position space
A plane wave

times
A Gaussian

is equal to

A wavepacket

momentum space
A delta function at $p=p_{0}$

convolved with
A Gaussian at $\mathbf{p}=0$

is equal to

A Gaussian at $\mathbf{p}=\mathbf{p o}_{\mathbf{o}}$

(1) FINISN HAEE WAVE DAGET
QUANTITATIVE
(2) STAAT MARMONIG OSGIGLATOR

INGGUEE THE TIMA-DUPENDENT PNASE AACTORS

$$
e^{-i a_{n} t / \hbar}=e^{-i\left(P^{2} / 2 \mathrm{~m}\right) t / h}
$$

PGOPAGATOR

$$
U\left(x_{1}, t ; x^{\prime}, t^{\prime}\right)=\sqrt{m / 2 \hbar i\left(t-t^{\prime}\right)}
$$

$$
e^{-i m\left(x-x^{i}\right) / 2 h\left(t-t^{\prime}\right)}
$$

$$
\begin{aligned}
& \psi(x, 0)=e^{i p_{0} x / 4}\left(\pi^{0} \Delta^{2}\right)^{-1 / 4} e^{-x^{2} / 2 A^{2}} \\
& j \\
& \text { RAANC } \\
& \text { we } 4 \\
& \text { GAUSSIAN } \\
& \text { an uatope } \\
& \langle p\rangle=p o \\
& \langle x\rangle=0 \\
& \Delta p=\frac{\hbar}{\sqrt{2} \Delta} \\
& \Delta x=\frac{\Delta}{\sqrt{2}} \\
& \Delta x \Delta p=\frac{\hbar}{2} \\
& \text { MINIMUM UNCERTAINY AT } t=0
\end{aligned}
$$

$$
\begin{aligned}
u(t) & =\int_{-\infty}^{\infty}|p\rangle\langle p| e^{-i E(p) t / \hbar} \\
& =\int_{-\infty}^{\infty}|p\rangle\langle p| e^{-i\left(p^{2} / 2 m\right) t / \hbar}
\end{aligned}
$$

STILL IN THE HILORRT SPACE IN $X-\operatorname{SPA} C E$

$$
\begin{aligned}
\langle x| v(t)\left|x^{\prime}\right\rangle & =\int\langle x \mid p\rangle\left\langle p \mid x^{\prime}\right\rangle e^{-i p^{2} t / 2 m \hbar} d p \\
& =\int e^{i p\left(x-x^{\prime}\right) / \hbar} e^{-i p^{2} t / 2 m \hbar} d p \\
& =\left(\frac{m}{2 \pi \hbar i t}\right)^{1 / 2} e^{i m\left(x-x^{\prime}\right) / 2 \hbar t} \\
& =U\left(x, t ; x^{\prime}, 0\right) \\
& =U\left(x, t ; x^{\prime}, t^{\prime}\right) \quad t \rightarrow t-t^{\prime}
\end{aligned}
$$

$$
\langle\omega| U(t)\left|\omega^{\prime}\right\rangle \text { MATMiX ELEMRNTS }
$$

$$
\begin{aligned}
& \nabla^{2} T=x \frac{\partial T}{\partial t} \\
& \nabla^{2} \psi=\gamma \frac{d \psi}{d(i t)}
\end{aligned}
$$

Non-relativistic propagators

In non-relativistic quantum mechanics the propagator gives the amplitude for a particle to travel from one spatial point at one time to another spatial point at a later time. It is a Green's function for the Schrödinger equation. This means that if a system has Hamiltonian H then the appropriate propagator is a function $K\left(x, t ; x^{\prime}, t^{\prime}\right)$ satisfying

$$
\left(H_{x}-i \hbar \frac{\partial}{\partial t}\right) K\left(x, t ; x^{\prime}, t^{\prime}\right)=-i \hbar \delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right)
$$

where H_{x} denotes the Hamiltonian written in terms of the x coordinates and $\delta(x)$ denotes the Dirac delta-function.

This can also be written as

$$
K\left(x, t ; x^{\prime}, t^{\prime}\right)=\langle x| \hat{U}\left(t, t^{\prime}\right)\left|x^{\prime}\right\rangle
$$

where $\hat{U}\left(t, t^{\prime}\right)$ is the unitary time-evolution operator for the system taking states at time t to states at time t^{\prime}.

Using the quantum mechanical propagator [edit]

In non-relativistic quantum mechanics, the propagator lets you find the state of a system given an initial state and a time interval. The new state is given by the equation:

$$
\psi(x, t)=\int_{-\infty}^{\infty} \psi\left(x^{\prime}, t^{\prime}\right) K\left(x, t ; x^{\prime}, t^{\prime}\right) d x^{\prime}
$$

If $K\left(x, t ; x^{\prime}, t^{\prime}\right)$ only depends on the difference $x-x^{\prime}$ this is a convolution of the initial state and the propagator.

Propagator of Free Particle and Harmonic [edit] Oscillator

For time translational invariant system, the propagator only depends on the time difference ($\mathrm{t}-\mathrm{t}$), thus it may be rewritten as

$$
K\left(x, t ; x^{\prime}, t^{\prime}\right)=K\left(x, x^{\prime} ; t-t^{\prime}\right)
$$

The propagator of one-dimensional free particle is

$$
K\left(x, x^{\prime} ; t\right)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} d k e^{i k\left(x-x^{\prime}\right)} e^{-i \hbar k^{2} t /(2 m)}=\left(\frac{m}{2 \pi i \hbar t}\right)^{1 / 2} e^{-m\left(x-x^{\prime}\right)^{2} /(2 i \hbar t)}
$$

$$
\begin{aligned}
u(t) & =\int_{-\infty}^{\infty}|p\rangle\langle p| e^{-i E(p) t / \hbar} \\
& =\int_{-\infty}^{\infty}|p\rangle\langle p| e^{-i\left(p^{2} / 2 m\right) t / \hbar}
\end{aligned}
$$

STILL IN THE HILORRT SPACE IN $X-\operatorname{SPA} C E$

$$
\begin{aligned}
\langle x| v(t)\left|x^{\prime}\right\rangle & =\int\langle x \mid p\rangle\left\langle p \mid x^{\prime}\right\rangle e^{-i p^{2} t / 2 m \hbar} d p \\
& =\int e^{i p\left(x-x^{\prime}\right) / \hbar} e^{-i p^{2} t / 2 m \hbar} d p \\
& =\left(\frac{m}{2 \pi \hbar i t}\right)^{1 / 2} e^{i m\left(x-x^{\prime}\right) / 2 \hbar t} \\
& =U\left(x, t ; x^{\prime}, 0\right) \\
& =U\left(x, t ; x^{\prime}, t^{\prime}\right) \quad t \rightarrow t-t^{\prime}
\end{aligned}
$$

$$
\langle\omega| U(t)\left|\omega^{\prime}\right\rangle \text { MATMiX ELEMRNTS }
$$

$$
\begin{aligned}
& \nabla^{2} T=x \frac{\partial T}{\partial t} \\
& \nabla^{2} \psi=\gamma \frac{d \psi}{d(i t)}
\end{aligned}
$$

$$
\begin{aligned}
& \psi(x, t)=\int v\left(x, t ; x^{\prime}, t^{\prime}\right) \psi\left(x^{\prime}, t^{\prime}\right) d x^{\prime} \\
& \text { if } \psi\left(x^{\prime}, t^{\prime}\right)=\delta\left(x-x^{\prime}\right)
\end{aligned}
$$

then $f(x, t)=u\left(x, t ; x^{\prime}, t^{\prime}\right)$
GAUSSIAN SPREAD

$$
\begin{aligned}
& P(x, t)=|\psi(x, t)|^{2} \\
& \langle x(t)\rangle=\frac{\rho_{0}}{m} t=\frac{\langle\rho\rangle}{m} t \\
& \Delta x(t)=\frac{\Delta}{\sqrt{2}}\left(1+\frac{\hbar^{2} t^{2}}{m^{2} \Delta^{4}}\right)^{1 / 2}
\end{aligned}
$$

$$
\langle p(t)\rangle=p_{0}
$$

$$
\Delta p(t)=\frac{\hbar}{\sqrt{2} \Delta}
$$

nom time
so AT LONG TIMES

$$
\Delta x(t)=\frac{\Delta}{\sqrt{2}} \frac{\hbar t}{m \Delta^{2}}=A t
$$

linear in thine
$\Delta x(t) \rightarrow \Delta v(0) t$ conical armand

$$
\psi(x, 0) \sim e^{-x^{2} / 2 \Delta^{2}}
$$

GAUSSIAN
ENVELOPE
MiN wiotH $\Rightarrow \Delta X=\frac{\Delta}{\sqrt{2}}$
TIME-DEPENDENT WIDTH

$$
\Delta x(t)=\frac{\Delta}{\sqrt{2}} \sqrt{1+\frac{\hbar^{2} t^{2}}{m^{2} \Delta^{4}}}
$$

$$
\text { AT } t=0 \quad \Delta x=\frac{\Delta}{\sqrt{2}}
$$

$$
\begin{aligned}
w H \in N \frac{\hbar^{2} t^{2}}{m^{2} \Delta^{4}} \gg 1 \quad \Delta x(t) & =\left(\frac{\Delta}{\sqrt{2}} \frac{\hbar}{m \Delta^{2}}\right) t \\
& \sim \frac{t}{\Delta} \quad \operatorname{SMALLAD} \Rightarrow F A S T E R S A R I A T
\end{aligned}
$$

$$
\Delta p(t)=\frac{\hbar}{\sqrt{2} \Delta} \quad \operatorname{consTANT}
$$

$$
\Delta v=\frac{\hbar}{\sqrt{2} m \Delta}
$$

SMALCER $\triangle \rightarrow$ CARGE $\triangle V$

CLASSICAC SPRAAO

$$
\Delta x(t)=\Delta v t
$$

Chapter 1: The Math
Chapter 2: The Postulates

One-dimensional problems
Many 3d problems, for example the hydrogen atom, can be decomposed into a 1d problem in the radial direction coupled to a 2d problem in the theta and phi directions.

Chapter 4: Scattering in 1d
Free particle eigenstates in 1d
Transmission and reflection coefficients
Chapter 5: The infinite square well
Bound particle states in 1d
Chapter 3: Gaussian wave packets
Finite extent free particle states in 1d The spreading of 1 d wavepackets

Chapter 8: The simple harmonic oscillator Gaussian bound states in 1d

LEGTURE18
Ju4y 23,4007

SOLVE SHO DifR Ra

$$
H\left|\varphi_{m}\right\rangle=\varepsilon_{n}\left|\varphi_{n}\right\rangle
$$

to get x-space, dot wibl $<x 1$ bua

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} k x^{2}\right] \varphi_{m}(x)=E_{m} \varphi_{m}(x)
$$

Pind ents En
F ind $e f^{\prime} s \quad \varphi_{n}(x)$

TELG'EM WHAT YOU'RE GONNA TELG'EM
akeo
ceovs invar

2

1

0

FIND ASYPTOTIG RORM OUTSIOE $=6$ AUSSAAN

SOLUTION = GAUSSAANX POLVNOMRALS

Lecture 11

$$
\begin{aligned}
& \text { SOLVE TISE IN POSATION SPACE } \\
& H|m\rangle=E_{n}|n\rangle \\
& \text { opanator } \\
& \text { IN } X \text {-SPAGE } \\
& \text { WAVE RONGTIONS } \\
& \varphi_{m}(x) \text { iN } x-\operatorname{SAB} E \\
& \text { FOUND } \\
& e_{n}=(n+1 / 2) \hbar \omega \\
& m=0,1,2,3, \ldots \\
& \varphi_{m}(y)=H_{n}(y) e^{-y^{2} / 2} \\
& \text { Stat } 10 N A A y \\
& \text { states }
\end{aligned}
$$

An ARGY
miginmunctions

THE GIGGNFUNCTIONS OF THE HAMILTONIAN

ARE A COMPLETE ORTMONORMAL SET OE

BASIS EUNGTIONS ROM THE SAACE
square wital
INTRAVAG:

11

ANY RUNGTION

$$
\psi(x)=\sum_{n} a_{m} e^{i k_{m} x}
$$

LNA: FAE E PAATICLE

11

ROORNER INTEGMAL

$$
\begin{aligned}
& \psi(x)=\int \hat{\psi}(p) \frac{e^{i \beta x / \hbar}}{\sqrt{2 \pi h}} \alpha p \\
& \psi(x)=(2 \pi)^{-1 / 2} \int a(k) e^{i k x} d k \\
& \int e^{-i \alpha x} e^{i \alpha^{\prime} x} d x=\delta\left(k^{\prime}-\alpha\right)
\end{aligned}
$$

CANE: HERMITE GUNCTIONS

$$
\begin{aligned}
& \int H_{m}(x) H_{m}(x) e^{-x^{2}} d x=\delta_{m m} \\
& f(x)=\sum_{m} a_{m} H_{n}(x)
\end{aligned}
$$

HYOROGUN ATOM
HAGP-GINE
LAGUGARE POLYNOMIALS

$$
\int_{0}^{\infty} L_{n}(n) L_{m}(n) e^{-n} \alpha n=\delta_{n m}
$$

IN DUAEG NOTATION, ALL OF TNA ABOUE MRE

$$
\begin{aligned}
&|\psi\rangle=I|\psi\rangle \\
&=\sum_{a_{m}}|m\rangle\langle m \mid \psi\rangle \\
&|\psi\rangle=\sum_{m m}|m\rangle \\
&\langle n \mid m\rangle=\delta_{m m}
\end{aligned}
$$

$$
\text { TODAY: } \quad \text { SHO-2 }
$$

POWER SERIES, ORTHOGONAL POLYNOMIALS, DIFFERENTIAL EQUATIONS, AND ALL THAT....

WE WANT TO SOLVE TOSE

$$
H|\psi\rangle=i \hbar \frac{d}{d t}|t\rangle
$$

SO WE FIRST SOLVE TINE

$$
\begin{aligned}
& H|E m\rangle=E_{m}\left|E_{m}\right\rangle \\
& T H E N \quad U S E \\
&|\psi(t)\rangle=\sum_{m}\left|E_{m}\right\rangle\left\langle E_{m}\right| e^{-i E_{m} t / \hbar}|\psi(0)\rangle \\
&=\sum_{n}\left|E_{m}\right\rangle\left\langle E_{n} \mid \psi(0)\right\rangle
\end{aligned}
$$

SO, TO SOLVE TISE...

LECTURE //: SHO II
powen seaies, differ's, and all that
$T / S E$

$$
H\left|\varphi_{m}\right\rangle=E_{n}\left|\varphi_{n}\right\rangle
$$

using parition basis:

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} k x^{2}\right] \varphi_{m}(x)=E_{n} \varphi_{m}(x)
$$

OUR JOB: FIND φ_{m} 's
FIND Em's

REWMITE TISE

$$
\begin{aligned}
& \frac{d^{2} \psi}{d x^{2}}+\left(\lambda-\alpha^{2} x^{2}\right) \psi=0 \\
& \lambda=\frac{2 m E}{\hbar^{2}} \\
& \alpha=\frac{m / 4}{\hbar^{2}}
\end{aligned}
$$

FIRST STEP: FIND ASYMPTOTIC SOLUTION

FOR LARGE $x, \quad \alpha^{2} x^{2} \gg \lambda$

$$
\begin{aligned}
& \frac{\alpha^{2} \psi}{d x^{2}}-\alpha^{2} x^{2} \psi=0 \\
& \psi=A e^{-\frac{1}{2} \alpha x^{2}}+B e^{+\frac{1}{2} \alpha x^{2}} \\
& \frac{\alpha \psi}{d x}=-\alpha x \quad A e^{-1 / 2 \alpha x^{2}}+\alpha x B e^{+1 / 2 \alpha x^{2}} \\
& \frac{d^{2} \psi}{d x^{2}}=\alpha^{2} x^{2} A e^{-1 / 2 \alpha x^{2}}+\alpha^{2} x^{2} B e^{+1 / 2 \alpha x^{2}} \\
& \rightarrow \alpha A e^{-1 / 2 \alpha x^{2}}+\alpha B / e^{+1 / 2 \alpha x^{2}} \\
& \alpha^{2} x^{2} \gg \alpha \\
& \psi(x)=A e^{-\frac{1}{2} \alpha x^{2}} \\
& \psi(x)=B e^{+1 / 2 \alpha x^{2}}
\end{aligned}
$$

SO, AT LARGE x, We havE GAUSSIAN DECAY

LOOK FOR SOLUTIONS OF THE FORM

$$
\begin{aligned}
& \psi(x)=e^{-1 / 2 \alpha^{2} x^{2}} f(x) \\
& \frac{d^{2} \psi t}{d x^{2}}+\left(\lambda-\alpha^{2} x^{2}\right) \psi=0 \\
& \frac{d \psi}{d x}=\frac{d}{d x}\left[e^{-1 / 2 \alpha x^{2}} f(x)\right] \\
& =-\alpha x e^{-1 / 2 \alpha x^{L}} f(x)+e^{-1 / 2 \alpha x^{2}} \frac{d A}{d x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d^{2} 4}{d x^{2}}=-\alpha e^{-\frac{1}{2} \alpha x^{2}} f(x)+\alpha^{2} x^{2} e^{-1 / 2 \alpha x^{2}} f(x) \\
& -\alpha x e^{-1 / / \alpha x^{2}} \frac{d f}{d x}-\alpha x e^{-1 / 2 \alpha x^{2}} \frac{d f}{d x} \\
& +e^{-\frac{1}{2} \alpha x^{2}} \frac{d L f}{d x^{2}} \\
& \frac{\alpha^{2} \psi}{d x^{2}} \Rightarrow\left[\frac{\alpha^{2} f}{d x^{2}}-2 \alpha x \frac{d f}{d x}+\left(\alpha^{2} / x^{2}-\alpha\right) f\right] e^{-1 / 2 \alpha x^{2}} \\
& +\left(\lambda-\alpha^{2} x^{2}\right) \psi=0 \\
& +\left(\lambda-\alpha^{2} / x^{2}\right) f e^{-1 / 2 \alpha x^{2}}=0 \\
& 0=\left[\frac{d^{2} f}{d x^{2}}-2 \alpha x \frac{d f}{d x}+(\lambda-a) f\right] e^{-y / \alpha \alpha x^{2}} \\
& \xi=\sqrt{\alpha} x \\
& f(x) \rightarrow H(\rho)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x} f(x)=\frac{\alpha}{d x} H(\xi)=\frac{\alpha}{d \xi} H(\xi) \frac{\alpha \xi}{d x} \\
& =\frac{\alpha H(\xi)}{d \xi} \sqrt{\alpha} \\
& \frac{\alpha^{2} A}{d x^{2}}=\alpha \frac{\alpha^{2} H}{d \xi^{2}} \\
& \frac{1}{\alpha}\left[\frac{d^{2} f}{d x^{2}}-2 \alpha x \frac{d A}{d x}+(\lambda-\alpha) f=0\right. \\
& {\left[\frac{d^{2} H}{d \xi^{2}}-2 \alpha x \frac{d H}{d \xi} \sqrt{\alpha}+(\lambda-\alpha) H\right]=0} \\
& \xi=\sqrt{\alpha} x \\
& \frac{\alpha^{2} H}{d \xi^{2}}-2 \xi \frac{\alpha H}{d \xi}+\left(\frac{\lambda}{\alpha}-1\right) H=0
\end{aligned}
$$

HERMITESSEQN

SOLVE USING POWER SERIES...

$$
H(\xi)=a_{0}+a_{1} \xi+a_{2} \xi^{2}+a_{3} \xi^{3}+\cdots
$$

$$
\frac{d H}{d \xi}=0+a_{1}+2 a_{2} \xi+3 a_{3} \xi^{2}+\cdots
$$

$$
\frac{d^{2} H}{d \xi^{2}}=0+0+1 \cdot 2 a_{2} \%+2 \cdot 3 a_{3} \xi
$$

know

$$
\frac{d^{2} H}{d \xi^{2}}-2 \xi \frac{d H}{d \xi}+\left(\frac{\lambda}{\alpha}-1\right) H=0 \quad \text { For } A L C \xi!
$$

\Rightarrow each coafficint $\&$ of ξ must vanish

$$
\begin{aligned}
& \xi^{0} \quad 1 \cdot 2 a_{2}+\left(\frac{\lambda}{\alpha}-1\right) a_{0}=0 \\
& \xi^{\prime} \\
& 2 \cdot 3 a_{3}+\left(\frac{\lambda}{\alpha}-1-2\right) a_{1}=0 \\
& 3.4 a_{4}+\left(\frac{\lambda}{\alpha}-1-2 \cdot 2\right) a_{2}=0 \\
& 4.5 a_{5}+\left(\frac{\lambda}{\alpha}-1-2.3\right) a_{3}=0
\end{aligned}
$$

$$
\Rightarrow \text { GOFF OF } \xi^{m}
$$

$$
a_{m+2}=\frac{-(m+2) a_{m+2}+\left(\frac{\lambda}{\alpha}-1-L m\right) a_{m}=0}{(m+2)(m+1)} a_{m}
$$

RECURSION RELATION
$\Delta m=2 \quad a_{0} \Rightarrow$ all even coif's
$a_{1} \Rightarrow$ all ODD CORAF'S

For each m:

$$
\text { wheN } \quad\left(+\frac{\lambda}{\alpha}-2 m-1\right)=0
$$

all higher terms vanish!

SPECIAL VALURS OF $\lambda \Rightarrow$ FINITE POCYNOMIGLS

$$
\lambda=\frac{2 m E}{\hbar}
$$

$$
\Rightarrow E I G E N E N G R G E S!
$$

TWO GLASSGS OF SOLUTIONS

EVEN

$$
H(\xi)=a_{0}+a_{L} \xi^{L}+a_{4} \xi^{4}+\ldots
$$

$O 0 D$

$$
H(\xi)=a_{1} \xi+a_{3} \xi^{3}+a_{5} \xi^{5}+\cdots
$$

OPD AND rVEN COMR FROM SVMMETRY OF THEPROBLEM
N. B., FOR AN ARBITRARY ENERGY, NO STATIONARY

$$
a_{m+2}=\frac{-\left[\frac{\lambda}{\alpha}-2 m-1\right]}{(m+2)(m+1)} a_{m}
$$

CAN CHOOSE A TO TERMINATE GUIN OR DOD SERIES, BUT NOT BOTH.

LARGE m

$$
a_{m+2}=\frac{-\left[\frac{\lambda}{\alpha}-2 m-1\right]}{(m+L)(m+1)} a_{m}
$$

COMPARE WITI POWRR SHRIES FOR A

GAUSSIAN

$$
\begin{aligned}
& e^{2}= \sum_{n=0}^{\infty} \frac{\left(\xi^{2}\right)^{n}}{n!}=1+\xi^{2}+\frac{1}{2!} \xi^{4}+\frac{1}{3!} \xi^{6} \\
&+\frac{\xi^{m}}{\left(\frac{m}{2}\right)!}+\frac{\xi^{m+2}}{\left(\frac{m+2}{2}\right)!} \\
& \frac{b_{m+2}}{b_{m}}=\left(\frac{2}{m}\right)=7 \operatorname{san} E!
\end{aligned}
$$

calculate tia eigentanergies

$$
\left[\frac{\lambda}{\alpha}-2 m-1\right]=0
$$

$$
\frac{\lambda}{\alpha}=2 m+1
$$

$$
\lambda=(2 m+1) \alpha
$$

$$
\frac{2 m E}{\hbar^{2}}=(2 m+1) \sqrt{\frac{m k}{\hbar^{2}}}
$$

$$
E=(2 m+1) \frac{\hbar^{2}}{2 m} \sqrt{\frac{m \pi}{\hbar^{2}}}
$$

$$
=(n+1 / 2) \hbar \sqrt{\frac{k}{m}}
$$

$$
=(n+1 / 2) \hbar \omega
$$

$$
\begin{aligned}
H_{0}(\xi) & =1 \\
H_{1}(\xi) & =2 \xi \\
H_{2}(\xi) & =4 \xi^{2}-2 \\
H_{3}(\xi) & =8 \xi^{3}-12 \xi \\
H_{4}(\xi) & =16 \xi^{4}-48 \xi^{2}+12 \\
H_{5}(\xi) & =32 \xi^{5}-160 \xi^{3}+120 \xi \\
H_{6}(\xi) & =64 \xi^{6}-480 \xi^{4}+720 \xi^{2}-120 \\
H_{7}(\xi) & =128 \xi^{7}-1344 \xi^{5}+3360 \xi^{3}-1680 \xi \\
H_{8}(\xi) & =256 \xi^{8}-3584 \xi^{6}+13440 \xi^{4}-13440 \xi^{2}+1680 \\
H_{9}(\xi) & =512 \xi^{9}-9216 \xi^{7}+48384 \xi^{5}-80640 \xi^{3}+30240 \xi \\
H_{10}(\xi) & =1024 \xi^{10}-23040 \xi^{8}+161280 \xi^{6}-403200 \xi^{4}+302400 \xi^{2} \\
& -30240 .
\end{aligned}
$$

figure 4
Wave functions associated with the first three levels of a harmonic oscillator.

FIGURE 5
Probability densities associated with the first three levels of a harmonic oscillator.

figure 6
Shape of the wave function (fig. a) and of the probability density (fig. b) for the $n=10$ level of a harmonic oscillator.

The Harmonic Oscillator

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc.html
http://www.falstad.com/qm1d/
http://www-personal.umich.edu/~lorenzon/java_applets/spaceholder/applets/SHO-QM-example.html?D1=5
http://www.quantum-physics.polytechnique.fr/en/

Hermite Polynomials

http://mathworld.wolfram.com/HermitePolynomial.html
http://www.efunda.com/math/Hermite/index.cfm
http://www.sci.wsu.edu/idea/quantum/hermite.htm
http://functions.wolfram.com/Polynomials/

Coherent States

http://cat.sckans.edu/physics/Quantum\ Wave\ Ppacket.htm

