolynomials/
http://demonstrations.wolfram.com/DipoleAntennaRadiationPattern/










Associated Laguerre Polynomials

Some wag once said the nice thing about standards is that there are so many to choose
from. I have been trying to come to grips with the difference between what I presented
in class and the formulae in Sakurai. It is easy to explain the differences on the basis of
different conventions about the associated Laguerre polynomials.

If you want to skip details, a main result is that Sakurai and Mathematica use different
conventions. If we call £%(p) the convention of Sakurai and L;,q)(p) the convention of
Mathematica, we have

Li . (p)=(p+q!(~1)7L(p) .

Below are the details. They are presented somewhat in the order of my investigation
and not according to the shorted derivation of the above result.
Differential equation

I have consulted two well known books on mathematical functions that adhere to the
same index convention, but have different normalization conventions. The first book that
I consulted by Abramowitz & Stegun states on pg 778, Eqgs. (22.5.16) and (22.5.17):

LY (2) = Ln(x)

an
dx™

Also, on pg 781, in Eq. (22.6.15), the differential equation is given.

LM () = (1)~ [Losm (2)]

x@L% Nz) + (a+1— a:)%L,g N(x) +nL®(z)=0.

The differential equation is very valuable, but being linear, does not tell us anything
about the normalization.

Another well known book by Morse & Feshbach on pg 784, in an unnumbered equation
three lines from the bottom of the page gives their convention for the associated Laguerre
polynomials.

am

The differential equation is also given a few lines above:

Ly'(z) = (=)™

d2 a d a a
z@Ln(z) +(a+1—- z)aLn(z) +nL;(z)=0.

Morse & Feshbach do not put the upper index in parentheses, otherwise, it looks like these
conventions might agree. We can be pretty certain that in these two books the Lﬁf) is a

polynomial of degree n. However, we will soon see that the normalizations don’t agree in
the two books.
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Sakurai convention
Now, let’s turn to Sakurai. On pg 454 in Eq. (A.6.4), we find

d?

Li(p) = d—pqu(p) :

This leads us to conclude that L is of degree p — ¢, and makes the result above plausible.
In fact, if the normalizations were the same, we would expect:

d?

- d—pquJr‘I(p) - (_1)qL;(7q)(P) Not quite correct! .

£Z+q(p)

Class Derivation

In class, I presented the differential equation for the associated Laguerre polynomials
as stated by Mathematica,

2y +(a+1—2)y +ny=0.

This is the same convention as Abramowitz & Stegun and Morse & Feshbach.
In class, we found we needed to solve this differential equation:

pL" + (2(l+1)—p) L'+ (A=1-1)L =0,

but A = n, the total quantum number, and n — ! — 1 = n’ the radial quantum number. So,
we have
pL" + 2l+1+1—p) L' =n'L=0.

In the notation of Abramowitz & Stegun, Mathematica or the Morse & Feshbach index
convention, the solution to the differential equation is

20+1 20+1
Ly (o) = LT () -

In Sakurai notation, Lgflr_l)l(p) = (—1)2l+1£ilj_rll = —Eff:’ll . This explains the indices

for R, in Sakurai in the equation above (A.6.3).
Pinning Down the Normalizations

We still need to consider normalization conventions, and that can be done from the
generating function or from what is know as Rodrigues’ formula. In fact, in retrospect, it
seems that just looking at the Rodrigues’ formulae in the three books might have been the
easiest way to proceed.

In Abramowitz & Stegun, we find on pg 785, Eq. (22.11.6)

1 dr
L (z) = =€z

e CUC IR
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On pg 784 of Morse & Feshbach, we find

Fa+n+1)e* d” _
LY — - at+n —=z )
n(2) Fn+1) zvdz» |2

If we set o and a to zero, we can compare with Sakurai, which states in Eq. (A.6.5)

P

d _
Ly(p) = epd—pp(p”e 7).

We immediately see that Sakurai agrees in normalization with Morse & Feshbach, at least
for the Laguerre polynomials, if not for the associated Laguerre polynomials. However, the
two books on mathematical methods differ by a factor of (n + a)! in their normalizations
with Abramowitz & Stegun convention being smaller by division by that factor. Morse &
Feshbach include a small table of associated Laguerre polynomials at the bottom of page
784. They have L{ = n!, whereas Abramowitz & Stegun according to Eq. (22.4.7) have
L(()a) = 1. The only remaining mystery is which normalization convention Mathematica
obeys. With this command

Table[{n, LaguerreL[0, n, x|}, {n, 0,6}

you will easily find that all results are 1 and Mathematica follows the Abramowitz & Stegun
normalization.

Further, I coded up the Rodrigues’ formula with the Sakurai convention and compared
with (p + q)!(—l)qLéq) where the I used the Mathematica function LaguerreL[p,q,x].
They were in agreement.

Mystery solved! Quantum mechanics and children can now sleep soundly at night.
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