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Expressing the field intensity E, the current density J, and the charge density p
in similar fashion, we find that
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Thus o
p= %; Ve (f) : (4-215)
5 50- Equation 4-214, which is known as
the Child-Langmuir law, is valid only
2.25¢ for the plane parallel diode and for
2 00k electrons emitted with zero velocity.
| 75l Figure 4-28 shows the distribution of
potential ¥, electric field intensity E,
1.50F e and charge density p in the plane par-
1.25} allel diode. One can show,* however,
o ‘ that, in general, no matter what the
E/E, ! geometry of the diode may be, the
0.751 ! current is related to the potential
0.50k E difference between cathode and anode
V7V, ! by the relation
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Figure 4-28. The space charges density In an actual diode, electrons are

p, the electric field intensity E, and the emitted with finite velocities, and the
electrostatic potential V as functions of equilibrium field intensity E, at the
the distance from the cathode in a plane- cathode is negative. In this case, a

parallel infinite diode. The index 1 refers
to the value at the anode. The distance
between cathode and anode is s.

potential minimum is established at
a small distance in front of the cath-
ode and only electrons with veloci-

ties greater than a critical value can get past the potential minimum, which is
a potential energy maximum for electrons.

4.8. Summary

In this chapter we have dealt with electrostatic problems which cannot easily
be solved by direct integration from Coulomb’s law or by application of Gauss’s
law. We have sought solutions of Poisson’s equation

* K. R. Spangenberg, Fundamentals of Electron Devices (McGraw-Hill, 1957), p. 169.
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V2V = —p/e (€O}
or, more often, of Laplace’s equation
vy = 0. 4-2)

The solutions of these equations must always be consistent with certain
boundary conditions which necessarily prevail between different media.

(1) For charge distributions of finite extent the potential ¥ must go to zero
at infinity; it must be constant throughout a conductor; and it must be con-
tinuous across any physical boundary.

(2) The normal component of the displacement vector D differs on the twa
sides of a boundary by the free charge density o residing on the boundary.

(3) The tangential component of the field intensity E is continuous across a
boundary.

We showed that a potential ¥ which satisfies both Poisson’s equation and
the pertinent boundary conditions is the only possible potential. Thus, any
potential we can devise, whether by intuitive or formal methods, is the correct
one. This is the uniqueness theorem.

We discussed the method of images, in which an electrostatic problem is
converted into an equivalent problem which is simpler to solve. This method is
particularly appropriate for point charges near conductors; we used it for the
case of a point charge and a conducting plane, for the case of a point charge
and a conducting sphere, and for the case of a sphere near a conducting plane.
We showed that the electrostatic forces calculated for the image problem are
the same as for the equivalent arrangement of charges and conductors which
the images replace. We also showed how to find the field intensities by image
methods in the case of a point charge near a dielectric slab.

We next found general solutions of Laplace’s equation, such solutions being
known as harmonic functions. We looked for solutions by the process of vari-
able separation, first in rectangular coordinates. In this process we seek solu-
tions of the form

V = X(x)Y(y) Z(2), 4-73)
where X(x), Y(»), and Z(z) are functions only of x, y, and z, respectively. We
showed that such solutions exist and that by taking linear combinations of
them we can satisfy arbitrary boundary conditions. We showed how to find the
solutions for two grounded, semi-infinite, parallel electrodes terminated by a
plane electrode at a potential Vo, as well as for a pair of parallel plates extending
to infinity in one direction and terminated by electrodes at arbitrary potentials
on the other two sides. The series of sine and cosine terms which we use in
rectangular coordinates to fit arbitrary boundary conditions are known as
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Fourier series. The coefficients of the various terms in the series can be eval-
uated through the orthogonality of the sine and cosine functions. For example,
b 0 ifp#=n,
/ C, s1n-b— Y sin 222 dy = b (4-95)
0

b 2 ifp =
an ifp=mn

In spherical coordinates Laplace’s equation was solved by the method of
variable separation. We restricted ourselves to problems of axial symmetry, in
which the potential is independent of the azimuth angle ¢. In seeking solutions

of the form
V(r, 0) = R(r) 6(6), (4-110)

we were led to two ordinary differential equations:

d?’R dR
2 —_ — -
p + 2r ar n(n 4+ Dr =0, (4-115)
and Legendre’s equation,

d »n 40 _ 3
a[(1~u)d0]+n(n+1)®—o, (4-121)

where u = cos 6.
The first equation is readily solved by functions of the type

R(r) = Ar + o (4-116)

The solutions of Legendre’s equation are called Legendre polynomials, which
we denote by P.(cos 6), there being a different polynomial for each value of the
index n. We built up a set of these polynomials by making use of a property
of harmonic functions, namely, that the derivative of such a function with
respect to a rectangular coordinate is also a solution. The general form of the
solutions we found by this method is

P.(cos 6) = (cos?6 — 1)~ (4-138)

1 o
2! d(cos 6)

The general solution of Laplace’s equation in spherical coordinates, if we
assume axial symmetry, is then

V= Z;; AriPo(cos 6) + ;0 B.r~®+DP,(cos 6). (4-139)

The individual terms of this equation constitute a complete set of functions; any
arbitrary boundary value of the potential having axial symmetry can be satisfied
with such a series. The coefficients in the series can be determined by using the
specified potentials on the boundaries and by using the orthogonality property
of the Legendre functions:
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+1 0 ifm#n
/ P,.(cos 8)P,(cos 6) d(cos 0) = 2 . (4-140)
-1 2n+1 )

We used the general equation 4-139 to solve several typical problems: a
conducting sphere in a uniform electrostatic field, which we examined from
several points of view, a dielectric sphere in a uniform electrostatic field, and a
uniformly charged ring.

We finally discussed the solution of Poisson’s equation for the parallel-plate
vacuum diode. This leads to the Child-Langmuir law relating the current den-
sity J to the potential difference ¥, between the plates:

12 (Y372
J= 4 (E) : (V_0_> (4-213)
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Problems

4-1. Two infinite conducting planes intersect at right angles, the line of intersection
being the x-axis and the planes being the xz- and xy-planes. A charge Q is placed in
the yz-plane at a distance a from the y-axis and b from the z-axis. Use the method of
images to find the field intensity E at the surface of each conductor.

Compute the surface charge density o.

Find the force F on the charge Q.

4-2. A conducting sphere of radius R bearing a charge Q is at a distance d = 3R
from an infinite, grounded, conducting plane. Determine the potential of the sphere
within one percent.

4-3. The centers of two conducting spheres are separated by 25 centimeters. The
radius of the first is 5 centimeters, and that of the second is 10 centimeters. The po-
tential of the first is 10 volts; the second is grounded. What is the charge on each sphere,
within one percent?

4-4. A grounded metal sphere of radius R is under the influence of an external point
charge Q at point P. What fraction of the induced charge on the sphere can be seen
from P?

4-5. A thin conducting spherical shell of radius a contains within it a point charge Q
at a distance » from the center. Find, by the method of images, the charge density
induced on the outside surface of the sphere.

Find also the force F on the charge Q.

Is the equilibrium point at the center stable, unstable, or neutral ?

4-6. A charge Q is situated between two horizontal parallel conducting plates sepa-
rated by a distance s. The charge Q is at a distance x above the lower plate. Calculate,
the force due to the image charges, in the form of an infinite series.

Find an approximate value for the force when Q is situated (a) near one of the plates
and (b) near the position x = s/2.



